资料PM5浓度土地利用回归建模

合集下载

基于BP神经网络的PM2.5浓度值预测模型

基于BP神经网络的PM2.5浓度值预测模型

基于BP神经网络的PM2.5浓度值预测模型基于BP神经网络的PM2.5浓度值预测模型一、引言空气污染已成为全球关注的焦点问题,而其中PM2.5颗粒物的浓度对人体健康和环境质量有着重要的影响。

因此,准确预测PM2.5浓度的变化越发重要。

本文将介绍一种基于BP神经网络的PM2.5浓度值预测模型,通过分析历史的PM2.5浓度数据和相关气象因素,建立BP神经网络模型,从而提高PM2.5浓度预测的准确度。

二、BP神经网络的基本原理BP神经网络是一种常用的人工神经网络模型,其基本原理是通过学习和训练,建立一个多层前馈神经网络,以实现输入和输出数据之间的映射关系。

BP神经网络包含输入层、隐藏层和输出层,在训练过程中利用误差反向传播算法不断调整神经元的权值和阈值,从而提高网络的准确性和稳定性。

三、建立PM2.5浓度预测模型1. 数据收集与预处理收集历史的PM2.5浓度数据和气象因素数据,包括温度、湿度、风速等。

对数据进行预处理,包括缺失值处理、异常值处理以及特征工程等,确保数据的准确性和完整性。

2. 确定输入输出变量将历史数据划分为训练集和测试集,确定输入变量(气象因素)和输出变量(PM2.5浓度)。

通过对数据的分析和处理,确定合适数量的输入和输出变量,以提高模型的预测准确度。

3. 构建BP神经网络模型确定BP神经网络的结构,包括输入层、隐藏层和输出层的神经元数量。

确定激活函数、学习率、动量因子等参数。

利用训练集对模型进行训练,不断调整神经元的权值和阈值,直到误差最小化。

4. 模型评估与优化利用测试集对模型进行评估,计算预测值与实际值之间的误差。

根据误差分析结果,优化模型的超参数和结构,以提高模型的预测准确度。

四、实验与结果本文选取某城市2019年的PM2.5浓度数据和相关气象因素数据作为实验数据,将数据分为训练集和测试集。

通过建立BP神经网络模型,对PM2.5浓度进行预测。

实验结果显示,模型预测的PM2.5浓度值与实际值之间的误差较小,预测准确率达到90%以上,证明了基于BP神经网络的PM2.5浓度值预测模型的有效性。

PM2.5 浓度地理加权回归计算方法

PM2.5 浓度地理加权回归计算方法

附录A (资料性附录)PM 2.5浓度地理加权回归计算方法根据监测原理形成PM 2.5浓度矩阵计算公式如下:Y X b = (A.1)其中,因变量矩阵Y 、自变量矩阵X 和回归系数矩阵β根据匹配后的数据构建,构建形式如下:2.5112.5222.5ln(((,)))ln(((,)))ln(((,))n n M PM u v M PM u v Y M PM u v éùêúêú=êúêúëûM (A.2) 111111222222ln((,))ln((,))ln(1(,)/100)ln((,))ln((,))ln(1(,)/100)ln((,))ln((,))ln(1(,)/100)n n n n n n AOD u v HPBL u v RH u v AOD u v HPBL u v RH u v X AOD u v HPBL u v RH u v -éùêú-êú=êúêú-ëûM M M (A.3) 0110220111122121122223113333(,)(,)(,)(,)(,)(,)(,)(,)(,)(,)(,)(,)n n n n n n n n u v u v u v u v u v u v u v u v u v u v u v u v b b b b b b b b b b b b b éùêúêú=êúêúëûLL L L(A.4) 公式(A.2)、(A.3)和(A.4)中:2.5ln(((,)))i i M PM u v ——第i 个训练样本的PM 2.5浓度自然对数; ln((,))i i AOD u v ——第i 个训练样本的气溶胶光学厚度自然对数; ln((,))i i HPBL u v ——第i 个训练样本的边界层高度自然对数;ln(1(,)/100)i i RH u v -——第i 个训练样本的相对湿度线性变化后的自然对数; 0(,)i i u v b 、1(,)i i u v b 、2(,)i i u v b 、3(,)i i u v b ——第i 个训练样本的回归系数;i u ——第i 个训练样本的地理横坐标; i v ——第i 个训练样本的地理纵坐标。

基于多元回归分析的pm2.5预测研究

基于多元回归分析的pm2.5预测研究

基金项目
微型电脑%用2020年第36 )第3期
文章编号!007-757X(2020)03-0048-04
基于多元回归分析的PM2.5预测研究
王娟 (咸阳职业技术学院基础部,咸阳712000)
摘 要:PM2. 5对人体健康和大气环境质量6影响众所周知,分析、预测PM2. 5浓度对汾染天气防治与干预有着非常重要
灰色相对关联度
灰色

0 5000 0 5107 0 5241
0 5008 0 5401 0 5462
0. 500 3 0. 517 8 0. 517 6
表2 PM2.5平均浓度和工业污染物排放量的灰色关联度
灰色 联
PM25 平均浓 PM25 平均浓 PM2. 5平均浓
度与工业二氧
与工业氮氧 度与工业烟(粉)
化硫排放量 化物排放
尘排放量
灰色

灰色相 联
灰色

0 5008 0 5013 0 5213
0. 500 8 0. 504 9 0. 522 8
根据相关研究[910],空气重污染形成受气象、污染物排 放及地理条件等因素影响&地理条件影响不可避免&就某 一地区而言,气象条件及污染物排放是影响其PM2 5浓度 的主要因素'11(&利用灰色关联度、多元回归分析等方法对 空气质量进行研究、预测,定性定量分析污染程度及污染规 律,为环境空气质量预报和污染天气防治干预提供更为有效 的决策信息&
1模型准备11数据资料来源观测数据来源于中国统计年鉴2018包括pm25平均浓度气象数据降水量平均气温平均相对湿度污染物排放量工业二氧化硫排放量工业氮氧化物排放量工业烟粉尘排放量生活二氧化硫排放量生活氮氧化物排放量生活烟尘排放量amp

基于随机森林回归分析的PM2.5浓度预测模型

基于随机森林回归分析的PM2.5浓度预测模型

约为B P - NN ( b a c k p r o p a g a t i o n n e u r a l n e t w o r k ,B P神经网络 )预测模型的 5 . 8 8 %。
关键 词:P M2 . 5浓度预测 ;随机森林回归分析 ;B P神经 网络 中图分类号:T P 3 9 1
d o i : 1 0 . 1 1 9 5 9 / j . i s s n . 1 0 0 0 — 0 8 0 1 . 2 0 1 7 2 1 1
文献标识码:A
P M 2 . 5 c o n c e n t r a t i o n p r e d i c t i o n mo d e l ba s e d o n r a n d o m f o r e s t r e g r e s s i o n a n a l y s i s
2 . S h a a n x i Ke y L a b o r a t o r y o fI n f o r ma t i o n Co mmu n i c a i t o n Ne wo t r k a n d S e c u r i y, t Xi ’ a l l Un i v e r s i y t o f P o s t s a n d T e l e c o mmu n i c a —
t i o n s , Xi ’ a I 1 7 1 0 1 2 1 , C h i n a
Ab s t r a c t :T h e r a n d o m f o r e a t r e g r e s s i o n a l g o r i t h m wa s i n t r o d u c e d t o s o l v e t h e s h o r t c o mi n g s o f n e u r a l n e t wo r k i n

基于多元线性回归模型的赣州市PM2.5_质量浓度模拟

基于多元线性回归模型的赣州市PM2.5_质量浓度模拟

Science and Technology & Innovation|科技与创新2024年第08期DOI:10.15913/ki.kjycx.2024.08.039基于多元线性回归模型的赣州市PM2.5质量浓度模拟邹心怡(江西理工大学土木与测绘工程学院,江西赣州341000)摘要:以土地利用变化为切入点,基于赣州市空气监测站的PM2.5质量浓度数据和土地利用数据、道路数据、人口数据、气象因子数据,分析各因素与PM2.5质量浓度的相关关系,筛选合适的数据,建立基于多元线性回归方法的土地利用回归(Land Use Regression,LUR)模型来模拟PM2.5的空间分布。

研究结果表明,基于多元线性回归的LUR模型将森林和主要道路、边界层高度、风速作为建模变量,模型的调整R2(决定系数)为0.855,RMSE(均方根误差)为0.635,在拟合度和准确度方面都表现良好。

关键词:PM2.5质量浓度变化;LUR模型;多元线性回归;时空变化模拟中图分类号:X511 文献标志码:A 文章编号:2095-6835(2024)08-0133-03在飞速发展的城市化进程中,工业用地和建筑用地快速扩张,经济发展的同时环境保护的力度不够,导致环境污染越来越严重。

而大气污染作为环境污染的直观表现,自然受到了人们的广泛关注,当空气中的污染物质量浓度达到一定值时,可能引发各种严重问题[1- 2],并破坏自然环境[3]。

根据相关研究可知,空气污染物包括PM2.5、PM10、NO2、NOx等,其中PM2.5颗粒物是主要致病污染物[4]。

本文通过构建LUR模型,定量分析、模拟土地利用结构、气象等因素对赣州市PM2.5质量浓度变化的综合影响及作用机理,以期为本地PM2.5污染源控制、用地政策的制订提供科学依据。

1 数据与方法1.1 研究区概况赣州市位于江西省南部,其地理位置介于24°29′N—27°09′N、113°54′E—116°38′E,地处赣江上游,是东南沿海地区向中部内地延伸的过渡地带,同时也是内地通向沿海地区的重要通道。

LUR模型

LUR模型

LUR模型简述土地利用回归模型(Land Use Regression, LUR)是基于ArcGIS平台建立起来的大气、土壤等污染物浓度与土地利用、交通、工业排放、地形、气候、人口密度等相关因素之间关系的统计回归模型,用来预测研究区域内任意位置的污染物浓度及评估污染物空间分布的主要影响因素。

在最近的研究中,LUR模型被证明是一个高效的评估污染物浓度空间变化的方法。

简单的说,LUR模型就是利用有限监测站点的污染物浓度数据结合土地利用等特征变量来评估那些没有监测站点区域的污染物浓度,并分析其主要影响因素。

根据相关文献总结,该模型建立大致可分为以下几个步骤:(1) 目标污染物样本数据的获取。

研究的内容不同,用于建立LUR模型的样本数据不同,主要包括样本数据来源、样本数量大小与分布、采样方法、采样时间及样品处理等方面。

样本数据应随机的分为两个部分,一部分用于模型的构建,一部分用于模型的验证。

(2) 土地利用数据收集与特征变量的选取。

基于土地利用类型(林地、河流海水、湖、光滩、城市建设用地、农村建设用地等)、社会经济信息(耕地面积、人口、工业产值、农业产值等)、道路交通等要素,借助ArcGIS平台的空间分析工具提取相应的基础特征变量,绘制空间分布图。

(3) 分析方法构建及变量的相关性分析。

分析方法的构建是LUR模型中非常重要的一个步骤,具体的有圆形缓冲区分析法、半圆形缓冲区分析法,滑动窗口分析方法等。

基于ArcGIS平台提取每个划分区内的土地利用类型等自变量,分析不同空间尺度的自变量与污染物浓度的相关性,根据相关性的大小分析自变量对污染物浓度的影响范围,并基于分析结果选取用来构建LUR模型的影响变量。

(4) LUR模型构建。

以经过相关性分析后选取的具有统计显著性的影响变量为自变量,以污染物浓度数据为因变量,采用多元线性回归的分析方法构建LUR模型。

由于各变量的单位都不统一,所以在建立方程之前要对各种数据进行标准化处理。

基于Logistic回归分析的土地利用变化空间统计与模拟

基于Logistic回归分析的土地利用变化空间统计与模拟

基于Logistic回归分析的土地利用变化空间统计与模拟李强;任志远【期刊名称】《统计与信息论坛》【年(卷),期】2012(027)003【摘要】运用二元Logistic回归分析的方法,对研究区域土地利用/覆盖变化有重要贡献的10种驱动因子进行空间统计分析,并用ROC方法对所有回归模型的拟合优度进行了检验,运用GIS软件绘制研究区土地利用格局空间分布的经验统计概率图.ROC检验结果显示:各种土地类型的拟合度分别为耕地0.761,林地0.844,草地0.673,水域0.859,建设用地0.937,拟合度均大于0.5,拟合度较好;研究结果揭示了距县城中心的距离(X2)、高程(X6)、坡度(X7)、坡向(X8)、人口密度(X9)因素对研究区土地利用格局形成与演变有重要决定作用,为进一步研究黄土高原地区未来的土地利用动态变化情景奠定了基础,同时也为该地区的土地利用管理提供了科学依据.【总页数】6页(P98-103)【作者】李强;任志远【作者单位】陕西师范大学旅游与环境学院;陕西师范大学西北国土资源研究中心,陕西西安710062;陕西教育学院环境与资源管理系,陕西西安710061;陕西师范大学旅游与环境学院;陕西师范大学西北国土资源研究中心,陕西西安710062【正文语种】中文【中图分类】F222【相关文献】1.基于土地利用变化和空间统计学的区域生态风险分析——以武汉市为例 [J], 杜军;杨青华2.基于CLUE-S模型的南四湖流域土地利用变化模拟 [J], 丛文翠;孙小银;栾晓林3.基于土地利用变化模拟的水生态安全格局优化方法——以天津市为例 [J], 贾梦圆;陈天4.基于CA-Markov模型的巴南区土地利用变化模拟预测研究 [J], 冉玉菊5.基于FLUS模型的土地利用变化模拟与预测方法研究 [J], 王蒙因版权原因,仅展示原文概要,查看原文内容请购买。

数学模型在土壤污染评价中的应用

数学模型在土壤污染评价中的应用

数学模型在土壤污染评价中的应用随着现代工业的不断发展,环境污染问题也逐渐显现。

其中土壤污染问题已经引起了广泛的关注。

如何更好地评估和控制土壤污染,成为了当前研究的焦点。

数学模型作为一种重要的评估工具,在土壤污染问题中具有重要的应用价值。

一、数学模型的基础数学模型是指利用数学方法对某一实际系统进行抽象和理论化的过程。

模型可以定量描述实际系统的各种特征和规律,从而对实际系统进行预测和控制。

数学模型具有精度高、精度稳定、便于操作等优点,被广泛应用于各个领域的研究中。

二、数学模型在土壤污染评价中的应用土壤污染的评价过程中,需要对土壤中污染物的分布、转移和迁移进行研究。

由于土壤是一个复杂的非线性系统,其特征变量难以直接观测和测量,因此需要借助数学模型进行描述和分析。

1、有限元方法有限元方法是一种用来解决复杂物理问题的数值计算方法。

在土壤污染问题中,可以利用有限元方法对土壤中污染物的分布和迁移情况进行分析和预测。

通过建立数学模型,将土壤分为多个离散单元,计算出每个单元中污染物的浓度和迁移速度,从而综合分析土壤的整体污染情况。

2、人工神经网络人工神经网络是一种基于生物神经系统的计算模型,可以模拟和实现人类的智能行为。

在土壤污染问题中,可以通过建立神经网络模型,对土壤中污染物的分布和运移进行预测和控制。

通过对环境因素和污染物浓度等因素的监测和测量,将数据输入到神经网络中,进行分析和处理,得出污染物的污染范围和迁移规律。

3、统计学模型统计学模型是一种用于分析和建模现实数据的数学方法。

在土壤污染问题中,可以通过建立统计学模型,对土壤中污染物的分布和迁移进行预测和控制。

通过对采样数据的分析和处理,建立土壤污染物的概率分布模型,得出土壤污染情况的统计参数,包括均值、方差和标准差等。

三、数学模型应用的局限性尽管数学模型在土壤污染评价中具有重要的应用价值,但其应用也存在一些局限性。

例如:1、数据获取的不确定性。

土壤污染评价需要大量的实验数据进行支持,但数据的获取和测量常常会受到各种因素的影响,从而影响模型的准确性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数据收集及预处理
浓度监测数据 地理要素数据 区划数据
土地利用数据
数据采集
道路数据 人口分布数据 气象等
数据预处理
数据收集及预处理
监测数据:
ID
站点号
年均浓度
最小值
最大值
平均值
RMSE
1
2 3 4 5 ⋮ 450
01-005-0002
01-027-0001 01-049-1003 01-089-0014 01-119-0002 ⋮ 23-011-2006
[37]
[36] [38] [26]
常规监测
常规监测 常规监测 常规监测
77
34 18 13
7天 -
日均
月均 日均 周均
样本数据来源:自主 采样;常规监测。 自主采样周期:1-4 个7天。 样本数据大小:13318个不等,普遍在 20-80之间。
LUR关键问题分析及技术路线设计 特征变量筛选:
LUR关键问题分析及技术路线设计
LUR模型构建 与检验
模型构建: 多元线性回归 多元逐步回归模型 与贝叶斯最大熵法 (BME)结合 GAM模型与LUR模 型结合 地理加权回归模拟
模型检验: 残差、异方差和预 测变量之间的相关性 检验 残差空间自相关检 验 n-1交叉验证法 预留检验样本法
LUR关键问题分析及技术路线设计 模型精度:
12.79
13.47 14.2 15 12.13 ⋮ 9.7 4.43 21.82 12.94 2.71
污染特征: 共450个监测站点,PM2.5年均浓度值范围: 4.43-21.82 ug/m3,平均浓度值为12.94 ug/m3。 PM2.5污染呈南北两端浓度低,中间区域浓度高 的分布趋势,Pennsylvania、New Jersey、 Maryland、Alabama、Georgia州区域的污染较 严重
研究背景及意义
空气污染浓度模拟方法:
原理简单 操作简便 对采样点数据依赖性强 原理简单 操作相对简单 数据相对易获取 空间可迁移性差 时间分辨率不高
邻近 模型
原理简单 计算简便 误分类明显
空间 插值
扩散 模型
原理复杂 操作复杂 对数据要求较高 精度较高
LUR 模型
土地利用回归建模具有数据要求低、考虑因素齐全、模 拟精度和空间分辨率较高、适用范围广等优点。
PM2.5 LUR模型中通常只包含少数的预测变量(约2-6个); LUR模型解释PM2.5空间分异的百分比在40%-80%左右; 模型的检验标准误差在1.00ug/m3-3.30ug/m3之间。
LUR关键问题分析及技术路线设计
PM2.5LUR模型存在的主要问题
1
地理要素“污染 贡献”空间尺度 方面:
研究背景及意义
2001-2006年全球PM2.5年均浓度分布图
全球绝大部分地区PM2.5年均浓度超过WHO划定的安全界限(10ug/m3)。其中, 北非、东亚和中国等地区PM2.5平均浓度高于50ug/m3,部分地区甚至接近80ug/m3。 全球每年因PM2.5污染导致的过早死亡人数高达320万,造成超过7600万健康生命 年(1个人减少1年寿命为1健康生命年)的损失。
“各类特征变量污 染贡献估算的最佳 空间作用尺度究竟 是多大”及其对模 型精度的影响尚不 明确
2
LUR模型空间迁移特 性方面:
PM2.5LUR模型可迁移性 探索研究较少; 模型迁移特性不明确; 模型迁移条件不明确。 步的探索分析
3
模型精度评价方面:
基于点的模型精度评
价方法,评价范围局 限于污染物浓度监测 样本点,易受站点数
PM2.5浓度土地利用回归建模关键 问题研究
答辩人: 罗艳青
指导教师:邹滨副教授
专业: 地图学与地理信息系统
2014-5-11


研究背景及意义
LUR关键问题分析及技术路线设计
数据收集及预处理 研究结果及讨论
结论及展望
研究背景及意义
随着社会经济的发展,石油、煤炭等化石燃料的广泛利用,大量的有 害气体进入大气中,达到足够的浓度,对人体的舒适、健康、福利或 环境造成危害,严重威胁到人类的生存。


研究背景及意义
LUR关键问题分析及技术路线设计
数据收集及预处理 关键问题研究结果及讨论
结论及展望
LUR关键问题分析及技术路线设计
样本 选取
特征变 量筛选 LUR(土地利用回归模型)是一种基于空气质 量监测站点PM2.5观测浓度及其周边地理要素 变量,借助最小二乘法建立的用于预测研究 区内任意空间位置点PM2.5浓度的多变量回归 建模手段。
量分布特征影响。
LUR关键问题分析及技术路线设计 研究内容:
特征变量空间 尺度依赖研究 模型空间迁移 特性研究 模型精度评价 方法研究
径大小的 变化情况 特征变量空间尺 度的选取对模型 精度的影响
区域模型对比 模型互相迁移 迁移效果分析
模型构建 与检验
模型 精度
LUR关键问题分析及技术路线设计 样本数据选取:
文献 [27] [20] [22] [23] [28] [29] [30] [24] [32] [25] [31] 数据来源 自主采样 自主采样 常规监测 常规监测 自主采样 自主采样 自主采样 常规监测 自主采样 常规监测 自主采样 站点 40-42 40 49 23 40 116 26 32 318 18 50 监测周期 4个14天 7天 2个7天 时间分辨率 年均 年均 年均 年均 年均 年均 年均 年均 年均 年均 年均
浓度表面模拟 基于检验点的 模型精度评价 基于面的模型 精度评价
LUR关键问题分析及技术路线设计 技术路线:


研究背景及意义
LUR关键问题分析及技术路线设计
数据收集及预处理 关键问题研究结果及讨论
结论及展望
数据收集及预处理
研究区域概括:
研究区位于美国本土东部沿海地区,覆盖Alabama、Maryland、 Florida等21各州区,1066个县,占地面积1,515,453km2。
数据收集及预处理
地理要素数据:
数据收集及预处理
数据预处理:区域划分及样本数据分组
区域 数量 全区 子区域1 子区域2 子区域3 362 24 124 214 最小值 4.43 4.43 5.00 7.00
训练样本 最大值 21.82 15.02 22.00 18.00 均值 10.72 9.58 13.00 12.00 数量 88 5 31 52
相关文档
最新文档