度瓦斯治理技术方案及安全技术措施
治理瓦斯的技术方案及措施

治理瓦斯的技术方案及措施随着石油的短缺和价格的不断上涨,天然气成为了越来越多国家的主要能源资源。
然而,在天然气的开采、运输和储存过程中,瓦斯泄漏问题也一直备受关注。
瓦斯泄漏不仅污染环境,而且具有很高的爆炸危险性,因此需要采取科学有效的技术方案及措施对其进行治理。
一、治理瓦斯泄漏的技术方案1. 安全操作在瓦斯开采中,应对开采过程进行严格的安全管理,保证开采过程中的操作工序严格按照规范执行,避免瓦斯泄漏的产生。
2. 强化监测对于瓦斯泄漏的预测和监测是治理的重要方案之一。
在矿井、钻井、地下储气库等瓦斯开采场所,应配备高灵敏、高准确度的瓦斯检测仪器设备,及时检测、掌握瓦斯泄漏的情况。
3. 防治措施应针对瓦斯泄漏的不同情况采取不同的防治措施,如提高罐体和管道的密封性,优化开采工艺等措施来避免瓦斯泄漏的发生。
4. 安全逃生排气系统安全逃生排气系统通常采用无火点激发的高效吸附剂,吸收毒气、瓦斯等有害气体,并将其转化为无害物质,从而保证人员逃生和地下空气质量的安全。
5. 瓦斯回收利用瓦斯不仅可以作为一种能源资源进行回收利用,还可以减少瓦斯的泄漏,从而防止瓦斯的爆炸和污染环境。
通过采用瓦斯发电、瓦斯化学、瓦斯加氢等技术,回收和利用瓦斯可以大大降低瓦斯排放量。
二、治理瓦斯泄漏的措施1. 采用计划管理措施,建立安全操作流程,对开采人员进行培训,确保规范的开采操作。
2. 配备高灵敏的瓦斯检测仪器设备,定期检查和维护,及时发现和处理瓦斯泄漏。
3. 对瓦斯泄漏采取适当的防治措施,如加强密封性、优化开采工艺等。
4. 建立瓦斯泄漏实时监测系统,对瓦斯泄漏情况进行实时预警和报警,加快处理瓦斯泄漏。
5. 采用瓦斯回收利用技术,减少瓦斯泄漏量,实现瓦斯资源的回收利用。
6. 加强对瓦斯泄漏的应急预案制定,对于瓦斯泄漏事故要有应急救援预案,并进行演练。
综上所述,治理瓦斯泄漏需要采取科学有效的技术方案和措施,大力加强瓦斯管理和监测,确保瓦斯开采过程的安全和稳定,保障生态环境和人民生命财产安全。
治理瓦斯的技术方案及措施

加强瓦斯治理工作的监督检查,发现问题及时整改,保证瓦斯治理工作的质量。
建立健全瓦斯治理管理制度
加强瓦斯治理技术研发与创新
推广应用先进的瓦斯治理技术,提高瓦斯治理工作的效率和质量。
加强瓦斯治理技术的培训,提高瓦斯治理工作人员的技术水平和能力。
加强与科研院所的合作,研发新的瓦斯治理技术,提高瓦斯治理的效果和水平。
加大投入,更新和升级瓦斯治理装备,提高装备的科技含量和自动化水平。
提高瓦斯治理装备水平与保障能力
提高瓦斯治理工作人员的操作技能,确保瓦斯治理装备的正确使用和安全运行。
加强瓦斯治理装备的维护保养,确保装备的正常运转和延长使用寿命。
瓦斯案例一
某大型煤矿的瓦斯治理
案例二
某中型煤矿的瓦斯治理
案例三
某小型煤矿的瓦斯治理
01
03
02
经验四
开展瓦斯抽放工作,降低瓦斯压力
典型煤矿瓦斯治理经验总结
经验一
建立完善的瓦斯监测系统
经验二
合理设计煤层开采顺序
经验三
强化通风设施和安全管理
问题一
瓦斯抽放效果不理想
建议一
加强瓦斯抽放技术研发和应用
问题二
瓦斯爆炸的防范措施不够完善
建议二
完善瓦斯爆炸的防范措施和应急预案
问题三
瓦斯监测设备老化、精度低
建议三
更新和升级瓦斯监测设备
典型煤矿瓦斯治理问题探讨及改进建议
谢谢您的观看
THANKS
2023-10-26
治理瓦斯的技术方案及措施
瓦斯治理技术方案瓦斯治理措施瓦斯治理典型案例分析
contents
瓦斯治理技术方案及安全技术措施

瓦斯治理技术方案及安全技术措施目录1、矿井概况2、矿井生产接续情况3、矿井瓦斯涌出规律及危险性分析4、瓦斯治理方案5、预防瓦斯的措施6、处理瓦斯积聚的安全技术措施7、采掘工作面瓦斯管理安全措施8、按照《煤矿安全规程》进行瓦斯检查和处理9、矿井瓦斯监控系统10、避灾路线和避灾措施11、其他1、矿井概况:营城矿业现开采煤层为3#号煤,赋存较深。
2014年由于事故认定为煤与二氧化碳突出矿井。
煤矿应按照煤与二氧化碳突出矿井进行管理及配置设备。
2、矿井生产接续情况:2017年度我矿正常生产时,矿井计划施工三个回采工作面、六个掘进工作面。
即7307工作面、8301工作面、8303工作面、8303上顺掘进巷、8303下顺掘进巷、8306上顺掘进巷、8306下顺掘进巷、8303入风掘进巷。
7307工作面预计2017年5月份回采结束,5月底安装8303工作面。
8303工作面预计2017年11月份回采结束。
3 、矿井瓦斯涌出规律及危险性分析3.1 瓦斯来源分析:根据《煤矿安全规程》第170条规定,突出矿井不再进行周期瓦斯等级鉴定工作,应当每年测定和计算矿井、采区、工作面瓦斯和二氧化碳涌出量,并把省级煤炭行业管理部门和煤矿安全监察机构,我矿于2016年8月进行了测定,根据测定结果判断工作面瓦斯来源主要为工作面采煤和及巷道掘进时。
整体来看,矿井正常生产落煤、巷道掘进时,矿井瓦斯涌出量有所加大,矿井产量是影响瓦斯涌出量的主要因素。
2016年矿井瓦斯等级鉴定和二氧化碳测定结果见下表。
3.2 矿井瓦斯涌出规律及危险性分析:(1)工作面采用U型通风,采面上隅角的瓦斯浓度较其它地点为高,是容易积聚瓦斯的异常地点,为防治瓦斯的重点。
(2)回采工作面放顶落煤期间,工作面采空区顶部的瓦斯容易积存,因此工作面放顶煤期间必须加强通风管理,确保安全。
(3)采掘工作面过过断层、煤体裂隙发育等地质构造带时,瓦斯及其它有害气体浓度会明显增加,必须高度重视。
2024年瓦斯治理技术方案及安全技术措施

2024年瓦斯治理技术方案及安全技术措施嘿,各位同行,我要分享的这份方案,可是我十年磨一剑的精华哦!咱们就直接进入正题,谈谈2024年瓦斯治理技术方案及安全技术措施。
一、项目背景近年来,我国煤矿事故频发,瓦斯爆炸事故更是让人心有余悸。
为了降低瓦斯事故风险,提高煤矿安全生产水平,我们必须要有一套完善的瓦斯治理技术方案和安全技术措施。
二、技术方案1.瓦斯监测与预警系统这个系统主要包括瓦斯浓度监测、风速监测、温度监测、湿度监测等。
通过实时监测矿井内的瓦斯浓度、风速、温度、湿度等数据,对瓦斯涌出情况进行预警,确保矿井安全。
2.瓦斯抽采技术采用先进的瓦斯抽采技术,包括地面瓦斯抽采、井下瓦斯抽采、移动瓦斯抽采等,提高瓦斯抽采效率,降低矿井瓦斯涌出量。
3.瓦斯防治技术运用瓦斯防治技术,包括瓦斯排放、瓦斯封闭、瓦斯稀释、瓦斯利用等,有效降低矿井瓦斯浓度,防止瓦斯事故发生。
4.通风技术优化矿井通风系统,提高通风效果,确保矿井内氧气充足,降低瓦斯浓度。
5.防爆技术采用防爆电气设备、防爆机械装置等,防止因电气设备故障引发瓦斯爆炸。
三、安全技术措施1.安全培训加强煤矿工人的安全培训,提高他们的安全意识和操作技能,确保他们在遇到紧急情况时能够迅速采取措施。
2.安全管理制度建立健全煤矿安全管理制度,严格执行安全生产法规,确保矿井安全。
3.应急预案制定完善的应急预案,包括瓦斯事故应急预案、火灾事故应急预案等,确保在事故发生时能够迅速启动应急响应。
4.安全监测加强矿井安全监测,及时发现安全隐患,采取措施进行整改。
5.安全投入加大安全投入,提高矿井安全生产水平,确保矿井安全。
四、实施步骤1.项目启动成立项目组,明确项目目标、任务分工、时间节点等。
2.技术研发与试验开展瓦斯治理技术研发与试验,验证技术方案的有效性。
3.技术推广与应用将成熟的技术方案在矿井中进行推广与应用,提高矿井安全生产水平。
4.安全管理加强安全管理,确保矿井安全。
治理瓦斯的技术方案及措施

治理瓦斯的技术方案及措施随着社会的发展和工业的普及,瓦斯排放问题越来越突出。
瓦斯是一种具有爆炸性质的有害气体,会对人类的生命和财产造成巨大的危害。
因此,治理瓦斯已经成为了一个非常重要的问题。
本文将介绍一些治理瓦斯的技术方案及措施。
瓦斯的成分和危害瓦斯是指地下煤矿或石油钻井等作业中,由于板块运动引起的矿井中甲烷气体的释放,这种气体主要成分是甲烷,占瓦斯总体积的70%以上。
除此之外,还含有少量的乙烷、丙烷、氮气、二氧化碳等气体。
瓦斯是一种易燃易爆的气体,极易引起爆炸事故。
一方面,瓦斯会导致空气中氧浓度降低,造成员工失去意识或窒息死亡;另一方面,瓦斯与空气中一定浓度的氧气混合后,只需一丁点的火种即可燃烧爆炸,造成人员伤亡和财产损失。
由于瓦斯的爆炸性,使得治理瓦斯成为了一个非常紧迫的任务。
治理瓦斯的技术方案瓦斯利用方案瓦斯资源是一种非常珍贵的能源资源,如果没有得到合理利用,是一种巨大的浪费。
瓦斯利用技术是一种有效的治理瓦斯的方式。
这种技术通过收集、净化、转化等方式,把瓦斯转化为电能、热能等形式,供给生产使用。
瓦斯利用技术具有环保、经济、可持续等特点,可以有效解决工业生产中产生的瓦斯污染问题。
采用瓦斯利用技术,不仅可以把危险废气转化为有用资源,节约可再生能源,还可以为企业带来经济效益。
瓦斯测量方案为了有效治理瓦斯,对瓦斯进行测量是非常必要的。
瓦斯测量是瓦斯治理的重要技术措施之一,主要包括瓦斯浓度检测、瓦斯流量测量、瓦斯温度测量等方面。
采用现代化的瓦斯测量技术,可以快速、精准地了解瓦斯的产生情况和分布情况,及时识别瓦斯泄漏和浓度变化等异常情况,预判和预防瓦斯事故的发生。
瓦斯排放控制方案瓦斯排放控制是采取预防措施、以源头治理瓦斯排放的方式,通过防范控制和减排等方式减少瓦斯污染的发生。
在煤矿开采和石油钻探等工业生产环节中,通过采用先进的瓦斯控制设备和技术措施,有效减少瓦斯排放,提高瓦斯排放利用率,减轻对环境的污染和危害。
2024年度瓦斯治理技术方案及安全措施计划

2024年度瓦斯治理技术方案及安全措施计划一想起瓦斯治理,那复杂的心情就像一团乱麻,但又不得不面对。
十年了,一直在和瓦斯打交道,每次写方案都像是和它谈恋爱,了解它的习性,研究它的脾气,然后制定出一套又一套的方案。
这次,咱们就来聊聊2024年度的瓦斯治理技术方案及安全措施计划。
咱们得明确目标,2024年度瓦斯治理技术方案及安全措施计划的核心目标是确保矿井安全生产,降低瓦斯事故发生的风险。
就得分几个步骤来实施。
1.技术方案设计(1)加强瓦斯监测。
矿井内要安装足够的瓦斯监测设备,实时监测瓦斯浓度,一旦发现异常,立即启动预警系统。
(2)优化通风系统。
通风是治理瓦斯的关键,要根据矿井的实际情况,调整通风方式、风量和风向,确保矿井内的瓦斯浓度在安全范围内。
(3)提高瓦斯抽采效率。
采用先进的瓦斯抽采技术,提高瓦斯抽采效率,降低矿井内的瓦斯浓度。
(4)加强瓦斯防治技术研究。
不断探索新的瓦斯防治技术,提高瓦斯防治水平。
2.安全措施计划(1)加强安全培训。
对矿井内的所有员工进行安全培训,提高他们的安全意识和应急处理能力。
(2)完善应急预案。
针对瓦斯事故,制定完善的应急预案,确保在事故发生时能够迅速、有效地进行处置。
(3)加强现场管理。
严格执行安全规章制度,加强现场巡查,确保矿井内的设备、设施正常运行。
(4)提高救援能力。
建立专业的救援队伍,配备先进的救援设备,提高救援能力。
3.落实责任(1)明确矿长为矿井安全生产第一责任人,对矿井的安全生产负总责。
(2)明确各部门、各岗位的安全生产职责,确保各项工作有序开展。
(3)加强安全生产考核,对安全生产责任制落实不到位的人员进行严肃处理。
4.监督检查(1)定期对矿井内的安全生产情况进行检查,发现问题及时整改。
(2)加强对瓦斯监测、通风、抽采等关键环节的监控,确保各项措施落实到位。
(3)对安全生产责任制落实不到位、安全隐患整改不力的部门和个人进行严肃处理。
5.交流与合作(1)加强与其他矿井、研究机构的交流与合作,共享瓦斯治理经验和技术。
治理瓦斯的技术方案及措施

VS
国内瓦斯治理现状
我国政府对煤矿瓦斯治理给予高度重视, 先后出台了多项政策及标准,投入大量资 金支持技术研发。目前,我国瓦斯治理技 术水平逐步提高,但仍存在一定差距。
02
瓦斯治理技术方案ቤተ መጻሕፍቲ ባይዱ
瓦斯治理的意义
提高安全性
通过瓦斯治理,降低瓦斯浓度,消除爆炸风险,保障 矿工生命安全及企业生产安全。
提升生产效率
瓦斯治理有助于降低矿井通风阻力,提高煤炭开采效 率。
符合政策法规
政府对煤矿安全生产要求严格,瓦斯治理是符合政策 法规及标准的重要措施。
国内外瓦斯治理现状
国外瓦斯治理现状
国外煤矿生产过程中注重瓦斯治理,采 用多种技术手段,如抽放、通风等,确 保安全生产。
治理瓦斯的技术方案及措施
汇报人: 日期:
目录
• 瓦斯治理背景与重要性 • 瓦斯治理技术方案 • 瓦斯治理措施 • 瓦斯治理效果评估与改进建议
01
瓦斯治理背景与重要性
瓦斯定义及危害
瓦斯定义
瓦斯是一种可燃性气体,主要成分为 甲烷,通常存在于煤矿、煤层或岩层 中。
瓦斯危害
瓦斯在煤矿开采过程中,若浓度达到 一定值,遇火源易发生爆炸,严重威 胁矿工生命安全及企业生产。
治理瓦斯的技术方案及措施

治理瓦斯的技术方案及措施
煤矿瓦斯是煤矿生产过程中必不可少的安全隐患。
瓦斯的爆炸极易造成人员伤亡和财产损失,因此,煤矿企业需要采取科学有效的技术方案和措施进行瓦斯治理。
瓦斯防治技术方案:
1. 瓦斯抽采技术:采用瓦斯抽采设备将井底的瓦斯抽取出来,以减少瓦斯的积累,为矿工提供更为安全的工作环境。
2. 瓦斯治理技术:例如瓦斯拦截、瓦斯涌出处理、瓦斯地下压制、瓦斯抽放路线选定等方法。
3. 瓦斯利用技术:在矿山生产系统中配置瓦斯利用设施,使瓦斯得到利用而不造成环境污染,同时也为企业带来经济效益。
瓦斯治理措施:
1. 瓦斯采集系统:在井下布置专业瓦斯采集设备,采集瓦斯并送至地面处理,减少瓦斯积聚,降低爆炸风险。
2. 通风系统:加强通风系统、优化通风路线,将井下空气保持流动,瓦斯消散。
3. 安全番号制度:建立瓦斯检查与报警制度,通过瓦斯感知器等设备,对井下的瓦斯浓度、压力和温度等参数进行实时监控和报警。
4. 人员培训:增强煤矿作业人员的安全意识和应变能力,提高他们对瓦斯安全生产的认知,以避免瓦斯事故的出现。
5. 瓦斯利用:将瓦斯送至地面的瓦斯处理设备,通过燃烧、制取化学品等多种方式,对瓦斯进行利用,减少环境污染的同时,实现瓦斯资源的最大化利用。
总之,煤矿企业必须重视瓦斯治理,严格遵守瓦斯安全生产标准,加强瓦斯检测、抽采和利用等方面的技术管理,并对煤矿作业人员进行培训和教育,落实好各项瓦斯安全生产责任制,以确保矿安全生产。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
审批记录2017年度矿井瓦斯治理技术方案及安全技术措施根据2017年度矿井采掘布局及实际,为保证矿井采掘工作面安全顺利生产,特编制2017年度矿井瓦斯治理技术方案及安全技术措施。
第一节矿井概况一、概况新疆准南东煤矿位于乌苏市南东50km处,行政区划属乌苏市管辖。
煤矿与312国道通过长46km的简易公路相连,自312国道向西26km可到奎屯市,向西46km可到乌苏市,向东37km可到沙湾县,外部交通条件较为便利。
井田位于天山北麓山前低中山区,地形坡度5°~27°,总体地势南高北低。
海拔高程+1650m~+1725m,相对高差80~160m。
沟谷与山岭相间呈自北西向东、东南方向延伸。
矿井采用主斜井、副斜井进风,斜风井回风(两进一回)的中央并列式通风,矿井斜风井主要通风机为抽出式,一用一备,主要通风机型号FBCDZNO19型主要通风机,额定功率2×110KW,电机型号YBF2-315L2-8,转数740r/min,风量1600~4920m3/min,风压2300~600Pa,额定电压380~660V。
二、矿井瓦斯情况2016年瓦斯、二氧化碳鉴定成果,煤瓦斯绝对涌出量最大为:min。
二氧化碳相对涌出量约为:t。
三、煤层自燃倾向性、爆炸性经鉴定:A4煤层具有爆炸性,为自燃煤层,自燃倾向性等级为Ⅱ类,自燃发火期51天;四、气象及地震井田一带气候属中温带大陆性干旱气候。
气温变化于℃~℃,年平均气温℃~℃;6~8月为夏季,其中7、8月间气温最高,年最高气温℃;11月份至来年3月份为冬季,1月份气温最低,年最低气温℃。
年最大降雨量,年平均蒸发量为。
最大降雪厚度。
6月和9月多雨,常有雹、雨交加,引发山洪,冰雹直径可达~2cm。
9月底10月初开始降雪,次年3月底4月初消融。
最大冻土深度1~。
4~5月为多风期,风向西北,多为2~4级,最大可达七级。
根据《中国地震动参数区划图》(GB18306-2001),该区地震动峰值加速度为,地震动反应谱特征周期为。
地震基本烈度为Ⅷ度。
第二章矿井瓦斯治理技术方案及安全技术措施根据矿井2017年生产规划、安技改及采掘接替需要,2017年计划掘进巷道为E1141准备工作面开切眼、二水平上部车场段、+1400m进料联巷、+1420m运输上山、+1150m运输上山、+1400m煤仓、+1150m井底水仓、+1150m 井底水仓、+1150m回风上山下段、W2241首采面上顺槽与W2241首采面下顺槽。
第一节通风系统治理方案一、矿井通风现状矿井采用主斜井、副斜井进风,斜风井回风(两进一回)的中央并列式通风,矿井斜风井主要通风机为抽出式,一用一备,主要通风机型号FBCDZNO19型,额定功率2×110KW,电机型号YBF2-315L2-8,转数740r/min,风量1600~4920m3/min,风压2300~600Pa,额定电压380~660V。
矿井严格执行《煤矿安全规程》有关通风系统的管理规定,建立了独立完整的通风系统,矿井按规定设置专用回风巷,采区进、回风巷贯穿整个采区,各用风地点风量均达到或超过设计要求,没有无风、微风、循环风现象。
矿井现工作面(W1141综放工作面),采用一源一汇的“U”通风,掘进工作面采用压入式通风。
二、通风系统矿井主要通风线路为:副斜井→+1400m井底车场→+水仓联巷→W1141综放工作面运输顺槽→W1141综放工作面→W1141综放工作面回风顺槽→回风上山→主要通风机→地面副斜井→+1400m井底车场→回风联巷→回风上山→E1141回风顺槽外段(局扇)→E1141回风顺槽掘进工作面→进料联巷→回风上山→主要通风机→地面。
副斜井→+1400m井底车场→+1400m运输巷(局扇)→E1141运输顺槽掘进工作面→回风联巷→E1141回风顺槽外段→回风上山→主要通风机→地面。
三、通风设施(一)井下通风设施布置1.主要进、回风巷之间的每个联络巷中,必须砌筑永久性风墙;需要使用的联络巷及风井安全出口,必须按设计安设两道连锁的正向风门和两道反向风门。
+1520m车场至少设置两道连锁的正向风门和两道反向风门。
2.采空区必须及时封闭。
必须随采煤工作面的推进,逐个封闭通至采空区的联通巷道。
工作面开采结束后,必须在所有与采区相通的巷道中设置密闭墙,全部封闭采空区。
3.控制风流的风门、风墙、风窗等设施必须可靠。
不应在倾斜运输巷中设置风门;如果必须设置风门,应安设自动门或设专人管理,并有防止矿车或风门碰撞人员以及矿车碰坏风门的安全措施。
回风上山构筑一道永久调节窗,E1141回风顺槽外段(通回风上山)构筑两道永久调节风门;(二)确保风流稳定1.在各通风网路上,应按设计和需要安设风门、调节风窗和密闭等通风构筑物,并随生产的进度进行及时调节补充,风门设置闭锁装置。
确保各用风地点的风量,风速符合《煤矿安全规程》的规定,确保风流稳定。
2.及时清除巷道的杂物和障碍,尽量避免在主要进回风巷道内停放矿车,堆放材料及其它物品,确保风流畅通。
2017年,对回风上山(下段)进行扩修,保证通风断面;运输顺槽、E1141回风顺槽等掘进工作面均为独立通风。
四、风量计算及分配(一)W1141综放工作面1.工作面概况W1141综放工作面井下位于11采区西部,南部与上区段1493水平采空区留设垂高12米的隔离煤柱,东部距离副井900m。
工作面地面位于副斜井筒以西,地表附近范围为山区,地表覆有少量植被,地面无建筑物及保护物。
工作面所采为A4煤层,为中厚~特厚煤层,煤层厚度为~,平均厚度为3m;顶、底板均为粉砂质泥岩、粉砂岩,局部有高炭泥岩伪底;无夹矸层,为较稳定煤层。
W1141综采工作面地质构造较为简单,煤(岩)层走向近东西,倾向由南向北倾斜,倾角45°,煤(岩)层趋势为南高北低。
断裂、褶曲、裂隙等构造不发育;根据地质资料分析,煤层位于背斜的北翼、无断层穿过,对正常的回采工作无影响。
2.本煤层邻近已采块段的瓦斯涌出量根据邻近采区已采块段资料:A404工作面标高+1493m,回采期间相对瓦斯涌出量~t,绝对瓦斯涌出量最大min;A402工作面煤层底板标高为+1523m ,相对瓦斯涌出量³∕t ~³∕t ,绝对瓦斯涌出量最大³/min ;3.瓦斯来源分析W1141综放工作面井下位于11采区西部,南部与上区段1493水平采空区留设垂高12米的隔离煤柱,东部距离副井900m 。
工作面地面位于副斜井筒以西,地表附近范围为山区,地表覆有少量植被,地面无建筑物及保护物。
W1141面在回采过程中,工作面瓦斯涌出主要有三个来源:一是工作面煤壁及落煤的瓦斯涌出;二是采空区瓦斯涌出;4.瓦斯涌出量预测根据AQ1018-2006《矿井瓦斯涌出量预测方法》规定,该面采用统计法核算瓦斯涌出量。
工作面相对瓦斯涌出量与开采深度的关系可由公式(1-1)表示。
2q 0+-=αH H (1-1)式中:q -工作面相对瓦斯涌出量,m 3/min ;H -开采深度,m ;0H -瓦斯风化带深度,m ; 0H =1H -α(1q -2)α-相对瓦斯涌出量随开采深度的变化梯度,m/(m3·t -1);根据A404工作面、A402工作面标高差及相对瓦斯涌出量推算开采深度的瓦斯变化梯度a ,见公式1-2。
.1212q -q H H -=α (1-2)式中:2H -瓦斯带内2水平的开采深度,m ;H-瓦斯带内1水平的开采深度,m;1q-在2H深度开采时的相对瓦斯涌出量,m3/t;2q-在1H深度开采时的相对瓦斯涌出量,m3/t;1把相关数据带入公式1-1、1-2计算:该面回采期间相对瓦斯涌出量为:~ m3/t。
根据该区域实测及统计法预测,W1141工作面回采期间相对瓦斯涌出量为~ m3/t。
按日产1700吨(该面计划日均产1417吨,富裕系数)计算。
W1141综放工作面回采期间绝对瓦斯涌出量³/min~³/min。
工作面回采期间瓦斯治理主要采取风排治理。
工作面采用“U”型通风,地面→副斜井→+1400m井底车场→煤仓联巷→W1141运输顺槽→W1141综放工作面→W1141回风顺槽→斜回风井→地面5.风量计算(1)按气象条件计算:Q cf=60×70%×v cf×S cf×k ch×k cl(m3/min)式中v cf—采煤工作面的风速,m/s。
W1141进风流最高温度15℃,按采煤工作面进风流的最高温度从表1-1中选取;取 m/s S cf—采煤工作面的平均有效断面积,按最大和最小控顶有效断面的平均值计算,m2;根据ZFB500Q支架参数最大有效断面,最小有效断面;k ch—采煤工作面采高调整系数,具体按表1-2取值;k cl—采煤工作面长度调整系数,具体按表1-3取值;70%—有效通风断面系数;60—单位换算产生的系数。
Q cf=60×70%××××(m3/min)=670(m3/min)表1-1 采煤工作面进风流气温与对应风速表1-2 k ch—采煤工作面采高调整系数表1-3 k cl—采煤工作面长度调整系数(2)按照瓦斯涌出量计算:Q cf=100×q cg×k cg=100××=58(m3/min)式中q cg—采煤工作面回风巷风流中平均绝对瓦斯涌出量,m3/min。
取m3/mink cg—采煤工作面瓦斯涌出不均匀的备用风量系数。
通常机采面可取~,取100—按采煤工作面回风流中瓦斯的浓度不应超过1%的换算系数。
(3)按照二氧化碳涌出量计算:Q cf=67×q cc×k cc=67××=65(m3/min)式中q cc—采煤工作面回风巷风流中平均绝对二氧化碳涌出量,取min;k cc—采煤工作面二氧化碳涌出不均匀的备用风量系数。
取67—按采煤工作面回风流中二氧化碳的浓度不应超过%的换算系数。
(4)按工作人员数量验算:Q cf≥4N cf≥4×44≥176 m3/min式中N cfi—采煤工作面同时工作的最多人数;取44人4—每人需风量,m3/min。
(5)按风速进行验算:①验算最小风量:Q cf≥60×≥60××=166(m3/min)S cb =l cb×h cf×70%=××70%=(m2)②验算最大风量:Q cf≤60×≤60×4×=1814(m3/min)S cs=l cs×h cf×70%=××70%=(m2)式中S cb—采煤工作面最大控顶有效断面积,m2;l cb—采煤工作面最大控顶距, m;取h cf—采煤工作面最采高, m;取 mh cf1—采煤工作面最采高, m;取 mS cs—采煤工作面最小控顶有效断面积,m2;l cs—采煤工作面最小控顶距,m;取—采煤工作面允许的最小风速,m/s;70%—有效通风断面系数;—采煤工作面允许的最大风速,m/s;根据上述计算,W1141综放工作面回采期间配风应不低于670m³/min。