2019版高考数学一轮复习 第二章 函数、导数及其应用 第1讲 函数与映射的概念课时作业 理
2019版数学(理)高分计划一轮高分讲义:第2章 函数、导数及其应用 2.10 导数的概念及运算

2.10导数的概念及运算[知识梳理]1.变化率与导数(1)平均变化率(2)导数2.导数的运算[诊断自测] 1.概念思辨(1)f ′(x 0)与(f (x 0))′表示的意义相同.( )(2)f ′(x 0)是函数y =f (x )在x =x 0附近的平均变化率.( ) (3)与曲线只有一个公共点的直线一定是曲线的切线.( ) (4)曲线y =f (x )在点P (x 0,y 0)处的切线与过点P (x 0,y 0)的切线相同.( )答案 (1)× (2)× (3)× (4)×2.教材衍化(1)(选修A2-2P 6例1)若函数f (x )=2x 2-1的图象上一点(1,1)及邻近一点(1+Δx,1+Δy ),则Δy Δx 等于( )A .4B .4xC .4+2ΔxD .4+2(Δx )2答案 C解析 Δy =(1+Δy )-1=f (1+Δx )-f (1)=2(1+Δx )2-1-1=2(Δx )2+4Δx ,∴错误!=2Δx +4,故选C.(2)(选修A2-2P 18T 7)f (x )=cos x 在错误!处的切线的倾斜角为________. 答案错误!解析 f ′(x )=(cos x )′=-sin x ,f ′错误!=-1, tan α=-1,所以α=3π4. 3.小题热身(1)(2014·全国卷Ⅱ)设曲线y=ax-ln (x+1)在点(0,0)处的切线方程为y=2x,则a=()A.0 B.1 C.2 D.3答案D解析y′=a-错误!,当x=0时,y′=a-1=2,∴a=3,故选D.(2)(2017·太原模拟)函数f(x)=x e x的图象在点(1,f(1))处的切线方程是________.答案y=2e x-e解析∵f(x)=x e x,∴f(1)=e,f′(x)=e x+x e x,∴f′(1)=2e,∴f(x)的图象在点(1,f(1))处的切线方程为y -e=2e(x-1),即y=2e x-e.题型1导数的定义及应用错误!已知函数f(x)=错误!+1,则错误!错误!的值为()A.-错误! B.错误! C.错误!D.0用定义法.答案A解析由导数定义,错误!错误!=-错误!错误!=-f′(1),而f′(1)=错误!,故选A。
2019版高考数学一轮复习第二章函数第一节函

数a的取值范围是 ( D ) A.(0,e) C.(0,e] B.(e,+∞) D.[e,+∞)
答案 D 当x≤0时, f(x)=xex,则f '(x)=ex(x+1),
当x<-1时, f '(x)<0,当-1<x≤0时, f '(x)>0, ∵x=-1是函数f(x)的极小值点,也是最小值点,
A.y= C.y=log2x
2 x
B.y=x2 D.y=2x
2 x
答案 A A项,函数y= 的定义域与值域相同,B,C,D项中的函数定义 域与值域均不相同.故选A.
3.(2016北京临川学校期末)函数y= A.(-∞,2) B.(2,+∞)
1 的定义域是 ( log 2 ( x 2)
C )
∴f(x)min=- ,若函数f(x)的值域为 , ,
1 e
1 e
则当x>0时, f(x)min≥- . 当a=0时,显然不符合题意,
1 e
当a≠0时,要满足f(x)min≥- ,
a 0, 只需 4 1 解得a≥e,故选D. , e 4a
定义域 相同,且
全一致,则这两个函数相等,这是判断两函数相等的依据.
(4)函数的表示法 表示函数的常用方法: 解析法 、 图象法 、 列表法 .
3.分段函数
若函数在其定义域内,对于定义域内的不同取值区间,有着不同的 对应关系 ,这样的函数通常叫做分段函数.分段函数虽然由几部分 组成,但它表示的是.
1 2
7 4
C.
4 3
D.-
4 3
答案 B 令t= x-1,则x=2t+2, ∴f(t)=2(2t+2)-5=4t-1,
2019版高考数学一轮复习第2章函数、导数及其应用2.1函数及其表示课件理

经典题型冲关
题型 1 函数的概念 典例1 集合 A={x|0≤x≤4}, B={y|0≤y≤2}, 下列 ) 1 B.f:x→y=3x D.f:x→y= x
不表示从 A 到 B 的函数的是( 1 A.f:x→y=2x 2 C.f:x→y=3x
用定义法.
解析 依据函数概念,集合 A 中任一元素在集合 B 中 都有唯一确定的元素与之对应,选项 C 不符合.故选 C.
4.必记结论 函数与映射的相关结论 (1)相等函数 如果两个函数的定义域相同,并且对应关系完全一致, 则这两个函数相等. (2)映射的个数 若集合 A 中有 m 个元素,集合 B 中有 n 个元素,则从 集合 A 到集合 B 的映射共有 nm 个. (3)与 x 轴垂直的直线和一个函数的图象至多有 1 个交 点.
值域 .
表示函数的常用方法有 解析法、图象法和 列表法 .
3.分段函数 (1)若函数在其定义域的不同子集上,因 对应关系 不 同而分别用几个不同的式子来表示,这种函数称为分段函 数. (2)分段函数的定义域等于各段函数的定义域的 并集 , 其值域等于各段函数的值域的 并集 ,分段函数虽由几个部 分组成,但它表示的是一个函数.
解析 ①y=x 与 y=alogax 定义域不同; ②y=2x+1-2x=2x(2-1)=2x 相同; ③f(u)与 f(v)的定义域及对应法则均相同; ④对应法则不相同.
x+1≥0, 等函数;D 项,由 解得 x≥1,即函数 f(x)的定 x-1≥0,
义域为{x|x≥1}.由 x2-1≥0,解得 x≥1 或 x≤-1,即 g(x) 的定义域为{x|x≥1 或 x≤-1},两个函数的定义域不相同, 不是相等函数.故选 A.
3.小题热身 -x2-x+2 (1)(2018· 广东深圳模拟)函数 y= 的定义域 ln x 为( ) A.(-2,1) B.[-2,1] C.(0,1) D.(0,1]
高三数学一轮复习 第2章 函数、导数及其应用第1课时 函数及其表示精品课件

结合具体函数,了解函数奇偶性的含义. 奇偶性
知识点
指数与指 数函 数
对数与对 数函 数
考纲下载
1.了解指数函数模型的实际背景. 2.理解有理数指数幂的含义,了解实数指数幂的意义,掌握幂的运
算.
3.理解指数函数的概念,理解指数函数的单调性与指数函数图象通 过的特殊点.
4.知道指数函数是一类重要的函数模型.
• 4.函数的表示法: 解析法 、
图象法 、 列表法 .
• 5.分段函数 • 若函数在其定义域的不同子集上,因 对应关系不 同 而 分 别 用 几 个 不
同的式子来表示.这种函数称为分段函数.分段函数虽由几个部分组 成,但它表示的是 一个 函数.
1.函数y= x-1+ln(2-x)的定义域是( )
• 1.求函数定义域的步骤
• 对于给出具体解析式的函数而言,函数的定义域就是使函数解析式有
意义的自变量x取值的集合,求解时一般是先寻找解析式中的限制条 件,建立不等式,再解不等式求得函数定义域,当函数y=f(x)由实际 问题给出时,注意自变量x的实际意义.
• 2.求抽象函数的定义域时:
• (1)若已知函数f(x)的定义域为[a,b],其复合函数f(g(x))的定义域由不 等式a≤g(x)≤b求出.
(3)在f(x)=2f1x x-1中,用1x代替x, 得f1x=2f(x) 1x-1, 将f1x=2fxx-1代入f(x)=2f1x x-1中, 可求得f(x)=23 x+13.
• 【变式训练】 2.(1)已知f(1-cos x)=sin2x,求f(x); • (2)已知f(x)是二次函数,若f(0)=0,且f(x+1)=f(x)+x+1,试求f(x)的
知识点
考纲下载
1.了解构成函数的要素;了解映射的概念.
2019届高考数学一轮复习第2单元函数导数及其应用听课学案理

第二单元函数、导数及其应用第4讲函数概念及其表示课前双击巩固1.函数与映射的概念函数映射两集合A,B设A,B是两个设A,B是两个对应关系f:A→B按照某种确定的对应关系f,使对于集合A中的一个数x,在集合B中都有的数f(x)与之对应按某一个确定的对应关系f,使对于集合A中的一个元素x,在集合B中都有的元素y与之对应名称称为从集合A到集合B的一个函数称对应为从集合A到集合B的一个映射记法y=f(x),x∈A对应f:A→B2.函数的三要素函数由、和对应关系三个要素构成.在函数y=f(x),x∈A中,x叫作自变量,x的取值范围A叫作函数的.与x的值相对应的y值叫作函数值,函数值的集合{f(x)|x∈A}叫作函数的.3.函数的表示法函数的常用表示方法:、、.4.分段函数若函数在其定义域内,对于定义域内的不同取值区间,有着不同的,这样的函数通常叫作分段函数.分段函数虽由几个部分组成,但它表示的是一个函数.常用结论1.常见函数的定义域(1)分式函数中分母不等于0.(2)偶次根式函数的被开方式大于或等于0.(3)一次函数、二次函数的定义域为R.(4)y=a x(a>0且a≠1),y=sin x,y=cos x的定义域均为R.(5)y=tan x的定义域为.(6)函数f(x)=xα的定义域为{x|x∈R且x≠0}.2.基本初等函数的值域(1)y=kx+b(k≠0)的值域是R.(2)y=ax2+bx+c(a≠0)的值域:当a>0时,值域为;当a<0时,值域为.(3)y=(k≠0)的值域是{y|y≠0}.(4)y=a x(a>0且a≠1)的值域是(0,+∞).(5)y=log a x(a>0且a≠1)的值域是R.题组一常识题1.[教材改编]以下属于函数的有.(填序号)①y=±;②y2=x-1;③y=+;④y=x2-2(x∈N).2.[教材改编]已知函数f(x)=若f[f(e)]=2a,则实数a= .3.[教材改编]函数f(x)=的定义域是.4.[教材改编]已知集合A={1,2,3,4},B={a,b,c},f:A→B为从集合A到集合B的一个函数,那么该函数的值域C的不同情况有种.题组二常错题◆索引:对函数概念理解不透彻;对分段函数解不等式时忘记范围;换元法求解析式,反解忽视范围;对函数值域理解不透彻.5.已知集合P={x|0≤x≤4},Q={y|0≤y≤2},下列从P到Q的各对应关系f不是函数的是.(填序号)①f:x→y=x;②f:x→y=x;③f:x→y=x;④f:x→y=.6.设函数f(x)=则使得f(x)≥1的自变量x的取值范围为.7.已知f()=x-1,则f(x)= .8.若一系列函数的解析式相同、值域相同,但其定义域不同,则称这些函数为“同族函数”,那么函数解析式为y=x2,值域为{1,4}的“同族函数”共有个.课堂考点探究探究点一函数的定义域考向1求给定函数解析式的定义域1 (1)[2017·洛阳调研]下列函数中,其定义域和值域分别与函数y=e ln x的定义域和值域相同的是()A.y=xB.y=ln xC.y=D.y=10x(2)[2017·揭阳二模]函数f(x)=+lg(6-3x)的定义域为()A.(-∞,2)B.(2,+∞)C.[-1,2)D.[-1,2][总结反思] 已知解析式的函数,其定义域是使解析式有意义的自变量的取值集合,求解时只要根据函数解析式列出自变量满足的不等式(组),得出不等式(组)的解集即可.考向2求抽象函数的定义域2 (1)若函数y=f(x)的定义域为[-1,1),则函数y=f(x2-3)的定义域为. (2)已知f(2x)的定义域是[-1,2],则f(log2x)的定义域为.[总结反思] (1)若f(x)的定义域为[m,n],则在f[g(x)]中,m≤g(x)≤n,从中解得x的范围即为f[g(x)]的定义域;(2)若f[g(x)]的定义域为[m,n],则由m≤x≤n确定g(x)的范围,即为f(x)的定义域.考向3已知定义域求参数范围3 (1)设f(x)的定义域为[0,1],要使函数f(x-a)+f(x+a)有定义,则a的取值范围为()A.B.C.D.∪(2)已知函数y=的定义域为R,则实数m的取值范围是. [总结反思] 根据函数的定义域,将问题转化为含参数的不等式(组),进而求解参数范围.强化演练1.【考向2】已知函数y=f(x)的定义域是[-2,3],则y=f(2x-1)的定义域是()A.B.[-1,4]C.D.[-5,5]2.【考向2】若函数y=f(x)的定义域为[0,2],则函数g(x)=的定义域是()A.[0,1)B.[0,1]C.[0,1)∪(1,4]D.(0,1)3.【考向1】[2017·江西重点中学盟校联考]函数y=ln1++的定义域为.4.【考向3】函数f(x)=的定义域为R,则实数a的取值范围是.5.【考向3】记函数f(x)=的定义域为A,g(x)=lg[(x-a-1)(2a-x)](a<1)的定义域为B.若B⊆A,则实数a的取值范围为.探究点二函数的解析式4 (1)已知f=ln x,则f(x)= .(2)已知f(x)是二次函数且f(0)=5,f(x+1)-f(x)=x-1,则f(x)= .(3)已知函数f(x)的定义域为(0,+∞),且f(x)=3·f+1,则f(x)= .[总结反思] 求函数解析式的常用方法:(1)待定系数法:已知函数的类型,可用待定系数法.(2)换元法:已知复合函数f[g(x)]的解析式,可用换元法,此时要注意新元的取值范围.(3)构造法:已知关于f(x)与f(或f(-x))的关系式,可根据已知条件再构造出另外一个等式,两等式组成方程组,通过解方程组求出f(x).(4)配凑法:由已知条件f[g(x)]=F(x),可将F(x)改写成关于g(x)的解析式,然后以x替代g(x),便得f(x)的解析式.式题 (1)已知f(+1)=x+2,则f(x)= .(2)定义在R上的函数f(x)满足f(x+1)=2f(x).若当0≤x≤1时,f(x)=x(1-x),则当-1≤x<0时,f(x)= .(3)定义在(-1,1)内的函数f(x)满足2f(x)-f(-x)=lg(x+1),则f(x)= .探究点三分段函数考向1分段函数的函数求值问题5 (1)[2017·河南新乡二模]已知函数f(x)=则f[f(-1)]= . (2)[2017·抚州七校联考]设函数f(x)=则f(3)+f(4)= .[总结反思] 求分段函数的函数值时务必要确定自变量所在的区间及其对应关系,对于复合函数的求值问题,应由里到外地依次求值.考向2分段函数的自变量求值问题6 [2017·湘潭一中、长沙一中等六校联考]已知f(x)=若f(a)=2,则a的取值为()A.2B.-1或2C.±1或2D.1或2[总结反思] 与分段函数有关的自变量的求值问题,求解关键是分类讨论思想的应用.考向3分段函数与方程、不等式问题7 (1)已知函数f(x)=若f(a)>,则实数a的取值范围是()A.(-1,0)∪(,+∞)B.(-1,)C.(-1,0)∪D.(2)[2017·渭南二模]设f(x)=若f[f(4)]=,则a= .[总结反思] 涉及与分段函数有关的不等式与方程问题,主要表现为解不等式(或方程).若自变量取值不确定,则要分类讨论求解;若自变量取值确定,则只需依据自变量的情况,直接代入相应解析式求解.强化演练1.【考向1】[2017·桂林中学三模]已知函数f(x)=则f(2+log32)的值为()A.-B.C. D.-542.【考向1】已知a>0且a≠1,函数f(x)=满足f(0)=2,f(-1)=3,则f[f(-3)]=()A.-3B.-2C.3D.23.【考向2】[2017·石家庄二中三模]已知函数f(x)=若f(2-a)=1,则a=()A.-2B.-1C.-1或-D.24.【考向3】已知函数f(x)=则满足f(a)≥2的实数a的取值范围是 ()A.(-∞,-2)∪(0,+∞)B.(-1,0)C.(-2,0)D.(-∞,-1]∪[0,+∞)5.【考向3】设函数f(x)=则满足f[f(a)]=2f(a)的a的取值范围是()A.B.[0,1]C.D.[1,+∞)第5讲函数的单调性与最值课前双击巩固1.单调函数的定义增函数减函数定义一般地,设函数f(x)的定义域为I,如果对于定义域I内某个区间D上的任意两个自变量的值x1,x2当x1<x2时,都有,那么就说函数f(x)在区间D上是增函数当x1<x2时,都有,那么就说函数f(x)在区间D上是减函数图像描述自左向右看图像是自左向右看图像是2.单调区间的定义如果函数y=f(x)在区间D上是,那么就说函数y=f(x)在这一区间具有(严格的)单调性, 叫作函数y=f(x)的单调区间.3.函数的最值前提设函数y=f(x)的定义域为I,如果存在实数M满足条件(1)对于任意x∈I,都有f(x)≤M;(2)存在x0∈I,使得f(x0)=M(1)对于任意x∈I,都有;(2)存在x0∈I,使得结论M为最大值M为最小值常用结论1.复合函数的单调性函数y=f(u),u=φ(x),在函数y=f[φ(x)]的定义域上,如果y=f(u),u=φ(x)的单调性相同,则y=f[φ(x)]单调递增;如果y=f(u),u=φ(x)的单调性相反,则y=f[φ(x)]单调递减.2.单调性定义的等价形式设任意x1,x2∈[a,b],x1≠x2.(1)若有(x1-x2)[f(x1)-f(x2)]>0或>0,则f(x)在闭区间[a,b]上是增函数.(2)若有(x1-x2)[f(x1)-f(x2)]<0或<0,则f(x)在闭区间[a,b]上是减函数.3.函数单调性的常用结论(1)若f(x),g(x)均为区间A上的增(减)函数,则f(x)+g(x)也是区间A上的增(减)函数.(2)若k>0,则kf(x)与f(x)单调性相同,若k<0,则kf(x)与f(x)单调性相反.(3)函数y=f(x)(f(x)>0)在公共定义域内与y=-f(x),y=的单调性相反.(4)函数y=f(x)(f(x)≥0)在公共定义域内与y=的单调性相同.题组一常识题1.[教材改编]函数f(x)=(2a-1)x-3是R上的减函数,则a的取值范围是.2.[教材改编]函数f(x)=(x-2)2+5(x∈[-3,3])的单调递增区间是;单调递减区间是.3.[教材改编]函数f(x)=(x∈[2,5])的最大值与最小值之和等于.4.函数f(x)=|x-a|+1在[2,+∞)上是增函数,则实数a的取值范围是.题组二常错题◆索引:求单调区间忘记定义域导致出错;对于分段函数,一般不能整体单调,只能分段单调;利用单调性解不等式忘记在单调区间内求解;混淆“单调区间”与“在区间上单调”两个概念.5.函数f(x)=ln(4+3x-x2)的单调递减区间是.6.已知函数f(x)=满足对任意的实数x1≠x2,都有<0成立,则实数a的取值范围为.7.函数y=f(x)是定义在[-2,2]上的减函数,且f(a+1)<f(2a),则实数a的取值范围是.8.(1)若函数f(x)=x2+2(a-1)x+2在区间(-∞,4]上是减函数,则实数a的取值范围是.(2)若函数f(x)=x2+2(a-1)x+2的单调递减区间为(-∞,4],则a的值为.课堂考点探究探究点一函数单调性的判断与证明1 判断函数f(x)=(a>0),x∈(-1,1)的单调性,并加以证明.[总结反思] (1)定义法证明函数单调性的一般步骤:①任取x1,x2∈D,且x1<x2;②作差f(x1)-f(x2);③变形(通常是因式分解和配方);④定号(即判断f(x1)-f(x2)的正负);⑤下结论(即指出函数f(x)在给定的区间D上的单调性).(2)复合函数单调性的确定方法:若两个简单函数的单调性相同,则这两个函数的复合函数为增函数;若两个简单函数的单调性相反,则这两个函数的复合函数为减函数.简称“同增异减”.式题 [2017·南阳一中月考]下列函数中,在(0,+∞)上单调递增的函数是()A.y=-x2+1B.y=|x-1|C.y=x3D.y=2-x探究点二求函数的单调区间2 (1)[2017·全国卷Ⅱ]函数f(x)=ln(x2-2x-8)的单调递增区间是()A.(-∞,-2)B.(-∞,1)C.(1,+∞)D.(4,+∞)(2)设函数f(x)=g(x)=x2f(x-1),则函数g(x)的单调递减区间是.[总结反思] 求函数单调区间的常见方法:(1)定义法;(2)图像法;(3)导数法.求复合函数单调区间的一般解题步骤为:①确定函数的定义域;②求简单函数的单调区间;③求复合函数的单调区间,其依据是“同增异减”.式题 (1) 函数y=的单调递增区间为 ()A.(1,+∞)B.C.D.(2)函数f(x)=(a-1)x+2在R上单调递增,则函数g(x)=a|x-2|的单调递减区间是. 探究点三函数单调性的应用考向1利用函数的单调性比较大小3 (1)[2017·吉林实验中学二模]设a=log52,b=,c=log73,则a,b,c的大小关系是()A.b>a>cB.a>c>bC.b>c>aD.a>b>c(2)[2017·达州二诊]已知f(x)是定义在(0,+∞)上的单调函数,且对任意x∈(0,+∞),f[f(x)-ln x]=e+1,设a=f,b=f,c=f(log2π),则a,b,c的大小关系是.(用“>”号连接表示)[总结反思] 比较函数值的大小,应将自变量转化到同一个单调区间内,然后利用函数的单调性解决.考向2利用函数的单调性解决不等式问题4 (1)已知函数f的定义域为R,对任意x1<x2,都有f-f<x1-x2,且f=-4,则不等式f>lo|3x-1|-1的解集为()A.B.C.∪D.∪(2)[2017·云南师大附中月考]已知函数f(x)=e x+x3,若f(x2)<f(3x-2),则实数x的取值范围是.[总结反思] 解函数不等式的理论依据是函数单调性的定义,具体步骤是:(1)将函数不等式转化成f(x1)>f(x2)的形式;(2)考查函数f(x)的单调性;(3)据函数f(x)的单调性去掉法则“f”,转化为形如“x1>x2”或“x1<x2”的常规不等式,从而得解.考向3利用函数的单调性求最值问题5 设函数f(x)=+2016sin x,x∈-,的最大值为M,最小值为N,那么M+N= .[总结反思] 若函数在区间[a,b]上单调,则必在区间的端点处取得最值;若函数在区间[a,b]上不单调,则最小值为函数在该区间内的极小值和区间端点值中最小的值,最大值为函数在该区间内的极大值和区间端点值中最大的值.考向4利用函数的单调性求参数6 [2017·南充三模]已知f(x)=是(-∞,+∞)上的增函数,那么实数a 的取值范围是()A.(0,3)B.(1,3)C.(1,+∞)D.[总结反思] (1)根据函数的单调性,将题设条件转化为含参数的不等式(组),即可求出参数的值或范围;(2)若分段函数是单调函数,则不仅要保证在各区间上单调性一致,还要确保在整个定义域内是单调的.强化演练1.【考向1】已知函数f(x)满足对任意的x1,x2∈(0,+∞),恒有(x1-x2)·[f(x1)-f(x2)]<0成立.若a=f(log47),b=f(log23),c=f(0.20.6),则a,b,c的大小关系是()A.c<b<aB.b<a<cC.b<c<aD.a<b<c2.【考向2】已知函数f(x)=ln x+2x,若f(x2-4)<2,则实数x的取值范围是.3.【考向3】[2017·青岛一模]已知函数f(x)=则函数f(x)的最大值是.4.【考向4】若函数f(x)=2|x-a|(a∈R)满足f(1+x)=f(1-x),且f(x)在[m,+∞)上单调递增,则实数m的最小值等于.5.【考向4】[2017·武汉调研]若函数f(x)=ln(ax2+x)在区间(0,1)上单调递增,则实数a 的取值范围为.第6讲函数的奇偶性与周期性课前双击巩固1.函数的奇偶性偶函数奇函数定义如果对于函数f(x)的定义域内任意一个x都有,那么函数f(x)是偶函数都有,那么函数f(x)是奇函数图像特征关于对称关于对称2.函数的周期性(1)周期函数对于函数y=f(x),如果存在一个非零常数T,使得当x取定义域内的任何值时,都有,那么就称函数y=f(x)为周期函数,称T为这个函数的周期.(2)最小正周期如果在周期函数f(x)的所有周期中存在一个,那么这个就叫作f(x)的最小正周期.常用结论1.奇(偶)函数定义的等价形式(1)f(-x)=f(x)⇔f(-x)-f(x)=0⇔=1⇔f(x)为偶函数;(2)f(-x)=-f(x)⇔f(-x)+f(x)=0⇔=-1⇔f(x)为奇函数.2.对f(x)的定义域内任一自变量的值x,最小正周期为T(1)若f(x+a)=-f(x),则T=2|a|;(2)若f(x+a)=,则T=2|a|;(3)若f(x+a)=f(x+b),则T=|a-b|.3.函数图像的对称关系(1)若函数f(x)满足关系f(a+x)=f(b-x),则f(x)的图像关于直线x=对称;(2)若函数f(x)满足关系f(a+x)=-f(b-x),则f(x)的图像关于点对称.题组一常识题1.[教材改编]函数f(x)=x2-1,f(x)=x3,f(x)=x2+cos x,f(x)=+|x|中,偶函数的个数是.2.[教材改编]若奇函数f(x)在区间[a,b]上是减函数,则它在[-b,-a]上是函数;若偶函数f(x)在区间[a,b]上是增函数,则它在[-b,-a]上是函数.3.[教材改编]已知f(x)为奇函数,当x>0时,f(x)=-1,则f(-2)= .4.[教材改编]已知函数f(x)满足f(x+3)=f(x),当x∈(0,1]时,f(x)=log4(x2+3),则f(2017)= .题组二常错题◆索引:判定奇偶性时,不化简解析式导致出错;找不到周期函数的周期从而求不出结果;性质应用不熟练,找不到解题方法;利用奇偶性求解析式时忽略定义域.5.函数f(x)=是(填“奇”“偶”“非奇非偶”)函数.6.具有性质f=-f(x)的函数,我们称为满足“倒负”变换的函数.有下列函数:①f(x)=x-;②f(x)=x+;③f(x)=其中满足“倒负”变换的函数是.(填序号)7.已知定义在R上的函数f(x)满足f(x)=-f,且f(1)=2,则f(2017)= .8.设函数f(x)是定义在R上的奇函数,且当x>0时,f(x)=x2+4x-3,则函数f(x)的解析式为f(x)=.课堂考点探究探究点一函数奇偶性的判断1 (1)设函数f(x),g(x)的定义域都为R,且f(x)是奇函数,g(x)是偶函数,则下列结论中正确的是()A.f(x)g(x)是偶函数B.|f(x)|g(x)是奇函数C.f(x)|g(x)|是奇函数D.|f(x)g(x)|是奇函数(2)下列函数奇偶性的判断,正确的是()①f(x)=+;②f(x)=;③f(x)=A.①是奇函数,②是奇函数,③是偶函数B.①是偶函数,②是奇函数,③是偶函数C.①既是奇函数又是偶函数,②是奇函数,③是奇函数D.①既是奇函数又是偶函数,②是偶函数,③是偶函数[总结反思] 判断函数的奇偶性,其中包括两个必备条件:(1)定义域关于原点对称,这是函数具有奇偶性的必要不充分条件,所以首先考虑定义域.(2)判断f(x)与f(-x)是否具有等量关系.在判断奇偶性的运算中,可以转化为判断奇偶性的等价关系式f(x)+f(-x)=0(奇函数)或f(x)-f(-x)=0 (偶函数)是否成立.式题 (1)[2017·衡水中学三调]已知函数f(x)=,g(x)=,则下列结论正确的是()A.h(x)=f(x)+g(x)是偶函数B.h(x)=f(x)+g(x)是奇函数C.h(x)=f(x)g(x)是奇函数D.h(x)=f(x)g(x)是偶函数(2)下列函数中,既不是奇函数也不是偶函数的是()A.f(x)=x+sin 2xB.f(x)=x2-cos xC.f(x)=3x-D.f(x)=x2+tan x探究点二函数的周期性2 (1)已知函数f(x)满足f x-=f x+,当x∈0,时,f(x)=ln(x2-x+1),则函数f(x)在区间(0,6]上的零点个数是()A.3B.4C.5D.6(2) [2017·芜湖二模]已知定义在R上的函数f(x)满足f(4)=2-,且对任意的x都有f(x+2)=,则f(2018)=()A.-2-B.-2+C.2-D.2+[总结反思] (1)只需证明f(x+T)=f(x)(T≠0)便可证明函数是周期函数,且周期为T.(2)根据函数的周期性,可以由函数局部的性质得到函数整体的性质,函数的周期性常与函数的其他性质综合考查.(3)在解决具体问题时,要注意结论“若T是函数的周期,则kT(k∈Z且k≠0)也是函数的周期”的应用.式题已知函数f(x)是定义在R上的周期为3的周期函数,当x∈(1,4]时,f(x)=3x-1,则f(1)+f(2)+f(3)+…+f(100)= .探究点三函数性质的综合应用考向1奇偶性的应用3 (1)[2017·福建四地六校联考]设函数f(x)为偶函数,当x∈(0,+∞)时,f(x)=log2x,则f(-)=()A.-B.C.2D.-2(2)[2017·许昌二模]已知函数f(x)=的最大值为M,最小值为m,则M+m等于()A.0B.2C.4D.8[总结反思] 利用函数的奇偶性可以解决以下问题:(1)求函数值:将待求值利用奇偶性转化为已知区间上的函数值求解.(2)求解析式:将待求区间上的自变量转化到已知区间上,再利用奇偶性求出.(3)求解析式中的参数:利用待定系数法求解,根据f(x)±f(-x)=0得到关于参数的恒等式,由系数的对等性得出方程(组),进而得出参数的值.(4)画函数图像:利用奇偶性可画出函数在另一对称区间上的图像.(5)求特殊值:利用奇函数的最大值与最小值和为零可求一些特殊结构的函数值.考向2奇偶性与单调性4 (1)已知f(x)是奇函数,并且是R上的单调函数,若函数y=f(2x2+1)+f(λ-x)只有一个零点,则实数λ的值是()A.B.C.-D.-(2)设偶函数f(x)满足f(x)=2x-4(x≥0),则满足f(a-2)>0的实数a的取值范围为()A.(2,+∞)B.(4,+∞)C.(0,4)D.(-∞,0)∪(4,+∞)[总结反思] (1)利用偶函数在关于坐标原点对称的区间上单调性相反、奇函数在关于坐标原点对称的区间上单调性相同,可以把函数不等式化为一般的不等式;(2)注意偶函数性质f(x)=f(|x|)的应用.考向3奇偶性与周期性5 (1)[2017·广州花都区二模]已知奇函数f(x)的定义域为R,若f(x+1)为偶函数,且f(1)=1,则f(2016)+f(2017)=()A.-2B.1C.0D.-1(2)若偶函数y=f(x),x∈R满足f(x+2)=-f(x),且当x∈[0,2]时,f(x)=2-x2,则方程f(x)=sin |x|在[-10,10]内的根的个数为.[总结反思] 利用函数的奇偶性和周期性把所求的函数值转化到已知函数解析式的区间上的函数值,把未知区间上的函数性质转化为已知区间上的函数性质.考向4奇偶性﹑周期性与单调性6 (1)定义在R上的函数f(x)满足f(x)=f(-x),且f(x)=f(x+6),当x∈[0,3]时,f(x)单调递增,则f(x)在下列哪个区间上单调递减()A.[3,7]B.[4,5]C.[5,8]D.[6,10](2)[2017·哈尔滨六中二模]定义在R上的奇函数f(x)满足f x+=f(x),当x∈0,时,f(x)=lo(1-x),则f(x)在区间1,内是()A.减函数且f(x)>0B.减函数且f(x)<0C.增函数且f(x)>0D.增函数且f(x)<0[总结反思] 解决周期性、奇偶性与单调性结合的问题,通常先利用周期性转化自变量所在的区间,再利用奇偶性和单调性求解.强化演练1.【考向1】[2018·济南外国语学校月考]已知函数y=f(x),满足y=f(-x)和y=f(x+2)是偶函数,且f(1)=,设F(x)=f(x)+f(-x),则F(3)=()A. B.C.πD.2.【考向2】[2017·大连二模]已知定义在R上的偶函数f(x)在[0,+∞)上单调递增,若f(ln x)<f(2),则x的取值范围是()A.(0,e2)B.(e-2,+∞)C.(e2,+∞)D.(e-2,e2)3.【考向4】已知定义在R上的奇函数f(x)满足f(x-4)=-f(x),且在区间[0,2]上是增函数,则()A.f(-25)<f(11)<f(80)B.f(80)<f(11)<f(-25)C.f(11)<f(80)<f(-25)D.f(-25)<f(80)<f(11)4.【考向3】设f(x)是周期为2的奇函数,当0≤x≤1时,f(x)=2x(1-x),则f= .5.【考向3】[2017·武汉模拟]设定义在R上的函数f(x)同时满足以下条件:①f(x)+f(-x)=0;②f(x)=f(x+2);③当0≤x≤1时,f(x)=2x-1.则f+f(1)+f+f(2)+f= .第7讲二次函数与幂函数课前双击巩固1.二次函数的图像和性质解析式y=ax2+bx+c(a>0) y=ax2+bx+c(a<0) 图像定义域R R值域单调性在上单调递减,在上单调递增在上单调递增,在上单调递减顶点坐标奇偶性当时为偶函数对称轴方程x=-2.幂函数(1)定义:形如y=xα(α∈R)的函数称为幂函数,其中x是自变量,α是常数.(2)常见的五种幂函数的图像和性质比较函数y=x y=x2y=x3y=y=x-1图像性质定义域R R R 值域R R奇偶性函数函数函数函数函数单调性在R上单调递增在上单调递减;在上单调递增在R上单调递增在上单调递增在和上单调递减公共点常用结论1.二次函数解析式的三种形式(1)一般式:f(x)=ax2+bx+c(a≠0).(2)顶点式:f(x)=a(x-m)2+n(a≠0).(3)零点式:f(x)=a(x-x1)(x-x2)(a≠0).2.一元二次不等式恒成立的条件(1)“ax2+bx+c>0(a≠0)恒成立”的充要条件是“a>0且Δ<0”.(2)“ax2+bx+c<0(a≠0)恒成立”的充要条件是“a<0且Δ<0”.题组一常识题1.[教材改编]若函数f(x)=4x2-kx-8在上是单调函数,则实数k的取值范围是.2.[教材改编]已知幂函数y=f(x)的图像过点(2,),则函数f(x)= .3.[教材改编]已知f(x)=x2-2x+3在闭区间[0,m]上有最大值3,最小值2,则m的取值范围是.4.[教材改编]若函数y=x2+(a+2)x+3,x∈[a,b]的图像关于直线x=1对称,则b= . 题组二常错题◆索引:图像特征把握不准出错;二次函数的单调性理解不到位;幂函数的图像掌握不到位.5.如图2-7-1,若a<0,b>0,则函数y=ax2+bx的大致图像是(填序号).图2-7-16.设二次函数f(x)=x2-x+a(a>0),若f(m)<0,则f(m-1)(填“>”“<”或“=”)0.7.若函数y=mx2+x+5在[-2,+∞)上是增函数,则m的取值范围是.8.已知当x∈时,函数y=x p的图像在直线y=x的上方,则p的取值范围是.课堂考点探究探究点一幂函数的图像和性质1 (1)若幂函数y=f(x)的图像过点(4,2),则幂函数y=f(x)的图像大致是()图2-7-2(2)[2017·南阳一中月考]已知函数f(x)=(m2-m-1)是幂函数,对任意的x1,x2∈(0,+∞)且x1≠x2,(x1-x2)[f(x1)-f(x2)]>0.若a,b∈R且a+b>0,ab<0,则f(a)+f(b)的值()A.恒大于0B.恒小于0C.等于0D.无法判断[总结反思] 幂函数的性质因幂指数大于零、等于零或小于零而不同,解题中要善于根据幂指数的符号和其他性质确定幂函数的解析式、参数取值等.式题幂函数的图像经过点2,,则它的单调递增区间是()A.(0,+∞)B.[0,+∞)C.(-∞,+∞)D.(-∞,0)探究点二二次函数的解析式2 (1)已知二次函数f(x)=ax2+bx+1(a,b∈R),x∈R,若函数f(x)的最小值为f(-1)=0,则f(x)= .(2)已知二次函数f(x)的图像经过点(4,3),它在x轴上截得的线段长为2,并且对任意x∈R,都有f(2-x)=f(2+x),则f(x)= .[总结反思] 求二次函数解析式的三个策略:(1)已知三个点坐标,宜选用一般式;(2)已知顶点坐标、对称轴、最大(小)值等,宜选用顶点式;(3)已知图像与x轴两交点的坐标,宜选用零点式.式题 (1)已知二次函数f(x)与x轴的两个交点坐标为(0,0)和(-2,0)且有最小值-1,则f(x)= .(2)若函数f(x)=(x+a)(bx+2a)(a,b∈R)是偶函数,且它的值域为(-∞,4],则该函数的解析式为f(x)= .探究点三二次函数的图像与性质考向1二次函数的单调性问题3 (1)[2017·安徽江淮十校三模]函数f(x)=x2-bx+c满足f(x+1)=f(1-x),且f(0)=3,则f(b x)与f(c x)的大小关系是()A.f(b x)≤f(c x)B.f(b x)≥f(c x)C.f(b x)>f(c x)D.与x有关,不确定(2)设二次函数f(x)=ax2-2ax+c在区间[0,1]上单调递减,且f(m)≤f(0),则实数m的取值范围是()A.(-∞,0]B.[2,+∞)C.(-∞,0]∪[2,+∞)D.[0,2][总结反思] (1)对于二次函数的单调性,关键是开口方向与对称轴的位置,若开口方向或对称轴的位置不确定,则需要分类讨论求解;(2)利用二次函数的单调性比较大小,一定要将待比较的两数通过二次函数的对称性转化到同一单调区间上比较.考向2二次函数的最值问题4 已知函数f(x)=ax2-2x(a>0),求函数f(x)在区间[0,2]上的最小值.[总结反思] (1)二次函数在闭区间上的最值主要有三种类型:轴定区间定、轴动区间定、轴定区间动.不论哪种类型,解题的关键都是对称轴与区间的位置关系,当含有参数时,要依据对称轴与区间的位置关系进行分类讨论.(2)二次函数的单调性问题则主要依据二次函数图像的对称轴进行分类讨论求解.考向3二次函数中的恒成立问题5 (1)[2017·仙桃中学月考]已知二次函数f(x)满足f(x+1)-f(x)=2x,且f(0)=1,若不等式f(x)>2x+m在区间[-1,1]上恒成立,则实数m的取值范围为.(2)函数f(x)=a2x+3a x-2(a>1),若在区间[-1,1]上f(x)≤8恒成立,则a的最大值为.[总结反思] 二次函数中恒成立问题的解题关键是根据二次函数的对称性、单调性等得出关于参数的不等式,进而求得参数范围.强化演练1.【考向1】函数f(x)=2x2-mx+3,当x∈[-2,+∞)时,f(x)是增函数,当x∈(-∞,-2]时,f(x)是减函数,则f(1)的值为()A.-3B.13C.7D.52.【考向2】若函数f(x)=x2-2x+1在区间[a,a+2]上的最小值为4,则a的取值集合为()A. [-3,3]B.[-1,3]C.{-3,3}D.{-1,-3,3}3.【考向2】[2017·皖北联考]若函数f(x)=x2-ax-a在区间[0,2]上的最大值为1,则实数a 的值为.4.【考向3】已知函数y=f(x)是偶函数,当x>0时,f(x)=(x-1)2,若当x∈-2,-时,n≤f(x)≤m恒成立,则m-n的最小值为.5.【考向3】已知a是实数,函数f(x)=2ax2+2x-3在[-1,1]上恒小于零,则实数a的取值范围为.第8讲指数与指数函数课前双击巩固1.根式n 次方根概念如果x n=a,那么x叫作a的,其中n>1,n∈N*性质当n是时,a的n次方根为x= 当n是时,正数a的n次方根为x=±,负数的偶次方根0的任何次方根都是0,记作=0根式概念式子叫作,其中n叫作,a叫作性质当n为奇数时,=当n为偶数时,=|a|=2.有理数指数幂(1)幂的有关概念①正数的正分数指数幂:=(a>0,m,n∈N*且n>1).②正数的负分数指数幂:==(a>0,m,n∈N*且n>1).③0的正分数指数幂等于,0的负分数指数幂.(2)有理数指数幂的性质①a r a s= (a>0,r,s∈Q);② (a r)s= (a>0,r,s∈Q);③ (ab)r= (a>0,b>0,r∈Q).3.指数函数的图像与性质y=a x(a>0且a≠1)a>1 0<a<1图像定义域R值域性质过定点当x>0时,;当x<0时,当x>0时,;当x<0时,在R上是在R上是常用结论1.指数函数y=a x+b(a>0且a≠1)的图像恒过定点(0,1+b).2.指数函数y=a x(a>0且a≠1)的图像以x轴为渐近线.题组一常识题1.[教材改编]若x+x-1=3,则x2-x-2= .2.[教材改编]已知2x-1<23-x,则x的取值范围是.3.[教材改编]函数y=a x-1+2(a>0且a≠1)的图像恒过定点.4.[教材改编]下列所给函数中值域为(0,+∞)的是.(填序号)①y=-5x,②y=,③y=,④y=.题组二常错题◆索引:忽略n的范围导致式子(a∈R)化简出错;不能正确理解指数函数的概念致错;指数函数问题时刻注意底数的两种情况;复合函数问题隐含指数函数值域大于零的情况.5.计算+= .6.若函数f(x)=(a2-3)·a x为指数函数,则a= .7.若函数f(x)=a x在[-1,1]上的最大值为2,则a= .8.设函数f(x)=ax2+bx+c(a>0)满足f(1-x)=f(1+x),则f(2x)与f(3x)的大小关系是.课堂考点探究探究点一指数幂的化简与求值1 (1)[2017·兰州铁一中月考]已知a-=3(a>0),则a2+a+a-2+a-1的值为()A.13-B.11-C.13+D.11+(2)计算0.02+2560.75--72= .[总结反思] 指数幂运算的一般原则:(1)指数幂的运算首先将根式、分数指数幂统一为分数指数幂,以便利用法则计算.(2)先乘除后加减,负指数幂化成正指数幂的倒数.(3)底数是负数,先确定符号;底数是小数,先化成分数;底数是带分数的,先化成假分数.(4)运算结果不能同时含有根号和分数指数,也不能既有分母又含有负指数.式题 (1)计算:×2+3π0= .(2)已知a,b是方程x2-6x+4=0的两根,且a>b>0,则= .探究点二指数函数的图像及应用2 (1)函数y=1-e|x|的图像大致是()图2-8-1(2)[2017·天津河西区二模]已知f(x)=|2x-1|,当a<b<c时,有f(a)>f(c)>f(b),则必有()A.a<0,b<0,c<0B.a<0,b>0,c>0C.2-a<2cD.1<2a+2c<2。
19年高考数学一轮复习第2章函数、导数及其应用第1节函数及其表示课件理

(2)函数 y=1 与 y=x0 是同一个函数.(
(3)与 x 轴垂直的直线和一个函数的图像至多有一个交点.( (4)分段函数是两个或多个函数.( )
[答案] (1)√ (2)× (3)√ (4)×
1 2.(教材改编)函数 y= 2x-3+ 的定义域为( x-3
3 A.2,+∞ 3 C.2,3 ∪(3,+∞)
(3)相等函数:如果两个函数的 定义域 相同,并且 对应关系 完全一致,则 这两个函数为相等函数. (4)函数的表示法: 表示函数的常用方法有 解析法 、 图像法 和 列表法 .
3.分段函数 若函数在其定义域内,对于 定义域 系,这样的函数通常叫作分段函数. 分段函数是一个函数,分段函数的定义域是各段定义域的 并集 ,值域是各 段值域的 并集 . 的不同取值区间,有着不同的对应关
求函数的解析式
1 2 1 fx+x =x +x2,求
(1)已知 (2)已知
f(x)的解析式;
2 fx +1=lg
x,求 f(x)的解析式;
(3)已知 f(x)是二次函数且 f(0)=2,f(x+1)-f(x)=x-1,求 f(x)的解析式; (4)已知
1 f(x)+2fx =x(x≠0),求
1 的取值范围是-4,+∞.]
[规律方法]
1.求分段函数的函数值,要先确定要求值的自变量属于定义域的哪
一个子集,然后代入该段的解析式求值,当出现 ffa的形式时,应从内到外依 次求值. 2.已知函数值或函数值范围求自变量的值或范围时,应根据每一段的解析式分别 求解,但要注意检验所求自变量的值或范围是否符合相应段的自变量的取值范 围. 易错警示:当分段函数自变量的范围不确定时,应分类讨论.
高考数学总复习 第二章 函数、导数及其应用 第1讲 函数与映射的概念课件 理

通常记为 f:A→B.
2.函数的概念
(1)函数的定义:
设 A,B 是两个非空的数集,如果按照某种确定的对应关 系 f,使对于集合 A 中的任意一个数 x,在集合 B 中都有唯一确 定的数和它对应,那么就称 f:A→B 为从集合 A 到集合 B 的一 个函数,通常记为 y=f(x),x∈A. (2)函数的定义域、值域: 在函数 y=f(x),x∈A 中,x 叫做自变量,x 的取值范围 A 定义域 ;与 x 的值相对应的 y 的值叫做函 叫做函数 y=f(x)的________ 数值,函数值的集合{f(x)|x∈A}称为函数 y=f(x)的值域. 值域 和对应关系 f. (3)函数的三个要素:定义域、______
4.设 M={x|0≤x≤2},N={y|0≤y≤3},给出如图 2-1-1 所示的四个图象,其中能表示从集合 M 到集合 N 的函数关系的 ②③ 填序号). 是________(
图 2-1-1
考点1
有关映射与函数的概念
例1:若集合 A={1,2,3,k}到集合 B={4,7,a4,a2+3a} 是一个映射,对应关系为 f:x→y=3x+1,则自然数 a=____,
考点 2 判断两个函数是否为同一个函数
例2:试判断以下各组函数是否表示同一个函数? (1)f(x)= x ,g(x)= x3;
x≥0, 1 |x| (2)f(x)= ,g(x)= x -1 x<0;
2
3
(3)f(x)=
2n+1
x
2n+1
,g(x)=
2n-1
x2n-1,n∈N*;
(5)∵函数的定义域和对应关系都相同, ∴它们是同一个函数.
【规律方法】构成函数的三个要素是定义域、对应关系和 值域.由于值域是由定义域和对应关系确定的,所以如果两个 函数的定义域和对应关系完全一致,即称这两个函数为同一个 函数.第(5)小题易错判断成它们是不同的函数,原因是对函数 的概念理解不透.在函数的定义域及对应法则 f 不变的条件下, 自变量变换字母对于函数本身并无影响,比如 f(x)=x2+1,f(t) =t2+1,f(u+1)=(u+1)2+1 都可视为同一个函数.
2019版数学(理)高分计划一轮高分讲义:第2章 函数、导数及其应用 2.4 二次函数与幂函数

2.4二次函数与幂函数[知识梳理]1.二次函数(1)二次函数解析式的三种形式①一般式:f(x)=ax2+bx+c(a≠0).②顶点式:f(x)=a(x-m)2+n(a≠0).③两根式:f(x)=a(x-x1)(x-x2)(a≠0).(2)二次函数的图象和性质2.幂函数(1)幂函数的定义一般地,形如y=xα的函数称为幂函数,其中x是自变量,α为常数.(2)常见的5种幂函数的图象(3)常见的5种幂函数的性质[诊断自测]1.概念思辨(1)当α<0时,幂函数y=xα是定义域上的减函数.()(2)关于x的不等式ax2+bx+c>0恒成立的充要条件是错误!()(3)二次函数y=ax2+bx+c,x∈[a,b]的最值一定是4ac-b24a.()(4)在y=ax2+bx+c(a≠0)中,a决定了图象的开口方向和在同一直角坐标系中的开口大小.()答案(1)×(2)×(3)×(4)√2.教材衍化(1)(必修A1P44T9)函数y=(x2-3x+10)-1的递增区间是()A.(-∞,-2) B.(5,+∞)C.错误!D。
错误!答案C解析由于x2-3x+10〉0恒成立,即函数的定义域为(-∞,+∞).设t=x2-3x-10,则y=t-1是(0,+∞)上的减函数,根据复合函数单调性的性质,要求函数y=(x2-3x+10)-1的递增区间,即求t=x2-3x+10的单调递减区间,∵t=x2-3x+10的单调递减区间是错误!,∴所求函数的递增区间为错误!.故选C。
(2)(必修A1P78探究)若四个幂函数y=x a,y=x b,y=x c,y=x d在同一坐标系中的图象如图,则a,b,c,d的大小关系是()A.d〉c>b〉a B.a〉b>c>dC.d>c>a〉b D.a〉b〉d>c答案B解析幂函数a=2,b=错误!,c=-错误!,d=-1的图象,正好和题目所给的形式相符合,在第一象限内,x=1的右侧部分的图象,图象由下至上,幂指数增大,所以a>b>c>d。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第1讲 函数与映射的概念
1.(2015年重庆)函数f (x )=log 2(x 2
+2x -3)的定义域是( ) A .[-3,1] B .(-3,1)
C .(-∞,-3]∪[1,+∞)
D .(-∞,-3)∪(1,+∞)
2.(2015年湖北)函数f (x )=4-|x |+lg x 2-5x +6
x -3
的定义域为( )
A .(2, 3)
B .(2, 4]
C .(2,3)∪(3,4]
D .(-1,3)∪(3,6]
3.给定集合P ={x |0≤x ≤2},Q ={y |0≤y ≤4},下列从P 到Q 的对应关系f 中,不是映射的是( )
A .f :x →y =2x
B .f :x →y =x 2
C .f :x →y =52
x D .f :x →y =2x
4.(2012年大纲)函数y =x +1(x ≥-1)的反函数为( )
A .y =x 2-1(x ≥0) B.y =x 2
-1(x ≥1)
C .y =x 2+1(x ≥0) D.y =x 2
+1(x ≥1)
5.若函数y =f (x )的定义域是[1,2018],则函数g (x )=f x +
x -1
的定义域是( )
A .[0,2017]
B .[0,1)∪(1,2017]
C .(1,2018]
D .[-1,1)∪(1,2017]
6.设f :x →x 2
是集合M 到集合N 的映射.若N ={1,2},则M 不可能是( ) A .{-1} B .{-2,2}
C .{1,2,2}
D .{-2,-1,1,2}
7.已知映射f :P (m ,n )→P ′(m ,n )(m ≥0,n ≥0).设点A (1,3),B (2,2),点M 是线段AB 上一动点,f :M →M ′.当点M 在线段AB 上从点A 开始运动到点B 结束时,点M 的对应点M ′所经过的路线长度为( )
A.π12
B.π6
C. π4
D. π3
8.已知函数f (x )=x 2
-2x ,g (x )=ax +2(a >0).
(1)若∀x 1∈[-1,2],∃x 2∈[-1,2],使得f (x 1)=g (x 2),则实数a 的取值范围是________;
(2)若∀x 1∈[-1,2],∃x 2∈[-1,2],使得g (x 1)=f (x 2),则实数a 的取值范围是________.
9.(1)求函数f (x )=x 2
-2x
9-x
2
的定义域; (2)已知函数f (2x
)的定义域是[-1,1],求f (log 2x )的定义域.
10.规定[t]为不超过t的最大整数,例如[12.6]=12,[-3.5]=-4,对任意实数x,令f1(x)=[4x],g(x)=4x-[4x],进一步令f2(x)=f1[g(x)].
(1)若x=7
16
,分别求f1(x)和f2(x);
(2)求x的取值范围,使它同时满足f1(x)=1,f2(x)=3.
第1讲 函数与映射的概念
1.D 解析:由x 2
+2x -3>0⇒(x +3)(x -1)>0,解得x <-3,或x >1.故选D. 2.C 解析:由函数y =f (x )的表达式可知:函数f (x )的定义域应满足条件:⎩⎪⎨⎪⎧
4-|x |≥0,x 2
-5x +6
x -3
>0,解得⎩⎪⎨
⎪⎧
-4≤x ≤4,
x >2,x ≠3.
即函数f (x )的定义域为(2,3)∪(3,4].故选C.
3.C 解析:当x =2时,5
2x =5,集合Q 中没有元素与之对应,故不是映射.
4.A 解析:由y =x +1⇒x +1=y 2
⇒x =y 2
-1.而x ≥-1,故y ≥0.互换x ,y 得到y =x 2
-1(x ≥0).故选A.
5.B 解析:要使函数f (x +1)有意义,则有1≤x +1≤2018,解得0≤x ≤2017.故函
数f (x +1)的定义域为[0,2017].所以使函数g (x ) 有意义的条件是⎩
⎪⎨⎪⎧
0≤x ≤2017,
x -1≠0,解得
0≤x <1或1<x ≤2017.故函数g (x )的定义域为[0,1)∪(1,2017].故选B.
6.C 解析:由映射的定义,集合M 中的每一个元素在集合N 中有唯一的元素与它对应,
对于选项C,22
=4∉N .故选C.
7.B 解析:线段AB :x +y =4(1≤x ≤2),f :P (m ,n )→P ′(m ,n )(m ≥0,n ≥0).设
P ′(x ,y ),则P (x 2,y 2).有x 2+y 2
=4(1≤x ≤2),点M 的对应点M ′所经过的路线长度
为如图D89所示的两段圆弧的长,2×⎝ ⎛⎭⎪⎫π3-π4=π
6
.故选B.
图D89
8.(1)a ≥3 (2)0<a ≤1
2
解析:(1)f (x )=x 2
-2x 在[-1,2]上的值域为[-1,3],而g (x )=ax +2(a >0)在[-1,2]上单调递增,则g (x )=ax +2的值域为[2-a,2a +2].由题意,得[-1,3]⊆[2-a,2a +2],即⎩
⎪⎨⎪⎧
2-a ≤-1,2a +2≥3.解得a ≥3. (2)由题意,得[-a +2,2a +2]⊆[-1,3],有⎩
⎪⎨
⎪⎧
-a +2≥-1,2a +2≤3,解得a ≤1
2
.又a >0,
故0<a ≤1
2
.
9.解:(1)要使函数有意义,只需: ⎩⎪⎨⎪⎧ x 2-2x >0,9-x 2
>0,即⎩
⎪⎨⎪⎧
x >2或x <0,-3<x <3.
解得-3<x <0或2<x <3.
故函数f (x )的定义域是(-3,0)∪(2,3).
(2)∵y =f (2x
)的定义域是[-1,1],即-1≤x ≤1, ∴12
≤2x
≤2. ∴对于函数y =f (log 2x ),有1
2≤log 2x ≤2,
即log 2 2≤log 2x ≤log 24,∴2≤x ≤4. 故函数f (log 2x )的定义域为[2,4].
10.解:(1)∵当x =716时,4x =7
4
,
∴f 1(x )=⎣⎢⎡⎦
⎥⎤74=1,g (x )=74-⎣⎢⎡⎦⎥⎤74=34. ∴f 2(x )=f 1[g (x )]=f 1⎝ ⎛⎭
⎪⎫34=[3]=3. (2)∵f 1(x )=[4x ]=1,g (x )=4x -1, ∴f 2(x )=f 1(4x -1)=[16x -4]=3. ∴⎩
⎪⎨⎪⎧
1≤4x <2,3≤16x -4<4.∴716≤x <12.。