八年级数学下册第10章分式10.4分式的乘除第1课时学案无答案新版苏科版
苏科版初中数学八年级下册《第10章 分式》单元测试卷

苏科新版八年级下学期《第10章分式》单元测试卷一.选择题(共21小题)1.下列各式中,分式的个数是().A.2B.3C.4D.52.使分式有意义的x的取值范围是()A.x≠1B.x≠2C.x≠1且x≠2D.x可为任何数3.若分式的值为0,则x的值是()A.±3B.﹣3C.3D.04.已知﹣=5,则分式的值为()A.1B.5C.D.5.一件工作,甲单独完成需要a天,乙单独完成需要b天,如果甲、乙二人合作,那么每天的工作效率是()A.a+b B.+C.D.6.不改变分式的值,使分子、分母的最高次项的系数都为正,正确的变形是()A.B.C.D.7.化简的结果是()A.1B.C.D.08.若=﹣,则a﹣2b的值是()A.﹣6B.6C.﹣2D.29.下列分式中,最简分式是()A.B.C.D.10.张萌将分式进行通分,则这两个分式的最简公分母为()A.2(x+y)(x﹣y)B.4(x+y)(x﹣y)C.(x+y)(x﹣y)D.4(x+y)211.计算(a2b)3•的结果是()A.a5b5B.a4b5C.ab5D.a5b612.已知,则的值为()A.1B.0C.﹣1D.﹣213.张阿姨,李阿姨到农贸市场买大米,第一次,张阿姨买了100千克大米,李阿姨买了100元的大米;第二次,张阿姨还是买了100千克大米,李阿姨还是买了100元的大米.下列说法正确的是()A.如果米价下降张阿姨买的合算B.如果米价上涨张阿姨买的合算C.无论米价怎样变化李阿姨买的合算D.无法判断谁买的合算14.已知+=3,则代数式的值为()A.3B.﹣2C.﹣D.﹣15.下列方程是分式方程的是()A.B.C.x2﹣1=3D.2x+1=3x 16.若关于x的分式方程无解,则m的值为()A.﹣1.5B.1C.﹣1.5或2D.﹣0.5或﹣1.5 17.方程=的解是()A.﹣B.C.﹣D.18.用换元法解方程,若设=y,则原方程可化为()A.y2﹣7y+6=0B.y2+6y﹣7=0C.6y2﹣7y+1=0D.6y2+7y+1=0 19.若分式方程有增根,则a的值是()A.﹣2B.0C.2D.0或﹣2 20.小明坐滴滴打车前去火车高铁站,小明可以选择两条不同路线:路线A的全程是25千米,但交通比较拥堵,路线B的全程比路线A的全程多7千米,但平均车速比走路线A时能提高60%,若走路线B的全程能比走路线A少用15分钟.若设走路线A时的平均速度为x千米/小时,根据题意,可列分式方程()A.=15B.=15C.=D.21.甲志愿者计划用若干个工作日完成社区的某项工作,从第三个工作日起,乙志愿者加盟此项工作,且甲、乙两人工效相同,结果提前3天完成任务,则甲志愿者计划完成此项工作的天数是()A.8B.7C.6D.5二.解答题(共7小题)22.下面是售货员与小明的对话:根据对话内容解答下列问题:(1)A、B两种文具的单价各是多少元?(2)若购买A、B两种文具共20件,其中A种文具的数量少于B种文具的数量,且购买总费用不超过260元,共有几种购买方案.23.两列火车分别行驶在两平行的轨道上,其中快车车长100米,慢车车长150米,当两车相向而行时,快车驶过慢车某个窗口(快车车头到达窗口某一点至车尾离开这一点)所用的时间为5秒.(1)求两车的速度之和及两车相向而行时慢车驶过快车某个窗口(慢车车头到达窗口某一点至车尾离开这一点)所用的时间;(2)如果两车同向而行,慢车的速度不小于8米/秒,快车从后面追赶慢车,那么从快车的车头赶上慢车的车尾开始到快车的车尾离开慢车的车头所需时间至少为多少秒?24.某工厂计划生产一种创新产品,若生产一件这种产品需A种原料1.2千克、B种原料1千克.已知A种原料每千克的价格比B种原料每千克的价格多10元.(1)为使每件产品的成本价不超过34元,那么购入的B种原料每千克的价格最高不超过多少元?(2)将这种产品投放市场批发销售一段时间后,为拓展销路又开展了零售业务,每件产品的零售价比批发价多30元.现用10000元通过批发价购买该产品的件数与用16000元通过零售价购买该产品的件数相同,那么这种产品的批发价是多少元?25.济南在创建全国文明城市的进程中,高新区为美化城市环境,计划种植树木30000棵,由于志愿者的加入,实际每天植树比原计划多20%.结果提前10天完成任务,求原计划每天植树多少棵.26.在某校举办的2012年秋季运动会结束之后,学校需要为参加运动会的同学们发纪念品.小王负责到某商场买某种纪念品,该商场规定:一次性购买该纪念品200个以上可以按折扣价出售;购买200个以下(包括200个)只能按原价出售.小王若按照原计划的数量购买纪念品,只能按原价付款,共需要1050元;若多买35个,则按折扣价付款,恰好共需1050元.设小王按原计划购买纪念品x个.(1)求x的范围;(2)如果按原价购买5个纪念品与按打折价购买6个纪念品的钱数相同,那么小王原计划购买多少个纪念品?27.一项工程,甲队单独完成比乙队单独完成需少用9天,甲队单独做3天的工作乙队单独做需要4天,(1)甲、乙两队单独完成此项工程各需几天?(2)该项工程先由甲、乙两队合作,再由甲队单独完成,若完成此项工程不超过18天,甲乙两队至少合作几天?28.今年我区的葡萄喜获丰收,葡萄一上市,水果店的王老板用2400元购进一批葡萄,很快售完;老板又用5000元购进第二批葡萄,所购件数是第一批的2倍,但进价比第一批每件多了5元.(1)第一批葡萄每件进价多少元?(2)王老板以每件150元的价格销售第二批葡萄,售出80%后,为了尽快售完,决定打折促销,要使第二批葡萄的销售利润不少于640元,剩余的葡萄每件售价最少打几折?(利润=售价﹣进价)苏科新版八年级下学期《第10章分式》单元测试卷参考答案与试题解析一.选择题(共21小题)1.下列各式中,分式的个数是().A.2B.3C.4D.5【分析】判断分式的依据是看代数式的分母中是否含有字母,如果含有字母则是分式,如果不含有字母则不是分式.【解答】解:,的分母中均不含有字母,因此它们是整式,而不是分式;a+的分子不是整式,因此不是分式.,,的分母中含有字母,因此是分式.故选:B.【点评】本题考查了分式的定义:如果A、B表示两个整式,并且B中含有字母,那么式子叫做分式,A叫做分式的分子,B叫做分式的分母.注意π不是字母,是常数,所以不是分式,是整式.2.使分式有意义的x的取值范围是()A.x≠1B.x≠2C.x≠1且x≠2D.x可为任何数【分析】分式有意义的条件是分母≠0,即x2﹣3x+2≠0,解得x.【解答】解:∵x2﹣3x+2≠0即(x﹣1)(x﹣2)≠0,∴x﹣1≠0且x﹣2≠0,∴x≠1且x≠2.故选:C.【点评】本题考查的是分式有意义的条件:当分母不为0时,分式有意义.3.若分式的值为0,则x的值是()A.±3B.﹣3C.3D.0【分析】分式的值等于零,分子等于零,且分母不等于零.【解答】解:依题意,得x2﹣9=0且x+3≠0,解得,x=3.故选:C.【点评】本题考查了分式的值为零的条件.若分式的值为零,需同时具备两个条件:(1)分子为0;(2)分母不为0.这两个条件缺一不可.4.已知﹣=5,则分式的值为()A.1B.5C.D.【分析】已知等式左边通分并利用同分母分式的减法法则变形,整理后代入原式计算即可得到结果.【解答】解:已知等式整理得:=5,即x﹣y=﹣5xy,则原式===1,故选:A.【点评】此题考查了分式的值,熟练掌握运算法则是解本题的关键.5.一件工作,甲单独完成需要a天,乙单独完成需要b天,如果甲、乙二人合作,那么每天的工作效率是()A.a+b B.+C.D.【分析】合作的工作效率=甲的工作效率+乙的工作效率,据此可得.【解答】解:∵甲单独完成需要a天,乙单独完成需要b天,∴甲的工效为,乙的工效为,∴甲、乙二人合作每天的工作效率是+,故选:B.【点评】本题主要考查列代数式,解题的关键是熟练掌握工程问题中关于合作的工作效率的相等关系.6.不改变分式的值,使分子、分母的最高次项的系数都为正,正确的变形是()A.B.C.D.【分析】首先判断出分式的分子、分母的最高次项的系数分别为﹣1、﹣5,它们都是负数;然后根据分式的基本性质,把分式的分子、分母同时乘以﹣1,使分子、分母的最高次项的系数都为正即可.【解答】解:==∴不改变分式的值,使分子、分母的最高次项的系数都为正,正确的变形是.故选:C.【点评】此题主要考查了分式的基本性质的应用,要熟练掌握,解答此题的关键是要明确:分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变.7.化简的结果是()A.1B.C.D.0【分析】将分子利用平方差公式分解因式,再进一步计算可得.【解答】解:原式=====1,故选:A.【点评】本题主要考查约分,解题的关键是掌握平方差公式分解因式和约分的定义.8.若=﹣,则a﹣2b的值是()A.﹣6B.6C.﹣2D.2【分析】先去分母,得4x=(a﹣b)x+(﹣2a﹣2b),再根据对应相等求出a、b 的值,代入计算即可.【解答】解:化简得,4x=(a﹣b)x+(﹣2a﹣2b),∴a﹣b=4,﹣2a﹣2b=0,解得a=2,b=﹣2,∴a﹣2b=2﹣2×(﹣2)=6,故选:B.【点评】本题考查了通分以及解二元一次方程组,是基础知识要熟练掌握.9.下列分式中,最简分式是()A.B.C.D.【分析】根据最简分式的定义对各选项逐一判断即可得.【解答】解:A、==,不符合题意;B、==,不符合题意;C、是最简分式,符合题意;D、==,不符合题意;故选:C.【点评】本题主要考查最简分式,解题的关键是掌握一个分式的分子与分母没有公因式时,叫最简分式.10.张萌将分式进行通分,则这两个分式的最简公分母为()A.2(x+y)(x﹣y)B.4(x+y)(x﹣y)C.(x+y)(x﹣y)D.4(x+y)2【分析】确定最简公分母的方法是:(1)取各分母系数的最小公倍数;(2)凡单独出现的字母连同它的指数作为最简公分母的一个因式;(3)同底数幂取次数最高的,得到的因式的积就是最简公分母.【解答】解:分式的分母分别是2x+2y=2(x+y)、4x﹣4y=4(x ﹣y),故最简公分母是4(x+y)(x﹣y).故选:B.【点评】本题考查了最简公分母的定义及求法.通常取各分母系数的最小公倍数与字母因式的最高次幂的积作公分母,这样的公分母叫做最简公分母.一般方法:①如果各分母都是单项式,那么最简公分母就是各系数的最小公倍数,相同字母的最高次幂,所有不同字母都写在积里.②如果各分母都是多项式,就可以将各个分母因式分解,取各分母数字系数的最小公倍数,凡出现的字母(或含字母的整式)为底数的幂的因式都要取最高次幂.11.计算(a2b)3•的结果是()A.a5b5B.a4b5C.ab5D.a5b6【分析】根据积的乘方等于乘方的积,分式的乘法,可得答案.【解答】解:原式=a6b3•=a5b5,故选:A.【点评】本题考查了分式的乘除法,熟记法则并根据法则计算是解题关键.12.已知,则的值为()A.1B.0C.﹣1D.﹣2【分析】解决本题首先将已知条件转化为最简形式,再把所求分式通分、代值即可.本题考查了分式的加减运算.【解答】解:把已知+=去分母,得(a+b)2=ab,即a2+b2=﹣ab∴+===﹣1.故选C.【点评】分式中的一些特殊求值题并非是一味的化简,代入,求值.许多问题还需运用到常见的数学思想,如化归思想(即转化)、整体思想等,了解这些数学解题思想对于解题技巧的丰富与提高有一定帮助.13.张阿姨,李阿姨到农贸市场买大米,第一次,张阿姨买了100千克大米,李阿姨买了100元的大米;第二次,张阿姨还是买了100千克大米,李阿姨还是买了100元的大米.下列说法正确的是()A.如果米价下降张阿姨买的合算B.如果米价上涨张阿姨买的合算C.无论米价怎样变化李阿姨买的合算D.无法判断谁买的合算【分析】先设第一次大米的单价为a,第二次大米的单价为b,分别计算两人两次所卖大米的平均单价,求出单价,再比较两者的差,根据结果来比较大小.【解答】解:设第一次大米的单价为a,第二次大米的单价为b,张阿姨两次购买的平均单价为,李阿姨两次购买的平均单价为则﹣=≥0.所以无论米价怎样变化都是李阿姨买的合算.故选:C.【点评】本题考查了分式的混合运算,解题的关键是求出两人两次所买大米的平均单价,再比较单价的大小.14.已知+=3,则代数式的值为()A.3B.﹣2C.﹣D.﹣【分析】已知等式左边通分并利用同分母分式的加法法则计算,整理得到a+2b =6ab,代入原式计算即可得到结果.【解答】解:+==3,即a+2b=6ab,则原式===﹣,故选:D.【点评】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.15.下列方程是分式方程的是()A.B.C.x2﹣1=3D.2x+1=3x【分析】依据分式方程的定义进行判断即可.【解答】解:A、﹣=0是一元一次方程,故A错误;B、=﹣2是分式方程,故B正确;C、x2﹣1=3是一元二次方程,故C错误;D、2x+1=3x是一元一次方程,故D错误.故选:B.【点评】本题主要考查的是分式方程的定义,熟练掌握分式方程的定义是解题的关键.16.若关于x的分式方程无解,则m的值为()A.﹣1.5B.1C.﹣1.5或2D.﹣0.5或﹣1.5【分析】去分母得出方程①(2m+x)x﹣x(x﹣3)=2(x﹣3),分为两种情况:①根据方程无解得出x=0或x=3,分别把x=0或x=3代入方程①,求出m;②求出当2m+1=0时,方程也无解,即可得出答案.【解答】解:方程两边都乘以x(x﹣3)得:(2m+x)x﹣x(x﹣3)=2(x﹣3),即(2m+1)x=﹣6,分两种情况考虑:①∵当2m+1=0时,此方程无解,∴此时m=﹣0.5,②∵关于x的分式方程无解,∴x=0或x﹣3=0,即x=0,x=3,当x=0时,代入①得:(2m+0)×0﹣0×(0﹣3)=2(0﹣3),解得:此方程无解;当x=3时,代入①得:(2m+3)×3﹣3(3﹣3)=2(3﹣3),解得:m=﹣1.5,∴m的值是﹣0.5或﹣1.5,故选:D.【点评】本题考查了对分式方程的解的理解和运用,关键是求出分式方程无解时的x的值,题目比较好,难度也适中.17.方程=的解是()A.﹣B.C.﹣D.【分析】根据解分式方程的步骤:①去分母;②求出整式方程的解;③检验;④得出结论解答可得.【解答】解:两边都乘以2(x+2),得:2(2x﹣1)=x+2,解得:x=,当x=时,2(x+2)≠0,所以x=是分式方程的解,故选:D.【点评】本题主要考查解分式方程,解题的关键是掌握解分式方程的步骤:①去分母;②求出整式方程的解;③检验;④得出结论.18.用换元法解方程,若设=y,则原方程可化为()A.y2﹣7y+6=0B.y2+6y﹣7=0C.6y2﹣7y+1=0D.6y2+7y+1=0【分析】观察方程的两个分式具备的关系,若设=y,则原方程另一个分式为6×.可用换元法转化为关于y的方程.去分母、整理即可.【解答】解:把=y代入原方程得:y+6×=7,方程两边同乘以y整理得:y2﹣7y+6=0.故选:A.【点评】换元法解分式方程时常用方法之一,它能够把一些分式方程化繁为简,化难为易,对此应注意总结能用换元法解的分式方程的特点,寻找解题技巧.19.若分式方程有增根,则a的值是()A.﹣2B.0C.2D.0或﹣2【分析】增根是分式方程化为整式方程后产生的使分式方程的分母为0的根.把增根代入化为整式方程的方程即可求出未知字母的值.【解答】解:方程两边都乘(x+a)(x﹣2),得x+a+3(x﹣2)(x+a)=(a﹣x)(x﹣2),∵原方程有增根,∴最简公分母(a+x)(x﹣2)=0,∴增根是x=2或﹣a,当x=2时,方程化为:2+a=0,解得:a=﹣2;当x=﹣a时,方程化为﹣a+a=2a(﹣a﹣2),即a(a+2)=0,解得:a=0或﹣2.当a=﹣2时,原方程可化为+3=,化为整式方程得,1+3(x﹣2)=﹣x﹣2,即:x=,不存在增根,故不符合题意,当a=0时,原方程可化为,化为整式方程得,x+3x(x﹣2)=﹣x(x﹣2),解得x=或x=0,此时,有增根为x=0,∴a=0符合题意,故选:B.【点评】增根确定后可按如下步骤进行:①化分式方程为整式方程;②把增根代入整式方程即可求得相关字母的值.20.小明坐滴滴打车前去火车高铁站,小明可以选择两条不同路线:路线A的全程是25千米,但交通比较拥堵,路线B的全程比路线A的全程多7千米,但平均车速比走路线A时能提高60%,若走路线B的全程能比走路线A少用15分钟.若设走路线A时的平均速度为x千米/小时,根据题意,可列分式方程()A.=15B.=15C.=D.【分析】若设走路线A时的平均速度为x千米/小时,则走路线B时的平均速度为1.6x千米/小时,根据路线B的全程比路线A的全程多7千米,走路线B 的全程能比走路线A少用15分钟可列出方程.【解答】解:设走路线A时的平均速度为x千米/小时,根据题意,得﹣=.故选:D.【点评】本题考查了由实际问题抽象出分式方程,找到关键描述语,找到合适的等量关系是解决问题的关键.21.甲志愿者计划用若干个工作日完成社区的某项工作,从第三个工作日起,乙志愿者加盟此项工作,且甲、乙两人工效相同,结果提前3天完成任务,则甲志愿者计划完成此项工作的天数是()A.8B.7C.6D.5【分析】工效常用的等量关系是:工效×时间=工作总量,本题的等量关系为:甲工作量+乙工作量=1,根据从第三个工作日起,乙志愿者加盟此项工作,本题需注意甲比乙多做2天.【解答】解:方法1、设甲志愿者计划完成此项工作需x天,故甲的工效都为:,由于甲、乙两人工效相同,则乙的工效为甲前两个工作日完成了,剩余的工作量甲完成了,乙在甲工作两个工作日后完成了,则+=1,解得x=8,经检验,x=8是原方程的解.故选:A.方法2、设甲志愿者计划完成此项工作需a天,则一天完成工作总量的,由于甲、乙两人工效相同,则乙的一天完成工作总量的,甲实际工作了(a﹣3)天,乙比甲少工作两天,实际工作了(a﹣5)天,即用甲的工作量加乙的工作量=1,建立方程×(a﹣3)+×(a﹣5)=1,∴a=8,故选:A.【点评】本题主要考查分式方程的应用,还考查了工效×时间=工作总量这个等量关系.二.解答题(共7小题)22.下面是售货员与小明的对话:根据对话内容解答下列问题:(1)A、B两种文具的单价各是多少元?(2)若购买A、B两种文具共20件,其中A种文具的数量少于B种文具的数量,且购买总费用不超过260元,共有几种购买方案.【分析】(1)设A种文具的单价为x元,则B种文具单价为(25﹣x)元,根据用80元购买A种文具的数量是用120元购买B种文具的数量的2倍,列方程求解;(2)设学校购进A种文具a件,则购进B种文具(20﹣a)件,根据其中A种文具的数量少于B种文具的数量,且购买总费用不超过260元,列不等式求出a的取值范围,结合a为正整数,确定购买方案.【解答】解:(1)设A种文具的单价为x元,则B种文具单价为(25﹣x)元,由题意得,=,解得:x=10,经检验,x=10是分式方程的解,且符合题意,25﹣x=15答:种文具的单价为10元,则B种文具单价为15元;(2)设学校购进A种文具a件,则购进B种文具(20﹣a)件,由题意得,解得:8≤a<10,∵a是正整数,∴a为8或9∴共有两种购买方案.【点评】本题考查了分式方程和一元一次不等式的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程求解,注意检验.23.两列火车分别行驶在两平行的轨道上,其中快车车长100米,慢车车长150米,当两车相向而行时,快车驶过慢车某个窗口(快车车头到达窗口某一点至车尾离开这一点)所用的时间为5秒.(1)求两车的速度之和及两车相向而行时慢车驶过快车某个窗口(慢车车头到达窗口某一点至车尾离开这一点)所用的时间;(2)如果两车同向而行,慢车的速度不小于8米/秒,快车从后面追赶慢车,那么从快车的车头赶上慢车的车尾开始到快车的车尾离开慢车的车头所需时间至少为多少秒?【分析】(1)快车驶过慢车某个窗口等量关系为:两车的速度之和×所用时间=快车车长;慢车驶过快车某个窗口等量关系为:两车的速度之和×所用时间=慢车车长;(2)等量关系为:两车速度之差×时间=两车车长之和.【解答】解:(1)设快,慢车的速度分别为x米/秒,y米/秒.根据题意得x+y==20,即两车的速度之和为20米/秒;设慢车驶过快车某个窗口需用t1秒,根据题意得x+y=,∴t1=.即两车相向而行时,慢车驶过快车某个窗口所用时间为7.5秒.答:两车的速度之和为20米/秒,两车相向而行时,慢车驶过快车某个窗口所用时间为7.5秒;(2)所求的时间t2=,∴,依题意,当慢车的速度为8米/秒时,t2的值最小,t2=,∴t2的最小值为62.5秒.答:从快车的车头赶上慢车的车尾开始到快车的车尾离开慢车的车头所需时间至少为62.5秒.【点评】找到相应的等量关系是解决问题的关键;难点是得到相应的车速和路程.24.某工厂计划生产一种创新产品,若生产一件这种产品需A种原料1.2千克、B种原料1千克.已知A种原料每千克的价格比B种原料每千克的价格多10元.(1)为使每件产品的成本价不超过34元,那么购入的B种原料每千克的价格最高不超过多少元?(2)将这种产品投放市场批发销售一段时间后,为拓展销路又开展了零售业务,每件产品的零售价比批发价多30元.现用10000元通过批发价购买该产品的件数与用16000元通过零售价购买该产品的件数相同,那么这种产品的批发价是多少元?(1)设B种原料每千克的价格为x元,则A种原料每千克的价格为(x+10)【分析】元,根据每件产品的成本价不超过34元,即可得出关于x的一元一次不等式,解之取其中的最大值即可得出结论;(2)设这种产品的批发价为a元,则零售价为(a+30)元,根据数量=总价÷单价结合用10000元通过批发价购买该产品的件数与用16000元通过零售价购买该产品的件数相同,即可得出关于a的分式方程,解之经检验后即可得出结论.【解答】解:(1)设B种原料每千克的价格为x元,则A种原料每千克的价格为(x+10)元,根据题意得:1.2(x+10)+x≤34,解得:x≤10.答:购入B种原料每千克的价格最高不超过10元.(2)设这种产品的批发价为a元,则零售价为(a+30)元,根据题意得:=,解得:a=50,经检验,a=50是原方程的根,且符合实际.答:这种产品的批发价为50元.【点评】本题考查了分式方程的应用以及一元一次不等式的应用,解题的关键是:(1)根据各数量间的关系,正确列出一元一次不等式;(2)找准等量关系,正确列出分式方程.25.济南在创建全国文明城市的进程中,高新区为美化城市环境,计划种植树木30000棵,由于志愿者的加入,实际每天植树比原计划多20%.结果提前10天完成任务,求原计划每天植树多少棵.【分析】设原计划每天种树x棵,则实际每天栽树的棵数为(1+20%),根据题意可得,实际比计划少用10天,据此列方程求解.【解答】解:设原计划每天种树x棵,则实际每天栽树的棵数为(1+20%),由题意得,﹣=10,解得:x=500,经检验,x=500是原分式方程的解,且符合题意.答:原计划每天种树500棵.【点评】本题考查了分式方程的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程求解,注意检验.26.在某校举办的2012年秋季运动会结束之后,学校需要为参加运动会的同学们发纪念品.小王负责到某商场买某种纪念品,该商场规定:一次性购买该纪念品200个以上可以按折扣价出售;购买200个以下(包括200个)只能按原价出售.小王若按照原计划的数量购买纪念品,只能按原价付款,共需要1050元;若多买35个,则按折扣价付款,恰好共需1050元.设小王按原计划购买纪念品x个.(1)求x的范围;(2)如果按原价购买5个纪念品与按打折价购买6个纪念品的钱数相同,那么小王原计划购买多少个纪念品?【分析】(1)根据商场的规定确定出x的范围即可;(2)设小王原计划购买x个纪念品,根据按原价购买5个纪念品与按打折价购买6个纪念品的钱数相同列出分式方程,求出解即可得到结果.【解答】解:(1)根据题意得:0<x≤200,且x∈N;(2)设小王原计划购买x个纪念品,根据题意得:×5=×6,整理得:5x+175=6x,解得:x=175,经检验x=175是分式方程的解,且满足题意,则小王原计划购买175个纪念品.【点评】此题考查了分式方程的应用,弄清题中的等量关系“按原价购买5个纪念品与按打折价购买6个纪念品的钱数相同”是解本题的关键.27.一项工程,甲队单独完成比乙队单独完成需少用9天,甲队单独做3天的工作乙队单独做需要4天,(1)甲、乙两队单独完成此项工程各需几天?(2)该项工程先由甲、乙两队合作,再由甲队单独完成,若完成此项工程不超过18天,甲乙两队至少合作几天?【分析】(1)设甲队单独完成此项工程需x天,则乙队单独完成此项工程需(x+9)天,根据甲队单独做3天的工作乙队单独做需要4天,即可得出关于x的分式方程,解之经检验后即可得出结论;(2)设甲乙两队合作y天,根据完成此项工程不超过18天,即可得出关于y的一元一次不等式,解之即可得出y的取值范围,取其中的最小值即可得出结论.【解答】解:(1)设甲队单独完成此项工程需x天,则乙队单独完成此项工程需(x+9)天,根据题意得:=,解得:x=27,经检验,x=27是原方程的解,且符合题意,∴x+9=36.答:甲队单独完成此项工程需27天,乙队单独完成此项工程需36天.(2)设甲乙两队合作y天,根据题意得:+≥1,解得:y≥12.。
10.1分式-苏科版八年级数学下册教案

10.1 分式-苏科版八年级数学下册教案
一、教学目标
1.能够复述分式的定义及其特点;
2.能够熟练使用分式加减法公式求解相关问题;
3.能够归纳、总结分式的基本运算规律。
二、教学重点
1.分式的概念及其特点;
2.分式的加减法公式。
三、教学难点
分式的乘法和除法。
四、教学过程
4.1 导入与引入(5分钟)
教师通过提问、讲故事等方式,让学生了解到分子、分母的含义,并通过实例引发学生对分式的认识。
4.2 介绍分式的定义及特点(10分钟)
教师介绍分式的定义及其特点,并通过数学公式、图表等方式,让学生深入理解。
4.3 分式的基本运算(40分钟)
4.3.1 分式的加减法(20分钟)
教师介绍分式的加减法公式,并通过示例让学生熟练掌握分式的加减法运算,最后让学生自己举出几个实例进行加减练习。
4.3.2 分式的乘法和除法(20分钟)
教师介绍分式的乘法和除法规律,并通过实例让学生掌握分式的乘法和除法运算。
4.4 讲解分式的简化(10分钟)
教师通过实例讲解分式的简化规律,并让学生自己练习简化分式。
4.5 小结(5分钟)
教师对本课时内容进行小结,并布置课后作业。
五、课后作业
1.完成课堂练习;
2.预习下一节内容:分式的应用。
六、教学反思
本节课的教学重点是基本运算,难点是乘法和除法。
让学生理解分式的概念及其特点,并规范运算,把知识点串起来,便于学生理解。
课后需要多进行练习,多理解思考。
《10.4分式的乘除》作业设计方案-初中数学苏科版12八年级下册

《分式的乘除》作业设计方案(第一课时)一、作业目标本节课的作业目标是巩固学生对分式乘除法则的理解和运用,培养学生分析问题和解决问题的能力,以及提高他们的数学计算能力和思维水平。
二、作业内容作业内容主要包括以下几个部分:1. 基础练习:让学生通过大量的基础练习,熟练掌握分式的乘除法运算。
练习题目包括同分母分式的乘除、异分母分式的乘除等。
2. 理解应用:设计一些实际应用问题,让学生运用分式乘除法则解决实际问题,如面积、体积、速度等问题中的分式运算。
3. 思维拓展:提供一些有挑战性的题目,如复杂的分式乘除混合运算、分式与整式的关系等,让学生通过思考和探究,加深对分式乘除法的理解。
4. 对比学习:通过比较分式与整式的乘除运算的异同,进一步理解分式的特点和运算规律。
三、作业要求为保证作业质量,学生需要遵循以下要求:1. 按时完成:学生应按照老师规定的截止时间完成作业,以保证有足够的时间进行检查和反思。
2. 准确计算:在完成作业过程中,学生应仔细计算,确保答案的准确性。
对于有疑问的题目,应及时向老师请教。
3. 规范书写:学生应按照数学作业的规范要求书写,字迹要工整,格式要正确。
4. 独立思考:在完成作业过程中,学生应独立思考,尽量自己解决问题,培养自主学习的能力。
四、作业评价作业评价主要包括以下几个方面:1. 正确性:评价学生答案的正确性,看其是否熟练掌握分式的乘除法运算。
2. 规范性:评价学生书写的规范性,看其是否符合数学作业的规范要求。
3. 创新性:对于思维拓展部分的题目,评价学生的创新思维和解决问题的能力。
4. 学习态度:评价学生的学习态度,看其是否认真对待作业,是否按时完成。
五、作业反馈作业反馈是提高学生学习效果的重要环节。
老师应根据学生的作业情况,及时给予反馈和指导。
对于错误的地方,老师应指出并帮助学生改正;对于优秀的地方,老师应给予表扬和鼓励。
同时,老师还应根据学生的作业情况,调整教学计划和教学方法,以更好地满足学生的学习需求。
苏科版八年级数学下_10.2分式的基本性质

别除以它们的公因式,叫做分式的约分.
2. 找公因式的方法
(1)当分子、分母都是单项式时,先找分子、分母系数的最
大公约数,再找相同字母的最低次幂,它们的积就是公
因式;
(2)当分子、分母都是多项式时,先把多项式分解因式,再
按(1)中的方法找公因式.
感悟新知
3. 约分的方法
知2-讲
(1)若分式的分子、分母都是单项式,就直接约去分子、分
(1) 1255xx2yy2=
(
3x 5y
);(2)a+ab22b=(a2a+22ba2b );
(3)
x23-x xy=
3
(x-y
).
知1-讲
解题秘方:观察等号两边已知的分子或分母发生了
什么样的变化,再根据分式的基本性质
用相同的变化确定所要填的式子.
感悟新知
知1-讲
解法提醒: 解决与分式的恒等变形有关的填空题时,一般从分子
常取最简公分母.
感悟新知
3. 通分的一般步骤 (1)确定最简公分母;
知3-讲
(2)用最简公分母分别除以各分母求商;
(3)用所得的商分别乘各分式的分子、分母得出同分母分式.
4. 约分与通分的关系
感悟新知
例 7 把下列各组分式通分:
(1) 6x52yz3和 4x33y2z;
(2)
x-a y,
3x-b 3y,
式,再按照分母都是单项式时求最简公分母的方法,
从系数、相同因式、不同因式三个方面去确定.
感悟新知
知2-讲
解:(1)分母 6x2yz3、4x3y2z 的的最简公分母是 12x3y2z3, 6x52yz3= 6x52·yz32·xy2xy= 1120xx3yy2z3, 4x33y2z= 4x33·y2z3·z23z2= 129xz32y2z3;
【2020】八年级数学下册第十章分式10.4分式的乘除1教案新版苏科版

① .
②( )
③
④
(2)质疑问难,提出学习中存在的问题。
三、交流 展示
(一)展示一
分组展示自主先学中的问题,归纳所学知识。
讲清:
1、分式的乘法法则:分式乘分式,用分子的积做积的分子,分母的积做积的分母.
2、分式的除法法则:分式除 以分式,把除式的分子、分母颠倒位置后,与被除式相乘.
3、用字母表示为:
3.在学习过程中你还存在哪 些问题?
回忆分数的乘除法。
自学教材内容
记忆法则。
完成检测题
交流问难
讲出来计算法则。
分组展示板演并讲解学生讲解
试试看。
独 立完成
反思。板书Fra bibliotek设计
教学
札记
· = ; ÷ = × = .
(二)展示二(例题)
计算:(1) ·(- );
(2)4ab
计算:
(1) · ;
(2)
(三)展示三(拓展)
计算:
(1) (2) · · 。
四、检测反馈
1.计算:
(1)(- ). (2) .
(3)
2.已知x=-2,求 的值
五、小结反思
1.分式的乘除法法则内容是什么?
2.进行分式的乘除法时要注意什么?
【2020】八年级数学下册第十章分式10.4分式的乘除1教案新版苏科版
编 辑:__________________
时 间:__________________
10.4 分式的乘除
主备人
用案人
授课时间
____年__月__日
总第课时
课题
10.4 分式的乘除(1)
课型
新授
教学
第10章分式分式的加减乘除计算题专项苏科版八年级下册

分式的加减、乘除计算题专项学校:___________姓名:___________班级:___________考号:___________一、计算题:本大题共20小题,共120分。
1.计算:(1)cab2+bcab2;(2)3a +a−155a;(3)1R1+1R2;(4)ba+b +abb2−a2.2.计算:(1)2xx2−y2−2yx2−y2;(2)1x−1+x2−3xx2−1;(3)x2+9xx2+3x +x2−9x2+6x+9;(4)a2a−1−(a+1).3.计算:(1)x+2x−1−x−1(2)1+a(a−b)(a−c)+1+b(b−c)(b−a)+1+c(a−c)(b−c).4.计算:(1)a−1a−b −1+bb−a;(2)1x−1+x2−3xx2−1;(3)a2−4a2−4a+4−4aa2−2a;(4)4x+2−2+x.5.计算:(1)2x −5x2;(2)a+1a−1−a−1a+1.6.化简:(3a−2−1a+2)⋅(a 2−4).7.计算:(1)aa 2−1−1a 2−1;(2)2x x 2−y 2+5x+3yy 2−x 2;(3)m−6m 2−4−12−m ;(4)a 2−b 2ab −ab−b2ab−a 2.8.化简:x 2+1x−1−2x x−1.9.计算:(1)2x−3x−2−x−1x−2;(2)x+3y x 2−y 2−x+2y x 2−y 2+2x−3yx 2−y 2;(3)m m−n −n m+n +2mnm 2−n 2;(4)x 2x+y −x +y ;(5)2y−3z 2yz +2z−3x 3zx +9x−4y 6xy ;(6)1−4x 2x+y −2x+y 2x−y −8xy4x 2−y 2.10.计算:(1)32x +12x ;(2)a+1a−1−4aa 2−1.11.计算:(1)(a −4)⋅16−a 2a 2−8a+16;(2)a 2−a+14a−3÷2a−1a 2−3a .12.计算:(1)4ab 3⋅−3a2b 3(2)8x 3÷36x 2(3)a 2−4b24ab 2⋅ab a +2b(4)a 2−b 22ab÷(a +b ) 13.计算:(1)(1+1a−1)(1a 2−1);(2)x−2x 2÷(1−2x); (3)(x+2x 2−2x −x−1x 2−4x+4)÷x−4x ;(4)1x−1−x−3x 2−1⋅x 2+2x+1x 2−6x+9.14.计算:(1)π0−√ 9+(13)−2−|−5|;(2)x 2−16x+4÷2x−84x .15.计算:(1)8x 2y 3⋅(−3x 4y 2);(2)a−b a+b÷(b −a ); (3)(x−1)2x (1−x 2)⋅xy+x 2y x−x 2;(4)x−2x+1÷x 2−4x 2+2x+1.16.化简:(1)−3a b ⋅ab 2−a 3b 2÷(−6b a 2); (2)(1+1m )÷m 2−1m ;(3)(y 2x −y x 2)÷(y x)2; (4)(a +2+1a )÷(a −1a );(5)(a −1+1a−3)÷a 2−4a−3;(6)(a a−b −a 2a 2−2ab+b 2)÷(a a+b −a 2a 2−b 2)+1. 17.化简:(1)(2a 2+2a a 2−1−a 2−a a 2−2a+1)÷2a a−1;(2)(m +2−5m−2)÷m−32m−4.18.计算:(1)a 2−9a 2+6a+9÷a−3a ; (2)4a +4b 5ab ⋅15a 2b a 2−b 2(3)−8x 2y 4⋅3x 4y 6÷(−x 2y 6z ) (4)a 2−6a+94−b 2÷3−a 2+b ⋅a 23a−9;(5)y 2−4y+42y−6⋅1y+3÷12−6y9−y 2;(6)2m+4m 2−4m+4⋅(m 2−4)⋅2m−4m 4−16.19.计算:(1)a 2a 2−2a+1⋅a−1a −1a−1;(2)(3+n m )÷9m 2−n 2m ;(3)a+2b a+b −a−b a−2b ÷a 2−b 2a 2−4ab+4b 2;(4)(a −1+a+3a+2)÷a 2−1a+2.20.计算:(1)(a−b b )2⋅ba 2−b 2;(2)(−x y )2⋅(−y x )3÷(1xy )2;(3)x−1x ÷x 2−1x 2+x ;(4)a+31−a ÷a 2+3aa 2−2a+1.1.【答案】【小题1】cab2+bcab2=c(b+1)ab2.【小题2】3a +a−155a=15+a−155a=15.【小题3】1R1+1R2=R2+R1R1R2.【小题4】ba+b +abb2−a2=b(b−a)+abb2−a2=b2b2−a2.2.【答案】【小题1】原式=2x−2yx2−y2=2(x−y)(x+y)(x−y)=2x+y.【小题2】原式=x+1x2−1+x2−3xx2−1=x2−2x+1x2−1=(x−1)2(x+1)(x−1)=x−1x+1.【小题3】原式=x+9x+3+x−3x+3=2x+6x+3=2.【小题4】原式=a2a−1−a2−1a−1=1a−1.3.【答案】【小题1】原式=x+2x−1−x(x−1)x−1−x−1x−1=x+2−x2+x−x+1x−1=−x2+x+3x−1.【小题2】原式=(1+a)(b−c)(a−b)(a−c)(b−c)−(1+b)(a−c)(a−b)(a−c)(b−c)+(1+c)(a−b)(a−b)(a−c)(b−c)=b−c+ab−ac−a+c−ab+bc+a−b+ac−bc(a−b)(a−c)(b−c)=0.4.【答案】【小题1】原式=a−1a−b +1+ba−b=a−1+1+ba−b=a+ba−b.【小题2】原式=x+1x2−1+x2−3xx2−1=x+1+x2−3xx2−1=x2−2x+1x2−1=(x−1)2x2−1=(x−1)2(x+1)(x−1)=x−1x+1.原式=(a+2)(a−2)(a−2)2−4a a(a−2)=a+2a−2−4a−2=a+2−4a−2=1.【小题4】原式=4x+2+(x −2)=4+(x+2)(x−2)x+2=x 2x+2.5.【答案】【小题1】原式=2x x 2−5x 2 =2x−5x 2; 【小题2】解:原式=(a+1)2(a+1)(a−1)−(a−1)2(a+1)(a−1) =(a +1)2−(a −1)2(a +1)(a −1)=(a 2+2a +1)−(a 2−2a +1)(a +1)(a −1)=4a (a +1)(a −1) =4a a 2−1.6.【答案】解:(3a−2−1a+2)⋅(a 2−4) =3(a +2)−(a −2)(a +2)(a −2)⋅(a +2)(a −2) =3a +6−a +2=2a +8.7.【答案】【小题1】1a+1【小题2】−3x−y【小题3】2m+2a b8.【答案】原式=x2+1−2xx−1=(x−1)2x−1=x−1.9.【答案】【小题1】1【小题2】2x+y 【小题3】m+nm−n 【小题4】y2x+y 【小题5】0【小题6】−2(2x+y) 2x−y10.【答案】【小题1】原式=42x =2x.【小题2】原式=a+1a−1−4a(a+1)(a−1)=(a+1)(a+1)(a−1)(a+1)−4a(a+1)(a−1)=a2+2a+1−4a(a+1)(a−1)=(a−1)2(a+1)(a−1)=a−1a+1.11.【答案】【小题1】(a −4)⋅16−a 2a 2−8a+16【小题2】a 2−a+14a−3÷2a−1a 2−3a =(2a −1)24(a −3)⋅a(a −3)2a −1 =a(2a−1)4=2a 2−a 4.12.【答案】【小题1】4ab 3⋅−3a 2b 3=−6a 2. 【小题2】8x 3÷36x 2=8x 3⋅x 236=29x . 【小题3】a 2−4b 24ab 2⋅ab a+2b =(a+2b)(a−2b)4ab 2⋅ab a+2b =a−2b 4b. 【小题4】a 2−b 22ab ÷(a +b)=(a+b)(a−b)2ab ⋅1a+b=a−b 2ab.13.【答案】【小题1】(1+1a−1)(1a 2−1)=a−1+1a−1⋅1−a 2a 2 =a a −1⋅(1+a)(1−a)a 2 =−(1+a)a =−a+1a. 【小题2】x−2x 2÷(1−2x )=x−2x 2÷x−2x =x−2x 2⋅x x−2=1x .【小题3】(x+2x 2−2x −x−1x 2−4x+4)÷x−4x =[x +2x(x −2)−x −1(x −2)2|.x x −4=|x 2−4x(x −2)2−x 2−xx(x −2)2|⋅x x −4 =x 2−4−x 2+x x(x −2)2⋅x x −4 =1(x−2)2.【小题4】1x−1−x−3x 2−1⋅x 2+2x+1x 2−6x+9=1x −1−x −3(x +1)(x −1)⋅(x +1)2(x −3)2=1x −1−x +1(x −1)(x −3)=x −3−x −1(x −1)(x −3) =−4(x−1)(x−3).14.【答案】解:(1)原式=1−3+9−5=2;(2)原式=(x+4)(x−4)x+4÷2(x−4)4x=(x −4)⋅2x x −4=2x . 15.【答案】【小题1】原式=−24x 3y 34y 2=−6x 3y .【小题2】原式=a−b a+b ⋅−1a−b =−1a+b .【小题3】原式=(1−x )2x (1−x )(1+x )⋅xy (1+x )x (1−x )=y x .【小题4】原式=x−2x+1⋅(x+1)2(x+2)(x−2)=x+1x+2.16.【答案】【小题1】原式=−3a b ⋅ab 2a 3b 2⋅a 26b =−a2b 2.【小题2】原式=m+1m ⋅m (m+1)(m−1)=1m−1.【小题3】原式=y (xy−1)x 2⋅x 2y 2=xy−1y. 【小题4】原式=(a+1)2a ⋅a (a+1)(a−1)=a+1a−1. 【小题5】原式=(a−1)(a−3)+1a−3÷a 2−4a−3=(a−2)2a−3⋅a−3(a+2)(a−2)=a−2a+2. 【小题6】原式=a 2−ab−a 2(a−b )2÷a (a−b )−a 2(a+b )(a−b )+1=−ab (a−b )2⋅(a+b )(a−b )−ab +1=a+b a−b +a−b a−b =2a a−b .17.【答案】【小题1】 解:原式=[2a (a+1)(a+1)(a−1)−a (a−1)(a−1)2]÷2a a−1=(2a a−1−a a−1)÷2a a−1=a a−1⋅a−12a =12.【小题2】原式=m 2−9m−2÷m−32(m−2)=(m+3)(m−3)m−2⋅2(m−2)m−3=2(m +3).18.【答案】【小题1】 原式=(a+3)(a−3)(a+3)2⋅a a−3=a a+3. 【小题2】原式=4(a+b )5ab ⋅15a 2b (a+b )(a−b )=12a a−b . 【小题3】原式=8x 2y 4⋅3x 4y 6⋅6z x 2y =36xz y 3. 【小题4】原式=(a−3)2−(b+2)(b−2)⋅b+2−(a−3)⋅a 23(a−3)=a 23(b−2). 【小题5】原式=(y−2)22(y−3)⋅1y+3⋅(y+3)(y−3)6(y−2)=y−212. 【小题6】原式=2(m+2)(m−2)2⋅(m +2)(m −2)⋅2(m−2)(m 2+4)(m+2)(m−2)=4(m+2)(m−2)(m 2+4).19.【答案】【小题1】原式=a 2(a−1)2⋅a−1a −1a−1=a a−1−1a−1=a−1a−1=1.【小题2】原式=3m+n m ⋅m (3m+n)(3m−n)=13m−n. 【小题3】原式=a+2b a+b −a−b a−2b ⋅(a−2b)2(a+b)(a−b)=a+2b a+b −a−2b a+b =4b a+b . 【小题4】原式=[(a−1)(a+2)a+2+a+3a+2]⋅a+2(a+1)(a−1)=a 2−a +2a −2+a +3a +2⋅a +2(a +1)(a −1)=a 2+2a+1(a+1)(a−1)=(a+1)2(a+1)(a−1)=a+1a−1.20.【答案】【小题1】原式=(a−b)2b 2⋅b (a+b)(a−b)=a−bab+b 2.【小题2】原式=−x 2y 2⋅y 3x 3÷1x 2y 2=−x 2y 2⋅y 3x 3⋅x 2y 2=−xy 3.【小题3】原式=x−1x ⋅x(x+1)(x−1)(x+1)=1.【小题4】原式=a+31−a ÷a(a+3)(1−a)2=a+31−a ⋅(1−a)2a(a+3)=1−a a .。
第10章 分式 苏科版数学八年级下册综合素质评价(含答案)

第10章分式综合素质评价一、选择题(每题2分,共16分)1.代数式25x,1π,2x2+4,x2-23,1x,x+1x+2中,属于分式的有( )A.2个B.3个C.4个D.5个2.使分式2x-4有意义的x的取值范围是( )A.x≤4B.x≥4C.x≠4D.x=43.分式①a+2a2+3,②a-ba2-b2,③4a12(a-b),④1x-2中,最简分式有( )A.1个B.2个C.3个D.4个4.解分式方程2x-1-2xx-1=1,可知方程的解为( )A.x=1 B.x=3 C.x=12D.无解5.《九章算术》之“粟米篇”中记载了中国古代的“粟米之法”:“粟率五十,粝米三十…”(粟指带壳的谷子,粝米指糙米),其意为:“50单位的粟,可换得30单位的粝米…”.问题:有3斗粟(1斗=10升),若按照此“粟米之法”,则可以换得的粝米为( )A.1.8升B.16升C.18升D.50升6.计算m2m-1-2m-1m-1的结果是( )A.m+1 B.m-1 C.m-2 D.-m-27.对于非零的两个实数a,b,规定a*b=3b-2a,若5*(3x-1)=2,则x的值为( )A.56B.34C.23D.-168.若关于x 的分式方程3x -a x -3+x +13-x=1的解为正数,且关于y 的不等式组{y +9≤2(y +2),2y -a 3>1的解集为y ≥5,则所有满足条件的整数a 的值之和是( )A .13B .15C .18D .20二、填空题(每题2分,共20分)9.x 6ab 2与y9a 2bc 的最简公分母是________.10.计算:a 2a -b+b 2-2ab a -b=________.11.若x =1是分式方程a -2x -1x -2=0的根,则a =________.12.若关于x 的方程ax +1x -1-1=0无实数根,则a 的值为________.13.若关于x 的分式方程m x -1+31-x=1的解为正数,则m 的取值范围是________.14.小明同学在对分式方程2x x -2+3-m 2-x=1去分母时,方程右边的1没有乘x -2,若此时解得整式方程的解为x =2,则原方程的解为________.15.如图的解题过程中,第①步出现错误,但最后所求的值是正确的,则图中被盖住的x 的值是_______________.先化简,再求值:3-xx -4+1,其中x =★.解:原式=3-xx -4·(x -4)+(x -4)…①=3-x +x -4=-1.16.目前,步行已成为人们最喜爱的健身方法之一,通过手机可以计算行走的步数与相应的能量消耗.对比手机数据发现,小琼步行12 000步与小博步行9 000步消耗的能量相同.若小琼每消耗1千卡能量行走的步数比小博的多10步,则小博每消耗1千卡能量需要行走________步.17.若mn =n -m ≠0,则3n -3m的值为 ________.18.“绿水青山就是金山银山”.某地为美化环境,计划种植树木6 000棵.由于志愿者的加入,实际每天植树的棵数比原计划增加了25%,结果提前3天完成任务,则实际每天植树________棵.三、解答题(19~21题每题6分,22~23题每题8分,24~26题每题10分,共64分)19.计算:(1)2aa 2-9-1a -3;(2)(1+2a +1a 2)÷a +1a.20.先化简,再求值:(1)(1+1m -1)·m 2-1m,其中m =2.(2)a 2-6ab +9b 2a 2-2ab ÷a -3b a -2b -1a,其中a =4,b =1.21.解分式方程:(1)x 2x -3+53-2x=4.(2)x -2x +2-1=16x 2-4.22.已知M=2xyx2-y2,N=x2+y2x2-y2,用“+”或“-”连接M,N,有三种不同的形式:M+N,M-N,N-M,任选其中一种进行计算,并化简求值,其中x:y=5:2.23.已知关于x的方程mx+3-13-x=m+4x2-9.(1)若m=-3,解这个方程;(2)若原方程无解,求m的值.24.为保障新冠病毒疫苗接种需求,某生物科技公司开启“加速”模式,生产效率比原先提高了20%,现在生产240万剂疫苗所用的时间比原先生产220万剂疫苗所用的时间少0.5天.问原先每天生产多少万剂疫苗?25.小张去离家2 520 m的奥体中心看演唱会,到奥体中心后,发现演唱会门票忘带了,此时离演唱会开始还有23 min,于是他跑步回家,拿到门票后立刻找到一辆共享单车原路赶回奥体中心,已知小张骑车的时间比跑步的时间少用了4 min,且骑车的平均速度是跑步的平均速度的1.5倍.(1)求小张跑步的平均速度.(2)如果小张在家取票和寻找共享单车共用了5 min ,他能否在演唱会开始前赶到奥体中心?并说明理由.26.阅读下面材料,解答后面的问题.解方程:x -1x -4xx -1=0.解:设y =x -1x ,则原方程可化为y -4y =0,方程两边同时乘y ,得y 2-4=0,解得y =±2.经检验,y =2和y =-2都是方程y -4y =0的解.当y =2时,x -1x =2,解得x =-1;当y =-2时,x -1x =-2,解得x =13. 经检验,x =-1和x =13都是原分式方程的解.∴原分式方程的解为x =-1或x =13.上述这种解分式方程的方法称为换元法.(1)若在方程x -14x -xx -1=0中,设y =x -1x ,则原方程可化为________________;(2)若在方程x -1x +1-4x +4x -1=0中,设y =x -1x +1,则原方程可化为_______________;(3)模仿上述换元法解方程:x -1x +2-3x -1-1=0.答案一、1.B 2.C 3.B 4.D 5.C 6.B 7.B8.A 点拨:解分式方程得x =a -2,∵x >0且x ≠3,∴a -2>0且a -2≠3,∴a >2且a ≠5.解不等式组得{y ≥5,y >a +32,∵不等式组的解集为y ≥5,∴a +32<5,∴a <7.∴2<a <7且a ≠5,∴所有满足条件的整数a 的值之和为3+4+6=13.二、9.18a 2b 2c 10.a -b 11.1 12.1或-113.m >2且m ≠314.x =1 点拨:小明去分母得到的整式方程是2x -(3-m )=1,把x =2代入,得4-(3-m )=1,解得m =0.故原分式方程为2xx -2+32-x =1,解得x =1,经检验,x =1是原分式方程的解.15.5 点拨:3-x x -4+1=3-x +x -4x -4=14-x ,当14-x=-1时,可得x =5,检验:当x =5时,4-x ≠0,∴题图中被盖住的x 的值是5.16.30 点拨:设小博每消耗1千卡能量需要行走x 步,则小琼每消耗1千卡能量需要行走(x +10)步,根据题意得12 000x +10=9 000x ,解得x =30,经检验,x =30是原方程的解,且符合题意.故小博每消耗1千卡能量需要行走30步.17.-3 点拨:原式=3m mn -3nmn =3(m -n )mn.∵mn =n -m ,∴原式=-3mn mn=-3.18.500三、19.解:(1)原式=2a (a +3)(a -3)-a +3(a +3)(a -3)=a-3(a+3)(a-3)=1a+3.(2)原式=a2+2a+1a2÷a+1a=(a+1)2a2·aa+1=a+1a.20.解:(1)原式=(m-1m-1+1m-1)·(m+1)(m-1)m=mm-1·(m+1)(m-1)m=m+1,当m=2时,原式=m+1=2+1=3.(2)a2-6ab+9b2a2-2ab÷a-3ba-2b-1a=(a-3b)2a(a-2b)·a-2ba-3b-1a=a-3ba-1a=a-3b-1a,当a=4,b=1时,原式=4-3×1-14=0.21.解:(1)方程两边同乘2x-3,得x-5=4(2x-3),解得x=1,检验:当x=1时,2x-3≠0,所以x=1是原分式方程的解.(2)方程两边同乘(x+2)(x-2),得x2-4x+4-x2+4=16,解得x=-2.检验:当x=-2时,(x+2)(x-2)=0,所以x=-2是增根,原分式方程无解.22.解:选择一,M+N=2xyx2-y2+x2+y2x2-y2=(x+y)2(x+y)(x-y)=x+yx-y.当x:y=5:2时,x=5 2y,∴原式=52y+y52y-y=73;选择二,M -N =2xyx 2-y 2-x 2+y 2x 2-y 2=-(x -y )2(x +y )(x -y )=y -xx +y.当x :y =5:2时,x =52y ,∴原式=y -52y 52y +y =-37;选择三,N -M =x 2+y 2x 2-y 2-2xyx 2-y 2=(x -y )2(x +y )(x -y )=x -y x +y .当x :y =5:2时,x =52y ,∴原式=52y -y 52y +y =37.点拨:任选一种即可.23.解:(1)把m =-3代入原方程得-3x +3-13-x =-3+4x 2-9.方程两边同乘(x -3)(x +3),得-3(x -3)+(x +3)=1.解这个一元一次方程,得x =5.5.检验:当x =5.5时,(x +3)(x -3)≠0,∴x =5.5是原方程的解.(2)当(x +3)(x -3)=0时,x =3或-3.方程两边同乘(x -3)(x +3),得m (x -3)+(x +3)=m +4,整理,得(m +1)x =1+4m ,当m +1=0时,1+4m ≠0,方程无解,此时m =-1.当m +1≠0时,x =1+4m m +1,当x =3时,(x -3)(x +3)=0,方程无解,即1+4m m +1=3,解得m =2,经检验,m =2是方程1+4m m +1=3的解.当x =-3时,(x -3)(x +3)=0,方程无解,即1+4m m +1=-3,解得m =-47,经检验,m =-47是方程1+4mm +1=-3的解.综上,若原方程无解,则m =-1或2或-47.24.解:设原先每天生产x 万剂疫苗,由题意可得240(1+20%)x +0.5=220x ,解得x =40,经检验,x =40是原方程的解,且符合题意.答:原先每天生产40万剂疫苗.25.解:(1)设小张跑步的平均速度为x m/min ,则小张骑车的平均速度为1.5x m/min ,根据题意,得2 520x -2 5201.5x=4,解得x =210.经检验,x =210是原方程的解,且符合题意.答:小张跑步的平均速度为210 m/min.(2)不能.理由:小张跑步到家所用时间为2 520÷210=12(min),小张骑车赶回奥体中心所用时间为12-4=8(min),小张从开始跑步回家到赶回奥体中心所用时间为12+8+5=25(min),∵25>23,∴小张不能在演唱会开始前赶到奥体中心.26.解:(1)y 4-1y =0 (2)y -4y=0(3)原方程可化为x -1x +2-x +2x -1=0,设y =x -1x +2,则原方程可化为y -1y =0,方程两边同时乘y ,得y 2-1=0,解得y =±1.经检验,y =1和y =-1都是方程y -1y =0的解.当y =1时,x -1x +2=1,该方程无解;当y =-1时,x -1x +2=-1,解得x =-12.经检验,x =-12是原分式方程的解.∴原分式方程的解为x =-12.。
八年级数学下册 10.4 分式的乘除(第1课时)学案(新版)苏科版

动
探
究
试一试 :
(1) · ;
(2) ÷ .
目
标பைடு நூலகம்
检
测
检测
1计 算:
(1) · (2)( )2.
(3) ÷ ;(4) ÷ .
2、下 面的计算对吗?如果不对,应该怎样更正?
(1) · = ;
(2) ÷ = .
教学心得
10.4分式的乘除
课题
10.4分式的乘除(1)
学习目标
学习重难点
分式的乘法和除法法则的推导及应用.
学习过程
环节
学习 内容
教师活动
学生活动
自学指导
自学检测
一、情境创设
可以像分数的乘法、除法那样进行计算吗?
· ; ÷ ;( )2.
二、探索活动
活动一1.计算:(1) × , × ;
(2) ÷ , ÷ .
问题1:上面运算的根据是什么?
问题2:你能回忆并说出分数的乘 法和除法法则吗?
2.问题3:你能“类比”分数的运算,计算完成下面的式子吗? · ; ÷ .
问题4:请你“类比”分数的乘除法则,用语言描述出分式的乘除法则 (小 组内交流得出结论).
分式的乘法法则:分式乘分式,用分子的积做积的分子,分母的积做积的分母.
分式的除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
10.4分式乘除(第一)
学习目标:1.类比分数的乘除运算法则,探索分式的乘除运算法则。
2.理解分式的乘除运算法则,会进行简单的分式的乘除法运算
3.能解决一些与分式有关的简单的实际问题。
学习重点:理解分式的乘除运算法则,会进行简单的分式的乘除法运算
学习难点:类比分数的乘除运算法则,探索分式的乘除运算法则
学习过程:
预习案
你还记得分数的乘除法法则吗?你能用类似于分数的乘除法法则计算下面两题吗?
探究案
1.分式的乘法法则:
(1)观察下列运算:
(2)猜想:
(3)类比分数的乘除法则,你能从计算中总结出怎样进行分式的乘法运算吗?
分式的乘法法则:
(3)类比分数的乘除法则,你能从计算中总结出怎样进行分式的除法运算吗?
分式的除法法则:
3.分式的乘方法则:
(1)观察下列运算:
94)32()32()32(2=-⨯-=-,333)(b a b a b a b a b a =⋅⋅= (2)猜想: =
n b a )( 归纳总结:分式的乘方法则: 。
例题教学
例1计算:(1)b a a 2284-.6
312-a ab (2)2)4(c b a +
例2计算、
(1)x y 62÷231x (2)2244196a
a a a +++-÷12412+-a a
归纳小结:分式的乘法运算的法则是什么?分式的除法运算的法则是什么? 巩固练习
322(1)45z z x y xy -÷ (2)b a b a 22+-.2
22
2b a b a -+ (3)16
816)4(22
+--⋅-a a a a (4) 2
222)1()1()1(--+x x x ÷1)1(22
--x x 当堂检测
1.计算=•c b a a bc 222 ;=÷23342y
x y x ; 2.若x 等于它的倒数,则()()
22321962+-÷+++x x x x x 的值是 ( ) A .3 B .-2 C .1 D . 3或3
1- 3.当1984=x ,1916=y 时,计算:=+-•+--2222442y x x y y xy x y x 。
4.2442222++-•-+a a a a a a 5、 1211222+++÷--x x x x x
练习案
1. 下列各式计算正确的是 ( )
A .22
2a ab b a b b a
-+=-- B .2232()x xy y x y x y ++=++ C .23546x x y y ⎛⎫= ⎪⎝⎭
D .y x y x -=+--11 2.下列各式的计算过程及结果都正确的是 ( )
A .y x x y x x y 5
335315=⋅=÷ B .22148148y y x xy y x xy =⋅=÷ C .ab
xy b y a x y b a x 22222=⋅=÷ D .x y x y x y x x y x y x xy x y x +=-⋅-+=-÷-+)()
(12 3.当2005=x ,1949=y 时,代数式2222442y
x x y y xy x y x +-•+--的值为( ) A .49 B .-49 C .3954 D .3954 4.计算3222
⎪⎪⎭⎫ ⎝⎛-b a n 与2
333⎪⎪⎭⎫ ⎝⎛-b a n 的结果 ( ) A .相等 B .互为倒数 C .互为相反数 D .以上都不对。