第七章 微生物的生长
第七章微生物生长与控制习题及答案

第七章微生物的生长及其控制习题一、名词解释1.微生物连续培养2.抗微生物剂3.抗生素4.抗代谢物5.微生物的抗药性6.灭菌7.消毒8.生长曲线9.深层液体培养:二、填空题1.一条典型的生长曲线至少可分为、、和4个生长时期。
2.测定微生物的生长量常用的方法有、、和。
而测定微生物数量变化常用的方法有、、和;以生物量为指标来测定微生物生长的方法有、和。
3.获得细菌同步生长的方法主要有(1)和(2),其中(1)中常用的有、和。
4.控制连续培养的方法有和。
5.影响微生物生长的主要因素有、、、和等。
6.对玻璃器皿、金属用具等物品可用或进行灭菌;而对牛奶或其他液态食品一般采用灭菌,其温度为,时间为。
7.通常,细菌最适pH的范围为,酵母菌的最适pH范围为,霉菌的最适pH值范围是。
8.杀灭或抑制微生物的物理因素有、、、、和等。
9.抗生素的作用机制有、、和。
10.抗代谢药物中的磺胺类是由于与相似,从而竞争性地与二氢叶酸合成酶结合,使其不能合成。
三、选择题1.以下哪个特征表示二分裂?()A、产生子细胞大小不规则B、隔膜形成后染后体才复制C、子细胞含有基本等量的细胞成分D、新细胞的细胞壁都是新合成的。
2.代时为0.5h的细菌由103个增加到109个时需要多长时间?()A、40hB、20hC、10hD、3h3.如果将处于对数期的细菌移至相同组分的新鲜培养基中,该批培养物将处于哪个生长期?()A、死亡期B、稳定期C、延迟期D、对数期4.细菌细胞进入稳定期是由于:①细胞已为快速生长作好了准备;②代谢产生的毒性物质发生了积累;③能源已耗尽;④细胞已衰老且衰老细胞停止分裂;⑤在重新开始生长前需要合成新的蛋白质()。
A、1,4B、2,3C、2,4D、1,55.对生活的微生物进行计数的最准确的方法是()。
A、比浊法B、显微镜直接计数C、干细胞重量测定D、平板菌落记数6.下列哪咱保存方法全降低食物的水活度?()A、腌肉B、巴斯德消毒法C、冷藏D、酸泡菜7.连续培养时培养物的生物量是由()来决定的。
第七章 第二节、微生物代谢与生长

反馈抑制
其它实例:谷氨酸棒杆菌的精氨酸合成
2.分支代谢途径中的反馈抑制:
在分支代谢途径中,反馈抑制的情况较为复杂,为了避免在 一个分支上的产物过多时不致同时影响另一分支上产物的供 应,微生物发展出多种调节方式。主要有: 同功酶的调节, 顺序反馈,协同反馈,积累反馈调节等。
五、微生物的代谢调控
• 微生物代谢过程中的自我调节 • 酶活性的调节 • 酶合成的调节
☆微生物自我调节代谢的方式
1.控制营养物质透过细胞膜进入细胞
如:只有当速效碳源或氮源耗尽时,微生物才合 成迟效碳源或氮源的运输系统与分解该物质的酶 系统。
2.通过酶的定位控制酶与底物的接触 3.控制代谢物流向:
1、有氧呼吸
概念:是以分子氧作为最终电子(或氢)受体的氧化 过程;是最普遍、最重要的生物氧化方式。 途径:EMP,TCA循环 特点:必须指出,在有氧呼吸作用中,底物的氧化 作用不与氧的还原作用直接偶联,而是底物在氧化 过程中释放的电子先通过电子传递链(由各种电子 传递体,如NAD,FAD,辅酶Q和各种细胞色素组成) 最后才传递到氧。
在工业发酵和科研中通常采取一定的措施缩短延滞期:
①通过遗传学方法改变种的遗传特性使迟缓期缩短; ②利用对数生长期的细胞作为“种子”;
③尽量使接种前后所使用的培养基组成不要相差太 大;
④适当扩大接种量等方式缩短迟缓期,克服不良的 影响。
2.对数期
特点:细菌数量呈对数增加;生长速度常数R最大;酶系活跃, 细菌代谢旺盛;群体中的细胞化学组成及形态、生理特征一 致,且细菌的形态、大小、染色性均典型,对外界环境因素 的作用比较敏感。
影响指数期微生物增代时间的因素 菌种;营养成分;营养物的浓度 发酵工业上尽量延长该期,以达到较高的菌体密度; 实验室研究细菌生物学性状和做药敏试验选取用对数期细菌 为佳(多数为8~18h培养的培养物)
微生物的生长及其控制

生长曲线反映的是群体的生长规律,不是但个细胞的生长 规律。 掌握微生物是生长曲线在生产实践中具有重要意义。 如:医学进行G+ 的鉴定,通常采用对数期的菌体,因为 这时G+反应最典型;工业上生产食品酵母,要在稳定期
可以用重量、体积、密度或浓度来衡量。
由于微生物的个体极小,所以常用群体生长来反映个体生 长的状况。只有群体生长在微生物的研究和应用中,才有 实际意义。 单细胞微生物的群体生长具有明显的规律,且受到外界环 境因素影响,所以可以通过控制外界的环境因素对微生物
是生长加以控制。
研究生长规律需要解决三个前提:
耐氧菌
厌氧菌 严格厌氧菌
四、营养物质
营养物质对微生物的生长速率影响很大,营养丰富则生长 快,繁殖迅速;反之则反。
第四节 微生物生长的控制
微生物的生长繁殖对外界环境产生好或坏的影响 对人类而言,微生物有其有益的一面,同时也存在着危害 人类的一面。 必须对环境中的有害微生物施加影响,控制其生长繁殖。 一般通过消毒、灭菌、防腐等手段达到消灭有害微生物的
o
o
最高温度oC 20
生存环境 常年低温环境,如 地球两极、海洋深 处 海洋、湖泊、土壤、 冷泉、冰箱等 广泛分布,人和动 植物体表面等
耐冷微生物
0-5
25-40(37) 45
中温微生物
5-15
20-35
45
嗜热微生物30Fra bibliotek50-60
70-80
温泉、堆肥、热水 器等环境中
均为古菌,热泉、 火山口等处
超嗜热微生 物
第七章 微生物的生长及其控制 第三节 影响微生物生长的主要因素

重 最低生长温度
要 最适生长温度
指 标
最高生长温度
微生物作为整体来言,其温度的三基点是极其宽的, 堪称“生物世界之最”。
15℃
25~37℃
55℃
对某一具体微生物来说,其生长温度的宽和窄与
它们长期进化过程中所处的生存环境温度有关。
宽温微生物
一些生活在土壤中的芽孢杆菌(15~65℃); 既可在人体大肠中生活,也可在体外环境中生活 的E. coli (10~47.5℃);
5. 厌氧菌(anaerobes)
一般厌氧菌
严格厌氧菌(专性厌氧菌,
strict or obligate anaerobes)
特点:
① 分子氧对它们有毒,即使短期接触也会抑制甚至致死; ② 在空气或含10%CO2的空气中,它们在固体或半固体培 养基的表面上不能生长,只有在其深层的无氧或低氧化还 原势的环境下才能生为5类
1. 专性好氧菌(obligate or strict strictaerobe)
必须在较高浓度分子氧(~0.2巴)的条件下才能 生长,它们有完整的呼吸链,以分子氧作为最终氢受体,
含有超氧化物歧化酶(superoxide dismutase ,SOD)和 过氧化氢酶(catalase)。
③ 生命活动所需能量是通过发酵、无氧呼吸、循环光 合磷酸化或甲烷发酵等提供; ④ 细胞内缺乏SOD和细胞色素氧化酶,大多数还缺乏 过氧化氢酶。
常见的厌氧菌:
Clostridium(梭菌属)、 Bacteroides(拟杆菌属)、 Fusobacterium(梭杆菌属)、 Bifidobacterium(双歧杆菌属)、 以及各种光合细菌和产甲烷菌(methanogens)等。
一般的乳酸菌多数是耐氧菌,
化生专业微生物-第7章-微生物的生长(上传)

2、液体培养法(in liquid medium)
好氧菌的浅盘培养(shallow pan cultivation) 深层液体培养—— 发酵罐(fermenter)
Chapter7-3-环境对微生) 生长是微生物与外界环境因素共同作 用的结果。环境条件的改变,在一定限度 内,可引起微生物形态、生理、生长、繁 殖等特征的改变。当环境条件的变化超过 一定极限,则导致微生物的死亡。
高层琼脂柱、厌氧培养皿、Hungate滚管
技术、厌氧罐(anaerobic jar)技术、
厌氧手套箱(anaerobic glove box) 。
2、液体培养(in liquid medium)
(1)好氧菌(aerobes)
氧的供应是好氧菌生长繁殖的限制因 子,为保证溶解氧浓度,必须增加培养液 和氧的接触面或提高氧分压:浅层培养; 振荡培养;深层液体培养器的底部通入加 压空气;对培养液进行机械搅拌。
主要因素:营养条件、理化因素、生物因素
一、温度(Temperature)
不同微生物的生长温度范围有宽有 窄,但都有最低生长温度,最适生长温
度,最高生长温度这3个重要指标,即生
长温度三基点(three cardinal point)。
把微生物作为一个整体来看,其温
度的三基点极其宽。
根据生长温度的范围,可把微生物
生长曲线(Growth curve):定量描述液体 培养基中微生物群体生长规律的实验曲线。
把少量纯种单细胞微生物接种到定量的液体培 养基中,定时取样测定细胞数量,以培养时间为横 座标,以菌数的对数为纵座标作图,得到的一条反
映细菌在整个培养期间菌数变化规律的曲线。
根据微生物的生长速率常数,生长曲线可以分为: 延滞期,对数期,稳定期和衰亡期等4个生长时期
微生物的生长繁殖

第七章 微生物的生长繁殖
生长 繁殖
生物个体由小到大的增长,即表现为细胞组分与结构在量 方面的增加
指生物个体数目的增加
在单细胞微生物中,生长繁殖的速度很快,而且两者始终交替 进行,个体生长与繁殖的界限难以划清,因此实际上常以群体生长作为 衡量微生物生长的指标。
个体生长→个体繁殖→群体生长 群体生长=个体生长+个体繁殖 在微生物的研究和应用中,只有群体的生长才有实际意义。 微生物的生长繁殖是其在内外各种环境因素相互作用下的综合反映。
微量量热计
度、耗氧量、酶活性、生物热
等与其群体的规模成正相关。
样品中微生物数量多或生长旺
盛,这些指标愈明显,因此可
以借助瓦勃氏呼吸仪、微量量
热计等设备来测定相应的指标。
一、微生物的纯培养 2.微生物生长繁殖的测定
(二)计繁殖数
即计算微生物的个体数目,只适宜于单细胞状态的微生物或丝状微生物所 产生的孢子。 1.直接法:所得的结果是包括死细胞在内的总菌数 a.涂片染色法
(一)稀释法 ②固体稀释倒平板法 涂布平板法
➢先将已熔化的培养基倒入无菌平皿, 制成无菌平板、冷却凝固 ➢将一定量的微生物悬液滴加在平板 平面 ➢用无菌玻璃涂棒将菌液均匀分散至 整个平板表面,经培养后挑取单个菌 落
一、微生物的纯培养 1.纯培养的分离方法
(二)平板划线分离法
➢用接环以无菌操作沾取少许待分离 的菌液 ➢ 在无菌平板表面进行连续划线,然 后培养 ➢ 划线次数越多,微生物细胞逐步一 一分散,经培养后可在平板表面得到 单一菌落 ➢ 划线方法:斜线法 、曲线法 、方 格法、放射法、四格法
一、微生物的纯培养 1.纯培养的分离方法
微生物纯培养分离方法的比较
微生物7 微生物的生长及其控制

第七章 微生物的生长及其控制
z z z z z z
生长 (growth):个体体积或重量的变化 繁殖 (reproduction):个体数量的变化 个体生长→个体繁殖→群体生长 群体生长=个体生长 + 个体繁殖 生长和繁殖是交替进行的 衡量群体生长的量: 重量、体积、密度、浓度、个体数目等 生理指标:测含氮量、测含碳量、测磷、 DNA、RNA、ATP、呼吸
第一节 微生物生长的测定
测定生长量 测体积 称干(湿)重 比浊法 颜色改变单位 生理指标法:测含氮量 测含碳量 测磷、DNA、RNA、ATP 呼吸
微生物生长的测定
测细胞的个数
¾比例计数法 ¾血球计数法 ¾平板活菌计数法:
菌落形成单位 (cfu, colony forming unit) ¾膜过滤法 ¾稀释摇管法
比浊法
turbidity
血球计数法
z
又被称为Petroff-Hausser counting。
平板活菌计数法
平板活菌计数法的两种策略——涂布 和倾注
膜过滤法——用于较稀溶液的计数 方法
膜过滤法
硝酸纤维素滤膜法是最经典的获得同步生长的方法
由于细胞的个体差异,同步生长往往只能维持2-3随后又逐渐转变为随机生长。
邻苯基苯酚
六氯酚
哈拉腙
十六烷基吡啶氯
氯苯甲烷铵
丙炔内酯Disinfectants and antiseptics。
第7章微生物的生长(简)

连续培养原理
原理:当微生物在单批培养方式下生长达到对数期后期时, 一方面以一定的速度流进新鲜培养基并搅拌,另一方面以溢流
方式流出培养液,使培养物达到动态平衡,其中的微生物就能 长期保持对数期的平衡生长状态和稳定的生长速率。
连续流入 新鲜培养液
单批培养 恒浊法 恒化法
lg细胞数(个/ml)
连续培养
单批培养
④衰亡期(decline phase) 细菌死亡率逐渐增加,群体中活菌数目急剧下降, 出现了“负生长”。其中有一段时间,活菌数呈几何级 数下降,故有人称之为“对数死亡阶段”。 这一阶段的细胞,有的开始自溶,产生或释放出一 些产物,如氨基酸、转化酶、外肽酶或抗生素等。菌体 细胞也呈现多种形态,有时产生畸形,细胞大小悬殊, 有的细胞内多液泡,革兰氏染色反应的阳性菌变成阴性 反应等。
小液滴法:将经过适当稀释后的样品制成小液滴,在显 微镜下选取只含一个细胞的液滴来进行纯培养物的分离。
第一节 微生物生长的测定
在微生物学情况进行测定
1、培养平板计数法 2、膜过滤培养法 3、显微镜直接计数法
三. 以生物量为指标测定微生物的生长
认识延迟期的特点及原因对实践的指导意义:
◆在发酵工业上需设法尽量缩短延迟期; 采取的缩短lag phase 的措施有: ①增加接种量; (群体优势----适应性增强) ②采用对数生长期的健壮菌种;
③调整培养基的成分,在种子基中加入发酵培养基的 某些成分。 ④选用繁殖快的菌种
◆在食品工业上,尽量在此期进行消毒或灭菌
抑制大多数其它微生物的生长,使待分 离的微生物生长更快, 数量上升 直接挑取待分离的微生物的菌落获得纯培养。 *利用选择培养基进行直接分离 *富集培养
利用选择培养基分离
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
蛋白质是细胞的主要物质,含量稳定,而氮是蛋白质的主要 成分,通过测含氮量就可推知微生物的浓度。
一般细菌含氮量为干重的12.5%,酵母菌为7.5%,霉菌为 6.0%,根据一定体积培养液中的含氮量再乘以6.25,就可测 得粗蛋白的含量。
其他方法
含碳、磷、DNA、RNA、耗氧量、消耗底物量、产二氧化碳、 产酸、产热、粘度等,都可用于生长量的测定。
第 七 章 微 生 物 的 生 长
划线分离后平板上显示的 菌落照片(右图)
连续划线 (左图)
第 七 章 微 生 物 的 生 长
③倾注平板法(Pour Plate)
Organisms are serially diluted, then a small amount is added to an empty sterile petri dish, to which melted agar at 50 º is added. Then mix to C distribute the organisms. 1ml 1ml 9ml 1ml 1ml 1ml 9ml 9ml 1ml 9ml
第 七 章 微 生 物 的 生 长
6.干重法
将一定量的菌液中的菌体通过离心或过滤分 离出来,然后烘干(干燥温度可采用105℃、 100℃或80℃)、称重。一般干重为湿重的 10%—20%,而一个细菌细胞一般重约10-12~ 10-13g。
该法适合菌浓较高的样品。
举例:大肠杆菌一个细胞一般重约10–12~10– 13g,液体培养物中细胞浓度达到2×109个 /ml时,100ml培养物可得10~90mg干重的细 胞。
第 七 章 微 生 中的细胞浓度与混浊度成正 比,即与光密度成正比,菌数越多,光密度越大。因此, 借助于分光光度计,在一定波长下测定菌悬液的光密度, 就可反应出菌液的浓度。 特点:快速、简便;但易受干扰。
第 七 章 微 生 物 的 生 长
8.生理指标法
第 七 章 微 生 物 的 生 长
②平板划线分离法(Streak Plate)
An inoculating loop is used to thin out organisms on the surface of the agar.
特点:快速、方便。 分区划线(适用于浓度较大的样品) 连续划线(适用于浓度较小的样品)
第 七 章 微 生 物 的 生 长
3.平板菌落计数法
平板菌落计数法
1ml 1ml
9ml 1ml 1ml
1ml
9ml 9ml 1ml
1ml
9ml
×2
×2
×2
最常用的活菌计数法。 将适当稀释的菌液倾注平板或涂布在平板表面,经保 温培养后,以平板上出现的菌落数乘以稀释度就可 以计算出原菌液的含菌量。 直径9cm的培养皿平板上出现菌落数一般以50~500为 宜。按照国家标准规定的样品菌落总数测定的计数 原则,以平板菌落数在30~300之间为报告依据。
特点:快速,准确,对酵母菌可同时测定出芽率, 或在菌悬液中加入少量美蓝可以区分死活细胞。
第 七 章 微 生 物 的 生 长
2.涂片染色法
应用:可同时计数不同微生物的菌数,适 于土壤、牛奶中细菌计数。 方法:用镜台测微尺计算出视野面积;取 0.1ml菌液涂于1cm2面积上,计数后代 入公式: 每ml原菌液含菌数 =视野中平均菌数×涂布面积/视野面积 ×100 ×稀释倍数
血球计数板法原理
原理:将1cm2×0.1mm的薄层空间划分为400小 格,从中均匀分布地选取80或100小格,计数其 中的细胞数目,换算成单位体积中的细胞数。 适用范围:个体较大细胞或颗粒,如血球、酵母 菌等。不适用于细菌等个体较小的细胞,因为 (1)细菌细胞太小,不易沉降;(2)在油镜下 看不清网格线,超出油镜工作距离。
毛细管法:用毛细管提取微生物个体,适合于较 大微生物。
显微操作仪:用显微针、钩、环等挑取单个细胞 或孢子以获得纯培养。 小液滴法:将经过适当稀释后的样品制成小液滴, 在显微镜下选取只含一个细胞的液滴来进行纯培 养物的分离。
第 七 章 微 生 物 的 生 长
二、微生物纯培养生长的测定方法
描述不同种类、不同生长状态的微生物生长情况, 需选用不同的测定指标。
第 七 章 微 生 物 的 生 长
第 七 章 微 生 物 的 生 长
4.液体稀释法
液体稀释法
对样品做10倍连续稀释,从适宜的3个连续稀释度中各取5ml 试样,接种3组共9支装有培养液的试管中(每管接入 1ml)。经培养后,记录每个稀释度出现生长的试管数, 然后查M.P.N.表(most probable number,最大可能 数),根据样品稀释倍数就可计算处其中的活菌含量。
第 七 章 微 生 物 的 生 长
第七章 微生物的生长与控制
生长与繁殖的概念
生长——微生物细胞吸收营养物质,进行新陈代谢,当同化作用> 异化作用时,生命个体的重量和体积不断增大的过程。 繁殖——生命个体生长到一定阶段,通过特定方式产生新的生命 个体,即引起生命个体数量增加的生物学过程。 发育——从生长到繁殖,是生物的构造和机能从简单到复杂、 从量变到质变的发展变化过程,这一过程称为发育。 个体生长——微生物细胞个体吸收营养物质,进行新陈代谢,原 生质与细胞组分的增加为个体生长。 群体生长——群体中个体数目的增加。可以用重量、体积、密度 或浓度来衡量。(由于微生物的个体极小,所以常用群体生长来 反映个体生长的状况)个体生长个体繁殖 群体生长 群体生长 = 个体生长 + 个体繁殖
第 七 章 微 生 物 的 生 长
⑤选择性培养分离法
为了从混杂的微生物群体中分离出某种微 生物,可以根据该微生物的特点,包括营 养、生理、生长条件等,采用选择培养的 方法进行分离。
*利用选择培养基进行直接分离 *富集培养
第 七 章 微 生 物 的 生 长
⑥单细胞(单孢子)分离法
采用显微分离法从混杂群体中直接分离单个细胞 或单个个体进行培养以获得纯培养的方法。该方 法要在显微镜下进行。
10n
10n-1
1ml
9ml 1ml
10n-2
1ml
9ml
1ml
9ml 1ml
1ml
9ml
1ml
×3
×3
×3
第 七 章 微 生 物 的 生 长
第 七 章 微 生 物 的 生 长
5.薄膜过滤计数法
常用该法测定含菌量较少的空气和水中的 微生物数目。 将定量的样品通过薄膜(硝化纤维素薄膜、 醋酸纤维薄膜)过滤,菌体被阻留在滤膜 上,取下滤膜进行培养,然后计算菌落数, 可求出样品中所含菌数。
Comments
Cannot distinguish living from nonliving cells Very sensitive if plating conditions are optimal Fast and nondestructive, but cannot detect cell densities less than 107 cells per ml only practical application is in the research laboratory Requires a fixed standard to relate chemical activity to cell mass and/or cell numbers probably more sensitive than total N or total protein measurements
第 七 章 微 生 物 的 生 长
Colony-Forming Unit
When we observe colonies, we cannot assume each arose from just one cell originally planted on the medium, however. A pair, chain or cluster of cells which 'land' on the medium in close proximity to each other can multiply and produce a single colony. Thus, we use the term colony-forming unit when we consider the common origin for the cells of any colony." This term is usually abbreviated CFU.
Enumeration of bacteria in milk, foods, soil, water, laboratory cultures, etc.
Estimations of large numbers of bacteria in clear liquid media and broths Measurement of total cell yield from cultures very dense Microbiological assays
第 七 章 微 生 物 的 生 长
平板菌落计数法技术要求
★A standard plate count (viable count) reflects the number of viable microbes and assumes that each bacterium grows into a single colony; plate counts are reported as number of colony-forming units (CFU) per ml (CFU/ml) or per g (CFU/g) of sample.
(一)微生物细胞数目的检测法 直接法(血球计数板、比例计数法) 间接法(活菌计数法、液体稀释法、膜过滤法) (二)微生物生长量和生理指标测定法 直接法(干重法,堆体积法) 间接法(比浊法,碳、氮含量法,其它生理指标)