三角函数1
第一章--三角函数(北师大新版)

第一章 直角三角形的边角关系1.1 锐角三角函数1、锐角三角函数的定义 在Rt △ABC 中,∠C=90°.(1)正弦:我们把锐角A 的对边a 与斜边c 的比叫做∠A 的正弦,记作sinA .即sinA=斜边边的对A ∠=ca.(2)余弦:锐角A 的邻边b 与斜边c 的比叫做∠A 的余弦,记作cosA .即cosA=斜边邻边的A ∠=c b.(3)正切:锐角A 的对边a 与邻边b 的比叫做∠A 的正切,记作tanA .即tanA=边对边的邻A ∠的A ∠=ba.(4)三角函数:锐角A 的正弦、余弦、正切都叫做∠A 的锐角三角函数.锐角三角函数的定义1.如图,在菱形ABCD 中,DE ⊥AB ,cos A =,BE=2,则tan ∠DBE 的值( ) A 、 B 、2 C 、D 、第1题 第2题 第3题2.如图,点A 为∠α边上的任意一点,作AC ⊥BC 于点C ,CD ⊥AB 于点D ,下列用线段比表示cos α的值,错误的是( )A .BD BCB .BC ABC .ADAC D .CD AC3.三角形在正方形网格纸中的位置如图所示,则cos α的值是 .4.如图,在网格中,小正方形的边长均为1,点A ,B ,C 都在格点上,则∠ABC 的正切值是 .第4题 第5题 第6题 第7题 5.如图,将∠AOB 放在边长为1的小正方形组成的网格中,则tan ∠AOB=_______________. 6.如图,△ABC 的各个顶点都在正方形的格点上,则sin A 的值为 . 7.正方形网格中,∠AOB 如图放置,则cos ∠AOB 的值为 .8.如图,在2×2正方形网格中,以格点为顶点的△ABC 的面积等于23,则sin ∠CAB= .9.如图,已知直线l 1∥l 2∥l 3∥l 4,相邻两条平行直线间的距离都是1,如果正方形ABCD 的四个顶点分别在四条直线上,则sinα= .2.2 30°、45°、60°角的三角函数值1、同角三角函数的关系(1)平方关系:sin 2A+cos 2A=1;(2)正余弦与正切之间的关系(积的关系):一个角的正切值等于这个角的正弦与余弦的比,即tanA=AAcos sin 或sinA=tanA•cosA .2、互余两角的三角函数的关系 在直角三角形中,∠A+∠B=90°时,正余弦之间的关系为:①一个角的正弦值等于这个角的余角的余弦值,即sinA=cos (90°-∠A ); ②一个角的余弦值等于这个角的余角的正弦值,即cosA=sin (90°-∠A ); 也可以理解成若∠A+∠B=90°,那么sinA=cosB 或sinB=cosA . 3、特殊角的三角函数值特殊角的三角函数值1.把一块直尺与一块三角板如图放置,若sin ∠1=22,则∠2的度数为 .2.若2cos (α+15°)=1,则α= 度. 3.在△ABC 中,若,∠A ,∠B 都是锐角,则∠C的度数是 .2.4 解直角三角形(1)解直角三角形的定义在直角三角形中,由已知元素求未知元素的过程就是解直角三角形. (2)解直角三角形要用到的关系①锐角直角的关系:∠A+∠B=90°; ②三边之间的关系:a 2+b 2=c 2; ③边角之间的关系:sin A=c a ,cos A=c b ,tan A=ba . 基础训练1.如图,在△ABC 中,cosB=22,sinC=53,AC=10,则△ABC 的面积为 .第1题 第2题 第3题 2.如图,在 Rt △ABO 中,斜边 AB=1,若 OC ∥BA ,∠AOC=36°,则下面四个结论: ①点B 到AO 的距离为sin54°; ②点B 到AO 的距离为tan36°;③点A 到OC 的距离为sin36°•sin54°; ④点A 到OC 的距离为cos36°•sin54°. 其中正确的是 (填序号).3.如图,两条宽度都为1的纸条,交叉重叠放在一起,且它们的交角为α,则它们重叠部分(图中阴影部分)的面积为 .4.如图,在△ABC 中,AB=AC=13,BC=10,点D 为BC 的中点,DE ⊥AB 于点E ,则tan ∠BDE 的值等于 .第4题 第5题 第6题5.如图,已知Rt △ABC 中,斜边BC 上的高AD=3,cos B=53,则AC 的长为 .6.如图,矩形ABCD 的对角线AC 、BD 相交于点O ,过点O 作OE ⊥AC 交AD 于E ,若AB=6,AD=8,sin ∠OEA= .7.如图,△ABC 中,∠A=30°,tan B =23,AC=23,则AB 的长为 .8.如图,已知AC=4,求AB 和BC 的长.9.如图,已知在△ABC 中,∠ABC=30°,BC=8,sin ∠A=55,BD 是AC 边上的中线.求: (1)△ABC 的面积; (2)∠ABD 的正切值.拓展提升1.如图所示,在△ABC 中,AD ⊥BC 于D ,CE ⊥AB 于E ,且BE=2AE ,已知AD=33,tan ∠BCE=33,那么CE 等于 .第1题 第2题 第3题2.如图,已知点A (53,0),直线y=x+b (b >0)与y 轴交于点B ,连接AB ,∠α=75°,则b= . 3.在Rt △ACB 中,∠C=90°,点D 是AC 的中点,cos ∠CBD=415,则sin ∠ABD= . 4.如图,在△ABC 中,∠BAC=90°,AB=AC ,点D 为边AC 的中点,DE ⊥BC 于点E ,连接BD ,则tan ∠DBC 的值为 。
三角函数第一讲

三角函数第一讲:任意角与弧度制角的定义(一)角的概念: 1 任意角正角:按顺时针方向形成的角 负角:按逆时针方向形成的角 2 象限角定义:角的顶在原点始边与x 轴重合,终边在第几象限此角就是第几象限角。
与角α有相同终边所有角表示为:α+2kπ(k 为任意整数) (1)在直角坐标系内讨论角:注意:若角的终边在坐标轴上,就说这个角不属于任何象限,它叫象限界角。
(2)①与角终边相同的角的集合:},2|{},360|{0Z k k Z k k ∈+=∈+=απββαββ或(3)区间角的表示: ①象限角:象限角象限角的集合表示第一象限角的集合 o o o {|360<<36090,x k k k α⋅⋅+∈Z } 第二象限角的集合 o o o o {|36090<<360180,x k k k α⋅+⋅+∈Z } 第三象限角的集合 o o o o {|360180<<360270,x k k k α⋅+⋅+∈Z } 第四象限角的集合o o o o {|360270<<360360,x k k k α⋅+⋅+∈Z }②写出图中所表示的区间角: 由α的终边所在的象限, 来判断2α所在的象限,来判断3α所在的象限例:如果α是第一象限角,要求α/2的象限:把每个象限平分,因为α是第一象限角,所以选择1的位置:α/2在第一和第三象限,α/3同理把每个象限三等分。
α(二)弧度制1 弧度角的规定.它的单位是rad 读作弧度如图:∠AOB=1rad∠AOC=2rad 周角=2πrad定义:长度等于半径长的弧所对的圆心角称为1弧度的角。
与圆的半径无关以弧度为单位来度量角的制度叫弧度制。
(1)正角的弧度数是正数,负角的弧度数是负数,零角的弧度数是0 (2)角α的弧度数的绝对值 (l 为弧长,r 为半径) (3)用角度制和弧度制来度量零角,单位不同,但数量相同(都是0)弧度制与角度制的换算公式:弧度制=角度制*π/180o角度制=弧度制*180o /π 2π=360o弧度数α与弧长L 与半径R 的关系:L=Rα(可用来求弧长与半径) (4)弧长公式:L=Rα;扇形面积公式:221R S α=弧长公式:180rn l π=,扇形面积公式:3602R n S π=扇(初中)2 弧度制与角度制的换算:因为周角的弧度数是2π,角度是360°,所以有 radrad radrad 01745.018011802360≈===ππποοο把上面的关系反过来写οο1803602==rad rad ππ815730.57)180(1'=≈=οοοrad rad π之间的一些特殊角的度数与弧度数的互化必需熟练掌握.度0°30°45°60°90°120° 135° 150° 180° 270° 360°rl=αοο360~0o r C2rad 1rad r l=2r o A AB类型一:角的概念问题1. 终边相同的角的表示例1 若角α是第三象限的角,则角α-的终边在第______象限. 答案:二.解析:因为α是第三象限的角,故oooo360270<<360180,k k k α-⋅---⋅-∈Z ,则o 360k ⋅o o o 270<<360180,k k α--⋅-∈Z ,故α-的终边在第二象限.练习:与o 610角终边相同的角可表示为_____________. 【答案:oo360250(k k ⋅+∈Z )】 2. 象限角的表示例2 已知角α是第二象限角,问(1)角2α是第几象限的角?(2)角2α终边的位置. 思路:先根据已知条件得出角的范围,再通过讨论k 值来确定象限角.解析:(1)因为α是第二象限的角,故oooo36090<<360180(k k k α⋅+⋅+∈Z ),故︒︒︒︒+⋅<<-⋅45180245180k k αo 180k ⋅o o o 45<<18090(2k k α+⋅+∈Z ).当k 为偶数时,2α在第一象限;当k 为奇数时,2α在第三象限,故2α为第一或第三象限角. (2)由oooo36090<<360180(k k k α⋅+⋅+∈Z ),得o o o 2360180<2<2360k k α⋅+⋅+ o 360(k ∈Z ),故角2α终边在下半平面.点评:已知α所在象限,求(n nα∈N *)所在象限的问题,一般都要分几种情况进行讨论.结论:类型二:弧度制与弧长公式 1.角度制与弧度制的互化例3 把下列各角的度数化为弧度数:⑴ο150 ⑵'3037ο ⑶'3022ο- ⑷解 因为1801π=οrad ,所以ο315-⑴ rad rad 65180150150ππ=⨯=ο ⑵ rad rad 245180213721373037'ππ=⨯=⎪⎭⎫⎝⎛=οο⑶ rad rad 8180212221223022'ππ-=⨯-=⎪⎭⎫ ⎝⎛-=-οο⑷ rad rad 47180315315ππ-=⨯-=-ο 练习:把下列各角的弧度数化为度数: ⑴rad 43π ⑵rad 5.3 ⑶rad 35π ⑷rad 49π- 解 因为 π rad =ο180,所以 ⑴rad 43π=43×ο180=ο135; ⑵ rad 5.3=οο55.20030.575.315.3=⨯≈⨯rad ;⑶rad 35π=35×ο180=ο300;⑷ rad 49π-=49-×ο180=ο405-.例4 (1)设o 750α=,用弧度制表示α,并指出它所在的象限;(2)设35βπ=,用角度制表示,并在~内找出与它有相同终边的所有角.导思:(1)角度与弧度应如何进行互化?(2)确定角为第几象限角的依据是什么?(3)怎样找终边相同的角?依据是什么?解析:(1),故在第一象限. (2),与它终边相同的角可表示为Z ),由,得,故或,即在~范围内与有相同终边的所有角是和.点评:角度与弧度进行互化,关键是对转化公式的理解和应用;判断一个角所在的象限,关键是在内找到与该角终边相同的角.βo 720-o025********66ππαππ=⨯==⨯+αo o 31803()10855πππ=⨯=o o 360180(k k ⋅+∈o 720-≤o o o360180<0k ⋅+332<1010k --≤2k =-1k =-o 720-o 0βo 612-o 252-[0,2]π练习:(1)设,用弧度制表示,并指出它所在的象限;(2)设,用角度制表示,并在~内找出与它有相同终边的所有角.解析:(1),故在第二象限. (2),故在~范围内与β有相同终边的角是o 60-.2.求弧长与扇形面积例5 已知一扇形中心角为α,所在圆半径为R .(1)若3πα=,10R =cm ,求扇形的弧长及该弧所在弓形的面积;(2)若扇形的周长为一定值(>0)C C ,当α为何值时,该扇形面积最大,并求此最大值.导思:(1)扇形的弧长公式是什么?(2)怎样由扇形面积来求弓形的面积?(3)如何用扇形的周长C 表示扇形面积?(4)怎样求最大值?能用二次函数来求吗?能用基本不等式来求吗?解析:(1)设弧长为l ,弓形面积为S 弓,则10(3l π=cm ), 故110110232S S S π∆=-=⨯⨯-⨯弓扇210sin 50(33ππ⨯=-cm 2). (2)解法一:由扇形周长2C R l =+,得2l C R =-,故211=(2)22S Rl R C R R =-=-扇221()2416C C RC R +=--+.当4C R =时,S 扇有最大值且最大值为216C .此时22Cl C R =-=,故422l C R Cα==⋅=.故当2α=时,该扇形有最大面积. 解法二:由扇形周长22C R l R R α=+=+,得2CR a=+,故211=22S R αα=⋅扇2()2C α=+, o570α=-α73βπ=βo720-o 0195(570)2218066ππαππ=⨯-=-=-⨯+αo o 71807()()42033πππ-=⨯-=-o 720-o 022221142442164C C C ααααα⋅=⋅++++≤当且仅当,即时,扇形面积最大为.点评:在应用扇形弧长和面积公式时,如果圆心角用角度表示,则应先化为弧度;注意不要把弓形面积与扇形面积相混淆.练习:设扇形的周长为cm ,面积为cm 2,则扇形的圆心角的弧度数是________.解:1(82)42S r r =-=,即2440r r -+=,解得2r =,故4l =,从而422l r α===.1、下列角中终边与330°相同的角是( )A .30°B .-30°C .630°D .-630° 答案:B2、-1120°角所在象限是 ( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 答案:D3、把-1485°转化为α+k ·360°(0°≤α<360°, k ∈Z )的形式是 ( ) A .45°-4×360°B .-45°-4×360°C .-45°-5×360°D .315°-5×360° 答案:D4、写出-720°到720°之间与-1068°终边相同的角的集合___________________. 答案:{}οοοο372,12,348,708--5、终边在第二象限的角的集合可以表示为: ( ) A .{α∣90°<α<180°}B .{α∣90°+k ·180°<α<180°+k ·180°,k ∈Z }C .{α∣-270°+k ·180°<α<-180°+k ·180°,k ∈Z }D .{α∣-270°+k ·360°<α<-180°+k ·360°,k ∈Z } 答案:D6、已知A={第一象限角},B={锐角},C={小于90°的角},那么A 、B 、C 关系是( ) A .B=A ∩C B .B ∪C=CC .A CD .A=B=C答案:B7、下列结论正确的是( )Α.三角形的内角必是一、二象限内的角 B .第一象限的角必是锐角 C .不相等的角终边一定不同D .=答案:D8、若是第四象限的角,则α-ο180是 .24α=2a =216C 84⊂{}Z k k ∈±⋅=,90360|οοαα{}Z k k ∈+⋅=,90180|οοαααA .第一象限的角B .第二象限的角C .第三象限的角D .第四象限的角答案:C9、与1991°终边相同的最小正角是_________,绝对值最小的角是_______________. 答案:与;10、若角α的终边为第二象限的角平分线,则α的集合为______________________.答案:__________________________________________________________________________________________________________________________________________________________________基础巩固一、选择题1.(2014·山东济南商河弘德中学)已知α=-3,则角α 的终边所在的象限是( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限[答案] C[解析] 1rad =(180π)°,则α=-3rad =-(540π)°≈-171.9°,∴α是第三象限角.2.与-13π3终边相同的角的集合是( )A .⎩⎨⎧⎭⎬⎫-π3B .⎩⎨⎧⎭⎬⎫5π3C .⎩⎨⎧⎭⎬⎫α|α=2k π+π3,k ∈ZD .⎩⎨⎧⎭⎬⎫α|α=2k π+5π3,k ∈Z[答案] D[解析] 与-13π3终边相同的角α=2k π-13π3,k ∈Z ,ο191ο169-{}Z k k ∈+⋅=,135360|οοαα∴α=(2k -6)π+6π-13π3=(2k -6)π+5π3,(k ∈Z ).3.已知集合A ={α|2k π≤α≤(2k +1)π,k ∈Z },B ={α|-4≤α≤4},则A ∩B =( ) A .∅B .{α|0≤α≤π|C .{α|-4≤α≤4|D .{α|-4≤α≤-π或0≤α≤π} [答案] D[解析] k ≤-2或k ≥1时A ∩B =∅;k =-1时A ∩B =[-4,-π];k =0时,A ∩B =[0,π];故A ∩B =[-4,-π]∪[0,π].故选D.4.一条弧所对的圆心角是2rad ,它所对的弦长为2,则这条弧的长是( ) A .1sin1B .1sin2C .2sin1D .2sin2[答案] C[解析] 所在圆的半径为r =1sin1,弧长为2×1sin1=2sin1. 5.(2014·浙江象山中学高一月考)某扇形的面积为1cm 2,它的周长为4 cm ,那么该扇形的圆心角等于( )A .2°B .2C .4°D .4[答案] B[解析] 设扇形的半径为r ,弧长为l ,由题意得⎩⎪⎨⎪⎧2r +l =412lR =1,解得⎩⎪⎨⎪⎧r =1l =2.∴该扇形圆心角α=lr =2(rad),故选B.6.如图中,圆的半径为5,圆内阴影部分的面积是( )A .175π36B .125π18C .75π18D .34π9[答案] A[解析] 40°=40×π180=2π9,30°=30×π180=π6,∴S =12r 2·2π9+12r 2·π6=175π36.二、填空题7.若两个角的差是1°,它们的和是1弧度,则这两个角的弧度数分别是__________. [答案]180+π360、180-π360[解析] 设两角为α、β则⎩⎪⎨⎪⎧α-β=π180α+β=1,∴α=180+π360、β=180-π360.8.正n 边形的一个内角的弧度数等于__________. [答案](n -2)nπ [解析] ∵正n 边形的内角和为(n -2)π, ∴一个内角的弧度数是(n -2)πn .三、解答题9.已知α1=-570°、α2=750°,β1=3π5,β2=-7π3.(1)将α1、α2用弧度制表示出来,并指出它们各自所在象限;(2)将β1、β2用角度制表示出来,并在-720°~0°范围内找出与β1、β2有相同终边的角. [解析] (1)∵-570°=-570π180=-19π6=-4π+5π6,∴-570°与5π6终边相同,5π6在第二象限,∴α1在第二象限.∵750°=750π180=25π6=4π+π6,∴750°与π6终边相同,π6在第一象限,∴α2在第一象限.(2)∵β1=3π5=(35×180)°=108°,与其终边相同的角为108°+k ·360°,k ∈Z ,∴在-720°~0°范围内与β1有相同终边的角是-612°和-252°. 同理,β2=-420°且在-720°~0°范围内与β2有相同终边的角是-60°.能力提升一、选择题1.扇形的一条弦长等于半径,则这条弦所对的圆心角是 ____弧度.( ) A .π B .π2C .π3D .π4[答案] C[解析] ∵圆心角所对的弦长等于半径, ∴该圆心角所在的三角形为正三角形, ∴圆心角是π3弧度.2.在直角坐标系中,若角α与角β终边关于原点对称,则必有( ) A .α=-β B .α=-2k π±β(k ∈Z ) C .α=π+β D .α=2k π+π+β(k ∈Z ) [答案] D[解析] 将α旋转π的奇数倍得β.3.在半径为3cm 的圆中,60°的圆心角所对的弧的长度为( ) A .π3cmB .πcmC .3π2cmD .2π3cm[答案] B[解析] 由弧长公式得,l =|α|R =π3×3=π(cm).4.下列各组角中,终边相同的角是( )A .(2k +1)π与(4k ±1)π,k ∈ZB .k π2与k π+π2,k ∈ZC .k π+π6与2k π±π6,k ∈Z D .k π±π3与k π3,k ∈Z [答案] A [解析] 2k +1与4k ±1都表示的是奇数,故选A.二、填空题5.把-11π4写成θ+2k π(k ∈Z )的形式,使|θ|最小的θ的值是________. [答案] -3π4[解析] -11π4=-3π4-2π=5π4-4π, ∴使|θ|最小的θ的值是-3π4. 6.用弧度表示终边落在y 轴右侧的角的集合为________.[答案] {θ|-π2+2k π<θ<π2+2k π,k ∈Z } [解析] y 轴对应的角可用-π2,π2表示,所以y 轴右侧角的集合为{θ|-π2+2k π<θ<π2+2k π,k ∈Z }.三、解答题7.x 正半轴上一点A 绕原点依逆时针方向做匀速圆周运动,已知点A 每分钟转过θ角(0<θ≤π),经过2min 到达第三象限,经过14min 回到原来的位置,那么θ是多少弧度?[解析] 因为0<θ≤π,所以0<2θ≤2π.又因为2θ在第三象限,所以π<2θ<3π2. 因为14θ=2k π,k ∈Z ,所以2θ=2k π7,k ∈Z . 当k 分别取4、5时,2θ分别为8π7、10π7,它们都在⎝⎛⎭⎫π,3π2内. 因此θ=4π7rad 或θ=5π7rad. 8.设集合A ={α|α=32k π,k ∈Z },B ={β|β=53k π,|k |≤10,k ∈Z },求与A ∩B 的角终边相同的角的集合.[解析] 设α0∈A ∩B ,则α0∈A 且α0∈B ,所以α0=32k 1π,α0=53k 2π,所以32k 1π=53k 2π, 即k 1=109k 2. 因为|k 2|≤10,k 2∈Z ,且k 1∈Z ,所以k 1=0,±10.因此A ∩B ={0,-15π,15π},故与A ∩B 的角的终边相同的角的集合为{γ|γ=2k π或γ=(2k +1)π,k ∈Z }={γ|γ=n π,n ∈Z }.9.已知扇形AOB 的周长为8cm.(1)若这个扇形的面积为3cm 2,求圆心角的大小;(2)求这个扇形的面积取得最大值时圆心角的弧度数和弦长AB .[解析] (1)设扇形的圆心角为θ,扇形所在圆的半径为x (cm),依题意有⎩⎪⎨⎪⎧2x +xθ=812θ·x 2=3,解得θ=23或6, 即圆心角的大小为23弧度或6弧度. (2)由于扇形的圆心角θ=8-2x x, 于是扇形面积S =12x 2·8-2x x=4x -x 2=-(x -2)2+4. 故当x =2cm 时,S 取到最大值.此时圆心角θ=8-42=2(弧度),弦长AB =2·2sin1=4sin1(cm). 即扇形的面积取得最大值时圆心角为2弧度,弦长AB 为4sin1cm.备选题目:1(2015年1月·昌平期末·14)某蒸汽机上的飞轮直径为20cm ,每分钟按顺时针...方向旋转180转,则飞轮每秒钟...转过的弧度数是_________;轮周上的一点每秒钟...经过的弧长为_________.答案:6π- ,60cm π2(2015年1月·西城期末·1.已知,且sin 0<α,cos 0>α,则角α的取值范围是( ) (0,2π)α∈(A )π(0,)2(B )π(,π)2 (C ) (D ) 答案:D(A ) (B ) (C )(D ) 答案:C4(2015年1月·延庆期末·2.已知)2,0[πα∈,与角终边相同的角是(A )(B )32π (C )34π (D )35π 答案:D 5(2015年1月·延庆期末·3.若0sin >α ,且0cos <α ,则角α是A .第一象限角B .第二象限角C .第三象限角D .第四象限角 答案:B6(2015年1月·顺义期末·8.如图,现要在一块半径为圆心角为的扇形金属板上,剪出一个平行四边形,使点在弧上,点在上,点在上,记的面积为,则的最大值为C. 答案:D7(2015年1月·西城期末·13.若(,)22ππ∈-θ,且tan 1>θ,则θ的取值范围是_. 答案:(,)42ππ 8(2015年1月·延庆期末·16.已知是圆上两点,弧度,,则劣3π(π,)23π(,2π)22π34π35π37π33π-3π1m 3πAOB MNPQ P AB Q OA ,M N OB MNPQ Y S S 2223m 2B A ,O 2=∠AOB 2=OA O M N A B PQ弧AB长度是__ ____.答案:4。
三角函数所有的公式

三角函数公式汇总常见角三角函数值:sin 0o =0 cos 0o =1 tan 0o =0 cot 0o 不存在 sin 30o =21 cos 30o =23 tan 30o =33cot 30o =3 sin 60o =23 cos 60o =21 tan 60o =3 cot 60o =33 sin 45o =22cos 45o =22tan 45o =1cot 45o =1 sin 90o =1 cos 90o =0 tan 90o 不存在cot 90o =0 任意角三角函数:sin(2k ℼ+α)= sin αcos(2k ℼ+α)= cos αtan(2k ℼ+α)= tan αsin(ℼ+α)= - sin αcos(ℼ+α)= - cos αtan (ℼ+α)= tan αsin(ℼ-α)=sin αcos(ℼ-α)= - cos αtan (ℼ-α)= - tan αsin(2ℼ-α)= - sin αcos(2ℼ-α)=cos αtan (2ℼ-α)= - tan αSin (2π-α)=cos α cos (2π-α)=sin αSin (2π+α)=cos α cos (2π+α)=-sin αSin (23π-α)= - cos α cos (23π-α)= - sin α Sin (23π+α)= - cos α cos (23π+α)=sin α 两角和差三角函数:sin(A+B)=sinAcosB+cosAsinBsin(A- B)=sinAcosB- cosAsinBcos(A+B)=cosAcosB- sinAsinBcos(A- B)=cosAcosB+sinAsinB tan(A+B)=B tan A tan B tan A tan -+1 tan(A- B)=Btan A tan B tan A tan +-1 cot(A+B)=Bcot A cot B cot A cot +-1 cot(A-B)=Bcot -A cot B cot A cot 1+ 三角函数半角公式: sin(2A )=2A cos -1 cos(2A )=2A cos 1+ tan(2A )=Acos A cos 1+-1=A sin A cos -1=A cos A sin +1 cot(2A )=A cos Acos 1-+1三角函数平方公式:sin 2α+cos 2α=11+tan 2α=sec 2α1+cot 2α=csc 2αsin 2α=221αcos - cos 2α=αtan 211+=221αcos + tan 2α=αtan tan 212- 三角函数2倍角公式:sin2α=2sinαcosαcos2α=cos 2α-sin 2α=1-2sin 2α=2cos 2α-1 tan2α=αtan αtan 212- tan tan2α1=2αcos αsin +1=αsin αcos -1 3倍角三角函数公式: sin3α=3sin α-4sin 3α =4sin αsin(60o +α)sin(60o -α) sos3α=4cos 3α-3cos α =4cos αcos(60o -α)cos(60o +α) tan3α=tan αtan(60o -α)tan(60o +α) 三角函数万能公式:sin α=2αtan 212αtan+2 cos α=2αtan 212αtan +-21 tan α=2αtan 212αtan -2三角函数和差化积公式: sinA+sinB=2sin 2B A +cos 2B A - sinA- sinB=2sin 2B A -cos 2B A + cosA+cosB=2cos 2B A +cos 2B A - cosA- cosB= -2sin 2B A +sin 2B A - tanA+tanB=Bcos A cos )B A sin(+ tanA - tanB=Bcos A cos )B A sin(- cotA+cotB=Bsin A sin )B A sin(+ cotA - cotB=Bsin A sin )B A sin(- tanA - cotB= - B sin A cos )B A cos(+三角函数积化和差公式: sinAsinB= -21[cos(A+B)-cos(A-B)] cosAcosB=21[cos(A+B)+cos(A-B)] sinAcosB=21[sin(A+B)+sin(A-B)] cosAsinB=21[sin(A+B)-sin(A-B)] 辅助角公式:asin α+bcos α=b 2a 2 sin(α+ѱ) (公式中tan ѱ=a b ) 正弦定理:A sin a =B sin b =C sin c =2R (R 为△ABC 外接圆半径)余弦定理:a 2=b 2+c 2-2bc ·cosAb 2=a 2+c 2-2ac ·cosBc 2=a 2+b 2-2ab ·cosC整理不易,请勿盗版。
041 三角函数(1) - 副本

专题5 三角函数图象与性质 【2016年高考考纲解读】三角函数的有关知识大部分是B 级要求,只有函数y =A sin(ωx +φ)的图象与性质是A 级要求; 试题类型可能是填空题,同时在解答题中也是必考题,经常与向量综合考查,构成中档题. 【重点、难点剖析】 1.记六组诱导公式 对于“k π2±α,k ∈Z 的三角函数值”与“α角的三角函数值”的关系可按下面口诀记忆,奇变偶不变,符号看象限.2.正弦、余弦、正切函数的图象与性质(下表中k ∈Z ) 函数y =sin x y =cos x y =tan x图象单调性⎣⎢⎡-π2+2k π,⎦⎥⎤π2+2k π为增;⎣⎢⎡π2+2k π,⎦⎥⎤3π2+2k π为减 [-π+2k π, ]2k π为增;[]2k π,π+2k π为减⎝⎛-π2+k π,⎭⎪⎫π2+k π为增 对称中心 (k π,0)⎝ ⎛⎭⎪⎫k π+π2,0⎝ ⎛⎭⎪⎫k π2,0对称轴x =k π+π2x =k π无3.y =A sin(ωx +φ)的图象及性质(1)五点作图法:五点的取法,设X =ωx +φ,X 取0,π2,π,3π2,2π来求相应的x 值、y值,再描点作图.(2)给出图象求函数表达式的题目,比较难求的是φ,一般是从“五点法”中的第一点⎝ ⎛⎭⎪⎫-φω,0作为突破口.(3)在用图象变换作图时,一般按照先平移后伸缩,但考题中也有先伸缩后平移的,无论是哪种变形,切记每个变换总对字母x 而言.(4)把函数式化为y =A sin(ωx +φ)的形式,然后用基本三角函数的单调性求解时,要注意A ,ω的符号及复合函数的单调性规律:同增异减.4.三角函数中常用的转化思想及方法技巧(1)方程思想:sin α+cos α,sin α-cos α,sin αcos α三者中,知一可求二. (2)“1”的替换:sin 2α+cos 2α=1. (3)切弦互化:弦的齐次式可化为切. 【题型示例】考点1、三角函数的概念、诱导公式及基本关系式的应用 【例1】【2016高考新课标2理数】若3cos()45πα-=,则sin 2α=( ) (A )725(B )15 (C )15- (D )725-【答案】D【解析】2237cos 22cos 12144525ππαα⎡⎤⎛⎫⎛⎫⎛⎫-=--=⋅-=- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦ ,且cos 2cos 2sin 242ππααα⎡⎤⎛⎫⎡⎤-=-=⎪⎢⎥⎢⎥⎝⎭⎣⎦⎣⎦,故选D.【感悟提升】在单位圆中定义的三角函数,当角的顶点在坐标原点,角的始边在x 轴正半轴上时,角的终边与单位圆交点的纵坐标为该角的正弦值、横坐标为该角的余弦值.如果不是在单位圆中定义的三角函数,那么只要把角的终边上点的横、纵坐标分别除以该点到坐标原点的距离就可转化为单位圆上的三角函数定义.【举一反三】(2015·重庆,9)若tan α=2tan π5,则cos ⎝⎛⎭⎫α-3π10sin ⎝⎛⎭⎫α-π5=( ) A .1 B .2 C .3 D .4解析 cos ⎝⎛⎭⎫α-3π10sin ⎝⎛⎭⎫α-π5=sin ⎝⎛⎭⎫π2+α-3π10sin ⎝⎛⎭⎫α-π5=sin ⎝⎛⎭⎫α+π5sin ⎝⎛⎭⎫α-π5=sin αcos π5+cos αsin π5sin α·cos π5-cos αsin π5=tan αtan π5+1tan αtan π5-1=2+12-1=3.答案 C【变式探究】(1)(2014·辽宁五校联考)已知cos π2+α=35,且α∈⎝⎛⎭⎫π2,3π2,则tan α=( )A.43B.34 C .-34 D .±34(2)(2014·安徽)设函数f (x )(x ∈R )满足f (x +π)=f (x )+sin x .当0≤x <π时,f (x )=0,则f ⎝ ⎛⎭⎪⎫23π6=( )A.12B.32 C .0 D .-12【命题意图】(1)本题主要考查三角函数的诱导公式及同角基本关系式的应用. (2)本题是函数与三角运算问题,主要考查函数三要素及三角运算. 【答案】(1)B (2)A【解析】(1)∵cos ⎝ ⎛⎭⎪⎫π2+α=35,∴sin α=-35,显然α在第三象限,∴cos α=-45,故tan α=34.故选B.(2)∵f (x +π)=f (x )+sin x , ∴f (x +2π)=f (x +π)-sin x .∴f (x +2π)=f (x )+sin x -sin x =f (x ). ∴f (x )是以2π为周期的周期函数. 又f ⎝⎛⎭⎪⎫23π6=f ⎝ ⎛⎭⎪⎫4π-π6=f ⎝ ⎛⎭⎪⎫-π6, ∴f ⎝ ⎛⎭⎪⎫-π6+π=f ⎝ ⎛⎭⎪⎫-π6+sin ⎝ ⎛⎭⎪⎫-π6, ∴f ⎝⎛⎭⎪⎫5π6=f ⎝ ⎛⎭⎪⎫-π6-12.∵当0≤x <π时,f (x )=0,∴f ⎝ ⎛⎭⎪⎫5π6=0,∴f ⎝⎛⎭⎪⎫23π6=f ⎝ ⎛⎭⎪⎫-π6=12.故选A.【感悟提升】1.结合诱导公式与同角基本关系式化简求值的策略(1)切弦互换法.利用tan α=sin αcos α进行转化.(2)和积转化法.利用(sin α±cos α)2=1±2sin αcos α进行变形、转化. (3)常值代换法.其中之一就是把1代换为sin 2α+cos 2α.同角三角函数关系sin 2α+cos 2α=1和tan α=sin αcos α联合使用,可以根据角α的一个三角函数值求出另外两个三角函数值.根据tan α=sin αcos α可以把含有sin α,cos α的齐次式化为tan α的关系式.2.化简求值时的“三个”防范措施 (1)函数名称和符号.利用诱导公式化简求值时,先利用公式化任意角的三角函数与锐角的三角函数,其步骤是:去负—脱周—化锐—求值.特别注意解题过程中函数名称和符号的确定. (2)开方.在利用同角三角函数的平方关系时若需开方,特别注意要根据条件进行讨论取舍. (3)结果整式化.解题时注意求值与化简的最后结果一般要尽可能化为整式.【变式探究】(1)已知α是第二象限角,其终边上一点P (x ,5),且cos α=24x ,则sin ⎝⎛⎭⎪⎫α+π2=________.(2)已知α为第二象限角,sin α+cos α=33,则cos 2α=________. 【解析】(1)由题意得cos α=x5+x2=24x ,解得x =3或x =-3,又α是第二象限角,∴x =- 3.即cos α=-64,sin ⎝⎛⎭⎪⎫α+π2=cos α=-64. (2)因为sin α+cos α=33,所以1+2sin αcos α=13,所以2sin αcos α=-23<0,又因为α为第二象限角,所以sin α>0,cos α<0,则sin α-cos α=1-2sin αcos α=153,所以cos 2α=cos 2α-sin 2α=(cos α-sin α)(cos α+sin α)=-153×33=-53. 【答案】(1)-64 (2)-53【规律方法】在利用诱导公式和同角三角函数关系时,一定要特别注意符号,在诱导公式中是“奇变偶不变,符号看象限”,在同角三角函数的平方关系中,开方后的符号也是根据角所在的象限确定的.题型2、三角函数的图象【例2】(2016·高考全国甲卷)函数y =A sin(ωx +φ)的部分图象如图所示,则( )A .y =2sin ⎝⎛⎭⎫2x -π6B .y =2sin ⎝⎛⎭⎫2x -π3C .y =2sin ⎝⎛⎭⎫x +π6 D .y =2sin ⎝⎛⎭⎫x +π3【举一反三】 (2015·山东,3)要得到函数y =sin ⎝⎛⎭⎫4x -π3的图象,只需将函数y =sin 4x 的图象( )A .向左平移π12个单位 B .向右平移π12个单位 C .向左平移π3个单位D .向右平移π3个单位解析 ∵y =sin ⎝⎛⎭⎫4x -π3=sin ⎣⎡⎦⎤4⎝⎛⎭⎫x -π12,∴要得到y =sin ⎝⎛⎭⎫4x -π3的图象,只需将函数y =sin 4x 的图象向右平移π12个单位.答案 B【变式探究】(2015·湖南,9)将函数f (x )=sin 2x 的图象向右平移φ⎝⎛⎭⎫0<φ<π2个单位后得到函数g (x )的图象,若对满足|f (x 1)-g (x 2)|=2的x 1,x 2,有|x 1-x 2|min =π3,则φ=( ) A.5π12 B.π3 C.π4 D.π6答案 D【举一反三】(1)(2014·新课标全国卷Ⅰ)如图,圆O的半径为1,A是圆上的定点,P是圆上的动点,角x的始边为射线OA,终边为射线OP,过点P作直线OA的垂线,垂足为M.将点M到直线OP 的距离表示成x的函数f(x),则y=f(x)在0,π]的图象大致为( )(2)(2014·四川)为了得到函数y =sin(2x +1)的图象,只需把函数y =sin 2x 的图象上所有的点( )A .向左平行移动12个单位长度B .向右平行移动12个单位长度C .向左平行移动1个单位长度D .向右平行移动1个单位长度【命题意图】(1)本题主要考查函数的解析式及三角函数的图象,意在考查考生识图、用图的能力.(2)本题主要考查三角函数的图象,意在考查考生的函数图象的变换能力以及三角函数的运算能力.【答案】(1)B (2)A【感悟提升】1.函数y =A sin(ωx +φ)的解析式的确定(1)A 由最值确定,A =最大值-最小值2.(2)ω由周期确定.(3)φ由图象上的特殊点确定.提醒:根据“五点法”中的零点求φ时,一般先依据图象的升降分清零点的类型.2.作三角函数图象左、右平移变换时,平移的单位数是指单个变量x 的变化量,因此由y =sinωx (ω>0)的图象得到y =sin(ωx +φ)的图象时,应将图象上所有点向左(φ>0)或向右(φ<0)平移|φ|ω个单位,而非|φ|个单位.题型三 三角函数的性质及其应用例3.【2016年高考四川理数】为了得到函数πsin(2)3y x =-的图象,只需把函数sin 2y x =的图象上所有的点( )(A )向左平行移动π3个单位长度 (B )向右平行移动π3个单位长度 (C )向左平行移动π6个单位长度 (D )向右平行移动π6个单位长度【答案】D【解析】由题意,为了得到函数sin(2)sin[2()]36y x x ππ=-=-,只需把函数sin 2y x =的图像上所有点向右移6π个单位,故选D. 【举一反三】(2015·四川,4)下列函数中,最小正周期为π且图象关于原点对称的函数是( ) A .y =cos ⎝⎛⎭⎫2x +π2B .y =sin ⎝⎛⎭⎫2x +π2C .y =sin 2x +cos 2xD .y =sin x +cos x解析 A 选项:y =cos ⎝⎛⎭⎫2x +π2=-sin 2x ,T =π,且关于原点对称,故选A.答案 A【变式探究】(2014·陕西,2)函数f (x )=cos ⎝⎛⎭⎫2x -π6的最小正周期是( )A.π2B .πC .2πD .4π解析 ∵T =2π2=π,∴B 正确. 答案 B【举一反三】已知函数f (x )=cos x sin 2x ,下列结论中错误的是( ) A .y =f (x )的图象关于(π,0)中心对称B .y =f (x )的图象关于直线x =π2对称 C .f (x )的最大值为32D .f (x )既是奇函数,又是周期函数解析 对于A 选项,因为f (2π-x )+f (x )=cos(2π-x )·sin 2(2π-x )+cos x sin 2x =-cos x sin 2x +cos x sin 2x =0,故y =f (x )的图象关于(π,0)中心对称,A 正确;对于B 选项,因为f (π-x )=cos(π-x )sin 2(π-x )=cos x sin 2x =f (x ),故y =f (x )的图象关于x =π2对称,故B 正确;对于C 选项,f (x )=cos x sin 2x =2sin x cos 2x =2sin x (1-sin 2x )=2sin x -2sin 3x ,令t =sin x ∈-1,1],则h (t )=2t -2t 3,t ∈-1,1],则h ′(t )=2-6t 2,令h ′(t )>0解得-33<t <33,故h (t )=2t -2t 3,在⎣⎢⎡⎦⎥⎤-33,33上递增,在⎣⎢⎡⎦⎥⎤-1,-33与⎣⎢⎡⎦⎥⎤33,1上递减,又h (-1)=0,h ⎝ ⎛⎭⎪⎫33=439,故函数的最大值为439,故C 错误;对于D 选项,因为f (-x )+f (x )=-cos x sin 2x +cos x sin 2x =0,故是奇函数,又f (x +2π)=cos(2π+x )·sin 2(2π+x )=cos x sin 2x ,故2π是函数的周期,所以函数既是奇函数,又是周期函数,故D 正确.综上知,错误的结论只有C ,故选C. 答案 C题型四 求三角函数的解析式例4.(2015·陕西,3)如图,某港口一天6时到18时的水深变化曲线近似满足函数y =3sin ⎝⎛⎭⎫π6x +φ+k ,据此函数可知,这段时间水深(单位:m)的最大值为( )A .5B .6C .8D .10解析 由题干图易得y min =k -3=2,则k =5.∴y max =k +3=8. 答案 C【变式探究】(2015·新课标全国Ⅰ,8)函数f (x )=cos(ωx +φ)的部分图象如图所示,则f (x )的单调递减区间为( )A.⎝⎛⎭⎫k π-14,k π+34,k ∈ZB.⎝⎛⎭⎫2k π-14,2k π+34,k ∈Z C.⎝⎛⎭⎫k -14,k +34,k ∈Z D.⎝⎛⎭⎫2k -14,2k +34,k ∈Z解析 由图象知T 2=54-14=1,∴T =2.由选项知D 正确. 答案 D【举一反三】已知函数f (x )=sin ⎝⎛⎭⎫x -π6+cos ⎝⎛⎭⎫x -π3,g (x )=2sin 2x 2.(1)若α是第一象限角,且f (α)=335,求g (α)的值; (2)求使f (x )≥g (x )成立的x 的取值集合.(2)f (x )≥g (x )等价于3sin x ≥1-cos x ,即3sin x +cos x ≥1.于是sin⎝⎛⎭⎫x +π6≥12. 从而2k π+π6≤x +π6≤2k π+5π6,k ∈Z ,即2k π≤x ≤2k π+2π3,k ∈Z .故使f (x )≥g (x )成立的x 的取值集合为{x |2k π≤x ≤2k π+2π3,k ∈Z }.题型五 函数y =A sin(ωx +φ)的综合应用例5.【2016高考浙江理数】设函数2()sin sin f x x b x c =++,则()f x 的最小正周期( )A .与b 有关,且与c 有关B .与b 有关,但与c 无关C .与b 无关,且与c 无关D .与b 无关,但与c 有关【答案】B 【解析】21cos 2cos 21()sin sin sin sin 222-=++=++=-+++x x f x x b x c b x c b x c ,其中当0=b 时,cos 21()22=-++x f x c ,此时周期是π;当0≠b 时,周期为2π,而不影响周期.故选B . 【举一反三】(2015·安徽,10)已知函数f (x )=A sin(ωx +φ)(A ,ω,φ均为正的常数)的最小正周期为π,当x =2π3时,函数f (x )取得最小值,则下列结论正确的是( )A .f (2)<f (-2)<f (0)B .f (0)<f (2)<f (-2)C .f (-2)<f (0)<f (2)D .f (2)<f (0)<f (-2)解析 由于f (x )的最小正周期为π,∴ω=2,即f (x )=A sin(2x +φ),又当x =2π3时,2x +φ=4π3+φ=2k π-π2,∴φ=2k π-11π6,又φ>0,∴φmin =π6,故f (x )=A sin ⎝⎛⎭⎫2x +π6.于是f (0)=12A ,f (2)=A sin ⎝⎛⎭⎫4+π6,f (-2)=A sin ⎝⎛⎭⎫-4+π6=A sin ⎝⎛⎭⎫13π6-4, 又∵-π2<5π6-4<π6<4-7π6<π2,其中f (2)=A sin ⎝⎛⎭⎫4+π6 =A sin ⎣⎡⎦⎤π-⎝⎛⎭⎫4+π6=A sin ⎝⎛⎭⎫5π6-4,f (-2)=A sin ⎝⎛⎭⎫13π6-4 =A sin ⎣⎡⎦⎤π-⎝⎛⎭⎫13π6-4=A sin ⎝⎛⎭⎫4-7π6. 又f (x )在⎝⎛⎭⎫-π2,π2单调递增, ∴f (2)<f (-2)<f (0),故选A.答案 A【变式探究】(2014·湖北,17)某实验室一天的温度(单位:℃)随时间t (单位:h)的变化近似满足函数关系:f (t )=10-3cos π12t -sin π12t ,t ∈0,24).(1)求实验室这一天的最大温差;(2)若要求实验室温度不高于11 ℃,则在哪段时间实验室需要降温?(2)依题意,当f (t )>11时实验室需要降温.由(1)得f (t )=10-2sin ⎝⎛⎭⎫π12t +π3, 故有10-2sin ⎝⎛⎭⎫π12t +π3>11, 即sin ⎝⎛⎭⎫π12t +π3<-12. 又0≤t <24,因此7π6<π12t +π3<11π6,即10<t <18.故在10时至18时实验室需要降温.【举一反三】(2015·天津,15)已知函数f (x )=sin 2x -sin 2⎝⎛⎭⎫x -π6,x ∈R . (1)求f (x )的最小正周期;(2)求f (x )在区间⎣⎡⎦⎤-π3,π4上的最大值和最小值. 解 (1)由已知,有f (x )=1-cos 2x 2-1-cos ⎝⎛⎭⎫2x -π32=12⎝ ⎛⎭⎪⎫12cos 2x +32sin 2x -12cos 2x =34sin 2x -14cos 2x =12sin ⎝⎛⎭⎫2x -π6. 所以f (x )的最小正周期T =2π2=π.(2)因为f (x )在区间⎣⎡⎦⎤-π3,-π6上是减函数,在区间⎣⎡⎦⎤-π6,π4上是增函数,f ⎝⎛⎭⎫-π3=-14,f ⎝⎛⎭⎫-π6=-12,f ⎝⎛⎭⎫π4=34, 所以f (x )在区间⎣⎡⎦⎤-π3,π4上的最大值为34,最小值为-12.。
三角函数公式大全关系

三角函数公式大全关系 Jenny was compiled in January 2021三角函数公式大全关系:倒数tanα·cotα=1sinα·cscα=1cosα·secα=1商的关系:sinα/cosα=tanα=secα/cscαcosα/sinα=cotα=cscα/secα平方关系:sin^2(α)+cos^2(α)=11+tan^2(α)=sec^2(α)1+cot^2(α)=csc^2(α)平常针对不同条件的常用的两个公式sin^2(α)+cos^2(α)=1tanα*cotα=1一个特殊公式(sina+sinθ)*(sina-sinθ)=sin(a+θ)*sin(a-θ)证明:(sina+sinθ)*(sina-sinθ)=2sin[(θ+a)/2]cos[(a-θ)/2]*2cos[(θ+a)/2]sin[(a-θ)/2]=sin(a+θ)*sin(a-θ)坡度公式我们通常半坡面的铅直高度h与水平高度l的比叫做坡度(也叫坡比),用字母i表示,即i=h/l,坡度的一般形式写成l:m形式,如i=1:5.如果把坡面与水平面的夹角记作a(叫做坡角),那么i=h/l=tana.锐角三角函数公式正弦:sinα=∠α的对边/∠α的斜边余弦:cosα=∠α的邻边/∠α的斜边正切:tanα=∠α的对边/∠α的邻边余切:cotα=∠α的邻边/∠α的对边二倍角公式正弦sin2A=2sinA·cosA余弦1.Cos2a=Cos^2(a)-Sin^2(a)2.Cos2a=1-2Sin^2(a)3.Cos2a=2Cos^2(a)-1即Cos2a=Cos^2(a)-Sin^2(a)=2Cos^2(a)-1=1-2Sin^2(a)正切tan2A=(2tanA)/(1-tan^2(A))三倍角公式sin3α=4sinα·sin(π/3+α)sin(π/3-α)cos3α=4cosα·cos(π/3+α)cos(π/3-α)tan3a=tana·tan(π/3+a)·tan(π/3-a)sin(3a)=sin(a+2a)=sin2acosa+cos2asina=2sina(1-sin2a)+(1-2sin2a)sina=3sina-4sin^3acos3a=cos(2a+a)=cos2acosa-sin2asina=(2cos2a-1)cosa-2(1-cos^a)cosa=4cos^3a-3cosasin3a=3sina-4sin^3a=4sina(3/4-sin2a)=4sina[(√3/2)2-sin2a]=4sina(sin260°-sin2a)=4sina(sin60°+sina)(sin60°-sina)=4sina*2sin[(60+a)/2]cos[(60°-a)/2]*2sin[(60°-a)/2]cos[(60°-a)/2]=4sinasin(60°+a)sin(60°-a)cos3a=4cos^3a-3cosa=4cosa(cos2a-3/4)=4cosa[cos2a-(√3/2)^2]=4cosa(cos2a-cos230°)=4cosa(cosa+cos30°)(cosa-cos30°)=4cosa*2cos[(a+30°)/2]cos[(a-30°)/2]*{-2sin[(a+30°)/2]sin[(a-30°)/2]}=-4cosasin[90°-(60°-a)]sin[-90°+(60°+a)]=-4cosacos(60°-a)[-cos(60°+a)]=4cosacos(60°-a)cos(60°+a)上述两式相比可得tan3a=tanatan(60°-a)tan(60°+a)现列出公式如下:sin2α=2sinαcosαtan2α=2tanα/(1-tan^2(α))cos2α=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α)可别轻视这些字符,它们在数学学习中会起到重要作用。
三角函数公式

三角函数公式常见的三角函数公式有:和差角公式、和差化积公式、积化和差公式、倍角公式、半角公式、万能公式以及辅助角公式等。
三角函数是基本初等函数之一,是以角度为自变量,角度对应任意角终边与单位圆交点坐标或其比值为因变量的函数。
也可以等价地用与单位圆有关的各种线段的长度来定义。
三角函数在研究三角形和圆等几何形状的性质时有重要作用,也是研究周期性现象的基础数学工具。
在数学分析中,三角函数也被定义为无穷级数或特定微分方程的解,允许它们的取值扩展到任意实数值,甚至是复数值。
基本公式sin2α+cos2α=1sin2α+cos2α=1在单位圆中,sinαsinα与cosαcosα为直角边,斜边为1,利用勾股定理即可。
和角公式sinα+β=sinαcosβ+cosαsinβsinα+β=sinαcosβ+cosαsinβcosα+β=cosαcosβ?sinαsinβcosα+β=cosαcosβ?sinαsinβtanα+β=tanα+tanβ1?tanαtanβtanα+β=tanα+tanβ1?tanαtanβ差角公式sinα?β=sinαcosβ?cosαsinβsinα?β=sinαcosβ?cosαsinβcosα?β=cosαcosβ+sinαsinβcosα?β=cosαcosβ+sinαsinβtanα?β=tanα?tanβ1+tanαtanβ和差化积公式sinα+sinβ=2sinα+β2cosα?β2sinα+sinβ=2sinα+β2cosα?β2sinα?sinβ=2cosα+β2sinα?β2sinα?sinβ=2cosα+β2sinα?β2cosα+cosβ=2cosα+β2cosα?β2cosα+cosβ=2cosα+β2cosα?β2cosα?cosβ=2sinα+β2sinα?β2cosα?cosβ=2sinα+β2sinα?β2tanα+tanβ=sinα+βcosαcosβtanα+tanβ=sinα+βcosαcosβtanα?tanβ=sinα?βcosαcosβ倍角公式sin2α=2sinαcosαsin2α=2sinαcosαco s2α=cos2α?sin2αcos2α=cos2α?sin2αtan2α=2tanα1?tan2αtan2α=2tanα1?tan2α公式一sin(2kπ+α)=sin αcos(2kπ+α)=cos αtan(2kπ+α)=tan αcot(2kπ+α)=cot αsec(2kπ+α)=sec αcsc(2kπ+α)=csc α公式二sin(π+α)=-sin αcos(π+α)=-cos αtan(π+α)=tan αcot(π+α)=cot αsec(π+α)=-sec αcsc(π+α)=-csc α公式三sin(-α)=-sin αcos(-α)=cos αtan(-α)=-tan αcot(-α)=-cot αsec(-α)=sec αcsc(-α)=-csc α公式四sin(π-α)=sin α cos(π-α)=-cos α tan(π-α)=-tan α cot(π-α)=-cot α sec(π-α)=-sec α csc(π-α)=csc α公式五sin(α-π)=-sin α cos(α-π)=-cos α tan(α-π)=tan α cot(α-π)=cot α sec(α-π)=-sec α csc(α-π)=-csc α公式六sin(2π-α)=-sin α cos(2π-α)=cos α tan(2π-α)=-tan α cot(2π-α)=-cot α sec(2π-α)=sec α csc(2π-α)=-csc α公式七sin(π/2+α)=cosα cos(π/2+α)=?sinαtan(π/2+α)=-cotα cot(π/2+α)=-tanα sec(π/2+α)=-cscα csc(π/2+α)=secα公式八sin(π/2-α)=cosα cos(π/2-α)=sinα tan(π/2-α)=cotα cot(π/2-α)=tanα sec(π/2-α)=cscα csc(π/2-α)=secα公式九sin(3π/2+α)=-cosα cos(3π/2+α)=sinα tan(3π/2+α)=-cotα cot(3π/2+α)=-tanα sec(3π/2+α)=cscα csc(3π/2+α)=-secα公式十sin(3π/2-α)=-cosα cos(3π/2-α)=-sinα tan(3π/2-α)=cotα cot(3π/2-α)=tanα sec(3π/2-α)=-cscα csc(3π/2-α)=-secα三角函数公式看似很多、很复杂,但只要掌握了三角函数的本质及内部规律,就会发现三角函数各个公式之间有强大的联系。
三角函数1

三角函数百科名片角θ的所有三角函数三角函数(Trigonometric)是数学中属于初等函数中的超越函数的一类函数。
它们的本质是任意角的集合与一个比值的集合的变量之间的映射。
通常的三角函数是在平面直角坐标系中定义的,其定义域为整个实数域。
另一种定义是在直角三角形中,但并不完全。
现代数学把它们描述成无穷数列的极限和微分方程的解,将其定义扩展到复数系。
它包含六种基本函数:正弦、余弦、正切、余切、正割、余割。
由于三角函数的周期性,它并不具有单值函数意义上的反函数。
三角函数在复数中有较为重要的应用。
在物理学中,三角函数也是常用的工具。
目录定义起源基本公式相关计算相关概念高等数学内容三角函数的性质定理三角函数在解三次方程中的应用定义起源基本公式相关计算相关概念高等数学内容三角函数的性质定理三角函数在解三次方程中的应用展开编辑本段定义直角三角定义它有六种基本函数(初等基本表示):三角函数数值表(斜边为r,对边为y,邻边为x。
)在平面直角坐标系xOy中,从点O引出一条射线OP,设旋转角为θ,设OP=r,P点的坐标为(x,y)有正弦函数sinθ=y/r 正弦(sin):角α的对边比斜边余弦函数cosθ=x/r 余弦(cos):角α的邻边比斜边正切函数tanθ=y/x 正切(tan):角α的对边比邻边余切函数cotθ=x/y 余切(cot):角α的邻边比对边正割函数secθ=r/x 正割(sec):角α的斜边比邻边余割函数cscθ=r/y 余割(csc):角α的斜边比对边以及两个不常用,已趋于被淘汰的函数:正矢函数versinθ =1-cosθ余矢函数coversθ =1-sinθsinα、cosα、tanα的定义域:sinα定义域无穷,值域 [-1,1]cosα定义域无穷,值域 [-1,1]tanα的定义域(-π/2+kπ,π/2+kπ),k属于整数,值域无穷单位圆定义六个三角函数也可以依据半径为1中心为原点的单位圆来定义。
三角函数(1、2)

三角函数1.1任意角和弧度制1.任意角的概念(1)角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所成的图形。
(2)正角:按逆时针方向旋转形成的角。
(3)负角:按顺时针方向旋转形成的角。
(4)零角:一条射线没有作任何旋转,我们称它为零角。
(5)注意:①角度的范围不再限于0°~360°。
②角的概念是通过角的终边的运动来推广的,根据角的终边的旋转方向,得到正角、负角和零角,由此我们应当意识到角的终边位置的重要性。
③当角的始边相同,角相等则终边相同;终边相同,而角不一定相等。
④为了简单起见,在不引起混淆的前提下,“角α”或“∠α”可以简记为“α”。
⑤我们把角的概念推广到了任意角中,包括正角、负角和零角。
⑥要正确理解正角、负角和零角的概念,由定义可知,关键是抓住终边的旋转方向是逆时针、顺时针还是没有转动。
(6)①判定与任意角有关命题的真假的关键在于抓住角的四个“要素”:顶点、始边、终边和旋转方向。
②确定任意角的度数要抓住旋转方向及旋转圈数。
③引入正、负角的概念以后,角的加减运算类似于实数的加减运算。
2.象限角与轴线角(1)使角α的顶点与原点重合,始边与x轴正半轴重合,终边落在第几象限,则称角α为第几象限的角;终边落在坐标轴上的角α被称为轴线角。
(2)象限角的集合第一象限角的集合为{x|k²360°<x<k²360°+90°,k∈Z};第二象限角的集合为{x|k²360°+90°<x<k²360°+180°,k∈Z};第三象限角的集合为{x|k²360°+180°<x<k²360°+270°,k∈Z};第四象限角的集合为{x|k²360°+270°<x<k²360°+360°,k∈Z}。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数学三角函数试题
姓名 成绩
一、选择题(每题5分,共 50分)
1、2300的角是第( )象限的角。
A 、一
B 、二
C 、三
D 、四
2. 与330°终边相同的是( ).
A 、60° B、-30° C、390° D 、-360°
3.在直角坐标系中,终边落在x 轴上的所有角是 ( )
A )0360()k k Z ⋅∈ B) 00与1800 C )00360180()k k Z ⋅+∈ D )0180()k k Z ⋅∈
4.下列关于1弧度的角的说法正确的是 ( )
A )弦长等于半径的弦所对的圆心角等于1弧度
B )1=(π
180)0 C )弧长等于半径的弧所对的圆周角等于1弧度 D )1=57.30
5.已知角α终边上一点A (-3,4),则tan α的值为( )
A 、-35
B 、45
C 、-34
D 、-43
6、0
sin 60=( )
A 、12
B 、
C 、2
D 、12- 7、若θθθ则,0cos sin >在 ( )
A .第一、二象限
B .第一、三象限
C .第一、四象限
D .第二、四象限
8. 将cos236°化成锐角三角函数应是( ).
A 、cos56° B、-cos56° C、sin56° D、-sin56°
9、下列等式中成立的 ( )
A .si n (2×360°-40°)=si n 40°
B .cos (3π+4π)=cos 4
π C .cos370°=cos10°
D .cos 625π=-cos 6π 10 .“sinA=2
1”是“A=300”的 ( ) A .充分条件 B .必要条件 C .充分必要条件 D .既不充分也不必要条件
二、填空题(每题3分,共 12分)
11.[ 0,2π]间,与-4π
终边相同的角是 。
12、已知角α的终边过点(1,2),cos P α-则的值为
13.已知扇形的圆心角为23
π
,半径为2,那么弧长= 16
、已知cos [,],2
ααππα=∈-则角为 三、解答题(共 38 分)
1.已知α为第三象限角,且cos α=513
-,求sin α和tan α的值. (10分)
2. (14分)(1)求值: cos π+sin 2π-2tan 4
π+sin 32π-tan π
( 2 ) 化简: c o s()t a n()s i n()
s i n()s i n(3)
παπαα
παπα
+--
-+
3.用五点法作函数y = 2 + sinχ,χ∈[ 0,2π]的简图,并根据图像指出在定义域R内χ取何值时, y有最大值,y有最小值, 最大值最小值分别是多少? (14分)。