初中新人教版数学九年级下册27.3位似优质课公开课教学设计.
人教版九年级数学下册:27.3《位似》教案1

人教版九年级数学下册:27.3《位似》教案1一. 教材分析《人教版九年级数学下册》第27.3节“位似”是学生在学习了相似三角形的基础上,进一步研究位似图形的性质。
本节内容通过具体的实例,让学生理解位似的定义,掌握位似图形的性质,并能够运用位似的概念解决实际问题。
教材通过丰富的图片和实例,激发学生的学习兴趣,培养学生观察、思考、归纳的能力。
二. 学情分析九年级的学生已经学习了相似三角形的性质,对图形的相似性有一定的认识。
但在实际应用中,学生可能对位似的概念理解不够深入,难以运用位似知识解决生活中的问题。
因此,在教学过程中,教师需要关注学生的认知水平,通过实例分析,引导学生深入理解位似的概念,提高学生的实际应用能力。
三. 教学目标1.了解位似的定义,掌握位似图形的性质。
2.能够识别生活中的位似图形,并运用位似知识解决实际问题。
3.培养学生的观察能力、思考能力和归纳能力。
四. 教学重难点1.重点:位似的定义,位似图形的性质。
2.难点:运用位似知识解决实际问题。
五. 教学方法1.情境教学法:通过生活中的实例,引导学生观察、思考,激发学生的学习兴趣。
2.启发式教学法:教师提问,学生回答,引导学生主动探究位似的概念。
3.小组合作学习:学生分组讨论,共同完成实践任务,提高学生的合作能力。
六. 教学准备1.准备相关的图片和实例,用于教学演示。
2.准备练习题,用于巩固所学知识。
3.准备黑板,用于板书关键知识点。
七. 教学过程1.导入(5分钟)利用多媒体展示一些生活中的位似图形,如放大或缩小的图片、相似的建筑等。
引导学生观察这些图形,并提出问题:“你们认为这些图形有什么共同的特点?”让学生思考并回答,从而引出位似的概念。
2.呈现(10分钟)介绍位似的定义,并用具体的实例进行分析。
讲解位似图形的性质,如对应边的比例关系、对应角的相等性等。
让学生通过观察实例,理解并掌握位似的概念。
3.操练(10分钟)学生分组讨论,找出生活中的位似图形,并运用位似知识进行分析。
九年级数学下册人教版27.3位似第一课时优秀教学案例

在教学过程中,教师引导学生进行自我反思和总结,帮助他们梳理所学知识,发现自身在知识掌握、方法运用、合作交流等方面的不足。同时,教师组织学生开展互评活动,让学生在评价他人的过程中,学会客观、公正地看待问题,提高自己的审美观念和评价能力。
此外,教师还应及时给予学生反馈,肯定他们的优点,指出不足之处,并给出具体的改进建议。通过反思与评价,学生能够更好地认识自己,提高自我监控和自我调节的能力,为后续学习奠定基础。
3.培养学生的合作意识和团队精神,提高学生的表达和沟通能力。
通过小组合作、成果展示等形式,学生学会倾听他人意见,表达自己的观点,共同解决问题。
(三)情感态度与价值观
1.激发学生对数学学科的兴趣,增强学生的自信心和成就感。
教师通过设计富有挑战性的问题和任务,鼓励学生克服困难,解决问题,从而提高学生的学习兴趣和自信心。
1.生活化的情景创设,激发学生的学习兴趣
本案例通过展示生活中的位似现象,引导学生从现实情境中发现数学问题,激发了学生的学习兴趣。这种生活化的情景创设,使得学生在轻松愉快的氛围中,感受到数学与生活的紧密联系,提高了学习的积极性。
2.问题驱动的教学策略,培养学生的探究能力
本案例以问题为导向,设计了一系列具有挑战性和层次性的问题。这些问题引导学生逐步深入探讨位似图形的性质和应用,培养了学生的探究能力和解决问题的能力。在问题解决过程中,学生通过独立思考、合作交流等方式,不断提高自己的数学素养。
九年级的学生已经具备了一定的几何图形基础和逻辑思维能力,但对于位似图形的认识还不够深入。因此,本节课将围绕位似图形的性质展开,通过具体的实例和动手操作,帮助学生建立起位似的概念,并运用到实际问题中。在教学过程中,教师将引导学生关注位似图形在生活中的应用,如摄影、地图制作等领域,让学生感受到数学与生活息息相关,提高他们的学习积极性。
27.3 位似(第一课时)( 教学设计)九年级数学下册同步备课系列(人教版)

27.3 位似(第一课时) 教学设计一、内容和内容解析1.内容本节课是人教版《义务教育教科书•数学》九年级下册(以下统称“教材”)第二十七章“相似”27.3 位似(第一课时),内容包括:位似图形的概念和利用位似作图的方法将一个图形放大或缩小.2.内容解析学生已学过轴对称、平移、旋转、中心对称,相似等几种图形变换,类比“全等”变换,位似变换是一种特殊位置的相似变换,是相似的延续.学生已经学习了相似的相关知识,对图形有了丰富的认知基础,本节课将按照几何图形研究的基本思路,分别学习位似图形的相关概念,性质以及识别.培养学生动手操作能力,强调作图的准确性和规范性将成为本节课的着力点.基于以上分析,确定本节课的教学重点:了解位似图形及其相关概念,会识别位似图形,确定位似中心.二、目标和目标解析1.目标1)了解位似图形及其相关概念,会识别位似图形,确定位似中心.2)理解位似图形的性质,能利用位似作图的方法将一个图形放大或缩小.2.目标解析达成目标1)的标志是:能够根据位似图形的概念判定位似图形,理解两组对应点连线的交点即为位似中心的位置.达成目标2)的标志是:理解与掌握位似图形的性质,能利用位似作图的方法将一个图形放大或缩小,需注意:位似中心的位置由两个图形的位置决定,可能在两个图形的同侧、异侧、图形的内部、边上或顶点上.三、教学问题诊断分析利用位似作图的方法将一个图形放大或缩小是本节课知识的一个难点.针对这一问题,在教学中应引导学生理解位似图形中每对对应点都在位似中心的同侧或在位似中心的异侧,通过实际操作,理解与掌握位似多边形的画法.基于以上分析,本节课的教学难点是:能利用位似作图的方法将一个图形放大或缩小.四、教学过程设计(一)复习巩固【提问一】我们学过哪些图形变化形式?【提问二】什么叫相似图形?相似与全等有什么区别与联系?师生活动:教师提出问题,学生通过之前所学知识尝试回答问题.【设计意图】通过回顾之前所学内容,为接下来学习位似图形的相关知识打好基础.(二)探究新知【情景导入】在日常生活中,我们经常见到下面所给的这样一类相似的图形,它们有什么特征?师生活动:学生认真观察图形,尝试回答问题.教师做如下总结:放映幻灯片时,通过光源,把幻灯片上的图形放大到屏幕上.摄影师通过照相机,把人物的影像缩小在底片上.这样的放大或缩小,没有改变图形的形状,经过放大或缩小的图形,与原图形是相似的,因此,我们可以得到真实的图片和照片.【设计意图】让学生体会数学来源于生活,激发学生学习的兴趣,为本节课的学习打好基础.【问题一】观察下列图形,这些图形相似吗?【问题二】除了相似,还有其它共同特征吗?师生活动:学生认真观察图形,尝试回答问题.教师通过图象引导学生发现如下内容:1)这些相似图形对应顶点的连线都经过点O;2)点O与对应顶点所连线段成比例;【设计意图】引导学生回忆知识间的联系,理解概念的本质,对概念认识进一步清晰化.【问题三】简述位似图形的概念?师生活动:根据上述问题发现的内容,学生尝试回答问题.【设计意图】让学生理解位似图形的概念.【问题四】如果△ADE和△ABC是位似图形,DE和BC平行吗?为什么?师生活动:学生认真观察图形,尝试回答问题并写出证明过程.具体证明过程如下:∵△ADE和△ABC是位似图形∴ADAB =AEAC=DEBC∴△ADE∽△ABC∴∠ADE=∠ABC∴ DE‖BC【设计意图】通过探索与证明的环节,使学生理解位似图形的性质.【问题五】简述位似图形的性质?师生活动:回顾本节课所学内容,归纳总结位似图形的性质,得出:1)位似图形是一种特殊的相似图形,它具有相似图形的所有性质,即对应角相等,对应边的比相等.2)位似图形上任意一对对应点到位似中心的距离之比等于相似比.(位似图形的相似比也叫做位似比)3)对应线段平行或者在一条直线上.针对第三条性质不好理解,教师可通过多媒体给出实例,加深学生理解与记忆.【设计意图】通过探索、观察、分析的环节,主动探究新知,真正实现学生的学习主体地位.【问题六】类比位似图形的概念,尝试归纳位似多边形的概念?师生活动:学生积极回答问题.【设计意图】提高学生类比、归纳总结的能力.(三)典例分析与针对训练例1 下列各组图形中不是位似图形的是()【针对训练】1. 下列关于位似图形的表述:①相似图形一定是位似图形,位似图形一定是相似图形;②位似图形一定有位似中心;③如果两个图形是相似图形,且每组对应点的连线所在的直线都经过同一个点,那么这两个图形是位似图形;④位似图形上任意两点到位似中心的距离之比等于相比.其中正确的序号是( )A.②B.①② C.③④ D.②③④2.下图所示的四种画法中,能使得△DEF是△ABC位似图形的有()A.①② B.③④ C.①③④D.①②③④【设计意图】考查学生对位似图形概念的理解.(四)探究新知【问题七】如图,已知△ABC,以点O为位似中心画△DEF,使其与△ABC位似,且位似比为2.师生活动:学生动手操作画位似图形.教师巡视,强调作图细节.同时利用多媒体展示当位似中心选取在其他位置时位似图形的画法.解:1)画射线OA,OB,OC;2)在射线OA,OB,OC上分别取点D,E,F,使OD=2OA,OE=2OB,OF=2OC;3)顺序连接D,E,F,则△DEF与△ABC位似,相似比为2.解:1)画射线OA,OB,OC;2)沿着射线OA,OB,OC反方向上分别取D,E,F,使OD=2OA,OE=2OB,OF=2OC;3)顺序连接D,E,F,则△DEF与△ABC位似,相似比为2.【设计意图】培养学生动手画图的能力,掌握利用位似知识对图形进行放大与缩小的多种方法.充分给学生自我展示的机会,使其获得成功体验.【问题八】由此你发现了什么?师生活动:先由学生回答,再由教师引导与总结,得出:位似中心的位置由两个图形的位置决定,可能在两个图形的同侧、异侧、图形的内部、边上或顶点上.【问题九】简述位似多边形的画法?师生活动:先由学生回答,再由教师引导与总结,得出:1) 确定位似中心.2) 确定原图形的关键点(每对对应点都在位似中心的同侧或在位似中心的异侧).3) 确定位似比.4) 根据对应点所在直线经过位似中心且到位似中心的距离之比等于位似比,作出关键点的对应点,再按照原图的顺序连接各点.【设计意图】让学生理解与掌握位似多边形的画法.(五)典例分析与针对训练例2 已知点O在△ABC内,以点O为位似中心画一个三角形,使它与△ABC位似,且位似比为1:2.【设计意图】让学生理解与掌握位似多边形的画法.例3.如图,以点O为位似中心,将△OAB放大后得到△OCD,OA=2,AC=3,则ABCD=____.【针对训练】1.如图,在△ABC中,DE∥AB,DE分别与AC,BC交于D,E两点.若S△DECS△ABC =49,AC=3,则DC=_____.2. 如图,△ABC与△DEF位似,点O是它们的位似中心,且位似比为1∶2,则△ABC与△DEF的周长之比是()A.1∶2 B.1∶4 C.1∶3 D.1∶93.如图,△ABC与△DEF位似,点O为位似中心.已知OA∶OD=1∶2,则△ABC与△DEF的面积比为()A.1∶2 B.1∶3 C.1∶4 D.1∶54.如图,以点O为位似中心,作四边形ABCD的位似图形A′B′C′D′,已知OAOA′=13,若四边形ABCD的面积是2,则四边形A′B′C′D′的面积是()A.4 B.6 C.16D.18【设计意图】利用位似的性质求解.例4 图中的两个三角形是位似图形,它们的位似中心是()A.点P B.点OC.点M D.点N【针对训练】1.如图,正方形网格图中的△ABC与△A′B′C′是位似关系图,则位似中心是()A.点O B.点P C.点Q D.点R【设计意图】判断位似图形的位似中心.(七)直击中考1.(2023·辽宁阜新真题)如图,△ABC与△DEF是以点O为位似中心的位似图形,若OA:OD=2:3,则△ABC与△DEF的面积比是.2.(2023·吉林长春真题)如图,△ABC和△A′B′C′是以点O为位似中心的位似图形,点A在线段OA′上.若OA:AA′=1:2,则△ABC和△A′B′C′的周长之比为.(八)归纳小结1. 通过本节课的学习,你学会了哪些知识?2. 简述位似图形的概念和性质?3. 简述位似多边形的画法?(九)布置作业P48:练习第2题P51:习题27.3 第2题、第4题五、教学反思。
人教版九年级下册27.3位似27.3位似课程设计

人教版九年级下册27.3位似27.3位似课程设计一、背景介绍人教版九年级下册《数学》第27章“函数”的第三节课为“27.3位似”。
这一节课程主要介绍了位似变化,即通过相似变化,将图形扩大或缩小,并延伸到相似三角形的相似比例与侧比例的计算。
在未来的学习生活中,位似变化会有很多应用,如绘画、建筑和地图等。
二、课程目标1.了解相似图形的概念,掌握相似三角形的相似比例和侧比例的计算方法。
2.知道位似变化的定义和性质,能够运用位似变化扩大或缩小图形,并计算相应的比例。
3.能够在实际问题中应用位似变化,解决计算问题。
三、教学方式本课程采用讲述法和实践法相结合的方式进行教学。
1.首先,讲师将通过实例讲解相似三角形的相似比例和侧比例的计算方法,同时引入位似变化的概念和性质。
2.接下来,讲师将通过展示实物模型或视频等方式,展示位似变化的效果,并引导学生探究其原理和应用。
3.最后,讲师将给学生一些实际问题,要求他们运用所学知识计算,增进对位似变化的理解和掌握。
四、课程计划一、引入(5分钟)1.介绍本节课的主要内容和目标,激发学生的学习兴趣。
2.带领学生回顾上节课所学内容,为本节课奠定基础。
二、讲授(30分钟)1.介绍相似图形的定义和判定方法,并通过实例演示相似三角形的相似比例和侧比例的计算方法。
2.讲解位似变化的概念和性质,并展示位似变化的效果。
3.引导学生通过实践实验,探究位似变化的原理和应用。
三、练习与巩固(10分钟)1.给学生一些练习题,要求他们运用所学知识计算。
2.讲师进行解答和讲解,及时纠正学生的错误,巩固所学知识。
四、拓展与应用(10分钟)1.讲师给学生提供几个实际问题,要求他们运用所学知识解决。
2.学生在小组内讨论,提出自己的答案,讲师进行点评和总结。
五、教学评估1.通过课堂练习和实际问题的解答,检验学生对位似变化的理解和掌握程度。
2.通过作业批改,评估学生的综合能力和学习效果。
六、总结本节课主要介绍了位似变化的概念和应用,通过实例演示和实践探究,提高学生的数学思维能力和解题能力,为未来的数学学习奠定基础。
人教版九年级数学下27.3位似(第1课时)优秀教学案例

3.运用多媒体辅助教学,直观展示位似的变换过程,帮助学生建立清晰的空间观念。
4.引导学生运用位似性质解决实际问题,提高他们的问题解决能力。
(三)情感态度与价值观
1.培养学生对数学学科的兴趣,使他们感受到数学的实用性和魅力。
3.教师对学生的学习情况进行总结性评价,关注学生的知识掌握程度、能力培养和情感态度等方面的成长。如:“你们在学习位似过程中,取得了哪些成果?还有哪些需要提高的地方?”、“你们在解决问题时,展现了哪些优秀的品质?”等。
四、教学内容与过程
(一)导入新课
1.利用多媒体展示一些实际问题,如图片的放大、缩小等,引导学生思考这些现象背后的数学原理。
二、教学目标
(一)知识与技能
1.让学生掌握位似的定义,理解位似与相似的区别,能够判断图形是否位似。
2.培养学生运用位似性质解决实际问题的能力,如对图形进行放大或缩小等。
3.通过对位似的深入学习,提高学生对几何图形的认识,培养他们的空间想象能力。
(二)过程与方法
1.采用“实际问题——理论探究——实践应用”的教学模式,引导学生从实际问题中发现位似的存在,激发他们的探究兴趣。
2.通过对位似的探究,培养学生勇于探索、严谨求实的科学精神。
3.注重培养学生的团队协作意识,让他们在合作中共同成长。
4.鼓励学生积极面对学习中的困难,培养他们坚持不懈、迎难而上的品质。
三、教学策略
(一)情景创设
1.以生活实际为例,创设有趣、富有挑战性的问题情境,激发学生的学习兴趣。如:“为什么地图上的城市位置与实际位置有所不同?”、“怎样设计一张邮票,使其在邮局发行的过程中保持美观?”等。
人教版数学九年级下册27.3《位似》教学设计(二)

人教版数学九年级下册27.3《位似》教学设计(二)一. 教材分析人教版数学九年级下册27.3《位似》是学生在学习了相似图形、相似比等概念的基础上进一步学习的知识。
本节内容主要介绍位似的定义、性质和运用。
通过本节课的学习,学生能够理解位似的含义,掌握位似的性质,并能够运用位似解决一些实际问题。
二. 学情分析九年级的学生已经具备了一定的几何基础,对相似图形、相似比等概念有一定的了解。
但在学习本节课时,学生可能对位似的理解存在一定的困难,因此需要通过大量的实例和练习来帮助学生理解和掌握位似。
三. 教学目标1.知识与技能:理解位似的定义,掌握位似的性质,能够运用位似解决一些实际问题。
2.过程与方法:通过观察、操作、思考、交流等活动,培养学生的空间想象能力和几何思维能力。
3.情感态度与价值观:激发学生对数学的兴趣,培养学生的团队合作意识和问题解决能力。
四. 教学重难点1.重点:位似的定义和性质。
2.难点:位似在实际问题中的应用。
五. 教学方法1.情境教学法:通过生活实例和几何模型,引导学生观察、操作、思考,激发学生的学习兴趣。
2.合作学习法:引导学生分组讨论和交流,培养学生的团队合作意识和几何思维能力。
3.问题解决法:通过解决实际问题,引导学生运用位似知识,提高学生的问题解决能力。
六. 教学准备1.教学课件:制作课件,包括位似的定义、性质和实例等。
2.几何模型:准备一些几何模型,如正方形、矩形等,用于引导学生观察和操作。
3.实际问题:准备一些实际问题,如建筑设计、地图绘制等,用于引导学生运用位似知识。
七. 教学过程1.导入(5分钟)利用课件展示一些实际问题,如建筑设计、地图绘制等,引导学生思考这些问题与位似的关系。
2.呈现(10分钟)利用课件呈现位似的定义和性质,引导学生观察和理解。
同时,配合几何模型,让学生直观地感受位似的特点。
3.操练(10分钟)分组讨论和交流,让学生通过操作几何模型,探索位似的性质。
2024九年级数学下册第27章相似27.3位似(位似图形)教学设计(新版)新人教版

- 自主学习法:引导学生自主完成作业和拓展学习。
- 反思总结法:引导学生对自己的学习过程和成果进行反思和总结。
作用与目的:
- 巩固学生在课堂上学到的位似图形的性质和应用。
- 通过拓展学习,拓宽学生的知识视野和思维方式。
- 通过反思总结,帮助学生发现自己的不足并提出改进建议,促进自我提升。
六、学生学习效果
1. 知识与技能:
- 学生能够理解位似图形的概念,掌握位似图形的性质,并能够运用位似图形的性质解决实际问题。
- 学生能够理解位似变换的应用,并能够运用位似变换来解决实际问题。
- 学生能够通过实际问题,理解和掌握位似图形在实际中的应用,提高解决实际问题的能力。
2. 过程与方法:
- 学生能够通过自主学习,提高自学能力和独立思考能力。
3. 题型三:位似比的计算
题目:一个三角形通过位似变换变成了另一个三角形,位似比为2:1。求原三角形的面积。
答案:设原三角形面积为S,则新三角形面积为4S。由于位似比为2:1,原三角形的面积为新三角形面积的1/4,即S = (1/4) * 4S = S。
4. 题型四:位似图形的问题解决
题目:一个房间的设计图是实际房间尺寸的1:5缩小模型。如果设计图中的房间面积是50平方米,实际房间的面积是多少?
这些题型和答案仅供参考,实际教学中应根据学生的具体情况和教材内容进行调整和扩展。
八、作业布置与反馈
1. 作业布置:
(1)题目:请根据位似图形的定义和性质,完成以下题目:
- 判断下列两个图形是否为位似图形,并解释原因。
- 确定下列位似变换中的位似比,并说明如何计算。
- 利用位似图形的性质,求解实际问题中的相关量。
人教版九年级数学下册:27.3《位似》教学设计1

人教版九年级数学下册:27.3《位似》教学设计1一. 教材分析人教版九年级数学下册第27.3节《位似》主要介绍了位似的定义、性质和运用。
位似是几何中的一个重要概念,它涉及到图形的变换和相似性质。
通过学习本节内容,学生能够理解位似的含义,掌握位似的性质,并能够运用位似解决实际问题。
二. 学情分析九年级的学生已经具备了一定的几何基础,对图形的变换和相似性质有一定的了解。
但是,对于位似的定义和性质,学生可能还存在一定的困惑。
因此,在教学过程中,教师需要引导学生通过观察、操作和思考,逐步理解位似的含义,并能够运用位似解决实际问题。
三. 教学目标1.知识与技能:学生能够理解位似的定义,掌握位似的性质,并能够运用位似解决实际问题。
2.过程与方法:学生通过观察、操作和思考,培养直观思维和逻辑推理能力。
3.情感态度与价值观:学生培养对数学的兴趣,增强自信心,培养合作意识和探究精神。
四. 教学重难点1.重点:位似的定义和性质。
2.难点:位似的运用和实际问题的解决。
五. 教学方法1.情境教学法:通过创设实际情境,引导学生观察和操作,培养学生的直观思维和逻辑推理能力。
2.问题驱动法:通过提出问题,引导学生思考和讨论,激发学生的学习兴趣和探究精神。
3.案例教学法:通过分析实际案例,引导学生运用位似解决实际问题,培养学生的应用能力。
六. 教学准备1.教学课件:制作精美的教学课件,包括图片、动画和实例,帮助学生直观地理解位似的含义和性质。
2.教学素材:准备一些实际的图形和图片,用于展示和分析位似的情况。
3.练习题:设计一些练习题,用于巩固学生对位似的理解和运用。
七. 教学过程1.导入(5分钟)教师通过展示一些实际的图形和图片,引导学生观察和思考,提出问题:“你们可以看出这些图形之间有什么关系吗?”学生可能回答:“它们看起来很相似,但是不完全一样。
”教师引导学生总结出位似的定义。
2.呈现(15分钟)教师通过课件展示位似的性质,包括位似的比例、位似的中心等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
教学准备1. 教学目标1.1 知识与技能:1.巩固位似图形及其有关概念.2.会用图形的坐标的变化来表示图形的位似变换,掌握把一个图形按一定大小比例放大或缩小后,点的坐标变化的规律.3.了解四种变换(平移、轴对称、旋转和位似)的异同,并能在复杂图形中找出这些变换.1.2 过程与方法:经历探究平面直角坐标系中,以O为位似中心的多边形的坐标变化与相似比之间关系的过程,领会所学知识,归纳作图步骤,总结规律,并较熟练地进行应用.1.3 情感态度与价值观:在探究过程中发展学生积极的情感、态度、价值观,体验解决实际问题策略的多样性.2. 教学重点/难点把一个图形按一定大小比例放大或缩小后,点的坐标变化的规律.3. 教学用具课件.多媒体4. 标签教学过程6.1复习引入1、什么是位似图形?你是如何识别的?如果两个相似图形每组对应顶点所在的直线都相交于一点,那么这样的两个图形叫做位似图形. 这一个点叫位似中心,这时的相似比又称位似比. 位似图形识别时:(1)两个图形是相似图形;(2)两个相似图形每对对应点所在的直线都经过同一点,二者缺一不可.2、如何将画在纸上的一个图片放大,使放大前后对应线段的比为1:2?①确定位似中心(任意选);②分别连接并延长位似中心和能代表原图的关键点;③根据位似比1:2,确定能代表所作的位似图形的关键点;④顺次连接上述各点,得到放大的图形.推进新课(板书课题:相似三角形的判定)6.2 新知探究问题1 如图,在平面直角坐标系中,有两点A(6,3),B(6,0).以原点O为位似中心,相似比为,把线段AB缩小,观察对应点之间坐标的变化,你有什么发现?师: (指准图)在平面直角坐标系中,有两点A(6,3),B(6,0).以原点O为位似中心,相似比为1/3,把线段AB缩小如何作图?(稍停)生:作法(1)过点O分别作射线OA;(2)在射线OA、OB取点A′、B′,使得(3)连接A′B′.线段A′B′就是以原点O为位似中心,把线段AB缩小得到图形.师:还有其它作法吗?生:作法(1)过点O分别作直线OA;(2)在直线OA、OB取点A"、B",使得;(3)连接A"B".线段A′B′就是以原点O为位似中心,把线段AB缩小得到图形.师:两个位似图形可能位于位似中心的两侧,也可能位于位似中心的一侧.师:(指图)位似变换后A,B的对应点坐标是什么?生:位似变换后A,B的对应点为A′(2 ,1),B′(2,0);A"(-2,-1),B"(-2,0).师:对应顶点坐标的变化,你有什么发现?(稍停)生:A、B的坐标分别乘以1/3或-1/3就是位似变换后的对应点的坐标.师:这个结论是否具有一般性,请同学们一起来研究问题2.问题2 如图,△ABC三个顶点坐标分别为A(2,3),B(2,1),C (6,2),以点O为位似中心,相似比为2,将△ABC放大,观察对应顶点坐标的变化,你有什么发现?师:请同学们画出以点O为位似中心,相似比为2,将△ABC放大图形.(学生画图,教师巡视指导)师:观察对应顶点坐标的变化,你有什么发现?生:和问题1结果一样,位似变换后A,B,C的对应点为A ′(4,6),B ′(4,2),C ′(12,4);A"(-4,-6),B"(-4,-2),C"(-12,-4).A,B,C的坐标乘以2或-2就是位似变换后的对应点的坐标.师:由此,同学们猜测一下:在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标有什么规律?生:原坐标的横纵坐标分别乘以k或乘以-k即为变换后对应点的坐标.(课件/板书)一般地,在平面直角坐标系中,如果以原点为位似中心,新图与原图位似比为k,那么与原图上的点(x,y)对应的位似图形上的坐标为(kx,ky)或(-kx,-ky).师:请大家把这个结论一起来读两遍.(生读)师:同学们试一试:(课件/板书)在平面直角坐标系中,点A(3,4),B(-4,3),以原点O为位似中心,相似比为2,将△OAB放大为△OA′B′,则对应点A′、B′的坐标分别为_____.生:A′(6,8),B′(-8,6)或A′(-6,-8),B′(8,-6).师:在坐标系中,已知图形的坐标和相似比,求该图形上一点关于原点位似的点的坐标,有两种情况,不可遗漏.(课件/板书)在坐标系中,已知图形的坐标和相似比,求该图形上一点关于原点位似的点的坐标,有两种情况,不可遗漏.师:现在我们总结一下:在坐标系中,以原点O为位似中心,位似比为k,如何画位似图形?生:……(课件/板书)关于原点位似作图的两个步骤1.描点:根据原图形关键点的坐标与相似比确定所作图形对应的坐标描点;2.连线:按原图形的连接顺序连接所作的各个对应点.提醒:在坐标系中,已知图形的坐标和位似比,作其关于原点的位似图形,有两种情况,如果没有特别说明只需要作出一种即可.师:接下来探究下面的问题.问题3 如图,点A的坐标为(0,﹣2),点B的坐标为(2,﹣1),将图中△ABC以B为位似中心,放大到原来的2倍,得到△A′BC′.(1)在网格图中画出△A′BC′;(2)根据你所画的正确的图形写出:与点A对应的点A′的坐标为()师:(指准图)此题位似中心B不是原点,如何找对应点和画图呢?生:……师:画出相应的图形.(学生画图)(课件/板书)(1)如图(2)从坐标系中可得:A′的坐标(﹣2,﹣3)(课件/板书)归纳总结先分别连接并延长位似中心和能代表原图的关键点;然后根据相似比,确定能代表所作的位似图形的关键点;最后顺次连接上述各点,得到放大或缩小的图形.问题4 我们已经学习了四种变换:平移、轴对称、旋转和位似,你能说出它们之间的异同吗?在图所示的图案中,你能找到这些变换吗?师:(指图)平移、轴对称、旋转和位似都是我们常见基本变换,你能说出它们之间的异同吗?在图所示的图案中,你能找到这些变换吗?谁来说一说?生:(结合以下设置回答)(课件/板书)1.平移:平移是图形沿一定的方向移动一定的距离,平移不改变图形的方向与大小,所以本图案不包含平移;2.旋转:旋转是绕某个点按照某个方向,旋转一定角度,旋转不改变图形大小、改变图形的方向,所以本图案包含旋转;3.轴对称:轴对称是图形沿某条直线对折,直线两旁的部分能完全重合,所以本图案包含轴对称;4.位似:位似是在图形相似的前提下,过对应点的直线都经过同一点,所以本图案包含位似.师:于是,图形间的变换做一下分类:(课件/板书)图形变换的分类1.全等变换:全等变换不改变图形的大小与形状,全等变换包括平移、旋转、轴对称;2.相似变换:相似变换改变图形的大小,不改变图形的形状,相似变换包括相似与位似.6.3 典例剖析例1 已知:△ABC在坐标平面内,三个顶点的坐标分别为A(0,3),B(3,4),C(2,2).(正方形网格中,每个小正方形的边长是1个单位长度)(1)画出△ABC向下平移4个单位得到的△A1B1C1,并直接写出C1点的坐标;(2)以点B为位似中心,在网格中画出△A2BC2,使△A2BC2与△ABC位似,且位似比为2∶1,并直接写出C2点的坐标及△A2BC2的面积.分析:(1)根据网格结构,找出点A,B,C向下平移4个单位的对应点A1,B1,C1的位置,然后顺次连接即可,再根据平面直角坐标系写出点C1的坐标;(2)延长BA到A2,使AA2=AB,延长BC到C2,使CC2=BC,然后连接A2C2即可,再根据平面直角坐标系写出C2点的坐标,利用△A2BC2所在的矩形的面积减去四周三个小直角三角形的面积,列式计算即可得解.解:(1)如图,△A1B1C1即为所求,C1(2,-2);(2)如图,△A2BC2即为所求,C2(1,0),规律总结利用平移变换作图,以及在网格内求三角形的面积时,根据网格结构准确找出对应点的位置是解题的关键,网格内的三角形的面积通常利用三角形所在的矩形的面积减去四周三个小直角三角形的面积得到.例2 如图,△ABC各顶点坐标分别为:A(﹣4,4),B(﹣1,2),C (﹣5,1).(1)画出△ABC关于原点O为中心对称的△A1B1Cl;(2)以O为位似中心,在x轴下方将△ABC放大为原来的2倍形成△A2B2C2;(3)请写出下列各点坐标A2:,B2:,C2:;(4)观察图形,若△AlBlCl中存在点P1(﹣m,﹣n),则在△A2B2C2中对应点P2的坐标为:.分析(1)利用关于原点对称点的性质得出各对应点坐标进而得出答案;(2)利用位似图形的性质得出对应点位置进而得出答案;(3)利用(2)中所画图形得出各点坐标即可;(4)利用位似图形的性质得出P2的坐标.解:(1)如图所示:△A1B1Cl,即为所求;课堂小结(一)学生总结这节课学习了什么?你有什么收获?(小组说--组内总结--组间交流)1.一般地,在平面直角坐标系中,如果以原点为位似中心,新图与原图位似比为k,那么与原图上的点(x,y)对应的位似图形上的坐标为(kx,ky)或(-kx,-ky).2.利用坐标系作出位似图形.关键是是要确定位似图形各个顶点的坐标.根据归纳总结出的规律,找出各对应顶点.(二)教师总结今天,我们通过自己的努力,学会了这么多知识,老师真为你们骄傲!同时我们还发现很多数学知识都是相互联系、相互贯通的.我们在学习时要做到举一反三,运用旧知识来学到更多的新知识.课后习题完成配套课后练习题板书27.2.2 相似三角形的性质1.一般地,在平面直角坐标系中,如果以原点为位似中心,新图与原图位似比为k,那么与原图上的点(x,y)对应的位似图形上的坐标为(kx,ky)或(-kx,-ky)2.在坐标系中,已知图形的坐标和相似比,求该图形上一点关于原点位似的点的坐标,有两种情况,不可遗漏.3.关于原点位似作图的两个步骤⑴描点:根据原图形关键点的坐标与相似比确定所作图形对应的坐标描点;⑵连线:按原图形的连接顺序连接所作的各个对应点.提醒:在坐标系中,已知图形的坐标和位似比,作其关于原点的位似图形,有两种情况,如果没有特别说明只需要作出一种即可.4.图形变换的分类⑴全等变换:全等变换不改变图形的大小与形状,全等变换包括平移、旋转、轴对称;⑵相似变换:相似变换改变图形的大小,不改变图形的形状,相似变换包括相似与位似.例1 ……例2 ……。