初中数学多边形的内角和优质课教学设计
全国初中数学优秀课一等奖教师教学设计:多边形的内角和--教学设计

全国初中数学优秀课一等奖教师教学设计:多边形的内角和–教学设计一. 教材分析《多边形的内角和》是初中数学的重要内容,对于学生理解和掌握多边形的性质,培养学生的逻辑思维能力具有重要意义。
本节课的内容是在学生已经掌握了多边形的概念和性质的基础上进行教学的,通过引导学生探究多边形的内角和,使学生掌握多边形内角和的计算方法,培养学生的探究能力和合作意识。
二. 学情分析初中生正处于青春期,思维活跃,好奇心强,但同时也有注意力不集中,自律性差等问题。
对于多边形的内角和,学生可能有一定的认知基础,但缺乏系统的探究和证明过程的经验。
因此,在教学过程中,需要教师引导学生积极参与,激发学生的学习兴趣,提高学生的学习主动性。
三. 教学目标1.知识与技能目标:使学生理解多边形的内角和的概念,掌握多边形内角和的计算方法,能够运用多边形的内角和解决实际问题。
2.过程与方法目标:通过探究多边形的内角和,培养学生的观察能力、思考能力、动手操作能力和合作意识。
3.情感态度与价值观目标:培养学生对数学的兴趣,增强学生对数学学科的信心,培养学生的自主学习能力。
四. 教学重难点1.重点:多边形的内角和的概念,多边形内角和的计算方法。
2.难点:多边形内角和公式的推导过程,多边形内角和的应用。
五. 教学方法1.引导探究法:教师引导学生通过观察、思考、动手操作等方式,自主探究多边形的内角和。
2.合作学习法:学生分组进行讨论,共同解决问题,培养学生的合作意识。
3.案例教学法:通过具体的案例,使学生理解和掌握多边形的内角和的应用。
六. 教学准备1.教具准备:多媒体教学设备,PPT课件,多边形的模型或图片。
2.学具准备:学生分组准备,每组一份多边形的模型或图片,以及用于记录和展示的工具。
七. 教学过程1.导入(5分钟)教师通过多媒体展示多边形的图片,引导学生回顾多边形的概念和性质。
然后,提出问题:“同学们,你们知道多边形的内角和是多少吗?”引发学生的思考和兴趣。
多边形的内角和教案(优秀范文5篇)[修改版]
![多边形的内角和教案(优秀范文5篇)[修改版]](https://img.taocdn.com/s3/m/c04cb29248d7c1c709a14519.png)
第一篇:多边形的内角和教案多边形的内角和教案教学目标通过探索多边形的对角线研究多边形的内角和公式,并会应用它们进行有关计算.教学重点、难点重点:多边形的内角和公式的理解和运用.难点:多边形的内角和公式的推导.教学流程设计一、回顾1.我们知道三角形的内角和为180°.2.我们还知道,正方形的四个角都等于90°,那么它的内角和为360°,同样长方形的内角和也是360°.3.正方形和长方形都是特殊的四边形,其内角和为360°,那么一般的四边形的内角和为多少呢?4. 什么是多边形的对角线?二、学生问题探究1.从四边形的一个顶点出发可以引几条对角线?它们将四边形分成几个三角形?那么四边形的内角和等于多少度?2.从五边形一个顶点出发可以引几条对角线?它们将五边形分成几个三角形?那么这五边形的内角和为多少度?3.从n边形的一个顶点出发,可以引几条对角线?它们将n边形分成几个三角形?n边形的内角和等于多少度?n边形一共有多少条对角线.三、教师引导学生分析总结:1.通过以上探索我们知道:从n边形一个顶点出发可作(n-3)条对角线,这些对角线把n边形分成(n-2)个三角形。
这(n-2)个三角形的内角和正好是这个n边形的内角和。
由此我们推导出n边形内角和公式:n边形的内角和:(n一2)·180°.2.n边形一共有n(n-3)/2条对角线.四、示例讲解例1:求八边形的内角和。
例2:如果一个多边形的内角和是2160度,求这个多边形的边数。
五、课堂练习P:86 练习1、2.六、课时小结1.从n边形一个顶点出发可作(n-3)条对角线,这些对角线把n边形分成(n-2)个三角形。
n边形一共有n(n-3)/2条对角线.2.n边形的内角和:(n一2)·180°.七、学生课后思考:要得到多边形的内角和需通过“三角形的内角和”来完成,就是把一个多边形分成几个三角形.除利用对角线把多边形分成几个三角形外,还有其他的分法吗?你会用新的分法得到n边形的内角和公式吗?第二篇:《多边形的内角和》教案《多边形的内角和》教案以下是查字典数学网为您推荐的《多边形的内角和》教案,希望本篇文章对您学习有所帮助。
多边形内角和教学设计3篇

多边形内角和教学设计3篇多边形内角和教学设计1《多边形内角和》教学设计一、教材分析本节课是人民教育出版社义务教育课程标准实验教科书(六三学制)七年级下册第七章第三节多边形内角和。
二、教学目标1、知识目标:(1)使学生了解多边形的有关概念。
(2)使学生掌握多边形内角和公式,并学会运用公式进行简单的计算。
2、能力目标(1)通过对“多边形内角和公式”的探究,培养学生分析问题、解决问题的能力,同时让学生充分领会数学转化思想。
(2)通过变式练习,培养学生动手、动脑的实践能力。
3、情感态度目标:通过猜想、推理活动感受数学活动充满着探索以及数学结论的确定性,提高学生学习热情。
三、教学重、难点重点:探索多边形内角和。
难点:探索多边形内角和时,如何把多边形转化成三角形。
四、教学方法:引导发现法、讨论法五、教具、学具及辅助教学媒体教具:多媒体课件学具:三角板、量角器教学媒体:大屏幕、实物投影六、教学过程:(一)创设情境,设疑激思1、以疑导入,引发求知欲。
先展示六螺帽,八角石英钟、多边形水果盘等多边形实物。
由此激发学生自己要设计,怎样设计的求知欲。
然后提出具体问题。
2、复习提问,知识巩固。
(1)三角形内角和等于多少度?(2)四边形内角和定理以及推导方法。
3、引入新课上一节课学习了求四边形内角和的方法,怎样求五边形、六边形……n边形的内角和呢?下面我们一起来讨论这个问题。
师:你知道五边形的内角和吗?六边形呢?十边形呢?你是怎样得到的?活动二:探究五边形、六边形、十边形的内角和。
学生先独立思考每个问题再分组讨论。
关注:(1)学生能否类比四边形的方式解决问题得出正确的结论。
(2)学生能否采用不同的方法。
学生分组讨论后进行交流(五边形的内角和)方法1:把五边形分成三个三角形,3个180o的和是540o。
方法2:从五边形内部一点出发,把五边形分成五个三角形,然后用5个180o的和减去一个周角360o。
结果得540o。
方法3:从五边形一边上任意一点出发把五边形分成四个三角形,然后用4个180o的和减去一个平角180o,结果得540o。
八年级上册《多边形的内角和》教学设计(精选8篇)

八年级上册《多边形的内角和》教学设计八年级上册《多边形的内角和》教学设计(精选8篇)作为一名默默奉献的教育工作者,通常需要用到教学设计来辅助教学,借助教学设计可以更好地组织教学活动。
我们该怎么去写教学设计呢?下面是小编收集整理的八年级上册《多边形的内角和》教学设计,希望能够帮助到大家。
八年级上册《多边形的内角和》教学设计篇1教学目标:1、理解多边形及正多边形的定义2、掌握多边形内角和公式。
教学重、难点:教学重点:1、多边形内角和公式。
2、计算多边形的内角和及依据内角和确定多边形边数。
教学难点:多边形内角和公式的推导。
一、创设情境,导入新课前面我们学过了三角形内角和定理,你还记得三角形内角和是多少度吗?你知道四边形内角和的度数吗?如何计算多边形内角和吗?今天,老师想和同学们一起走进多边形的家园去揭开多边形的内角和的奥秘。
(设计说明:复习引入,开门见山,提出简单的问题,吸引学生的注意力,激发学生自主学习的兴趣和积极性,从而自然引入新课。
)二、自主探究,发现新知自学教材内容,动手操作,并思考:1、三角形内角和多少度?2、分别从四边形、五边形、六边形一个顶点出发可以引出多少条对角线?你能类比归纳出从n边形的一个顶点出发可以引出多少条对角线吗?3、分别四边形、五边形、六边形从一个顶点出发引出的对角线将原图形分割成多少个三角形?你能类比归纳出从n边形的一个顶点出发引出的对角线把这些多边形分别分割成了多少个三角形吗?4、请结合图形计算四边形、五边形、六边形的内角和。
5、从n边形一个顶点出发可以引出多少条对角线呢?这些对角线将n边形分割成了多少个三角形?现在你知道多边形内角和公式了吗?6、用几何符号表示你的发现。
(师生活动:学生自学教材,结合探究提纲思考、作图、观察、讨论,教师做好板书准备后巡视检查学生自学情况,深入学生之间交流,掌握学情,为展示交流做准备。
)(设计意图:从简单的四边形入手,让学生亲自操作寻求结论,易于引起学习兴趣,让学生体会分割的过程,有利于深入领会转化的本质——n边形转化为三角形,也让学生体验数学活动充满探索和解决问题方法的多样性, 同时,渗透类比的数学思想。
多边形的内角和教学教案

多边形的内角和教学教案多边形的内角和教案篇一一、教学目标知识与技能目标:能够说出多边形的内角和公式并会运用过程与方法目标:通过多边形内角和公式的推导过程,提高逻辑思维能力。
情感态度与价值观目标:养成实事求是的科学态度。
二、教学重难点教学重点:多边形的内角和公式教学难点:多边形内角和公式三、教学方法讲解法、练习法、分小组讨论法四、教学过程结合新课程标准及以上的分析,我将我的教学过程设置为以下五个教学环节:导入新知、生成新知、深化新知、巩固新知、小结作业。
1. 导入新知首先是导入新知环节,我会引导学生回顾三角形的内角和,紧接着提出问题:四边形的内角和是多少?五边形的内角和是多少?六边形的内角和是多少?引发学生思考,由此引出本节课的课题:多边形的内角和(板书)。
通过提问的方式帮助学生回顾旧知识的同时,引导学生思考,也激发学生的求知欲,为本节课的多边形内角和的学习奠定了基础。
2. 生成新知接下来,进入生成新知环节,我会引导学生将四边形分成两个三角形来求内角和,由此得出四边形的内角和是2个三角形的内角和,即2*180=360,那同样的引导学生将五边形,六边形分别从同一个顶点出发划分为3个4个三角形,从而得出五边形的内角和为3*180=540,然后,让学生前后桌四个人为一个小组,五分钟时间,归纳n变形的内角和是多少,讨论结束后,找一个小组来回答他们讨论的结果。
由此生成我们的新知识:多边形的内角和公式180*(n-2)。
验证:七边形验证在本环节中通过学生自主学习归纳总结得出多边形的内角和公式,充分发挥了他们的自主探讨能力,提升逻辑思维能力。
3. 深化新知再次是深化新知环节,在本环节,我会引导学生思考一下有没有其他的将多边形分隔求内角和的方法,引导学生思考,可不可以将六边形从多个顶点出发,然后用公式验证一下我们这样分割可行不可行。
这时候会发现有的分割可行有的分割不可行,在这个时候给他们讲解为什么不可行为什么可行,以此来引出分割时对角线不能相交,从而强调我们分隔的一个原则。
《多边形及其内角和》教案

《多边形及其内角和》教案《多边形及其内角和》教案1一、教学目标1、掌握多边形的内角和公式,并能熟练运用。
2、通过探索多边形的内角和公式,感受数学思考过程的条理性,发展推理能力和语言表达能力,体会从特殊到一般的认识问题的方法。
3、通过探索多边形内角和公式,尝试从不同的角度寻求解决问题的方法,并能有效的解决问题。
4、通过猜想,推理等数学活动,感受数学活动充满探索以及数学结论的确定性,提高学生的学习热情。
二、教学重点、难点重点:探索多边形的内角和公式。
难点:探索多边形内角和时,如何把多边形转化成三角形,利用三角形内角和180度求出多边形内角和。
三、教学方法:学生自主探究、合作交流与教师启发引导相结合.四、教具准备①每个小组一张“探究实验报告单”(活动1)②每人一张“类比探索五边形、六边形、七边形的内角和的答题纸”(活动2)③多媒体课件五、教学过程(一)创设情境,引入新课问题1:把一个长方形纸片剪去一个角还剩几个角。
【学生给出的答案可能是---三个角、四个角、五个角,教师演示动画。
】问题2:你知道所得图形的内角和吗。
你知道102边形的内角和吗。
【根据学生的回答,教师指出本课内容,板书课题: 多边形的内角和。
】(二)合作交流,探索新知活动1:猜想验证四边形的内角和问题:(1)任意四边形的内角和等于多少度。
(2)你是怎样得到的。
你能找到几种方法。
【问题(1)学生很容易猜到360°,问题(2)组织学生四人一组拿出课前老师发给每个小组的探究实验报告,讨论并记录探究方法。
在讨论的过程中,教师给出合格、良好、优秀的“自我评价标准”,每个小组对照评价表给出自我评价,教师深入到学生讨论中,以“边听—边问—边导”的形式,适时对各小组进行点拨。
讨论结束后,小组学生代表用实物投影展示探究实验报告,说明求四边形内角和的方法,并讲述想法。
教师对学生找到的不同方法都给予肯定和评价,并加以总结,归纳学生提出的探究方法:度量、剪拼、分割。
初中数学优秀教案《多边形的内角和》

初中数学优秀教案《多边形的内角和》作为一名老师,常常要根据教学需要编写教案,借助教案可以恰当地选择和运用教学方法,调动学生学习的积极性。
我们应该怎么写教案呢?以下是小编收集整理的初中数学优秀教案《多边形的内角和》,希望能够帮助到大家。
【教学内容】【教学目标】1.掌握多边形的内角和的计算方法,并能用内角和知识解决一些简单的问题.2.经历探索多边形内角和计算公式的过程,体会如何探索研究问题.3.通过将多边形"分割"为三角形的过程体验,初步认识"转化"的数学思想.【教学重点与教学难点】1.重点:多边形的内角和公式2.难点:多边形内角和的推导3.关键:.多边形"分割"为三角形.【教具准备】三角板、卡纸【教学过程】一、创设情景,揭示问题1、在一次数学基础知识抢答赛中,老师出了这么一个问题,一个五边形的所有角相加等于多少度?一个学生马上能回答,你们能吗?2、教具演示:将一个五边形沿对角线剪开,能分割成几个三角形?你能说出五边形的内角和是多少度吗?(点题)意图:利用抢答问题和教具演示,调动学生的学习兴趣和注意力二、探索研究学会新知1、回顾旧知,引出问题:(1)三角形的内角和等于_________.外角和等于____________(2)长方形的内角和等于_____,正方形的内角和等于__________.2、探索四边形的内角和:(1)学生思考,同学讨论交流.(2)学生叙述对四边形内角和的认识(第一二组通过测量相加,第三四组通过画对角线分成两个三角形.)回顾三角形,正方形,长方形内角和,使学生对新问题进行思考与猜想.以四边形的内角和作为探索多边形的突破口。
(3)引导学生用"分割法"探索四边形的内角和:方法一:连接一条对角线,分成2个三角形:180°+180°=360°从简单的思维方式发散学生的想象力达到"分割"问题,并让学生发现问题,解决问题教学步骤教学内容备注方法二:在四边形内部任取一点,与顶点连接组成4个三角形.180°×4-360°=360°3、探索多边形内角和的问题,提出阶梯式的问题:你能尝试用上面的.方法一求出五边形的内角和吗?(第一二组)你能尝试用上面的方法一求出六边形的内角和吗?(第三,四组)那么n边形呢?完成后填表:n边形3456...n分成三角形的个数1234...n-2内角和...4、及时运用,掌握新知:(1)一个八边形的内角和是_____________度(2)一个多边形的内角和是720度,这个多边形是_____边形(3)一个正五边形的每一个内角是________,那么正六边形的每个内角是_________通过学生动手去用分割法求五(六)边形的内角和,从简单到复杂,从而归纳出n边形的内角和三、点例透析运用新知例题:想一想:如果一个四边形的一组对角互补,那么另一组对角有什么关系呢?四、应用训练强化理解4、第83页练习1和2多边形内角和定理的应用五、知识回放课堂小结提问方式:本节课我们学习了什么?1多边形内角和公式2多边形内角和计算是通过转化为三角形六、作业练习1、书面作业:2、课外练习:。
部编版初中数学八年级上册《多边形的内角和》优质课公开课课件、教案

部编版初中数学八年级上册《多边形的内角和》优质课公开课课件、教案11.3.2多边形的内角和(教学设计)一、教学目标1、知识与技能:(1)探索并了解多边形的内角和公式。
(2)能对多边形的内角和公式进行应用,解决实际问题。
(3)掌握多边形的外角和定理,并能运用。
2、过程与方法:(1)通过量,拼,分,类比,推理等教学活动,探索多边形的内角和公式,感受数学思考过程的条理性,发展推理能力和语言表达能力。
(2)通过把多边形转化成三角形体会转化思想在几何中的运用,让学生尝试从不同的角度寻求解决问题的方法,同时让学生体会从特殊到一般的认识问题的方法。
3、情感态度与价值观:(1)通过师生共同活动,培养学生创新精神,增强学生对数学的好奇心与求知欲。
(2)向学生渗透类比、转化的数学思想,并使学生学会与他人合作。
二、教材分析本节课选自人教版数学七年级册第七章第三节多边形内角和,训练重点是探索多边形内角和公式的得出及利用内角和公式解决一些计算和证明问题。
本节课“多边形的内角和”作为本章的一个重点也是一个难点,是学生在上学期初步认识和感受空间图形之后的延伸,是三角形有关知识的拓展,将会大大提高学生的探究、推理、表达等各方面能力,公式的运用还充分地体现了图形与客观世界的密切联系。
三、学情分析前面,学生已经知道三角形的内角和及外角、正方形的内角和、长方形的内角和,并了解了多边形的有关概念,这些都为学生学习本节知识作了知识准备。
学生已经初步具备小组合作能力、独立学习能力,探究的能力,以及归纳、分析能力,能通过合作、交流来完成学习任务。
四、教学重难点重点:多边形内角和定理与外角和定理的推导及运用。
难点:将多边形的内角和转化为三角形的内角和,找出它们之间的关系。
五、教法:启发式、探索式六、学法:自主探索、合作交流七、创新点、德育点、空白点创新点:(1)将多边形内角和公式的推导,由学生小组合作或独立思考完成,最后由特殊到一般归纳内角和公式。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
多边形的内角和
人教版义务教育教材数学八年级上册
一、内容和内容解析:
1、内容
多边形内角和公式
2、内容解析
多边形内角和公式反映了多边形的要素之一----“角”之间的数量关系,是多边形的基本性质。
多边形内角和公式是三角形内角和定理的应用、推广和深化,它源于三角形内角和定理又包含三角形内角和定理。
多边形内角和公式为多边形外角和公式、四边形及正多边形的有关角的学习提供知识基础。
多边形内角和公式的探索是从具体的四边形、五边形、六边形的内角和研究出发,逐步深入地提出一般的问题(如:(1)任意一个四边形的内角和等于360°的原因是什么?(2)你能用同样的方法推导出五边形和六边形的内角和各是多少吗?(3)你能发现多边形的内角和与边数的关系吗?),进而获得一般结论,并加以推理论证。
这个过程体现了从特殊到一般的研究问题方法。
同时多边形内角和公式的探索与证明都涉及将多边形分割成若干个三角形的化归过程,即将多边形分割成若干个三角形,利用三角形内角和公式得出多边形内角和公式,这个过程体现了将复杂图形转化为简单的基本单元的化归思想。
基于以上分析,确定本节课的教学重点:多边形内角和公式的探索过程及简单应用。
二、目标和目标解析
1、目标
(1)通过探究活动,理解多边形内角和公式,并在探究中体会化归思想和从特殊到一般的研究数学问题的方法,同时培养学生创新精神。
(2)通过梯度练习,熟练掌握多边形内角和公式,并会运用公式解决简单问题,从而增强学生学习数学的信心和能力。
2、目标解析
达成目标(1)的标志是:学生能在学案的启发引领下,从对具体的特殊四边形内角和的研究出发,利用三角形内角和公式,逐步探索四边形、五边形、六边形……n边形的内和,并归纳出n边形的内角和公式,体会从特殊到一般的研究问题的方法。
在将四边形、五边形、六边形……n边形分割成若干个三角形的过程中,感悟所蕴含的化归思想。
让学生尝试从不同的角度寻求解决问题的方法,培养学生创新精神,增强学生对数学的好奇心与求知欲。
达成目标(2)的标志是:通过自主预学探究,交流展示等过程,学生能理解多边形的内角和公式,并能将公式运用于简单的多边形内角和及边数的计算,能在多边形问题情境中,自觉地联想用该公式解决问题。
三、教学问题诊断分析:
问题(1):由具体的特殊的多边形内角和到n边形内角和公式的获得,是一个多层次的探索过程,本质上是由具体到抽象以及演绎推理的过程,如何获得将多边形分割成三角形来解决问题的思路,如何确定分割后三角形的个数,这个过程不但结论随着多边形边数的变化而变化,而且需要关注的因素也较多-----边数、从一个顶点出发的对角线条数、分割的三角形个数、内角和等,学生把握这一过程会有一定难度。
教学过程中利用预学案进行问题铺设,引导学生弄清解决问题(推导)的层次。
通过五个步骤①画一画:过四、五、六边形一个顶点有多少条对角线?请你尝试画出来.②看一看:观察这些对角线将多边形分成多少个三角形?③试一试:从四、五、六边形的一个顶点出发可以画几条对角线,把四、五、六边形分成了几个三角形?④猜一猜:从十二边形的一个顶点出发可以画几条对角线,把十二边形分成了几个三角形。
⑤请将结果整理到下表中,并思考:仔细观察数据,你发现了什么?利用问题逐渐引领学生观察相关因素之间变化关系(即边数的变化引起从一个顶点出发的对角线数的变化、对角线数的变化又引起三角形个数的变化),并使这三者的关系直观化。
问题(2):利用多种方法验证“多边形的内角和”时,重新利用新的方法将多边形分割成多个三角形,学生在这个过程中会有难度,教学中将问题进行分割,从具体的四边形开始,①在学案中提示学生分割四边形时四边形的一边必须作为分割后三角形的一边。
②在教学中,若学生还有难度,再通过问题提示:第一种方法是从顶点出发连接另外的顶点得对角线将多边形进行分割,那么这个出发点还可以选在什么位置?从而引导学生找到解决问题的方法。
问题(3):学生在观察表格,由多边形的内角和得规律时会有难度,教学中利用多媒体课件,引导学生观察数据特征,从数据中分析,从而解决问题。
问题(4):学生在解决夯实新知的B组题“一个多边形内角和是900°,求它是几边形?”部分学生可能会用小学的算术方法解决,这种方法的弊端是有的学生在用内角和除以180°后,忘记加2,从而得到错解。
在教学时让学生对比用方程思想和小学算术这两种方法后,从而选择方程思想来解题。
问题(5):学生在解决夯实新知的B组题“一个多边形各内角都是150°,求这个多边形的边数。
”会有一定难度,若学生有困难,可引导学生利用方程思想,通过正多边形或每个内角相等的多边形内角和有两种求法,利用内角和作为等量关系列出方程,从而解决问题。
本节课的教学难点:探究多边形内角和公式时,如何将多边形分割成三角形。
四、教学支持条件分析
1、通过学案设计系列问题,引导学生课前自主探究来获得将多边形分割成三角形来
解决问题的思路,从而突破教学难点。
2、在观察表格,有关多边形的内角和还能得到哪些规律时,使用多媒体课件通过动
画直观观察数据,更有助于帮助学生得出规律。
3、使用多媒体课件辅助教学,并且借助实物展台展示学生的探索成果及课堂练习,
能够提高课堂效率。
五、教学过程设计
(一)情境引入:
工人师傅生产了一个接近五边形的零件,如(图1),按要求,AB,CD的延长线相交成80°的角(图2),我们想检验这个零件是否合格,需要解决什么问题呢?
【设计意图】通过问题引出本节课要探究的知识内容。
师:根据图形我们知道,∠A=122°,∠C=155°,∠E=90°,∠F=90°,∠G=?若我们知道了这个五边形的内角和与其中的四个角的度数,就可以求出第五个角。
那么怎样能知道五边形的内角和呢?我们不仅会求五边形的内角和,六边形、七边形,甚至二十边形的内角和,都可以求出来,这就是我们这节课需要探讨的问题。
(板书课题:多边形的内角和)
过渡语:同学们在课前进行了预学,在预学中,同学们有什么困惑呢?下面我们小组来交流,交流之前,请看大屏幕上的预学交流要求(①2号同学发言订正预计结果,
有不同意见同学补充②1号同学作记录,整理预学中遇到的疑惑点,并作为代表
交流。
注:每个小组同学根据数学学习情况进行了编号)时间大约3分钟,开始。