湖南省师范大学附属中学高三数学总复习 两条异面直线所成的角 教案

合集下载

“异面直线所成的角”(第二课时)教学设计

“异面直线所成的角”(第二课时)教学设计

“异面直线所成的角”(第二课时)教学设计双流中学数学组 邱国界教材分析:异面直线及异面直线的夹角这一节设置为两课时,这是第二课时的教学设计.异面直线的夹角是由两条相交直线的夹角扩充而生成的,由平移原理可知,当两条异面直线在空间的位置确定后,它们的夹角的大小也就随之确定了.这对于初学立体几何的学生来说,是较难理解的,对“异面直线还有夹角”这一概念感到陌生和新鲜,是学习的一个难关.教学中应通过现实生活中的例子,说明如何抽象出异面直线的夹角概念.强调异面直线的夹角的存在性和学习的必要性.异面直线的夹角的范围是000~90,不含00.最后,通过教科书中正方体的练习,逐步深入理解异面直线及其夹角,使学生较好地掌握这一内容.要计算异面直线a b 、的夹角的大小,必须通过平移转化为相交直线''a b 、的夹角.如何实现“转化”是学习中的一个难关.根据异面直线夹角的定义,在空间任取一点O 实现转化固然可以,而在实际操作中,可将点O 取在a 或b 上.两条异面直线互相垂直,即它们的夹角是直角,这是两条直线是异面直线时的一种特殊位置情况.应向学生指出:今后如果说两条直线互相垂直,它们可能相交,也可能异面.对于本节的学习,仍然应注意概念的形成过程,让学生去完成意义建构,而决不单纯以记忆结论为目的,要注重空间想象能力的形成过程,并有意识地加以引导、培养.教学目标:1、知识目标:(1)掌握异面直线所成角的概念;(2)能求出一些较特殊的异面直线所成的角; (3)了解异面直线垂直. 2、能力目标:(1)空间能力的进一步形成; (2)平面向空间的推广能力; (3)空间向平面的转化能力.3、情感目标:通过理论与实际的结合,培养学生实事求是的态度;同时在实际生活中不断发现问题,解决问题,培养学生的创新精神,为自己的人生垫定扎实的基础.学情分析:学生已有知识:空间四大公理、等角定理、异面直线的概念与判断;已有能力:立体空间的想象、抽象思维能力(但这种能力欠缺);情感定位:初步接触立体几何,有较强的兴趣,对一门新的数学分支充满了激情.教学重点:异面直线所成的角概念的形成及应用教学难点:异面直线所成的角的发现与概念形成,将异面直线所成角转化为平面角 授课类型:新授课授课方式:探索法、引导法、讨论法教法设计:创设问题的现实情境,通过启发、引导学生发现异面直线所成的角的存在性,通过由特殊到一般、从具体到抽象,培养学生观察、分析、归纳、抽象、概括等逻辑思维能力与空间想象课时安排:1课时教 具:FLASH多媒体课件、实物投影仪、实物教具 教学过程: 一、创设情境:多媒体课件给出嫦娥奔月的轨迹图,通过动画说明空间中异面直线的方向存在差异,也即空间异面直线的“角度”的存在性,即本节课的课题:异面直线所成的角(异面直线的夹角).(设计意图:建构主义教学模式在高中数学中的力能否吸引到教学内容上的关键所在.嫦娥奔月刚刚成功,中国人所拍摄的第一幅月球照片也刚刚公布,这是中国人的骄傲,也是每个中国人所熟知的事情,也是这段时间人们谈论最多的话题,因此,以此为情境引入,能一下抓住学生的注意力,激发学生的学习热情,引导学生积极主动地参与学习、思考.)二、新知形成过程:1、质疑一:平移会改变这两条异面直线原有的方向吗?2、质疑二:怎样度量异面直线的方向的差异呢?3、质疑三:相交直线中,选取哪个角作为度量结果呢?4、质疑四:两直线交点的位置会影响这个度量值吗?5、提问:你可以怎样定义异面直线夹角呢?(设计意图:这一版块属于建构主义教学模式在高中数学中的应用研究下高中数学概念课中的教性学习是一种以问题为载体、以主动探究为特征的学习活动,是学生在教师的指导下在学习和社会生活中自主地发现问题、探究问题、获得结论的过程.在这个环节中,既让学生独立思考与学习,同时也采用协作学习的方式来解决所提出的问题,最后形成异面直线夹角的概念.问题5的提出就目的是培养学生的归纳总结能力,并体会到学习的乐趣.)三、形成新知:1、形成异面直线所成角的定义.异面直线所成的角:已知两条异面直线a b 、,经过空间任一点O 作直线//,//a a b b '',''a b 、所成的角的大小与点O 的选择无关,我们把''a b 、所成的锐角(或直角)叫异面直线a b 、所成的角(或夹角).为了简便,点O 通常取在两条异面直线中的一条上.2、异面直线垂直:如果两条异面直线所成的角是直角,则叫两条异面直线垂直.两条异面直线a b 、 垂直,记作a b ⊥.两直线垂直含异面垂直与共面垂直.3、两条异面直线所成角的取值范围是0,2π⎛⎤⎥⎝⎦. (设计意图:异面直线概念的得出在前面三步的进行下也就成了顺理成章的事了,只有用严格的数学语言来对一个知识下了定义才能方便我们对该知识的使用,也正是将一个数学概念顺理成章的学生自己构建在了自己的已有的知识体系中,这正是建构主义教学模式在高中数学中的应用研究下高中数学概四、新知应用:正方体ABCD A B C D ''''-中: (1)求直线AB 与B C ''夹角的度数;(2)求直线BA '与CC '夹角的度数; (3)求直线BA '与'AD 夹角的度数. 学生活动:讨论、思考、求解;教师活动:参与讨论共同解决;强调解题的思维与书写步骤的完整.解:(1)由//B C BC '',可知ABC ∠等于异面直线AB 与B C ''的夹角,易知ABC ∠=090,所以异面直线AB 与B C ''的夹角为90;(2)由//BB CC '',可知B BA ''∠等于异面直线BA '与CC '的夹角,所以异面直线BA '与CC '的夹角为45;(3)连结',''BC A C ,则'//'AD B C ,则''C BA ∠等于异面直线BA '与'AD 的夹角,易知''A BC ∆为正三角形,所以异面直线BA '与'AD 的夹角为60. 形成能力:1、点O 通常取为两条异面直线中的一条线段的端点或中点;2、求异面直线所成的角的方法: (1)平移直线相交——作; (2)确定角——证; (3)求解角——求.D'C'B'A'DCBA(了能解题,能用,在解题中体会概念的精妙之处,在用中反思概念的合理性.独立思考与合作学习,既发挥了个人的能力也共享了集体的智慧,让每个学生在学习过程中都学有所长,愉快地学习;在建构主义理论下,以任何一种学习模式组织教学,都有一个学习效果的评价,其中包括是否完成对所学知识的意义建构,即是说学以致用,异面直线的夹角来源于生活,形成了数学概念,同时还要回到生活中去,能解决实际问题.故设计的这组练习题是检查学生对异面直线的夹角的掌握情况的,同时也是对异面直线夹角概念的巩固.)六、巩固提高:1、教材16P 练习题第4题:如图,在长方体ABCD A B C D ''''-中:(1)哪些棱所在直线与直线'AA 成异面直线且互相垂直? (2)已知'1AB AA ==,求异面直线'BA 与'CC 所成角的度数.2、空间四边形ABCD 中,AD BC ==,,E F 分别是,AB CD 的中点,6EF =,求异面直线AD 与BC 所成的角.注:此题所给的解法是利用余弦定理求解,这是常用也是通用方法,称为解三角形,而此题数据特殊,EGF ∆为等腰三角形,故也可在直角三角形中求解EGF ∠的大小.解:取AC 中点G ,连结,,EG FG EF ,∵,E F 分别是,AB CD 的中点,∴//,//,EG BC FGAD 且1122EG BC FG AD ==== ∴异面直线,AD BC 所成的角即为,EG FG 所成的角,在EGF ∆中,2221cos 22EG FG EF EGF EG FG +-∠==-⋅, ∴120EGF ∠=,异面直线,AD BC 所成的角为60. 形成能力:(1)异面直线所成的角是锐角或直角,当EGF ∆内角EGF ∠是钝角时,则异面直线AD BC 、所成的角是它的补角.(2)此题在平移时用到的是“双移”,手段是利用三角形中位线与底边平行,从而达到平移直线的目的.(3)在平移直线时,合理选择平移点→确定平面→找、移或连.(设计意图:对一个概念的真正撑握必然是经过反复再反复的过程,在实践中把握本质,故在此GFED CBAD'C'B'A'DC B A设计了这个环节.概念不变,但题目千变万化,在这个问题上,采用随机进入式教学;由于事物的复杂性和问题的多面性,要做到对事物内在性质和事物之间相互联系的全面了解和掌握、即真正达到对所学知识的全面而深刻的意义建构是很困难的.往往从不同的角度考虑可以得出不同的理解.为克服这方面的弊病,在教学中就要注意对同一教学内容,要在不同的时间、不同的情境下、为不同的教学目的、用不同的方式加以呈现.换句话说,学习者可以随意通过不同途径、不同方式进入同样教学内容的学习,从而获得对同一事物或同一问题的多方面的认识与理解.让学生思考、探索、讨论,获得多种解题思路,再展现出来,教师引导完成解法,并比较各种做法的差异与优缺点,从而提升学生的题解能力.)七、小结升华:本节课你有什么收获?异面直线夹角的概念及用平移的方法求异面直线所成的角,步骤是:作、证、算;异面直线夹角是二维到三维的推广,而求解异面直线夹角是三维向二维的转化.(设计意图:识升华,最终完成知识建构的重要环节,课后延伸可帮助学生建立自己的知识网络,对本节课起到辅助与延伸的作用,在建构主义教学模式在高中数学中的应用研究下高中数学概念课中的教学模式中必不可少.)八、课后巩固:1、教材16P 习题第6、7题.2、(选做)在长方体D C B A ABCD '''-中,4AB =,2BC =,'2AA =,求异面直线B D '与AC 所成的角的余弦值.九、板书设计十、教学反思 (见前面网页处)D'C'B'A'DCBA。

2019-2020年高三数学总复习 异面直线教案 理

2019-2020年高三数学总复习 异面直线教案 理

2019-2020年高三数学总复习异面直线教案理教材分析异面直线是立体几何中十分重要的概念.研究空间点、直线和平面之间的各种位置关系必须从异面直线开始.教材首先通过实例让学生弄懂“共面”、“异面”的区别,正确理解“异面”的含义,进而介绍异面直线所成角及异面直线间的距离,这样处理完全符合学生的认知规律.处理好这节内容,可以比较容易地引导学生实现由平面直观到空间想象的过渡.教学重点是异面直线的概念,求异面直线所成的角和异面直线间的距离是这节的难点.教学目标1. 理解异面直线的概念,了解空间中的直线的三种位置关系.2. 理解异面直线所成的角、异面直线间的距离的意义,体会空间问题平面化的基本数学思想方法.3. 通过异面直线的学习,使学生逐步养成在空间考虑问题的习惯,培养学生的空间想象能力.任务分析空间中的两条直线的位置关系,是在平面中两条直线位置关系及平面的基本性质基础上提出来的.学生对此已有一定的感性认识,但是此认识是肤浅的.同时,学生空间想象能力还较薄弱.因此,这节内容课应从简单、直观的图形开始介绍.“直观”是这节内容的宗旨.多给学生思考的时间和空间,以有助于空间想象能力的形成.异面直线所成的角的意义及求法,充分体现了化归的数学思想.要让学生通过基本问题的解决,进一步体会异面直线所成的角、异面直线间的距离的意义及其基本求法.教学设计一、问题情境(1)1. 同一平面内的两条直线有几种位置关系?空间中的两条直线呢?观察教室内的日光灯管所在直线与黑板的左右两侧所在直线的位置或观察天安门广场上旗杆所在直线与长安街所在直线的位置.2. 如图15-1,长方体ABCD—A1B1C1D1中,线段A1B所在直线与线段C1C所在直线的位置关系如何?二、建立模型(1)1. 首先引导学生观察实例或几何模型,进而发现,空间两直线除平行或相交外,还有一种位置关系:存在两条直线既不平行又不相交,即不能共面的两直线,并在此基础上总结出异面直线的定义.2. 在学生讨论归纳异面直线定义的基础上,教师概括:我们把不同在任何一个平面内的两条直线叫作异面直线.强调:(1)所谓异面,即不共面,所以它们既不平行,也不相交.(2)“不共面”,指不在任何一个平面内,关键是“任何”二字.3. 先让学生总结空间中两条直线的位置关系,然后教师明晰.(1)共面与异面.共面分为平行和相交.(2)有无公共点.有且仅有一个公共点———相交直线,无公共点 ____________ 平行直线和异面直线.4. 异面直线的画法.先让学生体会下列图形,并让其指出哪些更为直观.显然,图15-2或图15-3较好.因此,当表示异面直线时,以平面衬托可以显示得更清楚.三、问题情境(2)刻画两条平行直线位置通常用距离,两条相交直线通常用角度,那么,如何刻画两条异面直线的相对位置呢?容易想象要用角和距离,如何定义异面直线的角和距离呢?下面探究一个具体的问题:如图,在正方体ABCD—A1B1C1D1中,1. 我们知道AB与A1B是共面的,它们成的角是45°,那么异面直线AB与D1C所成的角定义为多少度的角比较合理呢?2. 回忆我们已学过的“距离”概念,发现“距离”具有“最小性”,现在直线AB和D1C上各取一点,这两点必然存在距离,试问在这所有可能的距离中,是否存在两点,这两点间距离最短?进一步思考:如何定义异面直线AB和D1C间的距离?四、建立模型(2)在学生充分讨论、探究的基础上,抽象概括出异面直线所成的角和异面直线间的距离的概念.1. 异面直线a与b所成的角已知两条异面直线a,b.经过空间任一点O,作直线a′∥a,b′∥b,我们把a′与b′所成的锐角(或直角),叫作异面直线a与b所成的角.强调:(1)“空间角”是通过“平面角”来定义的.(2)“空间角”的大小,与空间点O的选取无关,依据是“等角定理”.为简便,点O常取在两条异面直线中的一条上.(3)异面直线所成角的范围是0°<θ≤90°.(4)异面直线垂直的意义.今后所说的两直线垂直,可能是相交直线,也可能是异面直线.2. 对于问题2,学生讨论,可以发现:线段BC是在异面直线AB和D1C上各任取一点,且两点间的距离为异面直线AB和D1C间的最小值.此时,我们就说BC的长度就是AB和D1C的距离.引导学生观察、分析线段BC与AB,D1C之间的关系,得出公垂线段定义:和两条异面直线都垂直且相交的线段.强调:(1)“垂直”与“相交”同时成立.(2)公垂线段的长度定义为异面直线间的距离.五、解释应用[例题]1. 如图,点D是△ABC所在平面外一点,求证直线AB与直线CD是异面直线.注:主要考查异面直线的定义,这里可考虑用反证法证明.要让学生体会用反证法的缘由.2. 已知:如图,已知正方体ABCD—A′B′C′D′.(1)哪些棱所在直线与直线BA′是异面直线?(2)直线BA′和CC′的夹角是多少?(3)哪些棱所在直线与直线AA′垂直?(4)直线BB′与DC间距离是多少?注:主要是理解、巩固有关异面直线的一些基本概念.解题格式要规范,合理.[练习]1. 如果两条平行直线中的一条与某一条直线垂直,那么,另一条直线是否也与这条直线垂直?2. 垂直于同一条直线的两条直线是否平行?3. 与两条异面直线都相交的两条直线的位置关系是怎样的?4. 已知:如图,在长方体ABCD—A′B′C′D′中,AB=2 ,AD=2,AA′=2.(1)BC和A′C′所成角是多少度?(2)AA′和BC′所成角是多少度?(3)AA′和BC所成的角和距离是多少?(4)A′B与B′C所成的角是多少?(5)AC′与BD所成的角是多少?四、拓展延伸1. 判断异面直线除了定义之外,还有如下依据:过平面内一点和平面外一点的直线与平面内不过该点的直线是异面直线.请给以证明.2. 设点P是直线l外的一定点,过P与l成30°角的异面直线有 ____________ 条.(无数)3. 已知异面直线a与b成50°角,P为空间任一点,则过点P且与a,b所成的角都是30°的直线有 ____________ 条.(2)若a与b所成的角是60°,65°和70°呢?这篇案例设计思路完整,条理清晰.案例首先通过直观的图形引出定义,这样有利于学生的接受.然后探索了异面直线所成角与异面直线间距离的概念.探索过程有利于激发了学生的学习热情,体验科学思维方法.列举的例题有针对性,对知识的巩固和形成起到了很好的作用.“拓展延伸”中提出的问题旨在开拓学生解题思路,增强学生空间想象能力.2019-2020年高三数学总复习指数函数教案理教材分析指数函数是基本初等函数之一,在数学中占有重要地位,在实际中有着十分广泛的应用,如细胞分裂、考古中所用的14C的衰减、放射性物质的剩留量等都与指数函数有关.有理指数幂及其运算是学习指数函数的基础.教材首先通过实例引入什么是指数函数.然后给出三个具体例子y=2x,y=10x,y=()x,用描点法画其图像,并借助图像,观察得出指数函数的定义域、值域、图像过定点(1,0)及单调性.最后配备恰当的习题及练习.在知识的形成过程中,体现图像观察、归纳猜想的思想.这节内容的重点是指数函数的图像与性质,难点是应用指数函数的性质解决相关问题.教学目标1. 了解指数函数模型的实际背景.2. 理解并掌握指数函数的定义、图像及性质.3. 通过对指数函数的概念、性质的归纳、抽象和概括,体验数学知识的产生和形成的过程,培养学生的抽象概括能力.4. 在解决简单实际问题的过程中,体会指数函数是一类重要的数学模型,培养学生的应用意识.任务分析学生在学习本节内容时,已学过了一些基本函数,如二次函数,并且学过有理指数幂及其运算,这均为学生学习这节内容奠定了基础.由应用问题建立指数函数模型是个难点,为此一定要使学生理解问题的意义,进而由少到多、由浅入深逐步建立起两个变量间的关系.要重视列表、画图像的过程,这样才有利于观察、归纳出指数函数的性质.要充分显示出知识的形成过程.一、问题情境某种细胞分裂时,由1个分裂成2个,2个分裂成4个,4个分裂成8个……如果1个这样的细胞分裂x次后,得到细胞的个数为y,试求y关于x的函数关系式.先由学生独立解答,然后教师明晰细胞分裂的规律是:每次每个细胞分裂为2个.当x=0时,y=1=20;当x=1时,y=20×2=21;当x=2时,y=21×2=22;当x=3时,y=22×2=23;……归纳:分裂x次,得到细胞的个数y=2x,其中x∈N.二、建立模型1. 学生讨论上面得到的函数y=2x有何特点?(底数为常数,自变量在指数的位置上)2. 教师明晰一般地,函数y=ax,(a>0且a≠1,x∈R)叫作指数函数.思考:为什么要限制a>0且a≠1?(理由:当a=0,x≤0时,ax无意义;当a<0时,如y=(-2)无意义;当a=1时,y =1x=1是常数函数.没有研究的必要.)3. 练习在同一坐标系内,画出下面三个指数函数的图像.(1)y=2x.(2)y=10x.(3)y=()x.解:列表:描点,画图:4. 观察上面的函数的图像,结合列表,归纳总结出指数函数y=a x的性质(1)定义域是(-∞,+∞),值域是(0,+∞).(2)函数图像在x轴的上方且都过定点(0,1).(3)当a>1时,函数在定义域上是增函数,且当x>0时,y>1;当x<0时,0<y<1.当0<a<1时,函数在定义域上是减函数,且当x>0时,0<y<1;当x<0时,y>1.5. 提出问题,组织学生讨论(1)函数y=2x与y=x2的图像有何关系?试对你的结论加以证明.(2)试举一个在生活、生产、科技等实际中与指数函数有关的例子.三、解释应用[例题]1. 利用指数函数的性质,比较下列各题中两个值的大小:(1)1.72.5与1.73.(2)0.8-0.1与0.8-0.2.解:(1)考查指数函数y=1.7x.∵1.7>1,∴y=1.7x在(-∞,+∞)是增函数.又2.5<3,∴1.72.5<1.73.(2)类似(1),得0.8-0.1<0.8-0.2.思考:怎样比较1.70.3与0.93.1的大小?2. 某种放射性物质不断衰变为其他物质,每经过1年剩留的这种物质是原来的84%.画出这种物质的剩留量随时间变化的图像,并根据图像求出经过多少年,剩留量是原来的一半.(结果保留1个有效数字)解:设这种物质最初的质量是1,经过x年,剩留量是y,则经过1年,剩留量y=1×84%=0.841;经过2年,剩留量y=0.84×0.84=0.842;……经过x年,剩留量y=0.84x.列表:表11-3画出指数函数y=0.84x的图像:由图上看出y=0.5时,x≈4.答:约经过4年,剩留量是原来的一半.说明:为便于观察,两轴上的单位长度可不相等.3. 说明下列函数的图像与指数函数y=2x的图像的关系,并画出它们的草图.(1)y=2x+1.(2)y=2x-2.解:(1)比较函数y=2x+1与y=2x的关系,知y=2-1+1与y=x0相等.∴函数y=2x+1中的x=-1时的y值,与函数y=2x中的x=0时的y值相等.又y=20+1与y=x1相等;y=23+1与y=x4相等;……∴将指数函数y=2x的图像向左平行移动1个单位长度,即可得到函数y=2x+1的图像.(2)将指数函数y=2x的图像向右平行移动2个单位长度,即可得到函数y=2x-2的图像.[练习]1. 比较大小:(1)1.01-2与1.01-3.5.(2)0.75-0.1与0.750.1.2. 画出下列函数的图像.(1)y=3x.(2)y=()x.3. 求下列函数的定义域.(1)y=.(2)y=.4. 已知函数f(x)=a x在[0,1]上的最大值与最小值之和为3,求a的值.5. 用清水漂洗衣服,若每次能洗去污垢的,试写出存留污垢y与漂洗次数x的函数关系式.如果要使存留的污垢不超过原有的1%,那么至少要漂洗几次?四、拓展延伸1. 在例题2中,函数y=0.84x与函数y=0.5的图像的交点横坐标是方程0.84x=0.5的解吗?思考:你能判断出方程2x+x2-2=0有几个实数根吗?2. 以下是某地区不同身高的未成年男性的体重平均值表:表11-4(1)根据表中提供的数据,能否从我们已经学过的函数y=ax+b,y=ax2+bx+c,y=,y=a·bx中选择一种函数使它比较近似地反映出该地区未成年男性体重y关于身高x的函数关系?若能,求出这个函数解析式.(2)如果体重超过相同身高男性平均值的1.2倍为偏胖,低于0.8倍为偏瘦,那么该地区某中学一男生身高为175cm,体重为78kg,问:他的体重是否正常?解:(1)以身高为横坐标,体重为纵坐标,在直角坐标系中画出散点图如下.根据图,可考虑用函数y=ab x,反映上述数据之间的对应关系.把x=70,y=7.90和x=160,y=47.25两组数据代入y=a·b x,得利用计算器计算,得a=2,b=1.02.所以,该地区未成年男性体重关于身高的近似函数式可选为y=2×1.02x.将已知数据代入所得的函数解析式或作出所得函数的图像,可知所求函数能较好地反映该地区未成年男性体重与身高的关系.(2)把x=175代入y=2×1.02x,得y=2×1.02175.利用计算器计算,得y=63.98.由于78÷63.98≈1.22>1.2,因此,这名男生体型偏胖.点评这节课的中心问题有三个,即指数函数的定义、图像与性质,围绕这三个问题,这篇案例进行了精心设计:首先通过实例引入了指数函数的概念,再通过画具体的指数函数的图像归纳出一般指数函数的性质.这样安排有利于学生理解指数函数的概念,掌握指数函数的性质.选配的例题难易适中,具有典型性和代表性.练习由易到难,既可以巩固基础知识,又可以提高学生的解题技能.“拓展延伸”对本节中心内容进行了拓展,有用图像法求方程的解,判断方程根的个数;有函数图像的平移;还有应用题.这些都是数学中经常遇到的问题,它们的解决将有利于学生今后的学习.。

高中数学《异面直线所成的角》PPT教学课件

高中数学《异面直线所成的角》PPT教学课件

A
M
B ND
C
如果一个角的两边和另一个角的两边分别平行 那么这两个角 相等或互补
D1 A1
C1 B1
D A
C B
哪些棱所在直线与直线AA1是异面直线?
BC , DC , B1C1 , D1C1
异面直线及其夹角
异面直线所成角:
如图所示,异面直线a、b,在空间中任取一点O, 过点O分别引
a’∥a,b’∥b 则a’,b’所成的 锐角(或直角)叫做两条异面直线
所成的角(夹角) 当两异面直线所成角为直角时,两直线互相垂直
b
b
o b’
O a’
a
a
q a’
a
a
思考:1.如何求异面直线所成的角? 范围呢? 2.两垂直直线可确定一个平面吗?
例1:右图表示一个正方体
D’
(1) 求直线BA’和CC’ 的夹角的度数.
A’
解: 由CC′∥BB′
可知∠B’BA’等于异面直线BA’与CC’的夹角
§2.1.2 异面直线及其夹角
复习
1.空间两直线的位置关系:
从有无公共点可分为: ①有且只有一个公共点 —相交直线 平行直线 ②没有公共点 异面直线
从是否共面可分为: ①在同一平面内
相交直线 平行直线
②不在同一平面内 —异面直线
2.平行线的传递性(公理4 )
a∥b , a ∥c b∥c
3.等角定理:如果一个角的两边和另一个角的两边 分别平行并且方向相同,那么这两个 角 相等
D’
C’
A’
D3
B’
1
C
A B
(2) 已知 AB 3 ,AA’=1,求异面直线BA’与CC’所成角的度数

高三数学 教案 求异面直线所成角的步骤

高三数学  教案  求异面直线所成角的步骤

异面直线所成的角异面直线所成角的定义:直线a、b是异面直线,经过空间任意一点O,分别引直线a′∥a,b′∥b,则把直线a′和b′所成的锐角(或直角)叫做异面直线a和b所成的角,如下图。

两条异面直线所成角的范围是(0°,90°],若两条异面直线所成的角是直角,我们就说这两条异面直线互相垂直。

在异面直线所成角定义中,空间一点O是任取的,而和点O的位置无关。

1.异面直线是指不同在任何一个平面内,没有公共点.强调任何一个平面.2.异面直线所成的角是指经过空间任意一点作两条分别和异面的两条直线平行的直线所成的锐角(或直角).一般通过平移后转化到三角形中求角,注意角的范围.3.异面直线的公垂线要求和两条异面直线垂直并且相交,4.异面直线的距离是指夹在两异面直线之间公垂线段的长度.求两条异面直线的距离关键是找到它们的公垂线.求异面直线所成角的步骤:A、利用定义构造角,可固定一条,平移另一条,或两条同时平移到某个特殊的位置,顶点选在特殊的位置上。

B、证明作出的角即为所求角;C、利用三角形来求角。

特别提醒:(1)两异面直线所成的角与点O(两直线平移后的交点)的选取无关.(2)两异面直线所成角θ的取值范围是00<θ≤900.(3)判定空间两条直线是异面直线的方法①判定定理:平面外一点A与平面内一点B的连线和平面内不过点B的直线是异面直线;②反证法:证明两直线共面不可能.线线角的求法:(1)定义法:用“平移转化”,使之成为两相交直线所成的角,当异面直线垂直时,应用线面垂直定义或三垂线定理及逆定理判定所成的角为900.(2)向量法:设两条直线所成的角为θ(锐角),直线l1和l2的方向向量分别为第1页共1页。

异面直线所成的角教案

异面直线所成的角教案

异面直线所成角教案设计●所用教材说明:“异面直线所成角”是人教版高中数学必修2中第二章“点,直线,平面之间的位置关系”2.1.2空间中直线与直线之间的位置关系中最后一小节内容(46页至47页部分)。

它是立体几何教学的起始阶段,引导学生去积极探索,逐步建构立几的知识体系,异面直线所成角的大小是一种重要的定量计算。

本节内容运用类比的方法,平行变换思想,化归的思想,这些是高考中所要重点考察的内容和数学思想。

本课是在学生初步了解空间两条直线的三种位置关系的基础上进一步研究两异面直线的相关性质。

●教学要求:掌握异面直线所成角的定义和求法学会用平移法求异面直线所成角●教学目标:▲知识掌握目标:认识两条异面直线所成角的概念;并通过讨论使学生掌握求两条异面直线所成角的方法▲能力培养目标:培养学生观察,分析,抽象,概括的逻辑思维能力和运用数形结合思想解决问题的能力▲创新培养目标:培养学生的创新意识和创新思维,培养学生的合作意识▲德育目标:通过数与形的辩证统一,对学生进行辩证唯物主义教育,通过对空间立体美的感受,激发学生对美好事物的追求●教学重难点:重点是异面直线所成角的定义难点是异面直线所成角的求法●教学方法:师生共同讨论法教学中联系平面图形的知识,联想两相交直线的度量关系——角,利用类比方法引入异面直线所成的角,利用化归思想,通过平移,化空间问题为平面问题。

●教学过程:本节课以“课程引入—建构数学—数学运用—总结提高”的模式展开,引导学生从已有的知识和生活经验出发,提出问题与学生共同探索,讨论解决问题的方法,让学生经历知识的形成与应用的过程,从而更好的理解数学知识的意义。

而且按照学生的认知特点,改变了教材中原有安排顺序引导学生从生活实例入手,从分析定义开始,循序渐进地进行探究,有利于学生进行思考。

对学生来说,空间角转化成平面角有一定难度,因此教学中对此进行了重点引导,点拨。

●教师讲解:在平面几何中我们知道,对于两条相交直线,可以用它们交角大小来确定其相互的位置关系;对于两条平行线,可以用它们之间的距离来确定它们之间位置关系。

人教A版高中数学必修二《异面直线所成的角》教学设计

人教A版高中数学必修二《异面直线所成的角》教学设计

《异面直线所成的角》教学设计[教学目的]:知识与技能:①理解并掌握异面直线所成的角的概念及初步运用.②掌握在简单几何载体中找(作)出两条异面直线所成角的方法及求解步骤过程与方法:①进一步培养学生的空间想象能力和分析、解决问题的能力②培养学生获取数学知识的能力,数学交流表达的能力和自主学习的内在发展能力.③培养把空间问题转化为平面问题的化归思想的运用能力情感态度与价值观:①通过让学生小组合作学习,培养学生学习的主动性和合作意识②通过让学生体验成功,享受自主学习的乐趣,培养学生学习数学的自信心,体现数学语言的严谨性.在学法上,引导学生采用自主探究与互相协作相结合的学习方式.让每一个学生都能参与研究,并最终学会学习.[教学重点和难点]:教学重点:(1)异面直线所成角的概念(2)异面直线所成角的计算.教学难点:异面直线所成角的概念的理解,异面直线所成角的计算[教学过程]:一、新课引入1.空间中两条直线的位置关系有哪几种?2.不同的异面直线有不同的相对位置关系,用什么几何量可以反映异面直线之间的相对位置关系呢?这节课我们共同来探讨其中的一个方面.(板书课题:异面直线所成的角)二、讲授新课(一)异面直线所成的角的定义知识探究(一):异面直线所成的角【思考1】两条相交直线的相对位置关系,是通过什么几何量来反映的?【思考2】两条异面直线之间有一个相对倾斜度。

设想也用一个角来反映异面直线的相对倾斜度。

但不能直接度量,你有什么办法解决这个矛盾?【思考3】若将两异面直线分别平行移动,它们的相对倾斜度是否会发生变化?【思考4】把两条异面直线分别平移,使之在某处相交得到两条相交直线,我们用这两条相交直线所夹的锐角(或直角)来反映异面直线的相对倾斜程度,并称之为异面直线所成的角.你能给“异面直线所成的角”下个定义吗?异面直线所成的角定义:对于两条异面直线a ,b ,经过空间任一点O 作直线a ′∥a , b ′∥b ,则 a ′与b ′所成的锐角(或直角)叫做异面直线a 与b 所成的角(或夹角)【思考5】若点O 的位置不同,则直线a ′与b ′的夹角大小发生变化吗?为什么?点O 宜选在何处?知识探究(二):两条直线垂直【思考】我们规定两条平行直线的夹角为0°,那么两条异面直线所成的角的取值范围是什么? (0,]︒︒90注意:如果两条异面直线所成的角是90°,则称这两条直线互相垂直.两条互相垂直的异面直线a ,b ,记作a ⊥b .(二)异面直线所成角的求法师:同学们,我们理解了两条异面直线所成角的定义,那么在实际问题中你会不会求两条异面直线所成的角呢?请看例题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

"湖南师范大学附属中学高三数学总复习教案:两条异面直线所成的角 "
教学目标
1.记忆并理解余弦定理;
2.应用余弦定理来求异面直线所成的角.
教学重点和难点
这节课的重点是以异面直线所成的角的概念为指导作出相应的角,然后用余弦定理解这个角所在的三角形求出这个角的余弦.这节课的难点是使学生初步理解当cosθ>0时,0°<θ<90°,当cosθ=0时,θ=90°,当cosθ<0时,90°<θ<180°.
教学设计过程
一、余弦定理
师:余弦定理有哪两种表述的形式?它们各有什么用途?
生:余弦定理有两种表述的形式,即:
a2=b2+c2-2bccos A
b2=c2+a2-2cacos B
c2=a2+b2-2abcos C
第一种形式是已知两边夹角用来求第三边,第二种形式是已知三边用来求角.
师:在立体几何中我们主要用余弦定理的第二种形式,即已知三角形的三边来求角.
在余弦定理的第二个形式中,我们知道b2+c2可以等于a2;也可以小于a2;也可以大于a2.那么,我们想当b2+c2=a2时,∠A等于多少度?为什么?
生:当b2+c2=a2时,由勾股定理的逆定理可知∠A=90°.
师:当b2+c2>a2时,∠A应该是什么样的角呢?
生:因为cosA>0,所以∠A应该是锐角.
师:当b2+c2<a2时,∠A应该是什么样的角呢?
生:因为这时cosA<0,所以∠A应该是钝角.
师:对,关于这个问题,我们只要求同学们有初步的理解即可.初步理解后应该记住、会用.现在明确提出当cosθ=0时,θ=90°,θ是直角;当cosθ>0时,0°<θ<90°,θ是锐角当cos θ<0时,90°<θ<180°,θ是钝角.下面请同学们回答下列问题:
生:θ等于60°,等于120°.
师:这时θ和是什么关系?
生:θ和是互为补角.
师:再回答下列问题:
生:θ1等于45°,1等于135°,θ1+ 1=180°;θ2等于30°,2=150°,θ2+ 2=180°.
师:一般说来,当cosθ=-cos时,角θ与角是什么关系?
生:角θ与角是互补的两个角.即一个为锐角,一个
为钝角,且θ+=180°.
(关于钝角的三角函数还没有定义,所以这里采用从特殊到一般的方法使学生有所理解即可)
二、余弦定理的应用
例1 在长方体ABCD-A1B1C1D1中,AB=BC=3,AA1=4.求异面直线A1B和AD1所成的角的余弦.(如图1)
师:首先我们要以概念为指导作出这个角,A1B和AD1所成的角是哪一个角?
生:因为CD1∥A1B,所以∠AD1C即为A1B与AD1所成的角.
师:∠AD1C在△AD1C中,求出△AD1C的三边,然后再用余弦定理求出∠AD1C的余弦.
师:我们要再一次明确求异面直线所成的角的三个步骤:第一是以概念为指导作出所成的角;第二是找出这个角所在的三角形;第三是解这个三角形.现在我们再来看例2.
例2 在长方体ABCD-A1B1C1D1中,∠C1BC=45°,∠B1AB=60°.求AB1与BC1所成角的余弦.(如图2)
师:在这例中,我们除了首先要以概念为指导作出异面直线所成的角以外,还要注意把所给的特殊角的条件转化为长方体各棱之间的关系,以便于我们用余弦定理.
生:因为BC1∥AD1,所以AB1与BC1所成的角即为∠D1AB1.根
师:现在我们来看例3.
(如例3 已知正方体的棱长为a,M为AB的中点,N为B1B的中点.求A1M与C1N所成的角的余弦.图3)(1992年高考题)
师:我们要求A1M与C1N所成的角,关键还是以概念为指导作出这个角,当一次平移不行时,可用两次平移的方法.在直观图中,根据条件我们如何把A1M用两次平移的方法作出与C1N所成的角?
生:取A1B1的中点E,连BE,由平面几何可知BE∥A1M1,再取EB1的中点F,连FN由平面几何可知FN∥BE,所以NF∥A1M.所以∠C1NF即为A1M与C1N所成的角.
师:还可以用什么方法作出A1M与C1N所成的角?
生:当BE∥A1M后,可取C1C中点G,连BG,则BG∥C1N,
师:这两种解法都要用两次平移来作出异面直线所成的角,现在我们来看例4.
例4 在长方体ABCD-A1B1C1D1中,AA1=c,AB=a,AD=b,且a>b.求AC1与BD所成的角的余弦.(如图4)
师:根据异面直线所成的角的概念,再根据长方体的基本性质,如何作出AC1与BD所成的角。

生:连AC,设AC∩BD=0,则O为AC中点,取C1C的中点F,
定理,得
师:想一想第二个解法
生:取AC1中点O1,B1B中点G.在△C1O1G中,∠C1O1G即
一可知:
师:想一想第三个解法.当然还是根据异面直线所成的角概念首先作出这个角.有时可根据题目的要求在长方体外作平行直线.
生:延长CD到E,使ED=DC.则ABDE为平行四边形.AE∥BD,所以∠EAC1即为AC1与BD所成的角.(如图5)连EC1,在
由余弦定理,得
所以∠EAC1为钝角.
根据异面直线所成角的定义,AC1与BD所成的角的余弦为
师:根据这一道题的三种解法,我们可以看出,当用异面直线所成的角的概念,作出所成的角,这时所作出的角可能是异面直线所成的角,也可能是它的邻补角,在直观图中无法判定,只有通过解三角形后,根据这个角的余弦的正、负值来判定这个角是锐角(也就是异面直线所成的角)或钝角.(异面直线所成的角的邻补角)
今天就讲这四个例题,这四个例题都是要用余弦定理来求异面直线所成的角.
作业
补充题
3.在棱长为a的正方体ABCD-A1B1C1D1中,O是正方形ABCD的中心,E,F分别是AB,BC中点.求:(1)异面直线A1D1和CD的距离;(2)异面直线C1O和EF的距离.
4.在长方体ABCD-A1B1C1D1中,∠BAB1=∠B1A1C1=30°.求:(1)AB与A1C1所成的角的度数;(2)A1A与CB1所成的角的度数;(3)AB1与A1C1所成的角的余弦.。

相关文档
最新文档