高一数学数列求和的方法

合集下载

高考数学 数列求和的8种常用方法(最全)

高考数学  数列求和的8种常用方法(最全)
求数列前n项和的8种常用方法

1.等差数列求和公式:
Sn(a1an)nan(n1)d
n212
特别地,当前n项的个数为奇数时,S2k1(2k1)ak1,即前n项和为中间项乘以项数。这个公
式在很多时候可以简化运算;2.等比数列求和公式:
(1)q1,Snna1;
a11qn
(2)q1,Sn
1q
,特别要注意对公比的讨论;
c
项)分解,然后重新组合,使之能消去一些项,最终达到求和的目的.适用于
,其中a
an
n
n1
是各项不为0的等差数列,c为常数;部分无理数列、含阶乘的数列等。其基本方法是
anfn1fn.常见裂项公式:
(1)1
11,1
1(1
1);1
1(1
)(an的公差为d);
n(n1)
nn1
n(nk)
knnk
anan1
dan
2n2n1
………………………②(设制错位)
①-②得,(11)S
2n
22
222
22
2324
2
2n
2n2n1
(错位相减)
21
2n
∴Sn
4n2
2n1
2n12n1
四.裂项相消法:即把每一项都拆成正负两项,使其正负抵消,只余有限几项,可求和。这是分解
与组合思想(分是为了更好地合)在数列求和中的具体应用.裂项法的实质是将数列中的每项(通
2S(sin21cos21)(sin22cos22)(sin289cos289)=89
∴S=44.5
例4函数fxx,求
1x
f1f2
2012
2011
2

数列求和的七种基本方法

数列求和的七种基本方法

数列求和的七种基本方法在数学中,数列是一系列按一定规律排列的数值,求和则是将数列中的所有数值相加的运算。

数列求和是数学中非常重要的一部分,它不仅在数学中具有广泛的应用,也在其他学科如物理学、经济学等中发挥着重要的作用。

在数列求和问题中,有许多种基本的方法可以帮助我们解决问题。

一、综合物理方法(高中物理方法):物理学中,我们经常遇到等差数列求和的问题,例如计算平均速度。

我们可以利用物理公式来求解数列的和。

假设一个运动物体在时间t内以a的加速度匀加速运动,初速度为v0,则末速度v= at + v0。

利用等差数列的思想,将时间划分为无穷小时间片段dt,则位移ds= (at + v0)dt。

将位移累加起来,即可得到整个时间段内的位移S。

我们可以通过对时间积分求和来解决这个问题。

二、找到规律在数列求和的问题中,我们常常需要根据数列的规律来进行求和。

数列的规律可以通过观察数列的前几项,并进行逻辑推理来得出。

有时,根据数列的规律,我们可以将数列拆分成若干个简单的数列,从而方便我们进行求和。

例如,对于等差数列an = a1 + (n-1)d,我们可以将其拆分为两个数列,一个是由首项、末项构成的数列(an = a1 + (n-1)d),另一个是由末项、首项构成的数列(a1 = an - (n-1)d)。

我们可以对这两个数列进行求和,然后将结果相加,即可得到等差数列的和。

同样地,对于等比数列an = a1 * q^(n-1),我们可以将其拆分为两个数列,一个是由首项、末项构成的数列(an = a1 * q^(n-1)),另一个是由末项、首项构成的数列(a1 = an / q^(n-1))。

我们可以对这两个数列进行求和,然后将结果相加,即可得到等比数列的和。

三、利用前缀和前缀和也叫做累加和,是指从数列的第一项开始,逐项进行求和,得到的数列。

求和前缀和的过程可以通过递推公式来表示。

对于一个数列{a1, a2, a3, ..., an},它的前缀和表示为{S1, S2, S3, ..., Sn},其中Si表示数列的前i项的和。

数列求和的几种常见方法

数列求和的几种常见方法

数列求和的几种常见方法数列求和是数学中一种常见的问题,主要目的是计算给定数列的所有项的和。

在数学中,有许多不同的方法可以解决这个问题。

下面将介绍几种常见的数列求和方法。

1.数学归纳法:数学归纳法是一种常见的求和方法。

它基于数学归纳法的思想,即从其中一条件的正确性推出下一个条件的正确性。

当我们想计算一个数列的和时,可以尝试使用归纳法进行推导。

首先,我们假设数列的和为S(n),即前n个项的和。

然后,我们找到S(n+1)与S(n)的关系,例如通过观察求和式的规律。

最后,我们使用归纳法证明S(n+1)与S(n)的关系成立,并找到S(n)的表达式。

2.公式求和法:一些数列具有明确的求和公式,通过使用这些公式,可以直接计算数列的和。

例如,等差数列的求和公式为S(n) = n(a1 + an) / 2,其中n为项数,a1为首项,an为末项。

类似地,等比数列的求和公式为S(n) = a1(1 - r^n) / (1-r),其中a1为首项,r为公比。

利用这些公式,我们可以快速计算出数列的和。

3.差分法:差分法是另一种常见的数列求和方法。

它通过求取数列的差分数列来简化求和问题。

差分数列是指将数列中每个相邻的项相减得到的新数列。

通过计算差分数列的和,我们可以得到原始数列的和。

差分法的思路是将原本的复杂数列转化为更加简单的等差或等比数列。

4.数列分解法:数列分解法是一种将复杂的数列拆分为更简单的数列的方法。

通过拆分数列,我们能够找到更简单的求和规律,从而快速计算出数列的和。

数列分解法常用于特殊数列的求和,例如和差数列、间隔数列等。

5.递推法:递推法是通过逐步迭代计算数列的每一项来求和的方法。

我们首先计算出数列的前几个项,然后利用递推关系计算出下一个项,并将其加入到已有的和中。

通过不断迭代,我们可以逐步计算出所有项的和。

递推法常用于递推数列或递归数列的求和。

除了以上提到的求和方法,还有一些其他的方法,如等差数列的部分和、等比数列的部分和、级数求和、积分求和等。

数列求和常见的7种方法

数列求和常见的7种方法

数列求和的基本方法和技巧一、总论:数列求和7种方法: 利用等差、等比数列求和公式错位相减法求和 反序相加法求和 分组相加法求和 裂项消去法求和分段求和法(合并法求和) 利用数列通项法求和二、等差数列求和的方法是逆序相加法,等比数列的求和方法是错位相减法,三、逆序相加法、错位相减法是数列求和的二个基本方法。

数列是高中代数的重要内容,又是学习高等数学的基础. 在高考和各种数学竞赛中都占有重要的地位. 数列求和是数列的重要内容之一,除了等差数列和等比数列有求和公式外,大部分数列的求和都需要一定的技巧. 下面,就几个历届高考数学和数学竞赛试题来谈谈数列求和的基本方法和技巧.一、利用常用求和公式求和利用下列常用求和公式求和是数列求和的最基本最重要的方法. 1、 等差数列求和公式:d n n na a a n S n n 2)1(2)(11-+=+=2、等比数列求和公式:⎪⎩⎪⎨⎧≠--=--==)1(11)1()1(111q q q a a qq a q na S n nn3、 )1(211+==∑=n n k S nk n 4、)12)(1(6112++==∑=n n n k S nk n5、 213)]1(21[+==∑=n n k S nk n [例1] 已知3log 1log 23-=x ,求⋅⋅⋅++⋅⋅⋅+++nx x x x 32的前n 项和. 解:由212log log 3log 1log 3323=⇒-=⇒-=x x x由等比数列求和公式得 n n x x x x S +⋅⋅⋅+++=32 (利用常用公式)=xx x n --1)1(=211)211(21--n =1-n 21[例2] 设S n =1+2+3+…+n ,n ∈N *,求1)32()(++=n nS n S n f 的最大值.解:由等差数列求和公式得 )1(21+=n n S n , )2)(1(21++=n n S n (利用常用公式) ∴ 1)32()(++=n nS n S n f =64342++n n n=nn 64341++=50)8(12+-nn 501≤∴ 当 88-n ,即n =8时,501)(max =n f二、错位相减法求和这种方法是在推导等比数列的前n 项和公式时所用的方法,这种方法主要用于求数列{a n · b n }的前n 项和,其中{ a n }、{ b n }分别是等差数列和等比数列.[例3] 求和:132)12(7531--+⋅⋅⋅++++=n n x n x x x S ………………………①解:由题可知,{1)12(--n x n }的通项是等差数列{2n -1}的通项与等比数列{1-n x}的通项之积设n n x n x x x x xS )12(7531432-+⋅⋅⋅++++=………………………. ② (设制错位) ①-②得 n n n x n x x x x x S x )12(222221)1(1432--+⋅⋅⋅+++++=-- (错位相减)再利用等比数列的求和公式得:n n n x n xx x S x )12(1121)1(1----⋅+=-- ∴ 21)1()1()12()12(x x x n x n S n n n -+++--=+[例4] 求数列⋅⋅⋅⋅⋅⋅,22,,26,24,2232n n前n 项的和. 解:由题可知,{n n 22}的通项是等差数列{2n}的通项与等比数列{n 21}的通项之积设n n nS 2226242232+⋅⋅⋅+++=…………………………………① 14322226242221++⋅⋅⋅+++=n n nS ………………………………② (设制错位) ①-②得1432222222222222)211(+-+⋅⋅⋅++++=-n n n nS (错位相减)1122212+---=n n n∴ 1224-+-=n n n S三、反序相加法求和这是推导等差数列的前n 项和公式时所用的方法,就是将一个数列倒过来排列(反序),再把它与原数列相加,就可以得到n 个)(1n a a +.[例5] 求证:n n n n n n n C n C C C 2)1()12(53210+=++⋅⋅⋅+++证明: 设nnn n n n C n C C C S )12(53210++⋅⋅⋅+++=………………………….. ① 把①式右边倒转过来得113)12()12(nn n n n n n C C C n C n S ++⋅⋅⋅+-++=- (反序) 又由mn nm n C C -=可得 n nn n n n n C C C n C n S ++⋅⋅⋅+-++=-1103)12()12(…………..…….. ② ①+②得 n n n n n n n n n C C C C n S 2)1(2))(22(2110⋅+=++⋅⋅⋅+++=- (反序相加)∴ n n n S 2)1(⋅+=[例6] 求89sin 88sin 3sin 2sin 1sin 22222++⋅⋅⋅+++的值解:设89sin 88sin 3sin 2sin 1sin 22222++⋅⋅⋅+++=S …………. ①将①式右边反序得1s i n 2s i n 3s i n 88sin 89sin 22222+++⋅⋅⋅++=S …………..② (反序) 又因为 1cos sin ),90cos(sin 22=+-=x x x x①+②得 (反序相加))89cos 89(sin )2cos 2(sin )1cos 1(sin 2222222 ++⋅⋅⋅++++=S =89∴ S =44.5题1 已知函数(1)证明:;(2)求的值.解:(1)先利用指数的相关性质对函数化简,后证明左边=右边 (2)利用第(1)小题已经证明的结论可知,两式相加得:所以.练习、求值:四、分组法求和有一类数列,既不是等差数列,也不是等比数列,若将这类数列适当拆开,可分为几个等差、等比或常见的数列,然后分别求和,再将其合并即可. [例7] 求数列的前n 项和:231,,71,41,1112-+⋅⋅⋅+++-n a a a n ,… 解:设)231()71()41()11(12-++⋅⋅⋅++++++=-n aa a S n n将其每一项拆开再重新组合得)23741()1111(12-+⋅⋅⋅+++++⋅⋅⋅+++=-n aa a S n n (分组) 当a =1时,2)13(n n n S n -+==2)13(nn + (分组求和)当1≠a 时,2)13(1111n n aa S n -+--==2)13(11n n a a a n -+--- [例8] 求数列{n(n+1)(2n+1)}的前n 项和.解:设k k k k k k a k ++=++=2332)12)(1(∴ ∑=++=n k n k k k S 1)12)(1(=)32(231k k knk ++∑=将其每一项拆开再重新组合得S n =k k k nk n k nk ∑∑∑===++1213132(分组)=)21()21(3)21(2222333n n n +⋅⋅⋅++++⋅⋅⋅++++⋅⋅⋅++=2)1(2)12)(1(2)1(22++++++n n n n n n n (分组求和) =2)2()1(2++n n n五、裂项法求和这是分解与组合思想在数列求和中的具体应用. 裂项法的实质是将数列中的每项(通项)分解,然后重新组合,使之能消去一些项,最终达到求和的目的. 通项分解(裂项)如:(1))()1(n f n f a n -+= (2)n n n n tan )1tan()1cos(cos 1sin -+=+ (3)111)1(1+-=+=n n n n a n (4))121121(211)12)(12()2(2+--+=+-=n n n n n a n(5)])2)(1(1)1(1[21)2)(1(1++-+=+-=n n n n n n n a n(6) n nn n n n n n S n n n n n n n n n a 2)1(11,2)1(12121)1()1(221)1(21+-=+-⋅=⋅+-+=⋅++=-则 (7))11(1))((1CAn B An B C C An B An a n +-+-=++=(8)n a ==[例9] 求数列⋅⋅⋅++⋅⋅⋅++,11,,321,211n n 的前n 项和.解:设n n n n a n -+=++=111(裂项)则 11321211+++⋅⋅⋅++++=n n S n (裂项求和)=)1()23()12(n n -++⋅⋅⋅+-+- =11-+n [例10] 在数列{a n }中,11211++⋅⋅⋅++++=n n n n a n ,又12+⋅=n n n a a b ,求数列{b n }的前n 项的和. 解: ∵ 211211n n n n n a n =++⋅⋅⋅++++=∴ )111(82122+-=+⋅=n n n n b n (裂项)∴ 数列{b n }的前n 项和)]111()4131()3121()211[(8+-+⋅⋅⋅+-+-+-=n n S n (裂项求和) =)111(8+-n = 18+n n[例11] 求证:1sin 1cos 89cos 88cos 12cos 1cos 11cos 0cos 12=+⋅⋅⋅++ 解:设89cos 88cos 12cos 1cos 11cos 0cos 1+⋅⋅⋅++=S ∵n n n n tan )1tan()1cos(cos 1sin -+=+ (裂项) ∴ 89cos 88cos 12cos 1cos 11cos 0cos 1+⋅⋅⋅++=S (裂项求和)=]}88tan 89[tan )2tan 3(tan )1tan 2(tan )0tan 1{(tan 1sin 1-+-+-+- =)0tan 89(tan 1sin 1 -=1cot 1sin 1⋅= 1sin 1cos 2 ∴ 原等式成立答案:六、分段求和法(合并法求和)针对一些特殊的数列,将某些项合并在一起就具有某种特殊的性质,因此,在求数列的和时,可将这些项放在一起先求和,然后再求S n .[例12] 求cos1°+ cos2°+ cos3°+···+ cos178°+ cos179°的值.解:设S n = cos1°+ cos2°+ cos3°+···+ cos178°+ cos179°∵ )180cos(cos n n --= (找特殊性质项)∴S n = (cos1°+ cos179°)+( cos2°+ cos178°)+ (cos3°+ cos177°)+···+(cos89°+ cos91°)+ cos90° (合并求和)= 0[例13] 数列{a n }:n n n a a a a a a -====++12321,2,3,1,求S 2002.解:设S 2002=2002321a a a a +⋅⋅⋅+++由n n n a a a a a a -====++12321,2,3,1可得,2,3,1654-=-=-=a a a,2,3,1,2,3,1121110987-=-=-====a a a a a a……2,3,1,2,3,1665646362616-=-=-====++++++k k k k k k a a a a a a∵ 0665646362616=+++++++++++k k k k k k a a a a a a (找特殊性质项) ∴ S 2002=2002321a a a a +⋅⋅⋅+++ (合并求和) =)()()(66261612876321++++⋅⋅⋅+++⋅⋅⋅+⋅⋅⋅+++⋅⋅⋅+++k k k a a a a a a a a a a2002200120001999199819941993)(a a a a a a a +++++⋅⋅⋅+++⋅⋅⋅+=2002200120001999a a a a +++ =46362616+++++++k k k k a a a a =5[例14] 在各项均为正数的等比数列中,若103231365log log log ,9a a a a a +⋅⋅⋅++=求的值.解:设1032313log log log a a a S n +⋅⋅⋅++=由等比数列的性质 q p n m a a a a q p n m =⇒+=+ (找特殊性质项) 和对数的运算性质 N M N M a a a ⋅=+log log log 得)log (log )log (log )log (log 6353932310313a a a a a a S n ++⋅⋅⋅++++= (合并求和)=)(log )(log )(log 6539231013a a a a a a ⋅+⋅⋅⋅+⋅+⋅=9log 9log 9log 333+⋅⋅⋅++ =10七、利用数列的通项求和先根据数列的结构及特征进行分析,找出数列的通项及其特征,然后再利用数列的通项揭示的规律来求数列的前n 项和,是一个重要的方法.[例15] 求11111111111个n ⋅⋅⋅+⋅⋅⋅+++之和. 解:由于)110(91999991111111-=⋅⋅⋅⨯=⋅⋅⋅kk k个个 (找通项及特征) ∴ 11111111111个n ⋅⋅⋅+⋅⋅⋅+++ =)110(91)110(91)110(91)110(91321-+⋅⋅⋅+-+-+-n (分组求和) =)1111(91)10101010(911321 个n n +⋅⋅⋅+++-+⋅⋅⋅+++ =9110)110(1091nn ---⋅=)91010(8111n n --+ [例16] 已知数列{a n }:∑∞=+-+++=11))(1(,)3)(1(8n n n n a a n n n a 求的值.解:∵ ])4)(2(1)3)(1(1)[1(8))(1(1++-+++=-++n n n n n a a n n n (找通项及特征)=])4)(3(1)4)(2(1[8+++++⋅n n n n (设制分组)=)4131(8)4121(4+-+++-+⋅n n n n (裂项)∴ ∑∑∑∞=∞=∞=++-+++-+=-+1111)4131(8)4121(4))(1(n n n n n n n n n a a n (分组、裂项求和)=418)4131(4⋅++⋅=313提高练习:1.已知数列{}n a 中,n S 是其前n 项和,并且1142(1,2,),1n n S a n a +=+==,⑴设数列),2,1(21 =-=+n a a b n n n ,求证:数列{}n b 是等比数列; ⑵设数列),2,1(,2==n a c n nn ,求证:数列{}n c 是等差数列;2.设二次方程n a x 2-n a +1x +1=0(n ∈N)有两根α和β,且满足6α-2αβ+6β=3.(1)试用n a 表示a 1n +;3.数列{}n a 中,2,841==a a 且满足n n n a a a -=++122 *N n ∈⑴求数列{}n a 的通项公式;⑵设||||||21n n a a a S +++= ,求n S ;选择是难,更何况是心灵选择。

高中数学数列求和的五种方法

高中数学数列求和的五种方法

⾼中数学数列求和的五种⽅法⼀、公式法求和例题1、设 {an} 是由正数组成的等⽐数列,Sn为其前 n 项和,已知 a2 · a4=1 , S3=7,则 S5 等于( B )(A) 15/2 (B) 31/4 (C) 33/4 (D) 17/2解析:∵ {an} 是由正数组成的等⽐数列 , 且 a2 · a4 = 1, q > 0 ,例题1图注:等⽐数列求和公式图例题2、已知数列 {an} 的前 n 项和 Sn = an^2+bn (a、b∈R), 且 S25=100 , 则a12+a14等于( B )(A) 16 (B) 8 (C) 4 (D) 不确定解析:由数列 {an} 的前 n 项和 Sn = an^2 + bn (a、b∈R), 可知数列 {an} 是等差数列,由S25= 1/2 ×(a1 + a25)× 25 = 100 ,解得 a1+a25 = 8,所以 a1+a25 = a12+a14 = 8。

注:等差数列求和公式图⼆、分组转化法求和例题3、在数列 {an} 中, a1= 3/2 ,例题3图(1)解析:例题3图(2)故例题3图(3)∵ an>1,∴ S < 2="">∴有 1 < s=""><>∴ S 的整数部分为 1。

例题4、数列例题4图(1)例题4图(2)解析:例题4图(3)三、并项法求和例题5、已知函数 f(x) 对任意 x∈R,都有 f(x)=1-f(1-x), 则 f(-2) + f(-1) + f(0) + f(1) + f(2) + f(3) 的值是多少?解析:由条件可知:f(x)+f(1-x)=1,⽽x+(1-x)=1,∴f(-2)+f(3)=1,f(-1)+f(2)=1,f(0)+f(1)=1,∴ f(-2) + f(-1) + f(0) + f(1) + f(2) + f(3) = 3。

数列求和的8种常用方法

数列求和的8种常用方法

数列求和的8种常用方法数列求和是数学中非常常见的问题,它的解法有很多种。

下面我将介绍8种常用的方法来求解数列的和,让我们一起来看看吧。

一、等差数列求和公式对于等差数列$a_n=a_1+(n-1)d$,其中$a_n$表示第n个数,$a_1$表示第一个数,d表示公差,我们可以利用等差数列求和公式求解:$S = \frac{n}{2}(a_1 + a_n) = \frac{n}{2}(2a_1 + (n-1)d)$其中S表示数列的和,n表示数列的项数。

二、等比数列求和公式对于等比数列$a_n = a_1 \cdot q^{(n-1)}$,其中$a_n$表示第n个数,$a_1$表示第一个数,q表示公比,我们可以利用等比数列求和公式求解:$S = \frac{a_1(q^n - 1)}{q - 1}$,其中q≠1或者当q=1时,$S=a_1n$其中S表示数列的和,n表示数列的项数。

三、几何级数求和公式对于几何级数$s_n = a_1 + a_2 + \dots + a_n$,其中$a_1$表示第一个数,q表示公比,我们可以利用几何级数求和公式求解:$S = \frac{a_1(q^n - 1)}{q - 1}$,其中q≠1四、等差数列-等比数列混合求和公式对于等差数列-等比数列混合数列$s_n = a_1 + a_2 + \dots + a_n$,其中$a_n = a_1 + (n-1)d$,$a_1$表示第一个数,d表示公差,我们可以利用等差数列-等比数列混合求和公式求解:$S = \frac{a_1(q^n - 1)}{q - 1} + \frac{n(n-1)d}{2}q^{(n-2)}$,其中q≠1五、反比例数列求和公式对于反比例数列$s_n = \frac{1}{a_1} + \frac{1}{a_2} + \dots + \frac{1}{a_n}$,其中$a_1$表示第一个数,我们可以利用反比例数列求和公式求解:$S = \frac{n}{a_1}$六、算术-几何级数求和公式对于算术-几何级数$s_n = a_1 + a_2 + \dots + a_n$,其中$a_n = a_1 + (n-1)d$,$a_1$表示第一个数,d表示公差$S = \frac{a_1}{1-q} + \frac{d}{(1-q)^2}$,其中q≠1七、差分数列求和公式对于差分数列$s_n = a_1 + a_2 + \dots + a_n$,其中$a_n = a_1+ (n-1)d$,$a_1$表示第一个数,d表示公差,我们可以利用差分数列求和公式求解:$S = \frac{n}{2}(2a_1 + (n-1)d)$其中S表示数列的和,n表示数列的项数。

求数列求和的方法

求数列求和的方法

求数列求和的方法数列求和是数学中的一个重要问题,它涉及到数列的性质和求解方法。

在数学中,数列求和有多种方法,下面将为您介绍最常用的数列求和方法。

一、等差数列求和等差数列是指数列中相邻两项之差都相等的数列。

等差数列求和的公式如下:Sn = (a1 + an) * n / 2其中,Sn表示等差数列的前n项和,a1表示等差数列的第一项,an表示等差数列的第n项,n表示等差数列的项数。

二、等比数列求和等比数列是指数列中相邻两项之比都相等的数列。

等比数列求和的公式如下:Sn=a1*(1-q^n)/(1-q)其中,Sn表示等比数列的前n项和,a1表示等比数列的第一项,q表示等比数列的公比,n表示等比数列的项数。

三、算术级数求和算术级数是指数列中每一项与前一项的差为一个固定的数d的数列,它可以看作是等差数列的变形。

算术级数求和的公式如下:Sn = (a1 + an) * n / 2其中,Sn表示算术级数的前n项和,a1表示算术级数的第一项,an 表示算术级数的第n项,n表示算术级数的项数。

四、几何级数求和几何级数是指数列中每一项与前一项的比为一个固定的数q的数列,它可以看作是等比数列的变形。

几何级数求和的公式如下:Sn=a*(1-q^n)/(1-q)其中,Sn表示几何级数的前n项和,a表示几何级数的第一项,q表示几何级数的公比,n表示几何级数的项数。

五、调和级数求和调和级数是指数列的每一项都是倒数数列的项的数列,它的求和公式如下:Sn=1/1+1/2+1/3+...+1/n其中,Sn表示调和级数的前n项和,n表示调和级数的项数。

六、费马数列求和费马数列是一个特殊的数列,它的每一项都是前一项的平方。

费马数列求和的公式如下:Sn=(a1^(n+1)-1)/(a1-1)其中,Sn表示费马数列的前n项和,a1表示费马数列的第一项,n 表示费马数列的项数。

七、斐波那契数列求和斐波那契数列是一个经典的数列,它的每一项都是前两项的和。

数列求和常见的7种方法(新)

数列求和常见的7种方法(新)

数列求和的基本方法和技巧一、总论:数列求和7种方法: 利用等差、等比数列求和公式错位相减法求和 反序相加法求和 分组相加法求和法,. 的技巧.1、 23、 S n 5、 213)]1(21[+==∑=n n k S nk n [例1] 已知3log 1log 23-=x ,求⋅⋅⋅++⋅⋅⋅+++nx x x x 32的前n 项和. 解:由212log log 3log 1log 3323=⇒-=⇒-=x x x由等比数列求和公式得 nn x x x x S +⋅⋅⋅+++=32 (利用常用公式)=x x x n --1)1(=211)211(21--n =1-n 21[例2] 设S n =1+2+3+…+n ,n ∈N *,求1)32()(++=n nS n S n f 的最大值.}的前n [例3])再利用等比数列的求和公式得:n n x n x x S x )12(121)1(---⋅+=- ∴ 21)1()1()12()12(x x x n x n S n n n -+++--=+[例4] 求数列⋅⋅⋅⋅⋅⋅,22,,26,24,2232n n前n 项的和. 解:由题可知,{n n 22}的通项是等差数列{2n}的通项与等比数列{n 21}的通项之积设n n nS 2226242232+⋅⋅⋅+++=…………………………………① 14322226242221++⋅⋅⋅+++=n n nS ………………………………② (设制错位) ①-②得1432222222222222)211(+-+⋅⋅⋅++++=-n n n nS (错位相减)1122212+---=n n n∴ 1224-+-=n n n S三、反序相加法求和这是推导等差数列的前n 项和公式时所用的方法,就是将一个数列倒过来排列(反序),再把它与原数列相加,就可以得到n 个)(1n a a +.[例5] 求证:n n n n n n n C n C C C 2)1()12(53210+=++⋅⋅⋅+++证明: 设nn n n n n C n C C C S )12(53210++⋅⋅⋅+++=………………………….. ①把①式右边倒转过来得113)12()12(n n n n n n n C C C n C n S ++⋅⋅⋅+-++=- (反序)又由mn n m n C C -=可得nn n n n n n C C C n C n S ++⋅⋅⋅+-++=-1103)12()12(…………..…….. ②①+②得 nn n n n n n n n C C C C n S 2)1(2))(22(2110⋅+=++⋅⋅⋅+++=- (反序相加) ∴ nn n S 2)1(⋅+=[例6] 求89sin 88sin 3sin 2sin 1sin 22222++⋅⋅⋅+++的值解:设89sin 88sin 3sin 2sin 1sin 22222++⋅⋅⋅+++=S …………. ①将①式右边反序得1sin 2sin 3sin 88sin 89sin 22222+++⋅⋅⋅++=S …………..② (反序) 又因为 1cos sin ),90cos(sin 22=+-=x x x x①+②得 (反序相加))89cos 89(sin )2cos 2(sin )1cos 1(sin 2222222 ++⋅⋅⋅++++=S =89∴ S =44.5题1已知函数(1)证明:;(2)求的值.解:(1)先利用指数的相关性质对函数化简,后证明左边=右边(2)利用第(1)小题已经证明的结论可知,两式相加得:所以.练习、求值:四、分组法求和有一类数列,既不是等差数列,也不是等比数列,若将这类数列适当拆开,可分为几个等差、等比或常见的数列,然后分别求和,再将其合并即可. [例7] 求数列的前n 项和:231,,71,41,1112-+⋅⋅⋅+++-n a a a n ,… 解:设)231()71()41()11(12-++⋅⋅⋅++++++=-n aa a S n n将其每一项拆开再重新组合得)23741()1111(12-+⋅⋅⋅+++++⋅⋅⋅+++=-n aa a S n n (分组) 当a =1时,2)13(n n n S n -+==2)13(nn + (分组求和)当1≠a 时,2)13(1111n n aa S n n -+--==2)13(11n n a a a n -+--- [例8] 求数列{n(n+1)(2n+1)}的前n 项和.解:设k k k k k k a k ++=++=2332)12)(1(∴ ∑=++=n k n k k k S 1)12)(1(=)32(231k k knk ++∑=(1(3(5(6) nnn n n n n n S n n n n n n n n n a 2)1(11,2)1(12121)1()1(221)1(21+-=+-⋅=⋅+-+=⋅++=-则 (7))11(1))((1CAn B An B C C An B An a n +-+-=++=(8)n a ==[例9] 求数列⋅⋅⋅++⋅⋅⋅++,11,,321,211n n 的前n 项和.解:设n n n n a n -+=++=111(裂项)则 11321211+++⋅⋅⋅++++=n n S n (裂项求和)1(23)12(n n + [例10] .[例11]=]}88tan 89[tan )2tan 3(tan )1tan 2(tan )0tan 1{(tan 1sin-+-+-+- =)0tan 89(tan 1sin 1 -=1cot 1sin 1⋅= 1sin 1cos 2 ∴ 原等式成立答案:六、分段求和法(合并法求和)针对一些特殊的数列,将某些项合并在一起就具有某种特殊的性质,因此,在求数列的和时,可将这些项放在一起先求和,然后再求S n .[例12] 求cos1°+ cos2°+ cos3°+···+ cos178°+ cos179°的值.解:设S n = cos1°+ cos2°+ cos3°+···+ cos178°+ cos179°∵ )180cos(cosn n --= (找特殊性质项)∴S n = (cos1°+ cos179°)+( cos2°+ cos178°)+ (cos3°+ cos177°)+···+(cos89°+ cos91°)+ cos90° (合并求和)= 0[例13] 数列{a n }:n n n a a a a a a -====++12321,2,3,1,求S 2002.解:设S 2002=2002321a a a a +⋅⋅⋅+++由n n n a a a a a a -====++12321,2,3,1可得,2,3,1654-=-=-=a a a,2,3,1,2,3,1121110987-=-=-====a a a a a a……2,3,1,2,3,1665646362616-=-=-====++++++k k k k k k a a a a a a∵ 0665646362616=+++++++++++k k k k k k a a a a a a (找特殊性质项) ∴ S 2002=2002321a a a a +⋅⋅⋅+++ (合并求和)=)()()(66261612876321++++⋅⋅⋅+++⋅⋅⋅+⋅⋅⋅+++⋅⋅⋅+++k k k a a a a a a a a a a2002200120001999199819941993)(a a a a a a a +++++⋅⋅⋅+++⋅⋅⋅+=2002200120001999a a a a +++ =46362616+++++++k k k k a a a a =5[例14] 在各项均为正数的等比数列中,若103231365log log log ,9a a a a a +⋅⋅⋅++=求的值.解:设1032313log log log a a a S n +⋅⋅⋅++=由等比数列的性质 q p n m a a a a q p n m =⇒+=+ (找特殊性质项) 和对数的运算性质 N M N M a a a ⋅=+log log log 得)log (log )log (log )log (log 6353932310313a a a a a a S n ++⋅⋅⋅++++= (合并求和)=)(log )(log )(log 6539231013a a a a a a ⋅+⋅⋅⋅+⋅+⋅ =9log 9log 9log 333+⋅⋅⋅++ =10七、利用数列的通项求和先根据数列的结构及特征进行分析,找出数列的通项及其特征,然后再利用数列的通项揭示的规律来求数列的前n 项和,是一个重要的方法.[例15] 求11111111111个n ⋅⋅⋅+⋅⋅⋅+++之和. 解:由于)110(91999991111111-=⋅⋅⋅⨯=⋅⋅⋅k k k个个 (找通项及特征) ∴ 11111111111个n ⋅⋅⋅+⋅⋅⋅+++ =)110(91)110(91)110(91)110(91321-+⋅⋅⋅+-+-+-n (分组求和) =)1111(91)10101010(911321 个n n +⋅⋅⋅+++-+⋅⋅⋅+++=9110)110(1091n n ---⋅ =)91010(8111n n --+ [例16] 已知数列{a n }:∑∞=+-+++=11))(1(,)3)(1(8n n n n a a n n n a 求的值. 解:∵ ])4)(2(1)3)(1(1)[1(8))(1(1++-+++=-++n n n n n a a n n n (找通项及特征) =])4)(3(1)4)(2(1[8+++++⋅n n n n (设制分组) =)4131(8)4121(4+-+++-+⋅n n n n (裂项) ∴ ∑∑∑∞=∞=∞=++-+++-+=-+1111)4131(8)4121(4))(1(n n n n n n n n n a a n (分组、裂项求和) =418)4131(4⋅++⋅ =313 提高练习:1.已知数列{}n a 中,n S 是其前n 项和,并且1142(1,2,),1n n S a n a +=+==,⑴设数列),2,1(21 =-=+n a a b n n n ,求证:数列{}n b 是等比数列;⑵设数列),2,1(,2 ==n a c nn n ,求证:数列{}n c 是等差数列;2.设二次方程n a x 2-n a +1x +1=0(n ∈N)有两根α和β,且满足6α-2αβ+6β=3.(1)试用n a 表示a 1n +;3.数列{}n a 中,2,841==a a 且满足n n n a a a -=++122 *N n ∈⑴求数列{}n a 的通项公式;⑵设||||||21n n a a a S +++= ,求n S ;。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Qan =1+ 2 + 2 +... + 2
2 2
n−1
= 2 −1
n 3 n
∴sn = (2 −1) + (2 −1) + (2 −1) +...(2 −1)
= (2++ 2 +... + 2 ) − n n 1
2 n
= 2 −2−n
这个数列的各项均是由等差数列构成的, 这个数列的各项均是由等差数列构成的,因此可 先求出通项公式,最后求和。 先求出通项公式,最后求和。
n+k + n k
1 1 1 练习: 练习:求和 1+ 1+ 2 + 1+ 2 + 3 +... + 1+ 2 +... + n
对类似数列(3)的求和问题 的求和问题, 【推广 】对类似数列 的求和问题 ,我们可以推广到 一般情况: 是公差为d的等差数列 一般情况:设{an}是公差为 的等差数列,则有 是公差为 的等差数列,
1 1 1 = − n(n+1) n n - 1 ;
1 1 1 1 = − (2n−1)(2n+1) 2 2n−1 2n+1
1 1 1 1 = n(n+1) − (n+1)(n+ 2) n(n+1)(n+ 2) 2
1 1 1 1 = a a La − a a La a1a2 Lan (n - 1)d 1 2 n-1 2 3 n
1 1 1 1 1 1.数列 1 , , , , ,n −1) + n , 数列 3 5 7 L (2 L 2 4 8 16 2
的前n项之和为 的值得等于( 的前 项之和为Sn,则Sn的值得等于 项之和为
1 (A) n +1− n 2 1 2 (C) n +1− n-1 2
2 2
A)
1 (B) 2n − n+1− n 2
本课小结: 本课小结: 数列求和的一般步骤: 数列求和的一般步骤:
等差、等比数列直接应用求和公式求和。 等差、等比数列直接应用求和公式求和。 非等差、等比的数列, 非等差、等比的数列,通过通项化归的思 想设法转化为等差、等比数列, 想设法转化为等差、等比数列,常用方法 有倒序相加法、错位相减法、 有倒序相加法、错位相减法、拆项并组法 不能转化为等差、等比的数列, 不能转化为等差、等比的数列,往往通过 裂项相消法求和。 裂项相消法求和。 作业:练习册 作业:练习册——数列求和 数列求和
(D) n2 − n+1− 1 n
2
2.若数列{an}中n,an=-2[n-(-1) n], .若数列 中 ]拆分成 , n 关键点: 拆分成-2n+(-1) 关键点:将a =-2[n-(-1) 拆分成
n
求S10和S99 .
【 例 1】 等比数列的首项为 , 公比为 , 】 等比数列的首项为a, 公比为q, Sn为前 项的和,求S1+S2+……+Sn. 为前n项的和 项的和,
错位相减求和法
例3:求和 a+2a2+3a3+…+nan :
(n∈N, a ≠ 0)
解:记sn=a+2a2+3a3+…+(n-1)an-1+nan 则asn= a2+2a3+…+(n-2)an-1+(n-1)an+nan+1 两式相减,得 两式相减, (1-a)sn=(a+a2+a3+…+an)-nan+1 n(n +1) 若 a=1, 则 sn=1+2+…+n= 2 a(1−an ) nan+1 − 若a≠1, 则sn= 2 (1−a) 1− a
小结
拆项并组求和法: 拆项并组求和法: 把数列的每一项分成几项, 把数列的每一项分成几项,或把数列的项 在一块重新组合, “集”在一块重新组合,或把整个数列分成几 部分,使其转化为等差或等比数列, 部分,使其转化为等差或等比数列,这一求和 方法称为分组转化法. 方法称为分组转化法
求数列 1,(1+2),(1+2+22),…, 练习: 练习: (1+2+22+…+2n-1) …的前n 项和Sn 解:
1 2 项和 时,若公比 是字母,为避免 3 n 若公比q是字母 注意:在求等比数列前n项和 注意:在求等比数列前 , 项和sn 练习:数列 , ,... n ,...的前是字母, n 项和是? 疏忽,宜先求q=1时的 8然后再求 时的s 然后再求q≠1时的 n 时的s 疏忽,宜先求 2 时的 n,然后再求 时的 4 2
关键: 关ห้องสมุดไป่ตู้:求出通项公式
例2:求和 (1) (2)
1 1 1 1 + + +... + 1• 2 2•3 3• 4 n• (n +1 ) 1 1 1 1 + + +... + 1•3 2• 4 3•5 n • (n + 2 )
裂项相消求和法: 裂项相消求和法: 把数列的通项拆成两项之差, 把数列的通项拆成两项之差,即数列的每一 1 1 1 1 = ( ) 项都可按此法拆成两项之差, − 项都可按此法拆成两项之差,在求和时一些正 n(n + 常用的裂项技巧: 于是前 k) k n n + k 负项相互抵消, 负项相互抵消,于是前n项的和变成首尾若干少 项的和变成首尾若干少 1 1 数项之和,这一求和方法称为裂项相消法. 数项之和,这一求和方法称为裂项相消法) = ( n+k − n
相关文档
最新文档