高一数学数列求和6
数列求和公式七个方法

数列求和公式七个方法数列求和是数学中的一个重要概念,常用于计算数列中各项之和。
数列求和公式有多种方法,下面将介绍七种常见的求和公式方法。
方法一:等差数列求和公式等差数列是指数列中每一项与前一项之差都相等的数列。
等差数列求和公式是通过将数列项数n代入公式中,计算数列中各项之和Sn。
等差数列求和公式为Sn=n(a1+an)/2,其中Sn表示数列的和,a1表示首项,an表示末项,n表示项数。
方法二:等比数列求和公式等比数列是指数列中每一项与前一项之比都相等的数列。
等比数列求和公式是通过将数列项数n代入公式中,计算数列中各项之和Sn。
等比数列求和公式为Sn=a1(1-q^n)/(1-q),其中Sn表示数列的和,a1表示首项,q表示公比,n表示项数。
方法三:斐波那契数列求和公式斐波那契数列是指数列中每一项都是前两项之和的数列。
斐波那契数列求和公式是通过将数列项数n代入公式中,计算数列中各项之和Sn。
斐波那契数列求和公式为Sn=f(n+2)-1,其中Sn表示数列的和,f表示斐波那契数列。
方法四:调和数列求和公式调和数列是指数列中每一项的倒数是一个调和级数的一项。
调和数列求和公式是通过将数列项数n代入公式中,计算数列中各项之和Sn。
调和数列求和公式为Sn=1+1/2+1/3+...+1/n,即Sn=Hn,其中Hn表示调和级数的n项和。
方法五:等差数列求和差分公式通过差分公式,我们可以得到等差数列的求和公式。
差分公式是指数列中相邻两项之差等于同一个常数d。
等差数列求和差分公式为Sn=[(a1+an)/2]n,其中Sn表示数列的和,a1表示首项,an表示末项,n表示项数。
方法六:等比数列求和差分公式通过差分公式,我们可以得到等比数列的求和公式。
差分公式是指数列中相邻两项之比等于同一个常数q。
等比数列求和差分公式为Sn=a1(1-q^n)/(1-q),其中Sn表示数列的和,a1表示首项,q表示公比,n表示项数。
方法七:等差数列求和公式(倍差法)倍差法是一种基于等差数列的求和方法。
高一数学数列求和6(新编201911)

an
例题讲解
评注
返 回
例2 求数列 1,3,7,13,21, 的通项公式。
解: a2 a1 3 1 2, a3 a2 7 3 4, a4 a3 13 7 6, an an1 2(n 1)
返 回
逐差求和法
如果一个数列 a1, a2 , a3,, an 是等差数列,
公差为d ,那么 a2 a1 d
a3 a2 d
an an1 d
以上(n-1)个式子相加得 an a1 (n 1)d
an a1 (n 1)d
若数列an 满足 an an1 f n(n N ) ,其中
数列通项的求法
退 出
知识要点分析 数列通项的求法
返 回
要点分析
数列是高中代数的重要内容之一, 也是初等数学与高等数学的衔接点,因 而在历年的高考试题中点有较大的比重。 在这类问题中,求数列的通项是解题的 突破口、关键点。
返 回
数列通项公式的求法
观察法
逐差求和法
逐商求积法
利用前n项和
构造等差、等比数列
子比分母少1,故
an
2n1 1 2n1
2、由奇数项特征及偶数项特征得
1
an
n
(n 2k 1)
返
n
n
1
(n
2k
)
回
评注:
对一般数列,它的通项公式不一 定存在,即使有,也不唯一,必要时 可采用分段表示,故观察的角度不同, 可能会写出几个形式完全不同的通项 公式。
an an1 21 2 3 (n 1) n2 n
高一数学第六章知识点手写

高一数学第六章知识点手写数学是一门理科学科,涵盖了许多有趣而实用的知识点。
在高一的数学教学中,第六章是一个重要的章节,涉及了多个知识点。
下面我将手写一些重要的数学知识点,希望对大家的学习有所帮助。
一、数列与数列的求和1. 通项公式是数列中一个常见的概念,它表示数列中第n项与n的关系。
例如,在等差数列中,通项公式可以表示为an=a1+(n-1)d,其中a1是首项,d是公差。
2. 等差数列和等比数列是数列的两种常见形式。
等差数列的通项公式如上所述,而等比数列的通项公式是an=a1*r^(n-1),其中a1是首项,r是公比。
3. 数列的前n项和也是一个重要的概念。
对于等差数列,其前n项和Sn可以表示为Sn=n/2*(a1+an),对于等比数列,前n项和Sn可以表示为Sn=a1*(1-r^n)/(1-r)。
二、三角函数1. 正弦、余弦和正切是三角函数中最基本的三种函数。
它们分别表示一个角的对边、临边和斜边的比值。
例如,在直角三角形中,正弦函数的定义是sinθ=对边/斜边,余弦函数的定义是cosθ=临边/斜边,正切函数的定义是tanθ=对边/临边。
2. 三角函数还有一系列重要的性质和公式,如同角三角函数的性质、和角公式和差角公式。
这些公式可以在解决三角函数相关的问题时非常有用。
三、平面向量1. 平面向量即具有大小和方向的量,可以用有方向的线段来表示。
平面向量的运算包括加法和数量乘法。
例如,给定两个向量a和b,它们的和可以表示为a+b,而向量a的数量乘法可以表示为ka,其中k是任意实数。
2. 平面向量还有一些重要的性质和公式,如向量的模长、向量的数量积和向量的夹角。
这些性质和公式可以用来解决平面向量相关的问题。
四、不等式1. 不等式是数学中一个重要的概念,它表示两个量的大小关系。
例如,a>b表示a大于b,a≥b表示a大于等于b。
对于不等式,有一些常见的性质,如两边相加减、两边相乘除等,可以用来求解不等式方程。
高一数学数列求和6

省一点。”
? 为着一小块发霉的甜糕,弄得心火乱窜。不是跟阿嬷怄气,是跟她那个年代生气。为什么那么穷?穷到叫人不敢多吃,害怕第二天醒来所有的食物都消失了,一眠床的小娃儿都一起向她喊饿......有时,恨不得与她的时代拔河,将阿嬷从“饿”字的墙壁缝
中拉出来,但这也是痴话,阿嬷的时代已经永远消失了,只留下她及像她一般的老阿婆、老阿公,在属于我的时代里行走、借住而已。
?我
的确是特权了,可以分享到阿嬷的卷仔饼,及她那个年代的甜处。于是,公事包里常常有些奇怪的东西:五条卷仔饼、一把纽仔饼、六粒龙眼球、两块爆米香、一块红龟仔果......我便拿着去普渡众生,遇到谁就给谁。回到家,阿嬷还要问食后心得:“好呷莫?”我说:“马马虎虎啦,
这包比上次那包甜。”
? 阿嬷的俭约,有时近乎刻苦。每一回陪她买菜,我总要生闷气,她看我拿钱出手快,也不高兴。两个时代的价值观一旦面对面,就算亲若血缘也会争执不已,所有的家庭问题关键不就在这儿?阿嬷坚持买最便宜的菜,七口之家一日的菜钱只用七
观战,相信这群六、七岁男童可能有人会成为企业家、科学家、教授、医生或国际巨星,但绝对没有贝克汉的半只脚。这也就是肥鸭们激动的原因了,因为双方势均力敌(翻成白话是:都不行),所以战况分外惨烈。 ? 「战争正进行著,你必须有所选择。」你的眼睛回到书页。阳光将
你的手指投影在纸上,如倒塌的大楼、可移动的废墟。四月不是残酷的季节,但焉知五月不是、九月不是?焉知明年不是、每年都不是? ? 你後悔带这本诗集,更懊恼读这首杀风景的诗。然而,翻开的书页一旦过目再也阖不上。你甚至无法进入诗人之眼体会文学心灵之起伏跌宕,某种
劳汉堡包”、“肯德基炸鸡”都成了非常迷人的回忆,非常老掉牙的故事。如果,我的孙子或曾孙子因看到我在偷吃一个油汤汤的汉堡而骂我“老番婆”,不知道七十多岁的简嫃会不会暗地掉泪? 算了,不要吵醒在地底的伏流。让阿嬷在她的年代里梳髻,我在我的年代里散发,我
高一 数学 必修 数列 第六讲 数列求和

【易错典例】已知等差数列{an}的前 3 项和为 6,前 8 项和为-4. (1)求数列{an}的通项公式;(2)设 bn=(4-an)qn-1(q ≠0,n∈N*),求数列{bn}的前 n 项和 Sn.
【错因】未对 q=1 或 q ≠1 分别讨论,相减后项数、符号均出现了错误.
()
【易错典例】已知等差数列{an}的前 3 项和为 6,前 8 项和为-4. (1)求数列{an}的通项公式;(2)设 bn=(4-an)qn-1(q ≠0,n∈N*),求数列{bn}的前 n 项和 Sn.
技巧传播
(一)等差数列
(1)
Sn
n(a1 2
an )
na1
n(n 1) 2
d=
d 2
n2
(a1
d )n 2
An2
Bn
;
(2) Sn 是等差数列 an 的前 n 项和,则 Sk , S2k Sk , S3k S2k 仍成等差数列,即 S3m 3(S2m Sm ) ;
(3)若 Sm Sn (m n) ,则 Snn 0 ;(4)若 S p q , Sq p ,则 S pq ( p q) ;(5) Smn Sm Sn mnd
数列求和
知识要点
公式法
错位 相减法
分组 求和法
数列 求和
观察法 (客观 题)
迭代法
倒序 相加法
裂项 相消法
累加法
(1)等差数列前
n
项和:
Sn
ቤተ መጻሕፍቲ ባይዱ
n(a1 2
an )
na1
n(n 1) 2
d
=
d 2
n2
(a1
d )n 2
An2
Bn
(2)等比数列前
高一数列求和的7类题型和15种方法讲义

高一数列求和的7类题型和15种方法讲义数列求和是高中数学中比较重要的一章,其中有七种基本类型的题目,涉及到15种不同的解法。
一、基本概念- 数列:按照一定规律排列的一些数的集合。
- 通项公式:数列中第 $n$ 项和 $n$ 的公式,通常表示为$a_n$。
- 前 $n$ 项和:数列的前 $n$ 项之和,表示为 $S_n$。
二、七类题型1. 等差数列求和- 当公差为常数时使用求和公式:$S_n=\dfrac{(a_1+a_n)\cdot n}{2}$。
- 当公差为 $1$ 时,可以使用去端项的方法简化计算。
2. 等比数列求和- 当公比不为 $1$ 时使用求和公式:$S_n=\dfrac{a_1(1-q^n)}{1-q}$。
- 当公比为 $1$ 时,可以使用 $\mathrm{ln}$ 函数推导出求和公式。
3. 含有等差或等比数列的求和- 先化简为单独的等差数列或等比数列,再使用对应的求和公式。
- 如果难以化简,可以采用分段求和的方法,即按照数列的等差或等比段分段求和,最后相加。
4. 转化为数列求和- 将题目中的问题转化为数列求和的形式,即可以使用已知的求和公式来解决。
5. 凑整法- 将数列的相邻项相加,凑出一个整数,再使用等差或等比数列求和的方法求解。
6. 差分法- 求出相邻项之差的数列后,可以将原数列转化为等差数列或等比数列求和的形式。
7. 数学归纳法- 设定初始值成立,然后证明递推公式成立,最后得出结论。
- 通常适用于复杂问题的证明。
三、15种解法- 求和公式法- 套公式法- 化简求和法- 凑整法- 差分求和法- 分段求和法- 变项积分法- 叠加法- 逆向思维法- 归纳证明法- 凑数法- 分离求和法- 同除法- 矩阵幂法- 洛必达法数列求和问题也是高考的热门考点之一,要多多练习,熟能生巧。
(2019版)高一数学数列求和6

高一数学数列求及基本方法及技巧

数列求和的根本方法和技巧数列是高中代数的重要内容,又是学 高等数学的基. 在高考和各种数学 中都占有重要的地位.数列求和是数列的重要内容之一,除了等差数列和等比数列有求和公式外,大局部数列的求和都需要一定 的技巧 . 下面,就几个 届高考数学和数学 来 数列求和的根本方法和技巧.一、利用常用求和公式求和利用以下常用求和公式求和是数列求和的最根本最重要的方法.1、 等差数列求和公式: S nn(a 1 a n )na 1n(n 1) d 22na 1( q 1)2、等比数列求和公式:S na 1 (1 q n ) a 1a n q1)1 q1(qqn1 (1)n2 1 (1)(21)3、 S nk4、 S nk n nn n6 nk 1 2k 1nk 3 [ 1n( n 1)]25、 S nk12[ 例 1]log 3 x1 ,求 x x 2x 3x n的前 n 和 .log 2 3解:由 log 3 x1log 3x log 3 21xlog 2 32由等比数列求和公式得S nx x 2 x 3x n〔利用常用公式〕= x(1 n1(1 1 ) x) = 22n = 1- 11 x1 1 2n2[ 例 2]S n =1+2+3+⋯+n , n ∈ N * , 求 f (n)(n S n的最大 .32)S n 1解:由等差数列求和公式得S n1n(n 1) , S n11(n 1)(n2)〔利用常用公式〕22∴ f (n)S n=n234n 64(n 32) S n 1n=1=11850n 3464 ( n2 50n)n8 1 ∴ 当n,即 n = 8 , f (n)max850二、 位相减法求和种方法是在推 等比数列的前n 和公式 所用的方法,种方法主要用于求数列{a n · b n } 的前 n和,其中 { a n }、 { b n } 分 是等差数列和等比数列.[ 例 3] 求和: S n1 3x 5x2 7x 3(2n 1) x n1⋯⋯⋯⋯⋯⋯⋯⋯⋯①解:由 可知, { (2n1)x n 1 } 的通 是等差数列 {2n - 1} 的通 与等比数列 { x n 1 } 的通 之xS n1x 3x 25x 3 7 x 4(2n 1) x n ⋯⋯⋯⋯⋯⋯⋯⋯⋯.②〔设制错位〕①-②得(1 x) S n 1 2x 2x 22 x3 2x 42x n 1 (2n 1) x n〔错位相减 〕再利用等比数列的求和公式得:(1 x)S n 11 x n1( 2n 1)x n2x 1 x∴S n (2n 1) x n 1 (2n 1) x n (1 x)(1 x)2[ 例 4] 求数列 2, 42 ,63 ,,2nn , 前 n 的和 .2 222解:由 可知, {2n {2n}{1n}的通 是等差数列 的通 与等比数列 n } 的通 之22S n2462n⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯①2 2 2 232n1 2 4 62n〔设制错位〕S n2 22 32 42 n 1 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯②2①-②得 (11)S n 2 2 2 2 2 2n〔错位相减〕2 2 22 23 24 2n 2n 12 1 2n2 n 1 2n 1∴S n 4 n 22n1三、反序相加法求和是推 等差数列的前n 和公式 所用的方法,就是将一个数列倒 来排列〔反序〕,再把它与原数列相加,就可以得到n 个(a 1a n ) .[ 例5]求 :C n03C n15C n2(2n 1)Cn n(n1)2n明:S nC n03C 1n5C n2(2n1)Cnn ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯..①把①式右 倒 来得S n (2n1)C n n ( 2n 1)C n n 1 3C n 1 C n 0〔反序〕又由 C n mC n n m 可得S n (2n1)C n 0 (2n 1)C n 1 3C n n1C n n ⋯⋯⋯⋯ .. ⋯⋯ .. ②①+②得2S n (2n 2)(C n 0 C n 1 C n n1C n n ) 2(n 1) 2 n〔反序相加〕∴S n(n 1) 2 n[ 例 6] 求 sin 2 1sin 2 2 sin 2 3 sin 2 88 sin 2 89 的解: S sin 2 1 sin 2 2 sin 2 3sin 2 88 sin 2 89 ⋯⋯⋯⋯. ①将①式右 反序得S sin 2 89 sin 2 88sin 2 3 sin 2 2sin 2 1 ⋯⋯⋯⋯ .. ②〔反序〕又因 sin x cos(90x), sin 2 x cos 2 x1① +②得〔反序相加〕2S (sin 2 1 cos 2 1 )(sin 2 2 cos 2 2 ) (sin 2 89 cos 2 89 ) = 89∴ S =四、分 法求和有一 数列,既不是等差数列,也不是等比数列,假设将 数列适当拆开,可分 几个等差、等比或常 的数列,然后分 求和,再将其合并即可.[ 例 7] 求数列的前 n 和: 11 1 7, , 13n 2 ,⋯1, 4, 2 n 1aa a解: S n(1 1)1 4) ( 1 7)( 1 3n 2)(2n 1aa a将其每一 拆开再重新 合得111〔分组〕S n (1a a 2 a n 1)(1 4 73n 2)当 a =1 , S nn (3n 1)n (3n 1)n〔分组求和〕2=211(3n 1) n a a 1 n(3n 1)n当 a1, S na n2 =a121 1a[ 例 8]求数列 {n(n+1)(2n+1)}的前 n 和 .解: ak k k 1)( 2 k 1) k 3k 2 k(2 3n n∴ S n k(k 1)(2k 1) = (2k3 3k 2 k) k 1 k 1将其每一项拆开再重新组合得nk3 nk 2nS n=2 3 k 〔分组〕k 1 k 1k 1= 2(13 23 n3 ) 3(12 22 n2 ) (1 2 n)=n2 (n 1) 2 n(n 1)( 2n 1) n(n 1)〔分组求和〕2 2 2=n(n 1)2 (n 2)2五、裂项法求和这是分解与组合思想在数列求和中的具体应用.裂项法的实质是将数列中的每项〔通项〕分解,然后重新组合,使之能消去一些项,最终到达求和的目的. 通项分解〔裂项〕如:〔 1〕a n f (n 1) f ( n) 〔 2〕sin 1 tan(n 1) tan n1)cosn cos(n〔 3〕a n 11) 1 11〔 4〕a n(2n(2n) 21)1 1 ( 1 1 )n(n n n 1)( 2n 2 2n 1 2n 1〔 5〕a n1 1[1 1] n(n 1)(n 2) 2 1) ( n 1)(n 2)n(n(6) a nn 2 1 2(n 1) n 1 1 1 n , 那么S n 11n(n 1) 2 n n(n 1) 2 n n 2 n 1 (n 1)2 (n 1) 2 n[ 例 9] 求数列 1 , 1 , , 1 , 的前 n 项和 .1 2 3 n n2 1解:设 a n1n 1 n 〔裂项〕n n 1那么S n 1 1 1 〔裂项求和〕2 23 n n 11= ( 2 1) ( 3 2) ( n 1 n )=n 1 1[ 例 10]在数列 {a n } 中, a n12n ,又 b n 2,求数列 {b n } 的前 n 项的和 .n 1 n 1n 1a nan 1解:∵ a n12n nn 1 n1n 12∴ b nn 2 1 8( 11 )〔裂项〕n n n 12 2∴ 数列 {b n } 的前 n 项和S n8[(1 1 ) ( 1 1) (11 ) (11 )]〔裂项求和〕2 23 34 nn 1= 8(11 ) = 8nn 1 n 1[ 例 11]求证:111 cos1cos1 cos 2cos88 cos89sin 2 1cos0 cos1 解:设 S111cos 0 cos1 cos1 cos2cos88 cos89∵sin1tan(n 1) tan n〔裂项〕1)cos n cos(n∴ S111〔裂项求和〕cos 0 cos1 cos1 cos2cos88 cos89=1{(tan 1 tan 0 ) (tan 2 tan1 ) (tan 3tan 2 ) [tan 89tan 88 ]}sin 1=1(tan 89 tan 0 ) = 1 cos1sin 1cot 1 =2 1sin 1sin∴ 原等式成立六、合并法求和针对一些特殊的数列,将某些项合并在一起就具有某种特殊的性质,因此,在求数列的和时,可将这些项放在一起先求和,然后再求S n .[ 例 12]求 cos1° + cos2 ° + cos3 ° +···+ cos178 ° + cos179 °的值 .解:设 S n = cos1 ° + cos2 ° + cos3 ° +··· + cos178 ° + cos179 °∵ cos ncos(180 n )〔找特殊性质项〕∴ S n = 〔 cos1 ° + cos179 °〕 +〔 cos2 ° + cos178 °〕 + 〔 cos3 °+ cos177 °〕 +···+〔 cos89 °+ cos91 °〕 + cos90 ° 〔合并求和〕= 0[ 例 13]数列 {a n } : a 1 1,a 2 3, a 3 2, a n 2 a n 1 a n ,求 S 2002.解:设 S = a 1 a 2a 3a20022002由 a1 1, a2 3, a3 2, a n 2 a n 1 a n可得a4 1, a5 3, a6 2,a7 1, a8 3, a9 2, a10 1, a11 3, a12 2,⋯⋯a6 k 1 1, a6k 2 3, a6k 3 2, a6 k 4 1, a6k 5 3, a6 k 6 2∵a6k1 a6k2 a6k3 a6 k4 a6 k5 a6 k 6 0 〔找特殊性质项〕∴S2002=a1 a2 a3 a2002 〔合并求和〕= ( a1 a2 a3 a6 ) ( a7 a8 a12 ) (a6k 1 a6k 2 a6k 6 )(a1993 a1994a1998) a1999a2000a2001a2002= a1999 a2000 a2001 a2002=a6 k 1 a6k 2 a6k 3 a6 k 4= 5[ 例 14] 在各均正数的等比数列中,假设a5 a6 9, 求 log 3 a1 log 3 a2 log 3 a10的.解: S n log 3 a1 log 3 a2 log 3 a10由等比数列的性m n p q a m a n a p a q 〔找特殊性质项〕和数的运算性log a M log a N log a M N 得S n (log 3 a1 log 3 a10 ) (log 3 a2 log 3 a9 ) (log 3 a5 log 3 a6 ) 〔合并求和〕= (log 3 a1 a10 ) (log 3 a2 a9 ) (log 3 a5 a6 )= log 3 9 log 3 9 log 3 9= 10七、利用数列的通求和先根据数列的构及特征行分析,找出数列的通及其特征,然后再利用数列的通揭示的律来求数列的前n 和,是一个重要的方法.[ 例 15]求111 111111 1 之和.n个1解:由于 1111 1 9999 1(10 k1) 〔找通项及特征〕k 个19 k 个19∴ 111 111111 1n 个1= 1(101 1) 1 (1021) 1 (1031)1(10 n 1)〔分组求和〕9999= 1(10110 2 10310 n )1(1 1 11)99 n 个1n= 1 10(10 1) n910 19= 1(10n 1 10 9 )81n[ 例 16]数列 {a n } : a n8, 求(n 1)(a n a n 1 ) 的值 .( n 1)(n 3)n 1解:∵ (n1)(a n a n 1 ) 8(n1)[ 11 ]〔找通项及特征〕3)( n 2)( n ( n 1)(n4)= 8 [11]〔设制分组〕2)(n4) (n 3)(n(n 4)= 4 (11 ) 8 ( 11 〔裂项〕n 2nn 3n)44∴( n1)(a n a n1) 4 ( 11 ) 8 (11 ) 〔分组、裂项求和〕n 1n 1 n2 n 4n 1n3 n 4= 4 (11 )8 13 44=133说明:本资料适用于高三总复习,也适用于高一“数列〞一章的学习。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
安福寺的钟声开始在天圣山下敲响的时候,正值唐宪宗当朝。唐宪宗,本名李纯,大唐第十一位皇帝。他在位期间,把“太宗之创业”、“玄宗之致理”当作效仿的榜样,励精图治,重用贤良,改 革弊政,勤勉政事,力图中兴,从而取得元和削藩的巨大成果,重振中央政权威望,史称“元和中兴”。因而,他被后人誉为可与唐太宗李世民相比肩的君王。李纯的人生如同小说般精彩。他的岳父岳 母是附马都尉郭暧和升平公主,升平公主与郭暧之间的故事,被后人编成一出《打金枝》演绎至今。他坐朝的时候,诗魔白居易任翰林学士、左拾遗,另一位大家韩愈为刑部侍郎。身边可谓群星闪耀, 万里江山如画啊!
足球论坛 初次相遇安福寺,是在上世纪九十年代。
记ቤተ መጻሕፍቲ ባይዱ那是个秋天,我跟随分管农口的副县长陈永造到苗圃调研。开完座淡会后,我们便在安福寺遗迹四下访起古来。当时的安福寺已经荒废多年,仅剩半厅四方木殿,几块残旧石碑。遗迹犹存,但 寺里没有僧人,不闻钟钹之声,木鱼梵音不复。一幢红砖青瓦的三层建筑,是解放后新建的,作为苗圃的办公场所和职工宿舍。房前,有一片田野,育满碧绿的柳杉苗和落了黄叶的板栗苗。屋后,是层 林尽染的天圣山。秋风吹来,红叶纷飞,犹如无数彩蝶在空中飞舞,斑斓了人的视线。