2018年浙江高考数学二轮复习:第2部分 必考补充专题 专题限时集训20 排列组合、二项式定理 Word版含答案
2018年浙江高考数学二轮复习练习第2部分必考补充专题(4份有答案)

专题限时集训(十七) 集合与常用逻辑用语(对应学生用书第151页)[建议A、B组各用时:45分钟][A组高考题、模拟题重组练]一、集合1.(2015·浙江高考)已知集合P={x|x2-2x≥3},Q={x|2<x<4},则P∩Q=( ) A.[3,4) B.(2,3]C.(-1,2) D.(-1,3]A[P={x|x2-2x≥3}={x|(x-3)(x+1)≥0}={x|x≥3或x≤-1},∴P∩Q={x|x≥3或x≤-1}∩{x|2<x<4}={x|3≤x<4},即P∩Q=[3,4).]2.(2017·浙江高考)已知集合P={x|-1<x<1},Q={x|0<x<2},那么P∪Q=( ) A.(-1,2) B.(0,1)C.(-1,0) D.(1,2)A[∵P={x|-1<x<1},Q={x|0<x<2},∴P∪Q={x|-1<x<2}.故选A.]3.设集合A={y|y=2x,x∈R},B={x|x2-1<0},则A∪B=( )A.(-1,1) B.(0,1)C.(-1,+∞)D.(0,+∞)C[由已知得A={y|y>0},B={x|-1<x<1},则A∪B={x|x>-1}.故选C.]4.(2016·浙江高考)已知集合P={x∈R|1≤x≤3},Q={x∈R|x2≥4},则P∪(∁R Q)=( ) A.[2,3] B.(-2,3]C.[1,2) D.(-∞,-2]∪[1,+∞)B[∵Q={x∈R|x2≥4},∴∁R Q={x∈R|x2<4}={x|-2<x<2}.∵P={x∈R|1≤x≤3},∴P∪(∁R Q)={x|-2<x≤3}=(-2,3].]5.(2015·浙江高考)已知集合P={x|x2-2x≥0},Q={x|1<x≤2},则(∁R P)∩Q=( ) A.[0,1) B.(0,2]C.(1,2) D.[1,2]C[由x2-2x≥0,得x≤0或x≥2,即P={x|x≤0或x≥2},所以∁R P={x|0<x<2}=(0,2).又Q={x|1<x≤2}=(1,2],所以(∁R P)∩Q=(1,2).]6.(2014·浙江高考)设全集U={x∈N|x≥2),集合A={x∈N|x2≥5},则∁U A=( )A .∅B .{2}C .{5}D .{2,5}B [因为A ={x ∈N |x ≤-5或x ≥5}, 所以∁U A ={x ∈N |2≤x <5),故∁U A ={2}.] 二、命题及其关系、充分条件与必要条件7.(2015·浙江高考)设a ,b 是实数,则“a +b >0”是“ab >0”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分也不必要条件D [特值法:当a =10,b =-1时,a +b >0,ab <0,故a +b >0D ⇒/ab >0;当a =-2,b =-1时,ab >0,但a +b <0,所以ab >0D ⇒/a +b >0.故“a +b >0”是“ab >0”的既不充分也不必要条件.]8.(2017·湖州市高三第一学期期末调研测试)已知{a n }是等比数列,则“a 2<a 4”是“{a n }是单调递增数列”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分也不必要条件B [若a n =(-2)n,是等比数列,且a 2=4<a 4=16,但该数列不具有单调性,所以充分性不成立;若{a n }是单调递增的等比数列,则必有a 2<a 4,所以必要性成立,即“a 2<a 4”是“{a n }是单调递增数列”的必要不充分条件,故选B.]9.设p :实数x ,y 满足(x -1)2+(y -1)2≤2,q :实数x ,y 满足⎩⎪⎨⎪⎧y ≥x -1,y ≥1-x ,y ≤1,则p 是q 的( )A .必要不充分条件B .充分不必要条件C .充要条件D .既不充分也不必要条件A [p 表示以点(1,1)为圆心,2为半径的圆面(含边界),如图所示.q 表示的平面区域为图中阴影部分(含边界).由图可知,p是q的必要不充分条件.故选A.]10.已知直线a,b分别在两个不同的平面α,β内,则“直线a和直线b相交”是“平面α和平面β相交”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件A[由题意知a⊂α,b⊂β,若a,b相交,则a,b有公共点,从而α,β有公共点,可得出α,β相交;反之,若α,β相交,则a,b的位置关系可能为平行、相交或异面.因此“直线a和直线b相交”是“平面α和平面β相交”的充分不必要条件.故选A.]11.设集合A={x|x>-1},B={x|x≥1},则“x∈A且x∉B”成立的充要条件是( ) A.-1<x≤1B.x≤1C.x>-1 D.-1<x<1D[由x∈A且x∉B知x∈A∩(∁R B),又∁R B={x|x<1},则A∩(∁R B)={x|-1<x<1}.][B组“8+7”模拟题提速练]一、选择题1.已知集合A={x|y=lg(x-x2)},集合B={x|x2-cx<0,c>0},若A⊆B,则c的取值范围为( ) A.(0,1] B.(0,1)C.[1,+∞)D.(1,+∞)C[由题意将两个集合化简得:A=(0,1),B=(0,c),因为A⊆B,所以c≥1.]2.(2017·杭州市高三年级第二学期教学质量检测)设α,β是两个不同的平面,m是一条直线,给出下列命题:①若m⊥α,m⊂β,则α⊥β;②若m∥α,α⊥β,则m⊥β,则A.①②都是假命题B.①是真命题,②是假命题C.①是假命题,②是真命题D.①②都是真命题B[由面面垂直的判定可知m⊥α,m⊂β,则α⊥β,故命题①为真命题;m∥α,α⊥β,m与β可能平行,在β内,或与α相交,故②为假命题.]3.(2014·浙江高考)已知i是虚数单位,a,b∈R,则“a=b=1”是“(a+b i)2=2i”的( ) A.充分不必要条件B.必要不充分条件C .充分必要条件D .既不充分也不必要条件A [当a =b =1时,(a +b i)2=(1+i)2=2i ;当(a +b i)2=2i 时,得⎩⎪⎨⎪⎧a 2-b 2=0,ab =1,解得a =b =1或a =b =-1,所以“a =b =1”是“(a +b i)2=2i”的充分不必要条件.]4.(2017·浙江省名校新高考研究联盟高三第三次联考)已知集合P ={x ∈R |0<x <1},Q ={x ∈R |x 2+x -2≤0},则( ) A .P ∈Q B .P ∈∁R Q C .∁R P ⊆QD .∁R Q ⊆∁R PD [由题意得集合P ={x |0<x <1},Q ={x |-2≤x ≤1},所以∁R P ={x |x ≤0或x ≥1},∁R Q ={x |x <-2或x >1},所以∁R Q ⊆∁R P ,故选D.]5.函数f (x )的定义域为实数集R ,“f (x )是奇函数”是“|f (x )|是偶函数”的( ) 【导学号:68334154】A .充分不必要条件B .必要不充分条件C .既不充分也不必要条件D .充要条件A [f (x )为奇函数,则f (-x )=-f (x ),所以|f (-x )|=|-f (x )|=|f (x )|,因此|f (x )|是偶函数,但当f (x )为奇函数时,|f (x )|为偶函数,但由|f (x )|为偶函数不能得出结论f (x )为奇函数,因此本题选A.]6.“a =0”是“函数f (x )=sin x -1x+a 为奇函数”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件C [f (x )的定义域为{x |x ≠0},关于原点对称,当a =0时,f (x )=sin x -1x,f (-x )=sin(-x )-1-x =-sin x +1x =-⎝ ⎛⎭⎪⎫sin x -1x =-f (x ),故f (x )为奇函数; 反之,当f (x )=sin x -1x+a 为奇函数时,f (-x )+f (x )=0,又f (-x )+f (x )=sin(-x )-1-x +a +sin x -1x +a =2a ,故a =0,所以“a =0”是“函数f (x )=sin x -1x+a 为奇函数“的充要条件,故选C.]7.已知集合A ={x |x 2-3x +2=0,x ∈R },B ={x |0<x <5,x ∈N },则满足条件A ⊆C ⊆B 的集合C 的个数为( ) A .1 B .2 C .3D .4D [A ={x |(x -1)(x -2)=0,x ∈R }={1,2},B ={x |0<x <5,x ∈N }={1,2,3,4}. 因为A ⊆C ⊆B ,所以C 可以为{1,2},{1,2,3},{1,2,4},{1,2,3,4}.]8.(2015·浙江高考)设A ,B 是有限集,定义:d (A ,B )=card(A ∪B )-card(A ∩B ),其中card(A )表示有限集A 中元素的个数.( )命题①:对任意有限集A ,B ,“A ≠B ”是“d (A ,B )>0”的充分必要条件; 命题②:对任意有限集A ,B ,C ,d (A ,C )≤d (A ,B )+d (B ,C ). A .命题①和命题②都成立 B .命题①和命题②都不成立 C .命题①成立,命题②不成立 D .命题①不成立,命题②成立A [命题①成立,若A ≠B ,则card(A ∪B )>card(A ∩B ),所以d (A ,B )=card(A ∪B )-card(A ∩B )>0.反之可以把上述过程逆推,故“A ≠B ”是“d (A ,B )>0”的充分必要条件; 命题②成立,由Venn 图,知card(A ∪B )=card(A )+card(B )-card(A ∩B ),d (A ,C )=card(A )+card(C )-2card(A ∩C ), d (B ,C )=card(B )+card(C )-2card(B ∩C ),所以d (A ,B )+d (B ,C )-d (A ,C )=card(A )+card(B )-2card(A ∩B )+card(B )+card(C )-2card(B ∩C )-[card(A )+card(C )-2card(A ∩C )]=2card(B )-2card(A ∩B )-2card(B ∩C )+2card(A ∩C ) =2card(B )+2card(A ∩C )-2[card(A ∩B )+card(B ∩C )] ≥2card(B )+2card(A ∩C )-2[card((A ∪C )∩B )+card(A ∩B ∩C )] =[2card(B )-2card ( A ∪CB+[2card(A ∩C )-2card(A ∩B ∩C )]≥0,所以d (A ,C )≤d (A ,B )+d (B ,C )得证.] 二、填空题9.(2017·浙江省名师原创预测卷(二))已知集合M =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪y =lnx -1x ,N ={y |y =x 2+2x +2},则(∁RM )∩N =________.{1} [由题意得M =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x -1x >0,即M =(-∞,0)∪(1,+∞),N ={y |y ≥1},所以(∁R M )∩N =[0,1]∩[1,+∞)={1}.]10.已知集合A =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ∈R ⎪⎪⎪12<2x<8,B ={x ∈R |-1<x <m +1},若x ∈B 成立的一个充分不必要的条件是x ∈A ,则实数m 的取值范围是________.(2,+∞) [A =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ∈R ⎪⎪⎪12<2x<8={x |-1<x <3}, 因为x ∈B 成立的一个充分不必要条件是x ∈A , 所以A ⊆B ,所以m +1>3,即m >2.]11.(2017·浙江省名师原创预测卷(四))已知集合A ={1,2,3,…,10},若集合A 的一个非空子集中的奇数的个数不多于偶数的个数,则称该子集为“偏偶集”,那么集合A 的所有非空子集中,“偏偶集”的个数为________.637 [集合A 的所有非空子集可分为三类:偶数的个数多于奇数的个数、奇数的个数多于偶数的个数、偶数的个数与奇数的个数相等.其中前两种情况的子集数相等,现考虑第三种情况,即考虑元素个数为2,4,6,8,10的子集,则共有子集数:(C 15)2+(C 25)2+(C 35)2+(C 45)2+(C 55)2=251,从而“偏偶集”的个数为251+12(210-1-251)=637.]12.设p :(x -a )2≤9,q :(x +1)(2x -1)≥0,若p 是q 的充分不必要条件,则实数a 的取值范围是________.(-∞,-4]∪⎣⎢⎡⎭⎪⎫72,+∞ [p :(x -a )2≤9,所以a -3≤x ≤a +3,q :x ≤-1或x ≥12.因为p 是q 的充分不必要条件,所以a +3≤-1或a -3≥12,即a ≤-4或a ≥72.]13.(2014·浙江高考)设集合S ={x |x ≥2},T ={x |x ≤5},则S ∩T =________.[2,5] [因为S ={x |x ≥2},T ={x |x ≤5},所以S ∩T ={x |x ≥2且x ≤5}={x |2≤x ≤5}.] 14.已知集合A ={1,2,3,4},B ={x ∈Z ||x |≤1},则A ∩(∁Z B )=________.{2,3,4} [因为集合A ={1,2,3,4},B ={x ∈Z ||x |≤1}={-1,0,1},所以A ∩(∁Z B )={2,3,4}.] 15.(2016·江南十校一模)已知集合P ={x |-1<x <b ,b ∈N },Q ={x |x 2-3x <0,x ∈Z },若P ∩Q ≠∅,则b 的最小值等于________.2 [集合P ={x |-1<x <b ,b ∈N },Q ={x |x 2-3x <0,x ∈Z }={1,2},P ∩Q ≠∅,可得b 的最小值为2.]专题限时集训(十八) 不等式与线性规划(对应学生用书第153页) [建议A 、B 组各用时:45分钟] [A 组 高考题、模拟题重组练]一、基本不等式1.已知a >0,b >0,a +b =1a +1b ,则1a +2b的最小值为( )A .4B .2 2C .8D .16B [由a +b =1a +1b,有ab =1,则1a +2b≥21a ×2b=2 2.]2.(2017·温州九校协作体高三期末联考)已知实数x >0,y >0,且满足x +y =1,则2x +xy的最小值为________.2+22 [因为x +y =1,所以2x +x y =2x +2y x +x y =2+2y x +xy≥2+22,当且仅当⎩⎪⎨⎪⎧2y x =x y,x +y =1,即x =2-2,y =2-1时等号成立.]3.(2014·浙江高考)已知实数a ,b ,c 满足a +b +c =0,a 2+b 2+c 2=1,则a 的最大值是________.63[因为a +b +c =0,所以b +c =-a . 因为a 2+b 2+c 2=1,所以-a 2+1=b 2+c 2=(b +c )2-2bc =a 2-2bc , 所以2a 2-1=2bc ≤b 2+c 2=1-a 2, 所以3a 2≤2,所以a 2≤23,所以-63≤a ≤63. 所以a max =63.] 4.(2015·浙江高考)已知函数f (x )=⎩⎪⎨⎪⎧x 2,x ≤1,x +6x-6,x >1,则f (f (-2))=________,f (x )的最小值是________.-12 26-6 [f (f (-2))=f (4)=4+64-6=-12.当x ≤1时,f (x )min =0; 当x >1时,f (x )=x +6x-6.令f ′(x )=1-6x2=0,解得x =6(负值舍去).当1<x <6时,f ′(x )<0;当x >6时,f ′(x )>0, ∴f (x )的最小值为f (6)=6+66-6=26-6.综上,f (x )的最小值是26-6.] 二、线性规划问题5.(2017·浙江高考)若x ,y 满足约束条件⎩⎪⎨⎪⎧x ≥0,x +y -3≥0,x -2y ≤0,则z =x +2y 的取值范围是( )A .[0,6]B .[0,4]C .[6,+∞)D .[4,+∞)D [作出不等式组表示的平面区域,如图中阴影部分所示.由题意可知,当直线y =-12x +z2过点A (2,1)时,z 取得最小值,即z min =2+2×1=4.所以z =x +2y的取值范围是[4,+∞). 故选D.]6.(2016·山东高考)若变量x ,y 满足⎩⎪⎨⎪⎧x +y ≤2,2x -3y ≤9,x ≥0,则x 2+y 2的最大值是( )A .4B .9C .10D .12C [作出不等式组表示的平面区域,如图中阴影部分所示.x 2+y 2表示平面区域内的点到原点距离的平方,由⎩⎪⎨⎪⎧x +y =2,2x -3y =9得A (3,-1),由图易得(x 2+y 2)max =|OA |2=32+(-1)2=10.故选C.]7.(2016·浙江高考)若平面区域⎩⎪⎨⎪⎧x +y -3≥0,2x -y -3≤0,x -2y +3≥0夹在两条斜率为1的平行直线之间,则这两条平行直线间的距离的最小值是( ) A.355 B. 2 C.322D. 5B [根据约束条件作出可行域如图阴影部分,当斜率为1的直线分别过A 点和B 点时满足条件,联立方程组⎩⎪⎨⎪⎧x +y -3=0,x -2y +3=0求得A (1,2),联立方程组⎩⎪⎨⎪⎧2x -y -3=0,x +y -3=0求得B (2,1),可求得分别过A ,B 点且斜率为1的两条直线方程为x -y +1=0和x -y -1=0,由两平行线间的距离公式得距离为|1+1|2=2,故选B.]8.设x ,y 满足约束条件⎩⎪⎨⎪⎧2x -y +1≥0,x -2y -1≤0,x ≤1,则z =2x +3y -5的最小值为________.-10 [画出不等式组表示的平面区域如图中阴影部分所示.由题意可知,当直线y =-23x +53+z3过点A (-1,-1)时,z 取得最小值,即z min=2×(-1)+3×(-1)-5=-10.]9.某高科技企业生产产品A 和产品B 需要甲、乙两种新型材料.生产一件产品A 需要甲材料1.5 kg ,乙材料1 kg ,用5个工时;生产一件产品B需要甲材料0.5 kg ,乙材料0.3 kg ,用3个工时.生产一件产品A 的利润为2 100元,生产一件产品B 的利润为900元.该企业现有甲材料150 kg ,乙材料90 kg ,则在不超过600个工时的条件下,生产产品A 、产品B 的利润之和的最大值为________元.216 000 [设生产A 产品x 件,B 产品y 件,则⎩⎪⎨⎪⎧1.5x +0.5y ≤150,x +0.3y ≤90,5x +3y ≤600,x ≥0,x ∈N *,y ≥0,y ∈N *.目标函数z =2 100x +900y .作出可行域为图中的阴影部分(包括边界)内的整数点,图中阴影四边形的顶点坐标分别为(60,100),(0,200),(0,0),(90,0).当直线z =2 100x +900y 经过点(60,100)时,z 取得最大值,z max =2 100×60+900×100=216 000(元).]10.(2015·浙江高考)若实数x ,y 满足x 2+y 2≤1,则|2x +y -2|+|6-x -3y |的最小值是________. 3 [满足x 2+y 2≤1的实数x ,y 表示的点(x ,y )构成的区域是单位圆及其内部.f (x ,y )=|2x +y -2|+|6-x -3y |=|2x +y -2|+6-x -3y=⎩⎪⎨⎪⎧4+x -2y ,y ≥-2x +2,8-3x -4y ,y <-2x +2.直线y =-2x +2与圆x 2+y 2=1交于A ,B 两点,如图所示,易得B ⎝ ⎛⎭⎪⎫35,45.设z 1=4+x -2y ,z 2=8-3x -4y ,分别作直线y =12x 和y =-34x 并平移,则z 1=4+x -2y 在点B ⎝ ⎛⎭⎪⎫35,45取得最小值为3,z 2=8-3x -4y 在点B ⎝ ⎛⎭⎪⎫35,45取得最小值为3,所以|2x +y -2|+|6-x -3y |的最小值是3.][B 组 “8+7”模拟题提速练]一、选择题1.已知a <b <0,则下列不等式成立的是( ) 【导学号:68334155】 A .a 2<b 2B.a b<1 C .a <1-bD.1a <1bC [因为a <b <0,所以a 2>b 2,a b >1,1a >1b,a +b <1.因此A ,B ,D 不正确,C 正确.]2.已知P (x ,y )为区域⎩⎪⎨⎪⎧y 2-x 2≤0,0≤x ≤a 内的任意一点,当该区域的面积为4时,z =2x -y 的最大值是( ) A .6 B .0 C .2 D .2 2A [由⎩⎪⎨⎪⎧y 2-x 2≤0,0≤x ≤a 作出可行域如图,易求得A (a ,-a ),B (a ,a ),由题意知S △OAB =12·2a ·a =4,得a =2.∴A (2,-2),当y =2x -z 过A 点时,z 最大,z max =2×2-(-2)=6.故选A.]3.(2015·浙江高考)有三个房间需要粉刷,粉刷方案要求:每个房间只用一种颜色,且三个房间颜色各不相同.已知三个房间的粉刷面积(单位:m 2)分别为x ,y ,z ,且x <y <z ,三种颜色涂料的粉刷费用(单位:元/m 2)分别为a ,b ,c ,且a <b <c .在不同的方案中,最低的总费用(单位:元)是( ) A .ax +by +cz B .az +by +cx C .ay +bz +cx D .ay +bx +czB [令x =1,y =2,z =3,a =1,b =2,c =3. A 项:ax +by +cz =1+4+9=14; B 项:az +by +cx =3+4+3=10;C 项:ay +bz +cx =2+6+3=11;D 项:ay +bx +cz =2+2+9=13.故选B.]4.若变量x ,y 满足约束条件⎩⎪⎨⎪⎧x -y +1≤0,y ≤1,x >-1,则(x -2)2+y 2的最小值为( )A.322B. 5C.92D .5D [作出不等式组对应的平面区域如图,设z =(x -2)2+y 2,则z 的几何意义为区域内的点到定点D (2,0)的距离的平方,由图知C ,D 间的距离最小,此时z 最小. 由⎩⎪⎨⎪⎧y =1,x -y +1=0,得⎩⎪⎨⎪⎧x =0,y =1,即C (0,1),此时z min =(x -2)2+y 2=4+1=5,故选D.]5.已知x ,y 满足约束条件⎩⎪⎨⎪⎧x ≥1,y ≥-1,4x +y ≤9,x +y ≤3,若目标函数z =y -mx (m >0)的最大值为1,则m 的值是( ) 【导学号:68334156】 A .-209B .1C .2D .5B [作出可行域,如图所示的阴影部分.∵m >0,∴当z =y -mx 经过点A 时,z 取最大值,由⎩⎪⎨⎪⎧x =1,x +y =3,解得⎩⎪⎨⎪⎧x =1,y =2,即A (1,2),∴2-m =1,解得m =1.故选B.]6.若关于x ,y 的不等式组⎩⎪⎨⎪⎧x ≤0,x +y ≥0,kx -y +1≥0表示的平面区域是等腰直角三角形,则其表示的区域面积为( ) A .1或14B.12或18 C .1或12D.12或14D [可行域由三条直线x =0,x +y =0,kx -y +1=0所围成,因为x =0与x +y =0的夹角为π4,所以x =0与kx -y +1=0的夹角为π4或x +y =0与kx -y +1=0的夹角为π4.当x =0与kx -y +1=0的夹角为π4时,可知k =1,此时等腰三角形的直角边长为22,面积为14;当x +y =0与kx -y +1=0的夹角为π4时,k =0,此时等腰三角形的直角边长为1,面积为12,所以选D.]7.设正实数x ,y ,z 满足x 2-3xy +4y 2-z =0,则当z xy取得最小值时,x +2y -z 的最大值是( ) 【导学号:68334157】 A .0 B.98 C .2D.94C [z xy =x 2-3xy +4y 2xy =x y -3+4yx≥2x y ·4y x -3=1,当且仅当x y =4yx,即x =2y 时等号成立. 此时z =x 2-3xy +4y 2=(2y )2-3·2y ·y +4y 2=2y 2. ∴x +2y -z =2y +2y -2y 2=-2(y -1)2+2,∴当y =1,x =2,z =2时,x +2y -z 取最大值,最大值为2,故选C.]8.设m >1,x ,y 满足约束条件⎩⎪⎨⎪⎧y ≥x ,y ≤mx ,x +y ≤1,且目标函数z =x +my 的最大值为2,则m 的取值为( )A .2B .1+ 2C .3D .2+ 2B [因为m >1,由约束条件⎩⎪⎨⎪⎧y ≥x ,y ≤mx ,x +y ≤1作出可行域如图,直线y =mx 与直线x +y =1交于B ⎝ ⎛⎭⎪⎫1m +1,m m +1,目标函数z =x +my 对应的直线与直线y =mx 垂直,且在B ⎝⎛⎭⎪⎫1m +1,m m +1处取得最大值,由题意可知1+m2m +1=2,又因为m >1,解得m =1+ 2.] 二、填空题9.(2017·浙江省名校新高考联盟高三第三次联考)过P (-1,1)的光线经x 轴上点A 反射后,经过不等式组⎩⎪⎨⎪⎧x -2y +4≥0,x +y -2≥0,3x +y -9≤0所表示的平面区域内某点(记为B ),则|PA |+|AB |的取值范围是________.[22,5] [由题意得点P (-1,1)关于x 轴的对称点为P 1(-1,-1),则|PA |+|PB |的取值范围等价于点P 1(-1,-1)与不等式组⎩⎪⎨⎪⎧x -2y +4≥0,x +y -2≥0,3x +y -9≤0,y ≥0表示的平面区域内的点的连线的长度的范围,如图,在平面直角坐标系内画出不等式组表示的平面区域(阴影区域,含边界),由图易得点P 1(-1,-1)到直线x +y -2=0的距离最小,最小值为|-1-1-2|12+12=22;点P 1(-1,-1)与点C (2,3)的距离最大,最大值为+2++2=5,所以|PA |+|PB |的取值范围为[22,5].]10.(2017·萧山中学高三仿真模拟)已知实数x ,y 满足|2x +y -2|≥|6-x -3y |且|x |≤4,则|3x -4y |的最大值为________.32 [∵实数x ,y满足|2x +y -2|≥|6-x -3y |,且|x |≤4,∴⎩⎪⎨⎪⎧2x +y -2≥0,x +3y -6≥0,x -2y +4≥0,-4≤x ≤4或⎩⎪⎨⎪⎧ 2x +y -2≤0,x +3y -6≤0,x -2y +4≤0,-4≤x ≤4或⎩⎪⎨⎪⎧2x +y -2≥0,x +3y -6≤0,3x +4y -8≥0,-4≤x ≤4或⎩⎪⎨⎪⎧2x +y -2≤0,x +3y -6≥0,3x +4y -8≤0,-4≤x ≤4.∴可行域为如图中阴影部分(含边界)所示,其中A (-4,5),B (-4,0),C (0,2),D (4,4),E (4,-1).设目标函数z =3x -4y ,则当目标函数z =3x -4y 经过A (-4,5)时取得最小值z min =-32;当目标函数z =3x -4y 经过E (4,-1)时取得最大值z max =16,则|z |=|3x -4y |的最大值为32.]11.(2014·浙江高考)当实数x ,y 满足⎩⎪⎨⎪⎧x +2y -4≤0,x -y -1≤0,x ≥1时,1≤ax +y ≤4恒成立,则实数a 的取值范围是________.⎣⎢⎡⎦⎥⎤1,32 [画可行域如图所示,设目标函数z =ax +y ,即y =-ax +z ,要使1≤z ≤4恒成立,则a >0,数形结合知,满足⎩⎪⎨⎪⎧1≤2a +1≤4,1≤a ≤4即可,解得1≤a ≤32.所以a 的取值范围是1≤a ≤32.]12.已知正数a ,b ,c 满足b +c ≥a ,则b c +ca +b的最小值为________.2-12[因为正数a ,b ,c 满足b +c ≥a ,所以b c +c a +b ≥b c +c 2b +c =⎝ ⎛⎭⎪⎫b c +12+c 2b +c -12=2b +c 2c +c 2b +c -12≥2-12. 当且仅当2b +c 2c =c2b +c时取等号.]13.已知一元二次不等式f (x )<0的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x <-1或x >13,则f (e x )>0的解集为________.{x |x <-ln 3} [f (x )>0的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪-1<x <13, 则由f (e x )>0得-1<e x<13,解得x <-ln 3,即f (e x)>0的解集为{x |x <-ln 3}.]14.(2017·宁波十校高三适应性考试 17)已知a ,b 均为正数,且a +b =1,c >1,则⎝ ⎛⎭⎪⎫a 2+12ab -1·c +2c -1的最小值为________.3 2 [由题意知,∵a 2+12ab -1=a 2+a +b 22ab-1=2a 2+b22ab≥2(当且仅当a =2-1,b =2-2时,等号成立),∴原式≥2c +2c -1=2⎝ ⎛⎭⎪⎫c -1+1c -1+2≥22+2=32(当且仅当c =2时,等号成立).]15.(2016·舟山调研)若log 4(3a +4b )=log 2ab ,则a +b 的最小值是________. 7+43 [由log 4(3a +4b )=log 2ab ,得3a +4b =ab ,且a >0,b >0,∴a =4bb -3,由a >0,得b >3. ∴a +b =b +4bb -3=b +b -+12b -3=(b -3)+12b -3+7≥212+7=43+7,即a +b 的最小值为7+4 3.]专题限时集训(十九) 复数、数学归纳法(对应学生用书第155页) [建议A 、B 组各用时:45分钟] [A 组 高考题、模拟题重组练]一、复数1.设(1+i)x =1+y i ,其中x ,y 是实数,则|x +y i|=( ) A .1 B. 2 C. 3D .2B [∵(1+i)x =1+y i ,∴x +x i =1+y i. 又∵x ,y ∈R ,∴x =1,y =x =1. ∴|x +y i|=|1+i|=2,故选B.]2.已知z =(m +3)+(m -1)i 在复平面内对应的点在第四象限,则实数m 的取值范围是( ) A .(-3,1) B .(-1,3) C .(1,+∞) D .(-∞,-3)A [由题意知⎩⎪⎨⎪⎧m +3>0,m -1<0,即-3<m <1.故实数m 的取值范围为(-3,1).]3.若z =4+3i ,则z|z |=( ) A .1 B .-1 C.45+35iD.45-35i D [∵z =4+3i ,∴z =4-3i ,|z |=42+32=5,∴z|z |=4-3i 5=45-35i.] 4.设复数z 满足1+z 1-z =i ,则|z |=( )A .1 B. 2 C. 3D .2 A [由1+z 1-z =i ,得z =-1+i1+i=-1+-2=2i2=i ,所以|z |=|i|=1,故选A.] 5.若a 为实数,且(2+a i)(a -2i)=-4i ,则a =( ) A .-1 B .0 C .1D .2B [∵(2+a i)(a -2i)=-4i ,∴4a +(a 2-4)i =-4i.∴⎩⎪⎨⎪⎧4a =0,a 2-4=-4,解得a =0.故选B.]6.若复数z 满足2z +z =3-2i ,其中i 为虚数单位,则z =( ) A .1+2iB .1-2iC .-1+2iD .-1-2iB [法一:设z =a +b i(a ,b ∈R ),则2z +z =2a +2b i +a -b i =3a +b i =3-2i.由复数相等的定义,得3a =3,b =-2,解得a =1,b =-2,∴z =1-2i.法二:由已知条件2z +z =3-2i ①,得2z +z =3+2i ②,解①②组成的关于z ,z 的方程组,得z =1-2i.故选B.]7.(2017·浙江高考)已知a ,b ∈R ,(a +b i)2=3+4i(i 是虚数单位),则a 2+b 2=________,ab =________.【导学号:68334158】5 2 [(a +b i)2=a 2-b 2+2ab i.由(a +b i)2=3+4i ,得⎩⎪⎨⎪⎧a 2-b 2=3,ab =2.解得a 2=4,b 2=1.所以a 2+b 2=5,ab =2.]8.若复数z =m (m -1)+(m -1)i 是纯虚数,其中m 是实数,则1z=________.i [由题意,得m (m -1)=0且(m -1)≠0,得m =0,所以z =-i ,1z =1-i =i.二、数学归纳法9.用数学归纳法证明:(n +1)(n +2)…(n +n )=2n×1×3×…×(2n -1)(n ∈N *)时,从“n =k 到n =k +1”时,左边应增添的代数式为________.2(2k +1) [假设n =k 时,(k +1)(k +2)…(k +k )=2k×1×3…×(2k -1)成立;那么n =k +1时左边应为[(k +1)+1][(k +1)+2]…[(k +1)+k -1][(k +1)+k ][(k +1)+(k +1)]=(k +2)(k +3)…(k +k )(2k +1)(2k +2),即从“n =k 到n =k +1”时,左边应添乘的式子是[k +k +k ++k +k +1=k +k +k +1=2(2k +1).]10.观察下列各式:1=12,2+3+4=32,3+4+5+6+7=52,4+5+6+7+8+9+10=72,…,可以得出的一般结论是________.n +(n +1)+(n +2)+…+(3n -2)=(2n -1)2 [1=12,2+3+4=32,3+4+5+6+7=52,4+5+6+7+8+9+10=72,…,由上述式子可以归纳:等式左边为连续自然数的和,有2n -1项,且第一项为n ,则最后一项为3n -2,等式右边均为2n -1的平方.]11.用数学归纳法证明122+132+…+1n +2>12-1n +2.假设n =k 时,不等式成立,则当n =k +1时,应推证的目标不等式是________.122+132+…+1k 2+1k +2+1k +2>12-1k +3 [观察不等式中各项的分母变化知,n =k +1时,122+132+ (1)2+1k +2+1k +2>12-1k +3.][B 组 “8+7”模拟题提速练]一、选择题1.已知复数z =11-i ,则z -|z |对应的点所在的象限为( )A .第一象限B .第二象限C .第三象限D .第四象限 B [∵复数z =11-i =1+i -+=12+12i , ∴z -|z |=12+12i -⎝ ⎛⎭⎪⎫122+⎝ ⎛⎭⎪⎫122=1-22+12i ,其对应的点⎝ ⎛⎭⎪⎫1-22,12所在的象限为第二象限.故选B.]2.已知i 为虚数单位,若a 1-i =1+ii,则a 的值为( )A .iB .-iC .-2iD .2iC [∵a 1-i =1+ii,∴a =+-i=2i=-2i ,故选C.] 3.(2016·浙江镇海中学模拟)设z 1,z 2是复数,则下列命题中的假命题是( ) A .若|z 1-z 2|=0,则z -1=z -2 B .若z 1=z -2,则z -1=z 2C .若|z 1|=|z 2|,则z 1·z -1=z 2·z -2 D .若|z 1|=|z 2|,则z 21=z 22D [对于选项A ,若|z 1-z 2|=0,则z 1-z 2=0,z 1=z 2,所以z -1=z -2,命题为真;对于选项B ,若z 1=z -2,则z 1和z 2互为共轭复数,所以z -1=z 2,命题为真;对于选项C ,设z 1=a 1+b 1i ,z 2=a 2+b 2i(a 1,b 1,a 2,b 2∈R ),若|z 1|=|z 2|,则a 21+b 21=a 22+b 22,z 1·z -1=a 21+b 21,z 2·z -2=a 22+b 22,所以z 1·z-1=z 2·z -2,命题为真;对于选项D ,若z 1=1,z 2=i ,则|z 1|=|z 2|,而z 21=1,z 22=-1,所以z 21≠z 22,命题为假.]4.复数z =3+4i1-2i (其中i 是虚数单位),则复数z 的共轭复数z -=( )A .-1-2iB .-1+2iC .1+2iD .1-2iA [依题意得z =++-+=-5+10i5=-1+2i ,因此z -=-1-2i ,故选A.]5.设复数z 1和z 2在复平面内的对应点关于坐标原点对称,且z 1=3-2i ,则z 1·z 2=( ) A .-5-12i B .-5+12i C .-13+12iD .-13-12iB [复数z 1=3-2i 在复平面内对应的点为(3,-2),其关于原点对称的点的坐标为(-3,2),所以z 2=-3+2i ,z 1·z 2=(3-2i)(-3+2i)=-5+12i ,故选B.]6.设i 是虚数单位,则复数2i1-i在复平面内所对应的点位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限B [2i1-i=+-+=-2=-1+i ,由复数的几何意义知-1+i 在复平面内的对应点为(-1,1),该点位于第二象限,故选B.]7.若复数z 满足(2+i)z =3i(i 为虚数单位),则z 的共轭复数为( ) A.2+i B.2-i C .1+2i D .1-2iD [依题意得z =3i2+i=2-2+2-=1+2i ,则复数z 的共轭复数为1-2i ,选D.]8.用数学归纳法证明“n 3+(n +1)3+(n +2)3(n ∈N +)能被9整除”,要利用归纳假设证n =k +1时的情况,只需展开( ) A .(k +3)3B .(k +2)3C .(k +1)3D .(k +1)3+(k +2)3A [假设当n =k 时,原式能被9整除,即k 3+(k +1)3+(k +2)3能被9整除.当n =k +1时,(k +1)3+(k +2)3+(k +3)3为了能用上面的归纳假设,只需将(k +3)3展开,让其出现k 3即可.] 二、填空题9.设复数z 的共轭复数为z ,若z =1-i(i 为虚数单位),则zz+z 2的虚部为________.-1 [∵z =1-i(i 为虚数单位), ∴zz +z 2=1+i 1-i+(1-i)2=+2-+-2i =2i2-2i =-i ,故其虚部为-1.] 10.在复平面上,已知直线l 上的点所对应的复数z 满足|z +i|=|z -3-i|,则直线l 的斜率为________. -32 [设z =x +y i(x ,y ∈R ),∵|z +i|=|z -3-i|,∴|x +(y +1)i|=|(x -3)+(y -1)i|,∴x 2+(y +1)2=(x -3)2+(y -1)2, ∴6x +4y -9=0,则直线l 的斜率为-32.]11.已知f (n )=1+12+13+…+1n (n ∈N +),证明不等式f (2n )>n 2时,f (2k +1)比f (2k)多的项数是_____________项.2k [f (2k )=1+12+13+…+12k ,f (2k +1)=1+12+13+…+12k +12k +1+12k +2+…+12k +2k .因此,f (2k +1)比f (2k )多了2k项.]12.用数学归纳法证明不等式1n +1+1n +2+…+1n +n >1324(n ≥2,n ∈N *)的过程中,由n =k 推导n =k +1时,不等式的左边增加的式子是__________.1k +k +[当n =k +1时左边的代数式是1k +2+1k +3+…+12k +1+12k +2,增加了两项12k +1与12k +2,但是少了一项1k +1,故不等式的左边增加的式子是12k +1+12k +2-1k +1=1k +k +.]13.复数+23-4i 的值是________.-1 [+23-4i=1+4i +4i 23-4i =-3+4i 3-4i=-1.]14.已知x1+i=1-y i ,其中x ,y 是实数,i 是虚数单位,则x +y i 的共轭复数为________.2-i [x 1+i =12(x -x i)=1-y i ,所以x =2,y =1.]15.设复数z 1=3+2i ,z 2=1-i ,则⎪⎪⎪⎪⎪⎪z 1+2z 2=________. 【导学号:68334159】5 [⎪⎪⎪⎪⎪⎪z 1+2z 2=⎪⎪⎪⎪⎪⎪3+2i +21-i=|3+2i +(1+i)|=|4+3i|=5.]专题限时集训(二十) 排列组合、二项式定理 (对应学生用书第157页) [建议A 、B 组各用时:45分钟] [A 组 高考题、模拟题重组练]一、排列、组合1.如图201,小明从街道的E 处出发,先到F 处与小红会合,再一起到位于G 处的老年公寓参加志愿者活动,则小明到老年公寓可以选择的最短路径条数为( )图201A.24 B.18C.12 D.9B[从E到G需要分两步完成:先从E到F,再从F到G.从F到G的最短路径,只要考虑纵向路径即可,一旦纵向路径确定,横向路径即可确定,故从F到G的最短路径共有3条.如图,从E到F的最短路径有两类:先从E到A,再从A到F,或先从E到B,再从B到F.因为从A到F或从B到F都与从F到G的路径形状相同,所以从A到F,从B到F最短路径的条数都是3,所以从E 到F的最短路径有3+3=6(条).所以小明到老年公寓的最短路径条数为6×3=18.]2.用数字1,2,3,4,5组成没有重复数字的五位数,其中奇数的个数为( )A.24 B.48C.60 D.72D[第一步,先排个位,有C13种选择;第二步,排前4位,有A44种选择.由分步乘法计数原理,知有C13·A44=72(个).]3.定义“规范01数列”{a n}如下:{a n}共有2m项,其中m项为0,m项为1,且对任意k≤2m,a1,a2,…,a k中0的个数不少于1的个数.若m=4,则不同的“规范01数列”共有( )A.18个B.16个C.14个D.12个C[由题意知:当m=4时,“规范01数列”共含有8项,其中4项为0,4项为1,且必有a1=0,a8=1.不考虑限制条件“对任意k≤2m,a1,a2,…,a k中0的个数不少于1的个数”,则中间6个数的情况共有C36=20(种),其中存在k≤2m,a1,a2,…,a k中0的个数少于1的个数的情况有:①若a2=a3=1,则有C14=4(种);②若a2=1,a3=0,则a4=1,a5=1,只有1种;③若a2=0,则a3=a4=a5=1,只有1种.综上,不同的“规范01数列”共有20-6=14(种).故共有14个.故选C.]4.(2012·浙江高考)若从1,2,3,…,9这9个整数中同时取4个不同的数,其和为偶数,则不同的取法共有( )A.60种B.63种C.65种D.66种D[满足题设的取法可分为三类:一是四个奇数相加,其和为偶数,在5个奇数1,3,5,7,9中,任意取4个,有C45=5(种);二是两个奇数加两个偶数其和为偶数,在5个奇数中任取2个,再在4个偶数2,4,6,8中任取2个,有C25·C24=60(种);三是四个偶数相加,其和为偶数,4个偶数的取法有1种,所以满足条件的取法共有5+60+1=66(种).]5.某中学高三学习雷锋志愿小组共有16人,其中一班、二班、三班、四班各4人,现在从中任选3人,要求这三人不能是同一个班级的学生,且在三班至多选1人,不同的选取法的种数为( )【导学号:68334160】A.484 B.472C.252 D.232B[分两类,不选三班的同学,利用间接法,没有条件得选择3人,再排除3个同学来自同一班,有C312-3C34=208种;选三班的一位同学,剩下的两位同学从剩下的12人中任选2人,有C14·C212=264种.根据分类计数原理,得208+264=472,故选B.]6.下列各式的展开式中x8的系数恰能表示从重量分别为1,2,3,4,…,10克的砝码(每种砝码各一个)中选出若干个,使其总重量恰为8克的方法总数的选项是( ) 【导学号:68334161】A.(1+x)(1+x2)(1+x3)…(1+x10)B.(1+x)(1+2x)(1+3x)…(1+10x)C.(1+x)(1+2x2)(1+3x3)…(1+10x10)D.(1+x)(1+x+x2)(1+x+x2+x3)...(1+x+x2+ (x10)A[从重量分别为1,2,3,4,…,10克的砝码(每种砝码各一个)中选出若干个,使其总重量恰为8克的方法是选一个,8克,一种方法,选两个,1+7,2+6,3+5,共3种方法,选三个,1+2+5,只有一种方法,其他不含1的三个的和至少是2+3+4>8.四个以上的和都大于8,因此共有方法数为 5.A中,x8的系数是1+3+1=5(x8,x·x7,x2·x6,x3·x5,x·x2·x5),B中,x8的系数大于1×2×3×4×5×6×7×8,C中,x8的系数大于8(8x8的系数就是8),D中,x8的系数大于C49>8(有四个括号里取x2,其余取1时系数为C49).因此只有A是正确的,故选A.]7.(2017·浙江高考)从6男2女共8名学生中选出队长1人,副队长1人,普通队员2人组成4人服务队,要求服务队中至少有1名女生,共有________种不同的选法.(用数字作答)660 [法一:只有1名女生时,先选1名女生,有C12种方法;再选3名男生,有C36种方法;然后排队长、副队长位置,有A24种方法.由分步乘法计数原理,知共有C12C36A24=480(种)选法.有2名女生时,再选2名男生,有C26种方法;然后排队长、副队长位置,有A24种方法.由分步乘法计数原理,知共有C26A24=180(种)选法.所以依据分类加法计数原理知共有480+180=660(种)不同的选法.法二:不考虑限制条件,共有A28C26种不同的选法,而没有女生的选法有A26C24种,故至少有1名女生的选法有A28C26-A26C24=840-180=660(种).]8.(2014·浙江高考)在8张奖券中有一、二、三等奖各1张,其余5张无奖.将这8张奖券分配给4个人,每人2张,不同的获奖情况有________种(用数字作答).60[把8张奖券分4组有两种分法,一种是分(一等奖,无奖)、(二等奖,无奖)、(三等奖,无奖)、(无奖,无奖)四组,分给4人有A44种分法;另一种是一组两个奖,一组只有一个奖,另两组无奖,共有C23种分法,再分给4人有C23A24种分法,所以不同获奖情况种数为A44+C23A24=24+36=60.]二、二项式定理9.(x2+x+y)5的展开式中,x5y2的系数为( )A.10 B.20C.30 D.60C[法一:(x2+x+y)5=[(x2+x)+y]5,含y2的项为T3=C25(x2+x)3·y2.其中(x2+x)3中含x5的项为C13x4·x=C13x5.所以x5y2的系数为C25C13=30.故选C.法二:(x2+x+y)5为5个x2+x+y之积,其中有两个取y,两个取x2,一个取x即可,所以x5y2的系数为C25C23C11=30.故选C.]10.(2014·浙江高考)在(1+x)6(1+y)4的展开式中,记x m y n项的系数为f(m,n),则f(3,0)+f(2,1)+f(1,2)+f(0,3)=( )A.45 B.60C.120 D.210C[因为f(m,n)=C m6C n4,所以f(3,0)+f(2,1)+f(1,2)+f(0,3)=C36C04+C26C14+C16C24+C06C34=120.]11.已知(1+ax)(1+x)5的展开式中x2的系数为5,则a=( )A.-4 B.-3C.-2 D.-1D[(1+x)5中含有x与x2的项为T2=C15x=5x,T3=C25x2=10x2,∴x2的系数为10+5a=5,∴a=-1,故选D.]12.已知多项式(x+1)3(x+2)2=x5+a1x4+a2x3+a3x2+a4x+a5,则a4=________,a5=________.16 4 [由题意知a4为含x的项的系数,根据二项式定理得a4=C23×12×C22×22+C33×13×C12×2=16,a5是常数项,所以a5=C33×13×C22×22=4.]13.(2016·全国乙卷)(2x+x)5的展开式中,x3的系数是________.(用数字填写答案)10 [(2x +x )5展开式的通项为T r +1=C r 5(2x )5-r·(x )r =25-r·C r5·x 5-r2.令5-r2=3,得r =4.故x 3的系数为25-4·C 45=2C 45=10.]14.⎝⎛⎭⎪⎫ax 2+1x 5的展开式中x 5的系数是-80,则实数a =________. -2 [T r +1=C r 5·(ax 2)5-r⎝ ⎛⎭⎪⎫1x r =C r 5·a 5-r x 10-52r .令10-52r =5,解得r =2.又展开式中x 5的系数为-80,则有C 25·a 3=-80,解得a =-2.]15.(a +x )(1+x )4的展开式中x 的奇数次幂项的系数之和为32,则a =________. 3 [设(a +x )(1+x )4=a 0+a 1x +a 2x 2+a 3x 3+a 4x 4+a 5x 5. 令x =1,得(a +1)×24=a 0+a 1+a 2+a 3+a 4+a 5.① 令x =-1,得0=a 0-a 1+a 2-a 3+a 4-a 5.②①-②,得16(a +1)=2(a 1+a 3+a 5)=2×32,∴a =3.]16.设二项式⎝⎛⎭⎪⎪⎫x -13x 5的展开式中常数项为A ,则A =________. -10 [T r +1=C r 5(x )5-r ⎝⎛⎭⎪⎪⎫-13x r =C r 5(-1)r x 52-5r 6,令52-5r 6=0,得r =3,所以A =-C 35=-10.]17.已知对任意实数x ,有(m +x )(1+x )6=a 0+a 1x +a 2x 2+…+a 7x 7,若a 1+a 3+a 5+a 7=32,则m =________. 【导学号:68334162】0 [设(1+x )6=b 0+b 1x +b 2x 2+…+b 6x 6,则a 1=b 0+mb 1,a 3=b 2+mb 3,a 5=b 4+mb 5,a 7=b 6, 所以a 1+a 3+a 5+a 7=(b 0+b 2+b 4+b 6)+m (b 1+b 3+b 5),又由二项式定理知b 0+b 2+b 4+b 6=b 1+b 3+b 5=12(1+1)6=32,所以32+32m =32,m =0.][B 组 “8+7”模拟题提速练]一、选择题1.某校开设10门课程供学生选修,其中A ,B ,C 三门由于上课时间相同,至多选一门,学校规定:每位同学选修三门,则每位同学不同的选修方案种数是( )A .70B .98C .108D .120B [可分为两类:选A ,B ,C 中的一门,其它7科中选两门,有C 13C 27=63;不选A ,B ,C 中的一门,其它7科中选三门,有C 37=35;所以共有98种,故选B.]2.在⎝⎛⎭⎪⎫ax 6+b x 4的二项展开式中,如果x 3的系数为20,那么ab 3=( ) A .20 B .15 C .10D .5D [T r +1=C r4·(ax 6)4-r·⎝ ⎛⎭⎪⎫b xr =C r 4a 4-r b r x 24-7r,令24-7r =3,得r =3,则4ab 3=20,∴ab 3=5.]3.(2018·杭州二模)某微信群中甲、乙、丙、丁、戊五名成员同时抢4个红包,每人最多抢一个,且红包被全部抢光,4个红包中两个2元,两个3元(红包金额相同视为相同的红包),则甲、乙两人都抢到红包的情况有( ) A .36种 B .24种 C .18种D .9种C [由题意可得丙、丁、戊中有1人没有抢到红包,且抢到红包的4人中有2人抢到2元红包,另2人抢到3元红包,则甲、乙两人都抢到红包的情况有C 13C 24=18种,故选C.]4.七名同学站成一排照毕业纪念照,其中甲必须站在正中间,并且乙,丙两位同学要站在一起,则不同的排法有( ) A .240种 B .192种 C .120种D .96种B [不妨令乙丙在甲左侧,先排乙丙两人,有A 22种站法,再取一人站左侧有C 14×A 22种站法,余下三人站右侧,有A 33种站法,考虑到乙丙在右侧的站法,故总的站法总数是2×A 22×C 14×A 22×A 33=192,故选B.]5.某学校开设“蓝天工程博览课程”,组织6个年级的学生外出参观包括甲博物馆在内的6个博物馆,每个年级任选一个博物馆参观,则有且只有两个年级选择甲博物馆的情况有( ) A .A 26×A 45种 B .A 26×54种 C .C 26×A 45种D .C 26×54种D [有两个年级选择甲博物馆共有C 26种情况,其余四个年级每个年级各有5种选择情况,故有且只有两个年级选择甲博物馆的情况有C 26×54种,故选D.] 6.在⎝⎛⎭⎪⎫1+x +1x2 01810的展开式中,含x 2项的系数为( ) A .10 B .30 C .45D .120C [因为⎝⎛⎭⎪⎫1+x +1x2 01810=⎣⎢⎡⎦⎥⎤+x +1x2 01810=(1+x )10+C 110(1+x )91x2 018+…+C 1010⎝⎛⎭⎪⎫1x 2 01810,所以x 2项只能在(1+x )10的展开式中,所以含x 2的项为C 210x 2,系数为C 210=45,故选C.]7.(x +2y )7的展开式中,系数最大的项是( )。
(完整版)浙江专版2018年高考数学二轮专题复习重难增分训练一函数与导数的综合问题

一 一 .一 1 1 已知 m n € (2 , e),且-2— -2 n m…1 rm> 2+ — n2 1 x 2— 26(2 , e)),贝U f' (x )= 一妒+ x = 丁因为x€ (2 , e),所以f' (x) >0,故函数f (x )在(2 , e)上单调递增.因为f (n ) <f (n),所 以nv m 故选A.2 .已知定义在 R 上的可导函数f (x )的导函数为f ' (x),满足f ' (x) v f (x ),且f (x+ 2)为 偶函数,f (4) = 1,则不等式f (x ) ve x的解集为.解析:因为f (x+ 2)为偶函数,所以f (x+ 2)的图象关于x = 0对称,所以f (x )的图象关于x............ -------------------------------------------- f x f , x e x— f x e x=2 对称.所以 f (0) = f (4) = 1.设 g (x ) = ------------------------------ x —(x € R),贝U g (x) =x —2 --------------------- =eex — f x 一, , .... .................... .x .又f (x) v f (x ),所以g ( x) v 0( x e R),所以函数 g (x )在TE 义域上单倜递 exf x f 0x —减.因为 f (x ) v e ? ―一 v 1,而 g (0) =—^— = 1,所以 f (x ) v e? g (x) < g (0),所以 x > 0.答案:(0 , +8)3. (2017 -广东汕头模拟)已知函数f (x ) = x+ x ln x,若m^ Z,且f (x ) — m (x — 1)>0对任意 的x >i 恒成立,则m 的最大值为…一 一,一 ,, 一, ....................... * 一 x + x In x解析:因为f (x) = x + x In x,且f (x) — mx — 1)>0对任怠的x >1恒成立,等价于 m <一了一:— x — I 在(1 , + 8)上恒成立,等价于m < * + 弋 * min (x >1) .x — 1令 g (x ) = x + xl : X (x >1) 所以 g z (x ) =x_-_.易知 g' (x ) = 0 必有实根,设为 x 0(x 0 x — 1、, x — 1 -2- In x °= 0),且g (x )在(1 , x °)上单调递减,在(x °, + °°)上单调递增,此时 g (x )min = g(x °) 因此 m <x 0,令 h (x ) = x — 2-In x,可得 h (3)<0 , h (4)>0 ,答案:3x4 .已知函数f (x ) = | x e | ,方程 的取值范围为.重难增分训练(一) 函数与导数的综合问题A.B. nx n解析:选A 由不等式可得.一日< Innv In n,即*+ In nv 』+ In m 设 f (x ) = §+ In x (x m f v |n n ,则(C.的大小关系不确定x 。
2018高考数学浙江专版二轮复习与策略课件 专题2 解三角形 精品

回访1 正、余弦定理的应用 1.(2013·浙江高考在△ABC中,∠C=90°,M是BC的中点.若sin∠BAM= 13,则sin∠BAC=________.
6 3
[因为sin∠BAM=13,
所以cos∠BAM=
2
3
2
.如图,在△ABM中,利用正弦定理,得
BM sin∠BAM
=
sAinMB,
所以BAMM=sins∠inBBAM=3si1n B=3cos∠1 BAC.
(2若b2+c2-a2=65bc,求tan B.
[解] (1证明:根据正弦定理,可设sina A=sinb B=sinc C=k(k>0.
则a=ksin A,b=ksin B,c=ksin C,
代入coas A+cobs B=sinc C中,有
cos ksin
AA+kcso得sin Acos B+sin Bcos(π-A=0,
即sin Acos B-sin Bcos A=0,
3分
∴sin(A-B=0,∴A-B=kπ,k∈Z.
4分
∵A,B是△ABC的两内角,
∴A-B=0,即A=B,
5分
∴△ABC是等腰三角形.
6分
②由2(b2+c2-a2=bc, 得b2+2cb2c-a2=14, 由余弦定理得cos A=14, cos C=cos(π-2A=-cos 2A=1-2cos2 A=78. ∵A=B,∴cos B=cos A=14, ∴cos B+cos C=14+78=98.
8分 9分
12分 14分
关于解三角形问题,一般要用到三角形的内角和定理,正、余弦定理及有 关三角形的性质,常见的三角变换方法和原则都适用,同时要注意“三统一”, 即“统一角、统一函数、统一结构”,这是使问题获得解决的突破口.
2018届浙江高三数学二轮专题复习 集合与命题

解析
答案
Ⅱ
真题押题精练
真题体验
1.(2016·浙 江 改 编 ) 已 知 集 合 P = {x∈R|1≤x≤3} , Q = {x∈R|x2≥4} ,则 (- 2,3]P∪(∁RQ)=________. 解析 由已知得Q={x|x≥2或x≤-2}. ∴∁RQ=(-2,2).又P=[1,3], ∴P∪∁RQ=[1,3]∪(-2,2)=(-2,3].
A={2,3},集合B={1,2,4},则(∁UB)∩A等于 A.{2} C.{5,6} B.{3}
√ D.{3,5,6}
解析 由题意得∁UB={3,5,6},则(∁UB)∩A={3}, 故选B.
解析
答案
CA-CB,CA≥CB, (2)用C(A)表示非空集合A中的元素个数,定义 A*B= CB-CA,CA<CB, 若A={1,2},B={x|(x2+ax)(x2+ax+2)=0},且A*B=1,设实数a
解析
答案
(2)(2017· 温州九校协作体联考)已知实数a,b,则“|a+b|+|a- b|≤1”是“a2+b2≤1”的 A.充分不必要条件
√ B.必要不充分条件
C.充要条件
D.既不充分也不必要条件
思维升华
解析
答案
跟踪演练2
(1)(2017· 绍兴模拟)已知平面α⊥平面β,且α∩β=b, B.必要不充分条件 D.既不充分也不必要条件
√
A.(2,3] C.(-∞,0)∪(0,2] 押题依据
B.[2,3] D.(-∞,-1)∪[0,3]
集合的运算在历年高考中的地位都很重要,已成为
送分必考试题.集合的运算常与不等式(特别是一元一次不等式、
一元二次不等式 )的求解、函数的定义域、函数的值域等知识相 交汇. 解析 A=[0,3].又log2(x2-x)>log22,即x2-x>2, 解得x<-1或x>2,所以B=(-∞,-1)∪(2,+∞). 所以A∩B=(2,3].
2018年浙江高考数学二轮复习练习:第2部分+必考补充专题+专题限时集训18+不等式与线性规划

专题限时集训(十八) 不等式与线性规划(对应学生用书第153页) [建议A 、B 组各用时:45分钟] [A 组 高考题、模拟题重组练]一、基本不等式1.已知a >0,b >0,a +b =1a +1b ,则1a +2b的最小值为( )A .4B .2 2C .8D .16B [由a +b =1a +1b,有ab =1,则1a +2b≥21a ×2b=2 2.]2.(2017·温州九校协作体高三期末联考)已知实数x >0,y >0,且满足x +y =1,则2x +xy的最小值为________.2+22 [因为x +y =1,所以2x +x y =2x +2y x +x y =2+2y x +xy≥2+22,当且仅当⎩⎪⎨⎪⎧2y x =x y ,x +y =1,即x =2-2,y =2-1时等号成立.]3.(2014·浙江高考)已知实数a ,b ,c 满足a +b +c =0,a 2+b 2+c 2=1,则a 的最大值是________.63[因为a +b +c =0,所以b +c =-a . 因为a 2+b 2+c 2=1,所以-a 2+1=b 2+c 2=(b +c )2-2bc =a 2-2bc , 所以2a 2-1=2bc ≤b 2+c 2=1-a 2,所以3a 2≤2,所以a 2≤23,所以-63≤a ≤63. 所以a max =63.] 4.(2015·浙江高考)已知函数f (x )=⎩⎪⎨⎪⎧x 2,x ≤1,x +6x-6,x >1,则f (f (-2))=________,f (x )的最小值是________.-12 26-6 [f (f (-2))=f (4)=4+64-6=-12.当x ≤1时,f (x )min =0; 当x >1时,f (x )=x +6x-6.令f ′(x )=1-6x2=0,解得x =6(负值舍去).当1<x <6时,f ′(x )<0;当x >6时,f ′(x )>0,∴f (x )的最小值为f (6)=6+66-6=26-6.综上,f (x )的最小值是26-6.] 二、线性规划问题5.(2017·浙江高考)若x ,y 满足约束条件⎩⎪⎨⎪⎧x ≥0,x +y -3≥0,x -2y ≤0,则z =x +2y 的取值范围是( )A .[0,6]B .[0,4]C .[6,+∞)D .[4,+∞)D [作出不等式组表示的平面区域,如图中阴影部分所示.由题意可知,当直线y =-12x +z2过点A (2,1)时,z 取得最小值,即z min =2+2×1=4.所以z=x +2y 的取值范围是[4,+∞). 故选D.]6.(2016·山东高考)若变量x ,y 满足⎩⎪⎨⎪⎧x +y ≤2,2x -3y ≤9,x ≥0,则x 2+y 2的最大值是( )A .4B .9C .10D .12C [作出不等式组表示的平面区域,如图中阴影部分所示.x 2+y2表示平面区域内的点到原点距离的平方,由⎩⎪⎨⎪⎧x +y =2,2x -3y =9得A (3,-1),由图易得(x 2+y 2)max =|OA |2=32+(-1)2=10.故选C.]7.(2016·浙江高考)若平面区域⎩⎪⎨⎪⎧x +y -3≥0,2x -y -3≤0,x -2y +3≥0夹在两条斜率为1的平行直线之间,则这两条平行直线间的距离的最小值是( ) A.355 B. 2C.322D. 5B [根据约束条件作出可行域如图阴影部分,当斜率为1的直线分别过A 点和B 点时满足条件,联立方程组⎩⎪⎨⎪⎧x +y -3=0,x -2y +3=0求得A (1,2),联立方程组⎩⎪⎨⎪⎧2x -y -3=0,x +y -3=0求得B (2,1),可求得分别过A ,B 点且斜率为1的两条直线方程为x -y +1=0和x -y -1=0,由两平行线间的距离公式得距离为|1+1|2=2,故选B.]8.设x ,y 满足约束条件⎩⎪⎨⎪⎧2x -y +1≥0,x -2y -1≤0,x ≤1,则z =2x +3y -5的最小值为________.-10 [画出不等式组表示的平面区域如图中阴影部分所示.由题意可知,当直线y =-23x +53+z3过点A (-1,-1)时,z取得最小值,即z min =2×(-1)+3×(-1)-5=-10.] 9.某高科技企业生产产品A 和产品B 需要甲、乙两种新型材料.生产一件产品A 需要甲材料1.5 kg ,乙材料1 kg ,用5个工时;生产一件产品B 需要甲材料0.5 kg ,乙材料0.3 kg ,用3个工时.生产一件产品A 的利润为2 100元,生产一件产品B 的利润为900元.该企业现有甲材料150 kg ,乙材料90 kg ,则在不超过600个工时的条件下,生产产品A 、产品B 的利润之和的最大值为________元. 216 000 [设生产A 产品x 件,B 产品y 件,则⎩⎪⎨⎪⎧1.5x +0.5y ≤150,x +0.3y ≤90,5x +3y ≤600,x ≥0,x ∈N *,y ≥0,y ∈N *.目标函数z =2 100x +900y .作出可行域为图中的阴影部分(包括边界)内的整数点,图中阴影四边形的顶点坐标分别为(60,100),(0,200),(0,0),(90,0).当直线z =2 100x +900y 经过点(60,100)时,z 取得最大值,z max =2 100×60+900×100=216 000(元).]10.(2015·浙江高考)若实数x ,y 满足x 2+y 2≤1,则|2x +y -2|+|6-x -3y |的最小值是________.3 [满足x 2+y 2≤1的实数x ,y 表示的点(x ,y )构成的区域是单位圆及其内部.f (x ,y )=|2x +y -2|+|6-x -3y |=|2x +y -2|+6-x -3y=⎩⎪⎨⎪⎧4+x -2y ,y ≥-2x +2,8-3x -4y ,y <-2x +2.直线y =-2x +2与圆x 2+y 2=1交于A ,B 两点,如图所示,易得B ⎝ ⎛⎭⎪⎫35,45.设z 1=4+x -2y ,z 2=8-3x -4y ,分别作直线y =12x 和y =-34x 并平移,则z 1=4+x -2y 在点B ⎝ ⎛⎭⎪⎫35,45取得最小值为3,z 2=8-3x -4y 在点B ⎝ ⎛⎭⎪⎫35,45取得最小值为3,所以|2x +y -2|+|6-x -3y |的最小值是3.][B 组 “8+7”模拟题提速练]一、选择题1.已知a <b <0,则下列不等式成立的是( ) 【导学号:68334155】A .a 2<b 2B.ab<1C .a <1-bD.1a <1bC [因为a <b <0,所以a 2>b 2,a b >1,1a >1b,a +b <1. 因此A ,B ,D 不正确,C 正确.]2.已知P (x ,y )为区域⎩⎪⎨⎪⎧y 2-x 2≤0,0≤x ≤a 内的任意一点,当该区域的面积为4时,z =2x -y 的最大值是( ) A .6 B .0 C .2D .2 2A [由⎩⎪⎨⎪⎧y 2-x 2≤0,0≤x ≤a 作出可行域如图,易求得A (a ,-a ),B (a ,a ),由题意知S △OAB =12·2a ·a =4,得a =2.∴A (2,-2),当y =2x -z 过A 点时,z 最大,z max =2×2-(-2)=6.故选A.]3.(2015·浙江高考)有三个房间需要粉刷,粉刷方案要求:每个房间只用一种颜色,且三个房间颜色各不相同.已知三个房间的粉刷面积(单位:m 2)分别为x ,y ,z ,且x <y <z ,三种颜色涂料的粉刷费用(单位:元/m 2)分别为a ,b ,c ,且a <b <c .在不同的方案中,最低的总费用(单位:元)是( ) A .ax +by +cz B .az +by +cx C .ay +bz +cx D .ay +bx +czB [令x =1,y =2,z =3,a =1,b =2,c =3. A 项:ax +by +cz =1+4+9=14;B 项:az +by +cx =3+4+3=10;C 项:ay +bz +cx =2+6+3=11;D 项:ay +bx +cz =2+2+9=13.故选B.]4.若变量x ,y 满足约束条件⎩⎪⎨⎪⎧x -y +1≤0,y ≤1,x >-1,则(x -2)2+y 2的最小值为( )A.322B. 5C.92D .5D [作出不等式组对应的平面区域如图,设z =(x -2)2+y 2,则z 的几何意义为区域内的点到定点D (2,0)的距离的平方,由图知C ,D 间的距离最小,此时z 最小.由⎩⎪⎨⎪⎧y =1,x -y +1=0,得⎩⎪⎨⎪⎧x =0,y =1,即C (0,1),此时z min =(x -2)2+y 2=4+1=5,故选D.]5.已知x ,y 满足约束条件⎩⎪⎨⎪⎧x ≥1,y ≥-1,4x +y ≤9,x +y ≤3,若目标函数z =y -mx (m >0)的最大值为1,则m的值是( ) 【导学号:68334156】 A .-209B .1C .2D .5B [作出可行域,如图所示的阴影部分.∵m >0,∴当z =y -mx 经过点A 时,z 取最大值,由⎩⎪⎨⎪⎧x =1,x +y =3,解得⎩⎪⎨⎪⎧x =1,y =2,即A (1,2),∴2-m =1,解得m =1.故选B.]6.若关于x ,y 的不等式组⎩⎪⎨⎪⎧x ≤0,x +y ≥0,kx -y +1≥0表示的平面区域是等腰直角三角形,则其表示的区域面积为( ) A .1或14B.12或18 C .1或12D.12或14D [可行域由三条直线x =0,x +y =0,kx -y +1=0所围成,因为x =0与x +y =0的夹角为π4,所以x =0与kx -y +1=0的夹角为π4或x +y =0与kx -y +1=0的夹角为π4.当x =0与kx -y +1=0的夹角为π4时,可知k =1,此时等腰三角形的直角边长为22,面积为14;当x+y =0与kx -y +1=0的夹角为π4时,k =0,此时等腰三角形的直角边长为1,面积为12,所以选D.]7.设正实数x ,y ,z 满足x 2-3xy +4y 2-z =0,则当zxy取得最小值时,x +2y -z 的最大值是( )【导学号:68334157】A .0B.98 C .2D.94C [z xy =x 2-3xy +4y 2xy =x y -3+4yx≥2x y ·4y x -3=1,当且仅当x y =4yx,即x =2y 时等号成立. 此时z =x 2-3xy +4y 2=(2y )2-3·2y ·y +4y 2=2y 2. ∴x +2y -z =2y +2y -2y 2=-2(y -1)2+2,∴当y =1,x =2,z =2时,x +2y -z 取最大值,最大值为2,故选C.]8.设m >1,x ,y 满足约束条件⎩⎪⎨⎪⎧y ≥x ,y ≤mx ,x +y ≤1,且目标函数z =x +my 的最大值为2,则m 的取值为( ) A .2 B .1+ 2 C .3D .2+ 2B [因为m >1,由约束条件⎩⎪⎨⎪⎧y ≥x ,y ≤mx ,x +y ≤1作出可行域如图,直线y =mx 与直线x +y =1交于B ⎝ ⎛⎭⎪⎫1m +1,m m +1,目标函数z =x +my 对应的直线与直线y =mx垂直,且在B ⎝⎛⎭⎪⎫1m +1,m m +1处取得最大值,由题意可知1+m2m +1=2,又因为m >1,解得m =1+ 2.] 二、填空题9.(2017·浙江省名校新高考联盟高三第三次联考)过P (-1,1)的光线经x 轴上点A 反射后,经过不等式组⎩⎪⎨⎪⎧x -2y +4≥0,x +y -2≥0,3x +y -9≤0所表示的平面区域内某点(记为B ),则|PA |+|AB |的取值范围是________.[22,5] [由题意得点P (-1,1)关于x 轴的对称点为P 1(-1,-1),则|PA |+|PB |的取值范围等价于点P 1(-1,-1)与不等式组⎩⎪⎨⎪⎧x -2y +4≥0,x +y -2≥0,3x +y -9≤0,y ≥0表示的平面区域内的点的连线的长度的范围,如图,在平面直角坐标系内画出不等式组表示的平面区域(阴影区域,含边界),由图易得点P 1(-1,-1)到直线x +y -2=0的距离最小,最小值为|-1-1-2|12+12=22;点P 1(-1,-1)与点C (2,3)的距离最大,最大值为+2++2=5,所以|PA |+|PB |的取值范围为[22,5].]10.(2017·萧山中学高三仿真模拟)已知实数x ,y 满足|2x +y -2|≥|6-x -3y |且|x |≤4,则|3x -4y |的最大值为________.32 [∵实数x ,y 满足|2x +y -2|≥|6-x -3y |,且|x |≤4,∴⎩⎪⎨⎪⎧2x +y -2≥0,x +3y -6≥0,x -2y +4≥0,-4≤x ≤4或⎩⎪⎨⎪⎧2x +y -2≤0,x +3y -6≤0,x -2y +4≤0,-4≤x ≤4或⎩⎪⎨⎪⎧2x +y -2≥0,x +3y -6≤0,3x +4y -8≥0,-4≤x ≤4或⎩⎪⎨⎪⎧2x +y -2≤0,x +3y -6≥0,3x +4y -8≤0,-4≤x ≤4.∴可行域为如图中阴影部分(含边界)所示,其中A (-4,5),B (-4,0),C (0,2),D (4,4),E (4,-1).设目标函数z =3x -4y ,则当目标函数z =3x -4y 经过A (-4,5)时取得最小值z min =-32;当目标函数z =3x -4y 经过E (4,-1)时取得最大值z max =16,则|z |=|3x -4y |的最大值为32.]11.(2014·浙江高考)当实数x ,y 满足⎩⎪⎨⎪⎧x +2y -4≤0,x -y -1≤0,x ≥1时,1≤ax +y ≤4恒成立,则实数a的取值范围是________.⎣⎢⎡⎦⎥⎤1,32 [画可行域如图所示,设目标函数z =ax +y ,即y =-ax +z ,要使1≤z ≤4恒成立,则a >0,数形结合知,满足⎩⎪⎨⎪⎧1≤2a +1≤4,1≤a ≤4即可,解得1≤a ≤32.所以a 的取值范围是1≤a ≤32.]12.已知正数a ,b ,c 满足b +c ≥a ,则b c +ca +b的最小值为________.2-12[因为正数a ,b ,c 满足b +c ≥a , 所以b c +c a +b ≥b c +c 2b +c =⎝ ⎛⎭⎪⎫b c +12+c 2b +c -12=2b +c 2c +c 2b +c -12≥2-12. 当且仅当2b +c 2c =c2b +c时取等号.]13.已知一元二次不等式f (x )<0的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x <-1或x >13,则f (e x)>0的解集为________.{x |x <-ln 3} [f (x )>0的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪-1<x <13, 则由f (e x )>0得-1<e x<13,解得x <-ln 3,即f (e x)>0的解集为{x |x <-ln 3}.]14.(2017·宁波十校高三适应性考试 17)已知a ,b 均为正数,且a +b =1,c >1,则⎝ ⎛⎭⎪⎫a 2+12ab -1·c+2c -1的最小值为________. 3 2 [由题意知,∵a 2+12ab -1=a 2+a +b22ab-1=2a 2+b22ab≥2(当且仅当a =2-1,b =2-2时,等号成立),∴原式≥2c +2c -1=2⎝ ⎛⎭⎪⎫c -1+1c -1+2≥22+2=32(当且仅当c =2时,等号成立).]15.(2016·舟山调研)若log 4(3a +4b )=log 2ab ,则a +b 的最小值是________.7+43 [由log 4(3a +4b )=log 2ab ,得3a +4b =ab ,且a >0,b >0,∴a =4bb -3,由a >0,得b >3.∴a +b =b +4bb -3=b +b -+12b -3=(b -3)+12b -3+7≥212+7=43+7,即a +b 的最小值为7+4 3.]。
(浙江专版)18年高考数学第2部分必考补充专题突破点18不等式与线性规划教学案

突破点18 不等式与线性规划[核心知识提炼]提炼1基本不等式的常用变形(1)a +b ≥2ab (a >0,b >0),当且仅当a =b 时,等号成立.(2)a 2+b 2≥2ab ,ab ≤⎝ ⎛⎭⎪⎫a +b 22(a ,b ∈R ),当且仅当a =b 时,等号成立. (3)b a +a b ≥2(a ,b 同号且均不为零),当且仅当a =b 时,等号成立.(4)a +1a ≥2(a >0),当且仅当a =1时,等号成立;a +1a≤-2(a <0),当且仅当a =-1时,等号成立.(5)a >0,b >0,则a 2+b 22≥a +b2≥ab ≥21a +1b,当且仅当a =b 时取等号. 提炼2 利用基本不等式求最值 已知a ,b ∈R ,则(1)若a +b =S (S 为定值),则ab ≤⎝ ⎛⎭⎪⎫a +b 22=S 24,当且仅当a =b 时,ab 取得最大值S 24;(2)若ab =T (T 为定值,且T >0),则a +b ≥2ab =2T ,当且仅当a =b 时,a +b 取得最小值2T .提炼3 绝对值三角不等式的应用绝对值三角不等式定理常用来解决与最值有关的恒成立问题.不等式的解集为R 是指不等式的恒成立问题,而解集为∅的不等式的对立面也是不等式恒成立问题(如f (x )>m 的解集是∅,则f (x )≤m 恒成立),这两类问题都可以转化为最值问题,即f (x )<a 恒成立⇔a >f (x )max ,f (x )>a 恒成立⇔a <f (x )min .提炼4求目标函数的最优解问题(1)“斜率型”目标函数z =y -b x -a(a ,b 为常数),最优解为点(a ,b )与可行域上点的连线的斜率取最值时的可行解.(2)“两点间距离型”目标函数z = x -a 2+ y -b 2(a ,b 为常数),最优解为点(a ,b )与可行域上点之间的距离取最值时的可行解.提炼5线性规划中的参数问题的注意点(1)当最值是已知时,目标函数中的参数往往与直线斜率有关,解题时应充分利用斜率这一特征加以转化.(2)当目标函数与最值都是已知,且约束条件中含有参数时,因为平面区域是变动的,所以要抓住目标函数及最值已知这一突破口,先确定最优解,然后变动参数范围,使得这样的最优解在该区域内即可.。
浙江专版2018年高考数学二轮专题复习专题二第三讲全力争取保分大题__不失分课件

[规范解答] (1)由题意得 a=1 时,f(x)=x,解得 x=1. (2)当
2 -x +ax+1,x≥a, f(x)= 2 x -ax+1,x<a,
(3 分)
其中f0=fa=1,最
❶
大值在 f(1),f(2),f(a)中取. 当 0<a≤ 1注意观察关系式的特征, 时,f(x)在[1,2]上单调递减, ❶ 故 f(x)max快速、简捷求解; =f(1)=a; 当 1<a<2 时, f(x)在[1, a]上单调递增, [a,2]上单调递减, 故 f(x)max=f(a)=1;
3π 故f(x)在区间π, 2 上的最大值和最小值分别为 ❸
(10分)
(12分)
3 ,-1.(14分) 2
牢记模板
[例 2]
(2017· 温州调研· 满分 14 分)在△ABC 中,a=3,b=
2 6,B=2A. (1)求 cos A 的值;(2)求 c 的值.
[规范解答] (1)因为 a=3,b=2 6,B=2 A, ❶ 注意所求值是否在
牢记模板
[备课札记]
[规范解答] (1)证明:如图,设 PA 的中点为 F,连接 EF,FB.因为 E,F 分别为 PD,PA 的中点, 1 所以 EF∥AD 且 EF= AD. 2 ❶是问题的难点, 处理不好 1 就无法证明下面的问题. 又因为 BC∥AD, BC= AD, 所以 EF∥BC 且 EF=BC, ⇨(2 分) 2 即四边形 BCEF 为平行四边形, 所以CE∥BF.
ห้องสมุดไป่ตู้
过点 Q 作 PB 的垂线,垂足为 H,连接 MH. 则 MH 是 MQ 在平面 PBC 上的射影, 所以∠QMH是直线CE 与平面PBC所成的角. ❷ 设 CD=1. 在△ PCD 中,由 PC=2,CD=1,PD= 2得 CE= 2, ❷ 必须证明所找或作的角为所求的线面 1 角,否则要扣 3~4 分. 在△PBN 中,由 PN=BN=1,PB= 3得 QH= , ⇨(13 分) 4 解决此类题目应注意: 1 ①证明线、面平行或垂直,应注意直线在 在 Rt△MQH 中,QH= ,MQ= 2, 4 平面内,两直线相交等情况; ②找到或作出线面角后,要证明所找或作 2 所以 sin∠QMH= , ⇨(14 分) 的线面角为所求角; 8 ③计算线面角的大小时一定要仔细. 2 所以直线 CE 与平面 PBC 所成角的正弦值是 . ⇨(15 分) 8 ⇨(11 分)
2018版高考数学浙江版二轮专题复习配套文档:专题一三角函数与平面向量第2讲含答案

第2讲 三角恒等变换与解三角形高考定位 1.三角函数的化简与求值是高考的命题热点,其中同角三角函数的基本关系、诱导公式是解决计算问题的工具,三角恒等变换是利用三角恒等式(两角和与差、二倍角的正弦、余弦、正切公式)进行变换,“角”的变换是三角恒等变换的核心;2。
正弦定理与余弦定理以及解三角形问题是高考的必考内容,主要考查边、角、面积的计算及有关的范围问题.真 题 感 悟1.(2016·全国Ⅲ卷)若tan α=错误!,则cos 2α+2sin 2α=( ) A 。
错误!B 。
错误!C 。
1 D.错误!解析 tan α=错误!,则cos 2α+2sin 2α=错误!=错误!=错误!.答案 A2.(2016·山东卷)在△ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,已知b =c ,a 2=2b 2(1-sin A ),则A =( )A.34π B.π3 C.错误! D 。
错误!解析因为b=c,a2=2b2(1-sin A),所以cos A=错误!=错误!,则cos A=sin A。
在△ABC中,A=错误!.答案C3。
(2017·全国Ⅰ卷)△ABC的内角A,B,C的对边分别为a,b,c.已知sin B+sin A(sin C-cos C)=0,a=2,c=2,则C=( )A。
π12B。
错误!C。
错误!D。
错误!解析由题意得sin(A+C)+sin A(sin C-cos C)=0,∴sin A cos C+cos A sin C+sin A sin C-sin A cos C=0,则sin C(sin A+cos A)=错误!sin C sin错误!=0,因为sin C≠0,所以sin错误!=0,又因为A∈(0,π),所以A+错误!=π,所以A=错误!。
由正弦定理错误!=错误!,得错误!=错误!,则sin C=错误!,得C=错误!。
答案B4.(2017·浙江卷)已知△ABC,AB=AC=4,BC=2.点D为AB延长线上一点,BD=2,连接CD,则△BDC的面积是________,cos ∠BDC=________.解析依题意作出图形,如图所示,则sin∠DBC=sin∠ABC.由题意知AB=AC=4,BC=BD=2,则sin∠ABC=错误!,cos∠ABC=错误!.所以S△BDC=错误!BC·BD·sin∠DBC=错误!×2×2×错误!=错误!.因为cos∠DBC=-cos∠ABC=-错误!=错误!=错误!,所以CD=错误!。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题限时集训(二十)排列组合、二项式定理(对应学生用书第157页)[建议A、B组各用时:45分钟][A组高考题、模拟题重组练]一、排列、组合1.如图201,小明从街道的E处出发,先到F处与小红会合,再一起到位于G处的老年公寓参加志愿者活动,则小明到老年公寓可以选择的最短路径条数为( )图201A.24 B.18C.12 D.9B[从E到G需要分两步完成:先从E到F,再从F到G.从F到G的最短路径,只要考虑纵向路径即可,一旦纵向路径确定,横向路径即可确定,故从F到G的最短路径共有3条.如图,从E到F的最短路径有两类:先从E到A,再从A到F,或先从E到B,再从B到F.因为从A 到F或从B到F都与从F到G的路径形状相同,所以从A到F,从B到F最短路径的条数都是3,所以从E到F的最短路径有3+3=6(条).所以小明到老年公寓的最短路径条数为6×3=18.]2.用数字1,2,3,4,5组成没有重复数字的五位数,其中奇数的个数为( ) A.24 B.48C.60 D.72D[第一步,先排个位,有C13种选择;第二步,排前4位,有A44种选择.由分步乘法计数原理,知有C13·A44=72(个).]3.定义“规范01数列”{a n}如下:{a n}共有2m项,其中m项为0,m项为1,且对任意k≤2m,a1,a2,…,a k中0的个数不少于1的个数.若m=4,则不同的“规范01数列”共有( )A.18个B.16个C.14个D.12个C[由题意知:当m=4时,“规范01数列”共含有8项,其中4项为0,4项为1,且必有a1=0,a8=1.不考虑限制条件“对任意k≤2m,a1,a2,…,a k中0的个数不少于1的个数”,则中间6个数的情况共有C36=20(种),其中存在k≤2m,a1,a2,…,a k中0的个数少于1的个数的情况有:①若a2=a3=1,则有C14=4(种);②若a2=1,a3=0,则a4=1,a5=1,只有1种;③若a2=0,则a3=a4=a5=1,只有1种.综上,不同的“规范01数列”共有20-6=14(种).故共有14个.故选C.]4.(2012·浙江高考)若从1,2,3,…,9这9个整数中同时取4个不同的数,其和为偶数,则不同的取法共有( )A.60种B.63种C.65种D.66种D[满足题设的取法可分为三类:一是四个奇数相加,其和为偶数,在5个奇数1,3,5,7,9中,任意取4个,有C45=5(种);二是两个奇数加两个偶数其和为偶数,在5个奇数中任取2个,再在4个偶数2,4,6,8中任取2个,有C25·C24=60(种);三是四个偶数相加,其和为偶数,4个偶数的取法有1种,所以满足条件的取法共有5+60+1=66(种).]5.某中学高三学习雷锋志愿小组共有16人,其中一班、二班、三班、四班各4人,现在从中任选3人,要求这三人不能是同一个班级的学生,且在三班至多选1人,不同的选取法的种数为( )【导学号:68334160】A.484 B.472C.252 D.232B[分两类,不选三班的同学,利用间接法,没有条件得选择3人,再排除3个同学来自同一班,有C312-3C34=208种;选三班的一位同学,剩下的两位同学从剩下的12人中任选2人,有C14·C212=264种.根据分类计数原理,得208+264=472,故选B.]6.下列各式的展开式中x8的系数恰能表示从重量分别为1,2,3,4,…,10克的砝码(每种砝码各一个)中选出若干个,使其总重量恰为8克的方法总数的选项是( ) 【导学号:68334161】A.(1+x)(1+x2)(1+x3)…(1+x10)B.(1+x)(1+2x)(1+3x)…(1+10x)C.(1+x)(1+2x2)(1+3x3)…(1+10x10)D.(1+x)(1+x+x2)(1+x+x2+x3)...(1+x+x2+ (x10)A[从重量分别为1,2,3,4,…,10克的砝码(每种砝码各一个)中选出若干个,使其总重量恰为8克的方法是选一个,8克,一种方法,选两个,1+7,2+6,3+5,共3种方法,选三个,1+2+5,只有一种方法,其他不含1的三个的和至少是2+3+4>8.四个以上的和都大于8,因此共有方法数为5.A中,x8的系数是1+3+1=5(x8,x·x7,x2·x6,x3·x5,x·x2·x5),B 中,x8的系数大于1×2×3×4×5×6×7×8,C中,x8的系数大于8(8x8的系数就是8),D中,x8的系数大于C49>8(有四个括号里取x2,其余取1时系数为C49).因此只有A是正确的,故选A.]7.(2017·浙江高考)从6男2女共8名学生中选出队长1人,副队长1人,普通队员2人组成4人服务队,要求服务队中至少有1名女生,共有________种不同的选法.(用数字作答) 660 [法一:只有1名女生时,先选1名女生,有C12种方法;再选3名男生,有C36种方法;然后排队长、副队长位置,有A24种方法.由分步乘法计数原理,知共有C12C36A24=480(种)选法.有2名女生时,再选2名男生,有C26种方法;然后排队长、副队长位置,有A24种方法.由分步乘法计数原理,知共有C26A24=180(种)选法.所以依据分类加法计数原理知共有480+180=660(种)不同的选法.法二:不考虑限制条件,共有A28C26种不同的选法,而没有女生的选法有A26C24种,故至少有1名女生的选法有A28C26-A26C24=840-180=660(种).]8.(2014·浙江高考)在8张奖券中有一、二、三等奖各1张,其余5张无奖.将这8张奖券分配给4个人,每人2张,不同的获奖情况有________种(用数字作答).60[把8张奖券分4组有两种分法,一种是分(一等奖,无奖)、(二等奖,无奖)、(三等奖,无奖)、(无奖,无奖)四组,分给4人有A44种分法;另一种是一组两个奖,一组只有一个奖,另两组无奖,共有C23种分法,再分给4人有C23A24种分法,所以不同获奖情况种数为A44+C23A24=24+36=60.]二、二项式定理9.(x2+x+y)5的展开式中,x5y2的系数为( )A.10 B.20C.30 D.60C[法一:(x2+x+y)5=[(x2+x)+y]5,含y2的项为T3=C25(x2+x)3·y2.其中(x2+x)3中含x5的项为C13x4·x=C13x5.所以x5y2的系数为C25C13=30.故选C.法二:(x2+x+y)5为5个x2+x+y之积,其中有两个取y,两个取x2,一个取x即可,所以x5y2的系数为C25C23C11=30.故选C.]10.(2014·浙江高考)在(1+x)6(1+y)4的展开式中,记x m y n项的系数为f(m,n),则f(3,0)+f(2,1)+f(1,2)+f(0,3)=( )A .45B .60C .120D .210C [因为f (m ,n )=C m 6C n4,所以f (3,0)+f (2,1)+f (1,2)+f (0,3) =C 36C 04+C 26C 14+C 16C 24+C 06C 34=120.]11.已知(1+ax )(1+x )5的展开式中x 2的系数为5,则a =( ) A .-4 B .-3 C .-2D .-1D [(1+x )5中含有x 与x 2的项为T 2=C 15x =5x ,T 3=C 25x 2=10x 2,∴x 2的系数为10+5a =5,∴a =-1,故选D.]12.已知多项式(x +1)3(x +2)2=x 5+a 1x 4+a 2x 3+a 3x 2+a 4x +a 5,则a 4=________,a 5=________. 16 4 [由题意知a 4为含x 的项的系数,根据二项式定理得a 4=C 23×12×C 22×22+C 33×13×C 12×2=16,a 5是常数项,所以a 5=C 33×13×C 22×22=4.]13.(2016·全国乙卷)(2x +x )5的展开式中,x 3的系数是________.(用数字填写答案) 10 [(2x +x )5展开式的通项为T r +1=C r 5(2x )5-r·(x )r =25-r·C r5·x 5-r2.令5-r2=3,得r =4.故x 3的系数为25-4·C 45=2C 45=10.]14.⎝⎛⎭⎪⎫ax 2+1x 5的展开式中x 5的系数是-80,则实数a =________.-2 [T r +1=C r5·(ax 2)5-r⎝ ⎛⎭⎪⎫1x r =C r 5·a 5-r x 10-52r .令10-52r =5,解得r =2.又展开式中x 5的系数为-80,则有C 25·a 3=-80,解得a =-2.]15.(a +x )(1+x )4的展开式中x 的奇数次幂项的系数之和为32,则a =________. 3 [设(a +x )(1+x )4=a 0+a 1x +a 2x 2+a 3x 3+a 4x 4+a 5x 5. 令x =1,得(a +1)×24=a 0+a 1+a 2+a 3+a 4+a 5.① 令x =-1,得0=a 0-a 1+a 2-a 3+a 4-a 5.②①-②,得16(a +1)=2(a 1+a 3+a 5)=2×32,∴a =3.]16.设二项式⎝⎛⎭⎪⎪⎫x -13x 5的展开式中常数项为A ,则A =________. -10 [T r +1=C r5(x )5-r⎝⎛⎭⎪⎪⎫-13x r =C r 5(-1)r x 52-5r 6,令52-5r 6=0,得r =3,所以A =-C 35=-10.]17.已知对任意实数x ,有(m +x )(1+x )6=a 0+a 1x +a 2x 2+…+a 7x 7,若a 1+a 3+a 5+a 7=32,则m =________. 【导学号:68334162】0 [设(1+x )6=b 0+b 1x +b 2x 2+…+b 6x 6,则a 1=b 0+mb 1,a 3=b 2+mb 3,a 5=b 4+mb 5,a 7=b 6, 所以a 1+a 3+a 5+a 7=(b 0+b 2+b 4+b 6)+m (b 1+b 3+b 5),又由二项式定理知b 0+b 2+b 4+b 6=b 1+b 3+b 5=12(1+1)6=32,所以32+32m =32,m =0.][B 组 “8+7”模拟题提速练]一、选择题1.某校开设10门课程供学生选修,其中A ,B ,C 三门由于上课时间相同,至多选一门,学校规定:每位同学选修三门,则每位同学不同的选修方案种数是( )A .70B .98C .108D .120B [可分为两类:选A ,B ,C 中的一门,其它7科中选两门,有C 13C 27=63;不选A ,B ,C 中的一门,其它7科中选三门,有C 37=35;所以共有98种,故选B.] 2.在⎝⎛⎭⎪⎫ax 6+b x4的二项展开式中,如果x 3的系数为20,那么ab 3=( )A .20B .15C .10D .5D [T r +1=C r4·(ax 6)4-r·⎝ ⎛⎭⎪⎫b xr =C r 4a 4-r b r x 24-7r,令24-7r =3,得r =3,则4ab 3=20,∴ab 3=5.]3.(2018·杭州二模)某微信群中甲、乙、丙、丁、戊五名成员同时抢4个红包,每人最多抢一个,且红包被全部抢光,4个红包中两个2元,两个3元(红包金额相同视为相同的红包),则甲、乙两人都抢到红包的情况有( ) A .36种 B .24种 C .18种D .9种C [由题意可得丙、丁、戊中有1人没有抢到红包,且抢到红包的4人中有2人抢到2元红包,另2人抢到3元红包,则甲、乙两人都抢到红包的情况有C 13C 24=18种,故选C.] 4.七名同学站成一排照毕业纪念照,其中甲必须站在正中间,并且乙,丙两位同学要站在一起,则不同的排法有( ) A .240种 B .192种 C .120种D .96种B [不妨令乙丙在甲左侧,先排乙丙两人,有A 22种站法,再取一人站左侧有C 14×A 22种站法,余下三人站右侧,有A 33种站法,考虑到乙丙在右侧的站法,故总的站法总数是2×A 22×C 14×A 22×A 33=192,故选B.]5.某学校开设“蓝天工程博览课程”,组织6个年级的学生外出参观包括甲博物馆在内的6个博物馆,每个年级任选一个博物馆参观,则有且只有两个年级选择甲博物馆的情况有( ) A .A 26×A 45种 B .A 26×54种 C .C 26×A 45种D .C 26×54种D [有两个年级选择甲博物馆共有C 26种情况,其余四个年级每个年级各有5种选择情况,故有且只有两个年级选择甲博物馆的情况有C 26×54种,故选D.] 6.在⎝⎛⎭⎪⎫1+x +1x2 01810的展开式中,含x 2项的系数为( ) A .10 B .30 C .45D .120C [因为⎝⎛⎭⎪⎫1+x +1x2 01810=⎣⎢⎡⎦⎥⎤ 1+x +1x 2 01810 =(1+x )10+C 110(1+x )91x2 018+…+C 1010⎝⎛⎭⎪⎫1x 2 01810,所以x 2项只能在(1+x )10的展开式中,所以含x 2的项为C 210x 2,系数为C 210=45,故选C.]7.(x +2y )7的展开式中,系数最大的项是( )【导学号:68334163】A .68y 7B .112x 3y 4C .672x 2y 5D .1 344x 2y 5C [设第r +1项系数最大,则有⎩⎪⎨⎪⎧C r7·2r≥C r -17·2r -1,C r 7·2r ≥C r +17·2r +1,即⎩⎪⎨⎪⎧7!r ! 7-r !·2r≥7!r -1 ! 7-r +1 !·2r -1,7!r ! 7-r !·2r≥7!r +1 ! 7-r -1 !·2r +1,即⎩⎪⎨⎪⎧2r ≥18-r,17-r ≥2r +1,解得⎩⎪⎨⎪⎧r ≤163,r ≥133.又∵r ∈Z ,∴r =5,∴系数最大的项为T 6=C 57x 2·25y 5=672x 2y 5.故选C.]8.若(2x +3)4=a 0+a 1x +a 2x 2+a 3x 3+a 4x 4,则(a 0+a 2+a 4)2-(a 1+a 3)2的值是( ) A .1 B .-1 C .0D .2A [令x =1,则a 0+a 1+…+a 4=(2+3)4,令x =-1,则a 0-a 1+a 2-a 3+a 4=(-2+3)4, ∴(a 0+a 2+a 4)2-(a 1+a 3)2=(a 0+a 1+…+a 4)(a 0-a 1+a 2-a 3+a 4) =(2+3)4(-2+3)4=1.] 二、填空题9.若⎝⎛⎭⎪⎫x +a x29的二项展开式的常数项是84,则实数a =________.【导学号:68334164】1 [∵⎝⎛⎭⎪⎫x +a x29的二项式展开式的通项为T r +1=C r 9a r x9-3r,令9-3r =0,即r =3,常数项为T 4=C 39a 3=84a 3, 依题意,有84a 3=84,∴a =1.]10.如果⎝ ⎛⎭⎪⎪⎫3x -13x 2n 的展开式中各项系数之和为128,则展开式中1x 3的系数是________. 21 [⎝ ⎛⎭⎪⎪⎫3x -13x 2n 的展开式的各项系数之和为⎝ ⎛⎭⎪⎪⎫3×1-1312n =2n =128,所以n =7,所以⎝⎛⎭⎪⎪⎫3x -13x 2n =⎝ ⎛⎭⎪⎪⎫3x -13x 27,其展开式的通项为T r +1=C r 7(3x )7-r ⎝⎛⎭⎪⎪⎫-13x 2r =C r7·37-r ·x 7-r ·(-x )r =(-1)r C r 737-rx,由7-53r =-3,得r =6,所以1x3的系数是C r 7·(-1)6·3=21.]11.将A ,B ,C ,D ,E ,F 六个字母排成一排,且A ,B 均在C 的同侧,则不同的排法共有________种(用数字作答).480 [①当C 在第一或第六位时,有A 55=120(种)排法; ②当C 在第二或第五位时,有A 24A 33=72(种)排法; ③当C 在第三或第四位时,有A 22A 33+A 23A 33=48(种)排法. 所以共有2×(120+72+48)=480(种)排法.]12.现有16张不同的卡片,其中红色、黄色、蓝色、绿色卡片各4张,从中任取3张,要求取出的这些卡片不能是同一种颜色,且红色卡片至多1张,不同取法的种数为________. 472 [由题意,不考虑特殊情况,共有C 316种取法,其中每一种卡片各取三张,有4C 34种取法,两种红色卡片,共有C 24C 112种取法,故所求的取法共有C 316-4C 34-C 24C 112=560-16-72=472.]13.已知(1+x)10=a0+a1(1-x)+a2(1-x)2+…+a10(1-x)10,则a8等于________.180[因为(1+x)10=(-2+1-x)10,所以a8等于C810(-2)2=45×4=180.]14.甲、乙等5人在9月3号参加了纪念抗日战争胜利72周年阅兵庆典后,在天安门广场排成一排拍照留念,甲和乙必须相邻且都不站在两端的排法有________种.24[甲乙相邻,将甲乙捆绑在一起看作一个元素,共有A44A22种排法,甲乙相邻且在两端有C12A33 A22种排法,故甲乙相邻且都不站在两端的排法有A44A22-C12A33A22=24(种).]15.已知(2x-1)10=a0+a1x+a2x2+…+a9x9+a10x10,则a2+a3+…+a9+a10的值为________.20[令x=1得a0+a1+a2+…+a9+a10=1,再令x=0,得a0=1,所以a1+a2+…+a9+a10=0,又易知a1=C910×21×(-1)9=-20,所以a2+a3+…+a9+a10=20.]。