北师大版必修5高中数学第2章解三角形小结导学案(二)

合集下载

数学必修5导学案:2-2 三角形中的几何计算

数学必修5导学案:2-2 三角形中的几何计算

§2 三角形中的几何计算知能目标解读1.通常对任意三角形边长和角度关系的探索,掌握正弦定理、余弦定理,并能解决一些简单的度量问题.2.能够运用正弦定理、余弦定理等知识和方法解决一些有关三角形的边和角以及三角形的面积等问题.3.深刻理解三角形的知识在实际中的应用,增强应用数学建模意识,培养分析问题和解决实际问题的能力.重点难点点拨重点:应用正、余弦定理解三角形.难点:灵活应用正、余弦定理及三角恒等变换解决三角形中的几何计算.学习方法指导一、三角形中的几何计算问题正弦定理、余弦定理揭示了任意三角形边角之间的关系,是解三角形的重要工具,余弦定理与平面几何知识、向量、三角有着密切的联系.解三角形广泛应用于各种平面图形,如菱形、梯形、平行四边形、扇形及一些不规则图形等,处理时,可通过添加适当的辅助线,将问题纳入到三角形中去解决,这是化复杂为简单,化未知为已知的化归思想的重要应用.注意:三角形中的几何计算问题主要包括长度、角、面积等,常用的方法就是构造三角形,把所求的问题转化到三角形中,然后选择正弦定理、余弦定理加以解决,有的问题与三角函数联系比较密切,要熟练运用有关三角函数公式.二、正、余弦定理在几何计算问题中的应用规律1.对于平面图形的计算问题,首先要把所求的量转化到三角形中,然后选用正弦定理、余弦定理解决.构造三角形时,要注意使构造三角形含有尽量多个已知量,这样可以简化运算.2.对于求平面图形中的最值问题,首先要选用恰当的变量,然后选择正弦定理或余弦定理建立待求量与变量间的函数关系,借助于三角函数的相关知识求最值,有时要用到不等式的均值定理(后面将要学习)求最值.3.正、余弦定理沟通了三角形中的边与角之间的数量关系,对三角形中的任何元素加以变化,都会引起三角形的形状、大小等的变化,但边角之间仍符合正、余弦定理,所以不论题目如何千变万化,变换条件也好,变换结论也好.甚至在立体几何中的计算问题,只要紧紧抓住正、余弦定理,依托三角恒等变换和代数恒等变换,就可以将复杂问题化为简单问题来计算或证明. 知能自主梳理 三解形面积公式(1)S =21 ;(2)S =21ab sin C =21 =21 ;(3)S =21²r ² (r 为内切圆半径).[答案] (1)底³高 (2)ac sin B bc sin A (3)(a+b+c )思路方法技巧命题方向 利用正、余弦定理求边长[例1] 如图所示,在四边形ABCD 中,AD ⊥CD,AD =10,AB =14,∠BDA =60°, ∠BCD =135°,求BC 的长.[分析] 本题的图形是由两个三角形组成的四边形,在△ABD 中,已知两边和其中一边的对角,用余弦定理可求出BD 的长,在△BCD 中,应用正弦定理可求出BC 的长.[解析] 在△ABD 中,由余弦定理, 得AB 2=AD 2+BD 2-2AD ²BD ²cos ∠ADB , 设BD =x ,则有142=102+x 2-2³10x cos60°, ∴x 2-10x -96=0,∴x 1=16,x 2=-6(舍去),∴BD =16. 在△BCD 中,由正弦定理知,BCDBD CDBBC ∠=∠sin sin∴BC =·135sin 16︒sin30°=82.[说明] 解决此类问题的关键是将已知条件转化为三角形的边角关系,再利用正、余弦定理求解. 变式应用1如图所示,在△ABC 中,已知BC =15,AB :AC =7;8,sin B =734,求BC 边上的高AD 的长.[分析] 要求高AD 的长,可先求AB 的长,再在Rt △ADB 中,求出AD 的长. [解析] 在△ABC 中,由已知设AB =7x ,AC =8x ,x >0,由正弦定理,得Bx Cx sin 8sin 7=,∴sin C =23734878sin 7=⨯=xB x .∴∠C =60°或120°.若∠C =120°,由8x >7x ,知∠B 也为钝角,不合题意,故∠C ≠120°. ∴∠C =60°.由余弦定理,得(7x )2=(8x ) 2+152-2³8x ³15cos60°, ∴x 2-8x +15=0,解得x =3或x =5. ∴AB =21或AB =35. 在Rt △ADB 中,AD =AB sin B =AB ,734∴AD =123或203.命题方向 利用正、余弦定理求角度问题[例2] 在△ABC 中,已知AB =,ABC ,66cos 364=∠AC 边上的中线BD =5,求sin A 的值.[分析] 要求sin A 的值,需根据“D 是AC 的中点”这个条件,取BC 的中点E ,连结DE ,则DE ∥AB ,所以∠ABE +∠BED =180°,根据题目中的条件cos ∠ABC =66,进而求得cos ∠BED =-66.又由DE 21AB ,得DE =21³362664=.在△BDE 中,利用余弦定理可求出BE ,从而BC 可求.再在△ABC中,利用余弦定理可求出AC ,再利用正弦定理即可求出sin A 的值.[解析] 如图所示,取BC 的中点E ,连结DE ,则DE ∥AB ,且DE =21AB =362.∵cos ∠ABC =66,∴cos ∠BED =-66.设BE =x ,在△BDE 中,利用余弦定理, 可得BD 2=BE 2+ED 2-2BE ²ED cos ∠BED , 即5=x 2+x 。

高中数学 第二章 解三角形 2_1_1_2 正弦定理的变形及三角形面积公式课件 北师大版必修5

高中数学 第二章 解三角形 2_1_1_2 正弦定理的变形及三角形面积公式课件 北师大版必修5

课堂探究 互动讲练 类型一 正弦定理的变形应用 [例 1] 在△ABC 中,B=30°,C=45°,c=1,求 b 及△ABC 外接圆的半径 R.
【解析】 已知 B=30°,C=45°,c=1,
由正弦定理,得sibnB=sincC=2R, 所以 b=cssiinnCB=1×sinsi4n53°0°= 22,
a2+b2-2abcosπ3=7, 所以a2+b2-ab=7,即(a+b)2-3ab=7, 所以(a+b)2=25,所以a+b=5.
方法归纳
(1)本题采用了整体代换的思想,把a+b,ab作为整体,求解
过程既方便又灵活.
(2)三角形面积公式有多种形式,根据题中的条件选择最合适
的面积公式.在解三角形中通常选用S=

40 6+
2=10(
6-
2) (km).
即 C 到灯塔 A 的距离为 10( 6- 2) km.
方法归纳
解三角形应用题常见的两种情况 (1)实际问题经抽象概括后,已知量与未知量全部集中在一个 三角形中,可用正弦定理或余弦定理求解. (2)实际问题经抽象概括后,已知量与未知量涉及两个(或两个 以上)三角形,这时需作出这些三角形,先解够条件的三角形,然 后逐步求出其他三角形中的解,有时需设出未知量,从几个三角 形中列出方程,解方程得出所要求的解.
(2)若 c= 7,且△ABC 的面积为323,求 a+b 的值.
【解析】
(1)因为
3a=2csinA,所以sianA=
2c 3.
由正弦定理知sianA=sincC,
所以sincC= 2c3,所以sinC=
3 2.
因为△ABC是锐角三角形,所以C=π3.
(2)因为c= 7,C=π3,

新教材北师大版数学必修五:《正弦定理》导学案(含答案)

新教材北师大版数学必修五:《正弦定理》导学案(含答案)

(新教材)北师大版精品数学资料第1课时正弦定理1.掌握正弦定理及其证明过程.2.根据已知三角形的边和角,利用正弦定理解三角形.3.能根据正弦定理及三角变换公式判断三角形的形状.古埃及时代,尼罗河经常泛滥,古埃及人为了研究尼罗河水运行的规律,准备测量各种数据.当尼罗河涨水时,古埃及人想测量某处河面的宽度(如图),如果古埃及人通过测量得到了AB的长度,∠BAC,∠ABC的大小,那么就可以求解出河面的宽度CD,古埃及人是如何利用这些数据计算的呢?问题1:在上面的问题中,△ABC的已知元素有和边.若AB=2,∠ABC=30°,∠BAC=120°,则BC=,CD=.解三角形:的过程.问题2:正弦定理:在一个三角形中,各边和它所对的角的正弦的比相等,即. 问题3:正弦定理的拓展:①a∶b∶c=;②设R为△ABC外接圆的半径,则===.问题4:在△ABC中,已知a、b和A时,解的情况如下:A为锐角A为钝角或直角图形关系式①②③解的个数一解两解一解一解1.在△ABC中,下列等式总能成立的是().A.a cos C=c cos AB.b sin C=c sin AC.ab sin C=bc sin BD.a sin C=c sin A2.已知△ABC中,a=4,b=5,A=30°.下列对三角形解的情况的判断中,正确的是().A.一解B.两解C.无解D.一解或无解3.在△ABC中,已知a=5,c=10,A=30°,则B等于.4.在△ABC中,已知b=5,B=,tan A=2,求sin A和边a.利用正弦定理判断三角形的形状在△ABC中,若sin A=2sin B cos C,且sin2A=sin2B+sin2C,试判断△ABC的形状.已知两角及其中一角的对边,解三角形在△ABC中,已知c=10,A=45°,C=30°,解这个三角形.已知两边及其中一边的对角,解三角形在△ABC中,a=,b=,B=45°.求角A,C和边c.在△ABC中,若==,则△ABC是().A.直角三角形B.等边三角形C.钝角三角形D.等腰直角三角形在△ABC中,已知a=8,B=60°,C=75°,则A=,b=,c=.在△ABC中,已知a=,c=2,A=60°,求B、C及b的值.1.在△ABC中,A=60°,a=4,b=4,则().A.B=45°或135°B.B=135°C.B=45°D.以上答案都不对2.△ABC的内角A,B,C的对边分别为a,b,c,若c=,b=,B=120°,则a等于().A.B.2C.D.3.在△ABC中,cos A=,cos B=,则△ABC中三边的比值a∶b∶c=.4.在△ABC中,若B=60°,AC=3,AB=,求A.(2013年·北京卷)在△ABC中,a=3,b=5,sin A=,则sin B等于().A. B. C. D.1考题变式(我来改编):第二章解三角形第1课时正弦定理知识体系梳理问题1:∠ABC、∠BAC AB2已知三角形的几个元素求其他元素问题2:==问题3:sin A∶sin B∶sin C2R问题4:a=b sin A b sin A<a<b a≥b a>b基础学习交流1.D根据正弦定理有:=,所以a sin C=c sin A,故选D.2.B因为a,b,A的关系满足b sin A<a<b,故有两解.3.105°或15°根据正弦定理得:sin C===,∴C=45°或135°,故B=105°或15°.4.解:因为△ABC中,tan A=2,所以A是锐角,又=2,sin2A+cos2A=1,联立解得sin A=,再由正弦定理得=,代入数据解得a=2.重点难点探究探究一:【解析】在△ABC中,根据正弦定理:===2R,∵sin2A=sin2B+sin2C,∴()2=()2+()2,即a2=b2+c2,∴A=90°,∴B+C=180°-A=90°.由sin A=2sin B cos C,得sin90°=2sin B cos(90°-B),∴sin2B=.∵B是锐角,∴sin B=,∴B=45°,C=45°.∴△ABC是等腰直角三角形.【小结】(1)判断三角形的形状,可以从三边的关系入手,也可以从三个内角的关系入手.从条件出发,利用正弦定理进行代换、转化,求出边与边的关系或求出角与角的关系,从而作出准确判断.(2)判断三角形的形状,主要看其是否是正三角形、等腰三角形、直角三角形、钝角三角形或锐角三角形等,要特别注意“等腰直角三角形”与“等腰三角形或直角三角形”的区别.探究二:【解析】∵A=45°,C=30°,∴B=180°-(A+C)=105°.由=得a===10.由=得b===20sin75°,∵sin75°=sin(30°+45°)=sin30°cos45°+cos30°sin45°=,∴b=20×=5+5.【小结】解三角形时,如果已知三角形的任意两个角与一边,由三角形内角和定理,可以计算出三角形的另一个角,由正弦定理可计算出三角形的另两边.探究三:【解析】由正弦定理得=,=,∴sinA=,∴A=60°,C=180°-45°-60°=75°,由正弦定理得:c==.[问题]本题中根据sin A=得出的角A一定是60°吗?[结论]角A不一定是60°,∵a>b,∴角A还可能是120°.于是正确的解答如下:由正弦定理得=,=,∴sin A=.∵a>b,∴A=60°或A=120°.当A=60°时,C=180°-45°-60°=75°,c==;当A=120°时,C=180°-45°-120°=15°,c==.【小结】已知三角形的两个角求第三个角时注意三角形内角和定理的运用,求边时可用正弦定理的变式,把要求的边用已知条件表示出来再代入计算.已知三角形两边和其中一边的对角解三角形时,首先运用正弦定理求出另一边对角的正弦值,再利用三角形中大边对大角看能否判断所求的这个角是锐角,当已知的角为大边对的角时,则能判断另一边所对的角为锐角;当已知小边对的角时,则不能判断.思维拓展应用应用一:B由正弦定理得a=2R sin A,b=2R sin B,c=2R sin C(R为△ABC外接圆的半径),∴==,即tan A=tan B=tan C,∴A=B=C.应用二:45°44(+1)A=180°-(B+C)=180°-(60°+75°)=45°.由正弦定理=,得b===4,由=,得c====4(+1).应用三:由正弦定理==,得sin C===.∵c<a,∴C<A=60°,∴C=45°,∴B=180°-A-C=180°-60°-45°=75°,b===2sin(30°+45°)=+1.基础智能检测1.C由正弦定理得:sin B=,∵a>b,∴B=45°.2.D由正弦定理=⇒sin C=,于是C=30°⇒A=30°⇒a=c=.3.∶1∶2根据cos A=,cos B=可得:A=60°,B=30°,所以C=90°,故a∶b∶c=sin A∶sin B∶sin C=∶1∶2.4.解:由正弦定理==,∵AC=3,AB=,B=60°,∴=,解得sin C=.又AB<AC,∴C=45°,∴A=180°-45°-60°=75°.全新视角拓展B由=得=,从而得出sin B=.思维导图构建。

北师大版高中数学必修5 第二章《解三角形》教学设计

北师大版高中数学必修5 第二章《解三角形》教学设计

如图 1.1-3,当 ABC 是锐角三角形时,设边 AB 上的高是 CD,根据任意角三角函数的
a Bb A 定义,有 CD=
s i ns i n,则
a sinA
b sinB

同理可得
c sinC
b sinB

从而
a sinA
b sinB
c sinC
C
b
a
A
c
B
当 ABC 是钝角三角形时 ,类似可以证明请同学们补充。
八、课后反思:
北师大版高中数学必修 5 第二章《解三角形》第一课时 §2.1.1 正弦定理
教学反思
周至县第三中学 马周科
2011 年 9 月,陕西教育学院、陕西教育科学研究研究所的教学专家来我校进行新课程 及高校课堂视导,我作为我校数学教师代表上了一节课。这节课我选择了高中数学北师大版 必修 5 第二章《解三角形》第一棵时“正弦定理”,基于我校“联勤互助-高效课堂”的教学 模式设计了导学案和教学设计。导学案提前下发,让学生先进行预习;上课时,先进行教学 目标展示,指出本节课的学习目标;然后引导学生进行预习成果展示,通过提问方式检查学 生预习情况;再通过教师根据学生情况进行适当引导和讲解,进行分组探析新课;分组探析 例题;分组进行课堂练习;最后引导学生小结本节内容;安排课后训练等环节,组织学生学 习活动。课后,省教科所专家马亚军老师高屋建瓴,给予了非常详尽评价和指导,本组同志 也提出了宝贵的意见。使我很受启发,为此对这节课进行反思。
高中数学北师大版必修 5 第二章 解三角形 ( 教学设计) 周至县第三中学数学组 马周科
北师大版高中数学必修 5 第二章《解三角形》教学设计 第一课时 §2.1.1 正弦定理 周至县第三中学 马周科

【创新设计】2022-2021学年高二数学北师大版必修5学案:2.2 三角形中的几何计算

【创新设计】2022-2021学年高二数学北师大版必修5学案:2.2 三角形中的几何计算

§2 三角形中的几何计算[学习目标] 1.会用正弦、余弦定理解决与三角形有关的几何计算问题.2.培育同学分析问题、独立解决问题的力量,并激发同学的探究精神.[学问链接]在下列各小题的空白处填上正确答案:(1)设等边三角形的边长为a ,则这个三角形的面积为 . (2)梯形的四个内角中,两角和为180°的内角有 对. (3)圆内接四边形的一组对角的和为 .(4)设△ABC 三边的长分别为a ,b ,c ,△ABC 内切圆的半径为r ,则S △ABC = . 答案 (1)34a 2 (2)2 (3)180° (4)12(a +b +c )r [预习导引]1.三角形的面积公式 (1)S =12a ·h a (h a 表示a 边上的高)(2)S =12ab sin C =12bc sin A =12ac sin B .2.在△ABC 中,a ,b ,c 分别为A ,B ,C 的对边 (1)若sin 2A =sin 2B ,则A =B 或A +B =π2;(2)若cos A =cos B ,则A =B ; (3)若a 2>b 2+c 2,则△ABC为钝角三角形;(4)若a 2=b 2+c 2,则△ABC 为直角三角形;(5)若a 2<b 2+c 2且b 2<a 2+c 2且c 2<a 2+b 2,则△ABC 为锐角三角形.要点一 求平面几何图形中线段的长度例1 如图,△ACD 是等边三角形,△ABC 是等腰直角三角形,∠ACB =90°,BD 交AC 于E ,AB =2.(1)求cos ∠CBE 的值; (2)求AE .解 (1)∵∠BCD =90°+60°=150°,CB =AC =CD , ∴∠CBE =15°,∴cos ∠CBE =cos(45°-30°)=6+24.(2)在△ABE 中,AB =2, 由正弦定理AE sin (45°-15°)=2sin (90°+15°),得AE =2sin 30°cos 15°=2×126+24=6- 2.规律方法 在平面几何中,求线段的长度往往归结为求三角形的边长,求三角形边长一般会涉及正弦、余弦定理及勾股定理,恰当地选择或构造三角形是解这类问题的关键.跟踪演练1 如图,在△ABC 中,已知角B =45°,D 是BC 边上的一点,AD =5,AC =7,DC =3,求AB 的长.解 在△ACD 中,由余弦定理,得cos C =AC 2+CD 2-AD 22AC ·CD =72+32-522×7×3=1114.∵C 为三角形的内角, ∴C ∈(0,π), ∴sin C =1-cos 2C =1-(1114)2=5314.在△ABC 中,由正弦定理得AB sin C =ACsin B ,∴AB =AC ·sin Csin B =7×5314sin 45°=562.要点二 实际问题向几何问题的转化例2 要测量对岸两点A 、B 之间的距离,选取相距 3 km 的C 、D 两点,并测得∠ACB =75°,∠BCD =45°,∠ADC =30°,∠ADB =45°,求A 、B 之间的距离. 解 如图所示,在△ACD 中, ∠ACD =120°, ∠CAD =∠ADC =30°, ∴AC =CD = 3 (km).在△BCD 中,∠BCD =45°,∠BDC =75°,∠CBD =60°. ∴BC =3sin 75°sin 60°=6+22 (km).在△ABC 中,由余弦定理,得 AB 2=(3)2+⎝ ⎛⎭⎪⎫6+222-23×6+22×cos 75°=3+2+3-3=5, ∴AB = 5 (km).答 故A 、B 之间的距离为 5 km.规律方法 解决实际生活问题就要把握如何把实际问题数学化,也就是如何把一个抽象、概括的问题建立数学模型.即把实际中的距离和角的大小问题转化为三角形中的几何元素,然后运用正弦、余弦定理加以解决. 跟踪演练2 如图所示,为了测量正在海面匀速行驶的某轮船的速度,在海岸上选取距离1千米的两个观看点C 、D ,在某天10∶00观看到该轮船在A 处,此时测得∠ADC =30°,2分钟后该轮船行驶至B 处,此时测得∠ACB =60°,∠BCD =45°,∠ADB =60°,则该轮船的速度为多少千米/分钟?解 在△BCD 中,∠BCD =45°,∠ADC =30°,∠ADB =60°,∴∠BDC =90°. ∴△CDB 为等腰直角三角形, ∴BD =CD =1,在△ACD 中,由正弦定理得:AD sin (60°+45°)=1sin 45°.∴AD =3+12,在△ABD 中,由余弦定理得,AB 2=12+(3+12)2-2×3+12×cos 60°=32, ∴AB =62,则船速为64千米/分钟.要点三 计算平面图形的面积例3 如图所示,在平面四边形ABCD 中,AB =AD =1,∠BAD =θ,△BCD 是正三角形.(1)将四边形ABCD 的面积S 表示为θ的函数; (2)求S 的最大值及此时θ角的值.解 (1)△ABD 的面积S 1=12×1×1×sin θ=12sin θ,由于△BCD 是正三角形,则△BCD 的面积S 2=34BD 2. 在△ABD 中,由余弦定理可知:BD 2=12+12-2×1×1×cos θ=2-2cos θ, 于是四边形ABCD 的面积S =12sin θ+34(2-2cos θ),∴S =32+sin(θ-π3),0<θ<π. (2)由S =32+sin (θ-π3)及0<θ<π, 得-π3<θ-π3<2π3.当θ-π3=π2,即θ=5π6时,S 取得最大值1+32.规律方法 最值问题是高考的重点之一,我们要能娴熟运用三角形基础学问,正弦、余弦定理,面积公式及三角函数公式协作,通过等价转化解答这类综合问题,并留意隐含条件的挖掘.跟踪演练3 已知圆内接四边形ABCD 的边长AB =2,BC =6,CD =DA =4,求圆内接四边形ABCD 的面积. 解 连接BD ,则四边形的面积S =S △ABD +S △CBD =12AB ·AD sin A +12BC ·CD sin C .∵A +C =180°, ∴sin A =sin C .∴S =12(AB ·AD +BC ·CD )·sin A =16sin A .在△ABD 中,BD 2=22+42-2·2·4cos A =20-16cos A , 在△CDB 中,BD 2=52-48cos C , ∴20-16cos A =52-48cos C .又cos C =-cos A ,∴cos A =-12.∴A =120°.∴S =16sin A =8 3.1.若平行四边形两邻边的长分别是3和6,它们的夹角是45°,则这个平行四边形的两条对角线的长分别是( ) A.3和 5 B .23和2 5 C.3和15 D.5和15答案 C解析 两条对角线的长分别为(3)2+(6)2-2×3×6×cos 45°=3和 (3)2+(6)2-2×3×6×cos 135°=15.2.在△ABC 中,a 、b 、c 分别为角A 、B 、C 的对边,假如2b =a +c ,B =30°,△ABC 的面积为32,那么b等于( ) A.1+32B .1+ 3 C.2+32D .2+ 3答案 B解析 ∵2b =a +c ,S =12ac sin B =32,∴ac =6.∴b 2=a 2+c 2-2ac cos B =(a +c )2-2ac cos B -2ac . ∴b 2=4b 2-63-12, ∴b 2=23+4,b =1+ 3.3.已知AB ⊥BD ,AC ⊥CD ,AC =1,AB =2,∠BAC =120°,求BD 的长. 解 如图,连接BC ,BC =22+12-2×2×1×cos 120°=7,在△ABC ,由正弦定理知:2sin ∠ACB =7sin 120°,∴sin ∠ACB =217.又∵∠ACD =90°, ∴cos ∠BCD =217,sin ∠BCD =277, 由AB ⊥BD ,AC ⊥CD ,∠BAC =120°得∠BDC =60°. 由正弦定理得,BD =BC ·sin ∠BCDsin 60°=7×27732=433.1.正弦定理、余弦定理主要用来解决三角形问题,有些平面几何问题通过转化变为解三角形问题,便需要用正弦定理、余弦定理解决.解决时抓住两点:①合理的运用题目中的三角形资源,②尽量将全部的条件集中到某个三角形之中,会使问题更简洁解决.2.我们常用正弦定理、余弦定理来解决三角形问题,但在实际解决问题过程中经常遇到四边形或多边形,这时需要通过适当的帮助线将多边形分割为多个三角形,从而将问题转化为三角形的问题来解决.一、基础达标1.边长为5,7,8的三角形的最大角与最小角的和是( ) A .90° B .120° C .135° D .150° 答案 B解析 设中间角为θ,则cos θ=52+82-722×5×8=12,θ=60°,180°-60°=120°为所求.2.△ABC 的两边长分别为2,3,其夹角的余弦值为13,则其外接圆的直径为( )A.922B.924C.928D .9 2答案 B解析 设另一条边为x ,则x 2=22+32-2×2×3×13,∴x 2=9,∴x =3.设cos θ=13,则sin θ=223.∴2R =3sin θ=3223=924.3.在△ABC 中,AB =7,AC =6,M 是BC 的中点,AM =4,则BC 等于( ) A.21 B.106 C.69 D.154 答案 B解析 设BC =a ,则BM =MC =a2.在△ABM 中,AB 2=BM 2+AM 2-2BM ·AM ·cos ∠AMB , 即72=14a 2+42-2×a2×4·cos ∠AMB ①在△ACM 中,AC 2=AM 2+CM 2-2AM ·CM ·cos ∠AMC 即62=42+14a 2+2×4×a2·cos ∠AMB ②①+②得:72+62=42+42+12a 2,∴a =106.4.如图,若圆内接四边形的边长依次为25,39,52和60,则这个圆的直径长度为 .答案 65解析 由余弦定理得BD 2=392+522-2×39×52cos C , BD 2=252+602-2×25×60cos A ∵A +C =180°,∴cos C =-cos A ,∵(392-252)-(602-522)+2×39×52cos A +2×25×60cos A =0,∴cos A =0.∵0°<A <180°,∴A =90°, ∵BD 2=392+522=652,∴BD =65.5.平行四边形ABCD 中,AB =46,AC =43,∠BAC =45°,则AD = . 答案 4 3解析 BC 2=AC 2+AB 2-2AC ·AB cos 45° =(43)2+(46)2-2×43×46·cos 45°=48. 从而AD =BC =4 3.6.在△ABC 中,∠ABC 的角平分线BD 交AC 边于点D .求证:BA BC =AD DC .证明 如图所示,在△ABD 中,利用正弦定理,得AB AD =sin ∠ADBsin ∠ABD .①在△CBD 中,利用正弦定理,得BC CD =sin ∠BDCsin ∠DBC.②∵BD 是∠ABC 的角平分线,∴∠ABD =∠CBD , 又∵∠ADB +∠CDB =180°, ∴sin ∠ADB =sin ∠CDB , 由①②,得AB AD =BC CD ,即BA BC =ADDC成立. 7.已知△ABC 中,角A 、B 、C 所对的边长分别为a 、b 、c ,求证:BC 边上的中线MA =122b 2+2c 2-a 2.证明 如图所示,BM =MC =a2.在△ABM 中,由余弦定理得 c 2=MA 2+⎝⎛⎭⎫a 22-2MA ·a 2·cos ∠AMB .在△ACM 中,由余弦定理得 b 2=MA 2+⎝⎛⎭⎫a 22-2MA ·a2·cos ∠AMC , ∵cos ∠AMB +cos ∠AMC =0,以上两式相加,得b 2+c 2=2MA 2+a 22.即MA 2=12b 2+12c 2-14a 2,∴MA =122b 2+2c 2-a 2.二、力量提升8.如图,某住宅小区的平面图呈圆心角为120°的扇形AOB ,C 是该小区的一个出入口,且小区里有一条平行于AO 的小路CD .已知某人从O 沿OD 走到D 用了2 min ,从D 沿着DC走到C 用了3 min.若此人步行的速度为50 m/min ,则该扇形的半径为( ) A .50 m B .45 m C. 507 m D .47 m答案 C解析 依题意得OD =100 m ,CD =150 m ,连接OC ,易知∠ODC =180°-∠AOB =60°, 因此由余弦定理有:OC 2=OD 2+CD 2-2OD ·CD cos ∠ODC , 即OC 2=1002+1502-2×100×150×12,解得OC =507(m).9.在△ABC 中,B =60°,C =45°,BC =8,D 是BC 上的一点,且BD →=3-12BC →,则AD 的长为( )A .4(3-1)B .4(3+1)C .4(3-3)D .4(3+3) 答案 C解析 ∵BD →=3-12BC →,BC =8,∴BD =4(3-1).又∵AB sin C =BC sin A ,∴AB sin 45°=BC sin 75°,∴AB =sin 45°sin 75°×BC =226+24×8=8(3-1).在△ABD 中,由余弦定理得 AD 2=AB 2+BD 2-2AB ·BD ·cos B=[8(3-1)]2+[4(3-1)]2-2×8(3-1)×4(3-1)×cos 60°=48(3-1)2, ∴AD =4(3-3).10.已知等腰三角形的底边长为6,一腰长为12,则它的内切圆面积为 . 答案27π5解析 不妨设三角形三边为a ,b ,c 且a =6,b =c =12, 由余弦定理得cos A =b 2+c 2-a 22bc =122+122-622×12×12=78,∴sin A =1-⎝⎛⎭⎫782=158. 由12(a +b +c )·r =12bc sin A 得r =3155. ∴S 内切圆=πr 2=27π5. 11.如图所示,在四边形ABCD 中,AC 平分∠DAB ,∠ABC =60°,AC =7,AD =6,S △ACD =1532,求AB 的长.解 在△ACD 中,S △ACD =12AC ·AD sin ∠CAD ,∴sin ∠CAD =2S △ACD AC ·AD =2×15327×6=5314,∴sin ∠CAB =5314.在△ABC 中,BC =AC sin ∠BACsin 60°=5.且cos ∠BAC =1-sin 2∠BAC =1114, ∴BC 2=AB 2+AC 2-2AB ·AC cos ∠CAB =25, 即25=AB 2+49-11AB ,(AB -8)(AB -3)=0, ∴AB =8或AB =3. 在△ABC 中,∵sin ∠BAC =5314<32=sin 60°, ∴∠BAC <60°,∴∠ACB 最大,即AB 为最大边,故AB =3应舍去,∴AB =8.12.一条直线上有三点A ,B ,C ,点C 在点A 与点B 之间,P 是此直线外一点,设∠APC =α,∠BPC =β.求证:sin (α+β)PC =sin αPB +sin βP A .证明 ∵S △ABP =S △APC +S △BPC , ∴12P A ·PB sin(α+β) =12P A ·PC sin α+12PB ·PC sin β. 两边同除以12P A ·PB ·PC ,得sin (α+β)PC =sin αPB +sin βP A .三、探究与创新13.在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,已知b =27,B =60°,a +c =10.(1)求sin(A +π6);(2)若D 为△ABC 外接圆中弦AC 所对劣弧上的一点且2AD =DC ,求四边形ABCD 的面积.解 (1)由正弦定理得a sin A =c sin C =b sin B =473,∵a +c =10,∴sin A +sin C =5327.∵B =60°,∴C =120°-A ,∴sin A +sin(120°-A )=sin A +sin 120°cos A -cos 120°sin A =5327,于是得sin(A +π6)=5714.(2)∵A ,B ,C ,D 共圆,B =60°,∴D =120°. 在△ADC 中,由余弦定理可得 cos D =AD 2+DC 2-b 22AD ·DC =-12,解之得AD =2,∴S △ACD =12AD ·CD ·sin 120°=23,在△ABC 中,由余弦定理得cos B =a 2+c 2-b 22ac =(a +c )2-2ac -b 22ac =12.解之得:ac =24.∴S △ABC =12ac sin 60°=63,∴S 四边形ABCD =S △ABC +S △ACD =8 3.。

新北师大版高中数学必修五第二章《解三角形》测试题(包含答案解析)

新北师大版高中数学必修五第二章《解三角形》测试题(包含答案解析)

一、选择题1.在ABC 中,内角A 、B 、C 所对的边分别是a 、b 、c ,已知14b c a -=,2sin 3sin B C =,ABC 的面积为3154,则a =( ) A .2B .3C .4D .52.在ABC ∆中,若sin (sin cos )sin 0A B B C +-=,sin cos 20B C +=,4a =,则ABC ∆的面积为( )A .243+B .43+C .623+D .843+3.如图,四边形ABCD 中,CE 平分ACD ∠,23AE CE ==,3DE =,若ABC ACD ∠=∠,则四边形ABCD 周长的最大值( )A .24B .1233+C .183D .(3534.2020年5月1日起,新版《北京市生活垃圾管理条例》实施,根据该条例:小区内需设置可回收垃圾桶和有害垃圾桶.已知李华要去投放这两类垃圾,他从自家楼下出发,向正北方向走了80米,到达有害垃圾桶,随后向南偏东60°方向走了30米,到达可回收物垃圾桶,则他回到自家楼下至少还需走( ) A .50米B .57米C .64米D .70米5.设,,a b c 分别是ABC 中,,A B C ∠∠∠所对边的边长,则直线sin 0x A a y c ⋅+⋅+=与sin sin 0b x y B C ⋅-⋅+=位置关系是( ) A .平行B .重合C .垂直D .相交但不垂直6.已知,,a b c 分别是ABC ∆的三个内角,,A B C 所对的边,若1,3a b ==B 是,A C 的等差中项,则角C =( ) A .30B .45︒C .60︒D .90︒7.ABC 的内角,,A B C 的对边分别为,,a b c ,若222sin sin sin 3sin sin A C B A C +-=,1b =,则223a c -的最小值为( )A .4-B .23-C .2-D .3-8.已知锐角ABC 的内角,,A B C 的对边分别为,,a b c .若()2c a a b =+,则2cos cos()AC A -的取值范围是( )A .2,1⎛⎫⎪⎪⎝⎭B .13,2⎛⎫⎪⎪⎝⎭ C .23,⎛⎫⎪⎪⎝⎭D .1,12⎛⎫ ⎪⎝⎭9.在△ABC 中,a 2tanB =b 2tanA ,则△ABC 是( ) A .等腰三角形 B .直角三角形 C .等腰直角三角形D .等腰或直角三角形10.如图,测量河对岸的塔高AB 时,选与塔底B 在同一水平面内的两个测点C 与D .现测得15BCD ∠=︒,45BDC ∠=︒,302CD m =,并在点C 测得塔顶A 的仰角为30,则塔高AB 为( )A .302mB .203mC .60mD .20m11.已知在ABC 中,内角A 、B 、C 所对的边分别为a 、b 、c ,若ABC 的面积为S ,且222()S a b c =+-,则tan C =( )A .43-B .34-C .34D .4312.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若角A ,B ,C 成等差数列,且直线ax +cy ﹣12=0平分圆x 2+y 2﹣4x ﹣6y =0的周长,则△ABC 的面积的最大值为( ) A .33B .332C .32D 3二、填空题13.已知60A =︒,ABC 的三个内角A ,B ,C 的对边分别为a ,b ,c ,其中7a =,133sin sin 14B C +=,则bc 的值为______. 14.如图,点A 是半径为1的半圆O 的直径延长线上的一点,3OA =B 为半圆上任意一点,以AB 为一边作等边ABC ,则四边形OACB 的面积的最大值为___________.15.在ABC ∆中,角A ,B ,C 的对边分别为a ,b ,c ,则满足10a =,18b =,30A =︒的三角形解的个数是______.16.在ABC 中,2AB =,30C ︒=,则AB BC 的取值范围是________. 17.在锐角ABC ∆中,2AC =,22AB =D 在BC 边上,并且2BD DC =,6π∠=CAD ,则ABC ∆的面积为__________.18.在ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,面积为S ,且满足22()a b c S --=,b +c =2,则S 的最大值是________19.在ABC 中,2AB =,4AC =.BC 边上的中线2AD =,则=ABC S △_____. 20.在△ABC 中,内角A ,B ,C 的对边分别是a ,b ,c ,若2b =,2a c =,则当角C 取最大值时,△ABC 的面积为__________.三、解答题21.已知ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若1||2AB AC AC ⋅=,且1c =. 在①cos cos 2a C c A +=;② sin 3cos b C c B c =;③ sin 2sin a B c A =这三个条件中任选一个,补充在下面问题中,并解答问题. (1)求角A ;(2)若___________,角B 的平分线交AC 于点D ,求BD 的长. (注:如果选择多个条件分别解答,按第一个解答计分)22.ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知A 为锐角,22sin cos 2c a B C ab--=. (1)求A ;(2)若34b c =,且BC 边上的高为23ABC 的面积. 23.ABC 的内角,,A B C 的对边分别为,,a b c .已知222sin sin sin sin sin B A C A C --=.(1)求B ;(2)若3b =,当ABC 的周长最大时,求它的面积. 24.已知ABC 的内角,,A B C 的对边分别为,,a b c ,2cos cos cos aA b C c B=+.(1)求角A 的大小;(2)若a =11b c+的取值范围. 25.在ABC 中,角,,A B C 所对的边分别为,,,a b c 已知1b =,面积28sin aS A=,再从以下两个条件中选择其中一个作为已知,求三角形的周长.(1)6B π=;(2)B C =.注:如果选择多个条件分别解答,按第一个解答计分.26.在ABC 中,a ,b ,c 分别为角A ,B ,C 的对边,222sin sin sin sin sin A C B A C +=+.(1)求角B 的大小;(2)若ABC 为锐角三角形,b =2a c -的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】首先利用正弦定理表示为23b c =,再结合余弦定理求cos A 和sin A ,并利用1sin 2ABCS bc A ==求a的值. 【详解】2sin 3sin B C =,由正弦定理可知23b c =, 14b c a -=,可得13,24c a b a ==,∴2221cos 24b c a A bc +-==-,sin A ==,1131sin 2242ABCSbc A a a ==⨯⨯=,解得:4a =. 故选:C 2.C解析:C 【分析】在ABC ∆中,()sin sin B A C +=,化简sin (sin cos )sin 0A B B C +-=可得4A π=,又sin cos 20B C +=和34B C π+=,解得3B π=,512C π=,最后通过正弦定理求出1)c =,再根据三角形面积公式得到面积.【详解】由sin (sin cos )sin 0A B B C +-=得:sin sin sin cos sin cos cos sin sin sin cos sin 0A B A B A B A B A B A B ⋅+⋅-⋅-⋅=⋅-⋅=,∴sin cos A A =,又0()A π∈,,则4A π=,则34B C π+=, 又3sin cos 2sin 22B C C π⎛⎫=-=-⎪⎝⎭,则3222B C k ππ=-+或222B C k ππ=-+,(0)B C π∈、,,则322B C π+=或22C B π-=,又34B C π+=,则取22C B π-=,得3B π=,512C π=,又4a =,根据正弦定理,sin 1)sin a Cc A ⋅==,∴1sin 62ABC S ac B ∆=⋅=+ 故选C. 【点睛】思路点睛:在三角形中,由于A B C π++=,根据诱导公式,()sin sin A B C +=,()sin sin A C B +=,()sin sin C B A +=,()cos cos A B C +=-,()cos cos A C B +=-,()cos cos C B A +=-等,以上常见结论需要非常熟练. 3.D解析:D 【分析】ACD △和CDE △中,结合正弦定理可求得6ACE DCE π∠=∠=,这样可得,DC AC ,在ABC 中,由余弦定理得2222cos3AC AB BC AB BC π=+-⋅,应用基本不等式可得AB BC +的最大值,从而可得四边形ABCD 周长的最大值. 【详解】设ABC ACD ∠=∠2θ=,(0,)2πθ∈,∵CE 平分ACD ∠,∴DCE ACE θ∠=∠=, 又AE CE =,∴EAC ACE θ∠=∠=,AE CE ==DE =AD =ACD △中,由正弦定理得sin sin CD AD DAC ACD =∠∠,则CD ==, CDE △中,2DEC EAC ECA θ∠=∠+∠=,由正弦定理得sin sin CD DE CED DCE =∠∠,则CD θ==,∴θ=,解得cos θ=,6πθ=,∴3CD ==,ACD △中,由角平分线定理得AC AE CD DE ==236AC =⨯=. ABC 中,23ABC πθ∠==,由余弦定理得2222cos 3AC AB BC AB BC π=+-⋅,即2222223136()3()()()44AB BC AB BC AB BC AB BC AB BC AB BC AB BC =+-⋅=+-⋅≥+-+=+,当且仅当AB BC =时等号成立,12AB BC +≤,此时ABC 为等边三角形.∴AB BC CD DA +++的最大值为12315++=+ 故选:D . 【点睛】本题主要考查正弦定理、余弦定理的应用,考查基本不等式求最值,在平面图形中充分利用平面几何的知识可减少计算量.本题解题关键是求出6ACE π∠=.4.D解析:D 【分析】画出图形,在ABC 中,利用余弦定理,即可求解AC 的长,得到答案. 【详解】由题意,设李华家为A ,有害垃圾点为B ,可回收垃圾点为C , 则李华的行走路线,如图所示,在ABC 中,因为80,30,60AB BC B ===, 由余弦定理可得:70AC ===米, 即李华回到自家楼下至少还需走70米. 故选:D .【点睛】本题主要考查了解三角形的实际应用,以及余弦定理的应用,其中解答中作出示意图,结合余弦定理求解是解答的关键,着重考查推理与运算能力.5.C解析:C 【解析】,,a b c 分别是ABC 中,,A B C ∠∠∠所对边的边长,则直线sin 0x A a y c ⋅+⋅+=斜率为:sin Aa-, sin sin 0b x y B C ⋅-⋅+=的斜率为:sin bB, ∵sin sin A ba B-=﹣1,∴两条直线垂直.故选C .6.A解析:A 【详解】由题设可得060B =311sin sin 2A A =⇒=,则030A =或0150A =,但a b AB <⇔<,应选答案A .7.A解析:A 【分析】由222sin sin sin 3sin sin A C B A C +-=,利用正弦定理和余弦定理,可得6B π=,再根据正弦定理、三角形内角和及两角和的余弦公式,得到223a c -4cos 3C π⎛⎫=+ ⎪⎝⎭,借助角C 的范围,即可求得结果. 【详解】222sin sin sin 3sin sin A C B A C +-=,∴2223a c b ac +-=,∴2222a c b ac +-=∴cos 2B =,又0B π<<,∴6B π=,12sin sin sin sin 6b A C B ac π====, ∴2sin a A =,2sin c C =,∴24sin a A C -=-4sin()B C C =+-4sin()6C C π=+-14cos 22C C C ⎛⎫=+- ⎪ ⎪⎝⎭2cos C C =-14cos 2C C ⎛⎫=- ⎪ ⎪⎝⎭4cos 3C π⎛⎫=+ ⎪⎝⎭因为506C π<<,所以7336C πππ<+<, 所以当3C ππ+=时,2a -取得最小值,且最小值为4-. 故选:A. 【点睛】本题考查了正弦定理和余弦定理的应用、三角形内角和的应用、两角和的余弦公式及余弦型函数的最值问题,考查学生对这些知识的掌握能力,属于中档题.在解有关三角形的题目时,要有意识地考虑用哪个定理更合适,一 般地,如果式子中含有角的余弦或边的二次式时,要考虑用余弦定理;如果式子中含有角的正弦或边的一次式时,则考虑用正弦定理.8.C解析:C 【分析】由余弦定理和正弦定理进行边化角,结合诱导公式和两角和与差的正弦公式可得2C A =,由锐角三角形得出A 角范围,再代入化简求值式,利用余弦函数性质可得结论. 【详解】∵2()c a a b =+,∴22222cos c a ab a b ab C =+=+-,∴(12cos )b a C =+,由正弦定理得sin sin (12cos )B A C =+,∴sin()sin (12cos )sin cos cos sin A C A C A C A C +=+=+,整理得sin sin cos cos sin sin()A C A C A C A =-=-,∵,A C 是三角形的内角,∴A C A =-,即2C A =,又三角形是锐角三角形,∴2222A A A πππ⎧<⎪⎪⎨⎪--<⎪⎩,解得64A ππ<<,由2C A =得22cos cos cos cos()cos A A A C A A ==∈-⎝⎭. 故选:C . 【点睛】本题考查正弦定理和余弦定理的边角转换,考查两角与差的正弦公式,余弦函数的性质,考查学生分析问题解决问题的能力,属于中档题.9.D解析:D 【分析】根据正弦定理22tan ta in n s sin B B A A =⋅⋅,化简得到sin 2sin 2A B =,得到答案. 【详解】22tan tan a B b A =,故22tan ta in n s sin B B A A =⋅⋅,即sin 2sin 2A B =.故22A B =或22A B π+=,即A B =或2A B π+=.故选:D . 【点睛】本题考查了正弦定理判断三角形形状,意在考查学生的计算能力.10.D解析:D 【分析】由正弦定理确定BC 的长,再tan30AB BC 求出AB .【详解】15BCD ∠=︒,45BDC ∠=︒120CBDsin 45BC302sin 45203BC3tan 3020320AB BC故选D 【点睛】本题是正弦定理的实际应用,关键是利用正弦定理求出BC ,属于基础题.11.A解析:A 【分析】由三角形面积公式和余弦定理可得C 的等式,利用二倍角公式求得tan2C,从而求得tan C .【详解】∵222222()2S a b c a b ab c =+-=++-,即22212sin 22ab C a b ab c ⨯⋅=++-, ∴222sin 2ab C ab a b c ⋅-=+-,又222sin 2sin cos 1222a b c ab C ab CC ab ab +-⋅-===-,∴sin cos 12C C +=, 即22cos sin cos 222C C C =,则tan 22C =,∴222tan2242tan 1231tan2CC C ⨯===---, 故选:A . 【点睛】本题考查三角形面积公式,余弦定理,考查二倍角公式,同角间的三角函数关系,掌握相应的公式即可求解.属于中档题,考查了学生的运算求解能力.12.B解析:B 【分析】由三角形内角和公式以及等差数列的性质可得3B π=,根据直线过圆心可得2312a c +=,根据基本不等式可得6ac ≤,最后由三角形面积公式得结果.【详解】在△ABC 中,A +B +C =π,∵角A ,B ,C 成等差数列,∴2B =A +C , ∴2B =π﹣B ,∴B 3π=.∵直线ax +cy ﹣12=0平分圆x 2+y 2﹣4x ﹣6y =0的周长, ∴圆心(2,3)在直线ax +cy =12上,则2a +3c =12, ∵a >0,c >0,∴12=2a +3c ≥ac ≤6.当且仅当2a =3c ,即a =3,c =2时取等号.∴11sin 62222ABCSac B =≤⨯⨯=, ∴△ABC故选:B. 【点睛】本题主要考查了直线与圆的位置关系,基本不等式以及三角形面积公式的应用,属于中档题.二、填空题13.40【分析】首先根据正弦定理求并表示最后根据余弦定理求的值【详解】根据正弦定理可知根据余弦定理可知得解得:故答案为:40【点睛】方法点睛:(1)在解有关三角形的题目时要有意识地考虑用哪个定理更适合或解析:40 【分析】首先根据正弦定理求2R ,并表示sin sin 22b c B C R R+=+,最后根据余弦定理求bc 的值. 【详解】22sin a R R A =⇒==,根据正弦定理可知1322b c b c R R +=⇒+=, 根据余弦定理可知()2222222cos 3a b c bc A b c bc b c bc =+-=+-=+-,得249133bc =-,解得:40bc =. 故答案为:40 【点睛】方法点睛:(1)在解有关三角形的题目时,要有意识地考虑用哪个定理更适合,或是两个定理都要用,要抓住能够利用某个定理的信息,一般地,如果式子中含有角的余弦或边的二次式,要考虑用余弦定理;如果遇到的式子中含有角的正弦或边的一次式时,则考虑用正弦定理;以上特征都不明显时,则要考虑两个定理都有可能用到;(2)解题中注意三角形内角和定理的应用及角的范围限制.14.【分析】设表示出的面积及的面积进而表示出四边形的面积并化简所得面积的解析式为正弦函数形式再根据三角函数的有界性进行求解【详解】四边形的面积的面积的面积设则的面积的面积四边形的面积故当即时四边形的面积解析:【分析】设AOB θ∠=,表示出ABC 的面积及OAB 的面积,进而表示出四边形OACB 的面积,并化简所得面积的解析式为正弦函数形式,再根据三角函数的有界性进行求解. 【详解】四边形OACB 的面积OAB =△的面积ABC +△的面积,设AOB θ∠=,2222cos 31214AB OA OB OA OB θθθ∴=+-⋅⋅=+-⨯=-则ABC 的面积213sin 60cos 22AB AC AB θ=⋅⋅︒==OAB 的面积11sin 122OA OB θθθ=⋅⋅=⨯=,四边形OACB 的面积3cos 2θθ=+13(sin )60)2θθθ==-︒,故当6090θ-︒=︒,即150θ=︒时,四边形OACB =故答案为: 【点睛】方法点睛:应用余弦定理一定要熟记两种形式:(1)2222cos a b c bc A =+-;(2)222cos 2b c a A bc+-=,同时还要熟练掌握运用两种形式的条件.另外,在解与三角形、三角函数有关的问题时,还需要记住30,45,60︒︒︒等特殊角的三角函数值,以便在解题中直接应用.15.2【分析】直接利用正弦定理得到答案【详解】根据正弦定理得到:故故满足条件的三角形共有个故答案为:【点睛】本题考查了利用正弦定理判断三角形的个数问题意在考查学生的应用能力解析:2 【分析】直接利用正弦定理得到答案. 【详解】根据正弦定理得到:sin sin a b A B=,故9sin 10B =,91sin sin 10B A >=>. 故满足条件的三角形共有2个. 故答案为:2. 【点睛】本题考查了利用正弦定理判断三角形的个数问题,意在考查学生的应用能力.16.【分析】首先根据正弦定理得化简得到再求其范围即可【详解】由正弦定理得:所以所以因为所以即故的取值范围是故答案为:【点睛】本题主要考查正弦定理的应用同时考查三角函数的值域问题属于中档题 解析:[6,2]-【分析】首先根据正弦定理得4sin =BC A ,化简得到()4sin 2302⋅=+-AB BC A ,再求其范围即可. 【详解】 由正弦定理得:4sin sin ==AB BCC A,所以4sin =BC A . 所以()cos 1808sin cos ⋅=⋅-=-AB BC AB BC B A B()()8sin cos 180308sin cos 30⎡⎤=--+=+⎣⎦AA A A 218sin sin cos 4sin 22⎛⎫=-=- ⎪⎪⎝⎭A A A A A A ()()221cos 24sin 2302=--=+-A A A因为0150<<A ,所以3030330<2+<A , 即()1sin 2301-≤+≤A ,()64sin 23022-≤+-≤A .故AB BC 的取值范围是[6,2]-. 故答案为:[6,2]- 【点睛】本题主要考查正弦定理的应用,同时考查三角函数的值域问题,属于中档题.17.【分析】在中由正弦定理可得到在中由正弦定理可得到由是锐角可知结合三角形的面积公式可得到答案【详解】在中由正弦定理得:则在中由正弦定理得:则因为所以由于三角形是锐角三角形故则故的面积为【点睛】本题考查 1【分析】在ADC ∆中,由正弦定理sin sin DC AC CAD ADC =∠∠,可得到1sin ADC DC∠=,在ADB ∆中,由正弦定理sin sin DB ABBAD ADB=∠∠,可得到12sin sin 2DCDB ADBDC BAD AB ∠∠===,由BAD ∠是锐角,可知4BAD π∠=,46BAC ππ∠=+,结合三角形的面积公式可得到答案.【详解】在ADC ∆中,由正弦定理得:sin sin DC ACCAD ADC=∠∠,则11sin 2sin6ADC DC DCπ∠=⨯⨯=, 在ADB ∆中,由正弦定理得:sin sin DB AB BAD ADB =∠∠,则sin sin DB ADBBAD AB ∠∠=,因为1sin sin ADB ADC DC∠=∠=,2BD DC =,所以122sin 22DCDC BAD ∠==,由于三角形是锐角三角形,故4BAD π∠=,则26sin sin 46BAC ππ+⎛⎫∠=+=⎪⎝⎭,故ABC ∆的面积为126222312+⨯⨯⨯=+.【点睛】本题考查了正弦定理在解三角形中的应用,考查了三角形的面积公式,属于中档题.18.【分析】结合余弦定理同角三角函数的基本关系式和基本不等式先求得然后求得的最大值【详解】由余弦定理得依题意所以由于是三角形的内角所以所以由解得所以当且仅当时等号成立所以的最大值为故答案为:【点睛】本小 解析:417【分析】结合余弦定理、同角三角函数的基本关系式和基本不等式,先求得sin A ,然后求得S 的最大值. 【详解】由余弦定理得2222cos a b c bc A =+-, 依题意221()sin 2a b c S bc A --==,2b c +=, ()()222212cos 221cos sin sin 41cos 2b c bc A b c bc bc A bc A A A +---+=-=⇒=-,所以1cos 1sin 4A A =-,221sin 1sin 14A A ⎛⎫+-= ⎪⎝⎭,2171sin sin 0162A A -=,由于A 是三角形ABC 的内角,所以sin 0A >,所以由2171sin sin 0162A A -=解得8sin 17A =.所以21444sin 21717217b c S bc A bc +⎛⎫==≤⨯= ⎪⎝⎭,当且仅当1b c ==时等号成立,所以S 的最大值为417. 故答案为:417【点睛】本小题主要考查余弦定理解三角形,考查三角形的面积公式,考查基本不等式求最值,属于中档题.19.【分析】中分别用余弦定理表示再利用解边长再根据余弦定理求角最后根据三角形面积公式求解【详解】设中中解得:中故答案为:【点睛】本题考查解三角形重点考查数形结合分析问题计算能力属于基础题型 解析:15【分析】ABD △,ADC 中,分别用余弦定理表示cos ADB ∠,cos ADC ∠,再利用cos cos 0ADB ADC ∠+∠=解边长BC ,再根据余弦定理求角BAC ∠,最后根据三角形面积公式求解. 【详解】 设BD DC x ==,ABD △中,22222cos 224x xADB x +-∠==⋅⋅,ADC 中,22222412cos 224x x ADC x x+--∠==⋅⋅ 180ADB ADC ∠+∠=,cos cos 0ADB ADC ∴∠+∠=,212044x x x -∴+=,解得:6x =26BC ∴=, ABC 中,(22224261cos 2244BAC +-∠==-⨯⨯,sin BAC ∴∠==1242ABCS∴=⨯⨯=【点睛】本题考查解三角形,重点考查数形结合分析问题,计算能力,属于基础题型.20.【分析】由余弦定理可得再利用基本不等式的性质可得的最大值再利用三角形面积计算公式即可得出【详解】解:在中由余弦定理可得:时取等号此时当取最大值时的面积故答案为:【点睛】本题考查了余弦定理基本不等式的【分析】由余弦定理可得cos C ,再利用基本不等式的性质可得C 的最大值,再利用三角形面积计算公式即可得出. 【详解】解:2b =,2a c =,∴在ABC ∆中,由余弦定理可得:22222441311cos ()22222242a b c c c c C ab c c +-+-===+⨯⨯⨯,(0,)C π∈,3c =时取等号.此时,3a =, 06Cπ∴<,∴当C 取最大值6π时,ABC 的面积11222S =⨯=.【点睛】本题考查了余弦定理、基本不等式的性质、三角形面积计算公式,考查了推理能力与计算能力,属于中档题.三、解答题21.(1)3A π=; (2 【分析】(1)由1||2AB AC AC ⋅=,得到1cos 2AB A =,进而求得1cos 2A =,即可求解;(2)分别选①②③,结合正弦定理和余弦定理,求得2B π=,得到4ABD π∠=,进而得到sin ADB ∠的值,在ABD △中结合正弦定理,即可求解. 【详解】 (1)由1||2AB AC AC ⋅=,可得1cos ||2AB AC A AC ⋅=,所以1cos 2AB A =,又由1c =,所以1cos 2A =, 因为(0,)A π∈,所以3A π=. (2)若选①:因为cos cos 2a C c A +=,由余弦定理可得222222222a b c b c a a c ab bc+-+-⋅+⋅=,整理得220b b,解得2b =,又由余弦定理可得2222212cos 2122132a b c bc A =+-=+-⨯⨯⨯=,即a = 因为222a c b +=,所以2B π=,又因为角B 的平分线交AC 于点D ,可得4ABD π∠=,所以5()3412ADB ππππ∠=-+=,则sin sin[()]sin cos cos sin 343434ADB πππππππ∠=-+=+=, 在ABD △中,由正弦定理可得sin sin ABBD A ADB=⋅==∠. 若选②:由sin cos bC B c =,根据正弦定理可得sin sin cos sin B C C B C =, 因为(0,)Cπ∈,可得sin 0C >,所以sin1B B =, 可得sin 2sin()13B B B π-=-=,即1sin()32B π-=,因为2333B πππ-<-<,所以36B ππ-=,可得2B π=又因为角B 的平分线交AC 于点D ,可得4ABD π∠=,所以5()3412ADB ππππ∠=-+=,则sin sin[()]sin cos cos sin 343434ADB πππππππ∠=-+=+=, 在ABD △中,由正弦定理可得sin sin ABBD A ADB=⋅==∠. 若选③:由sin 2sin a B c A =,根据正弦定理可得sin sin 2sin sin A B C A =, 因为(0,)C π∈,可得sin 0C >,可得sin 2sin B C =, 又由()()3C A B B πππ=-+=-+,可得sin 2sin 2sin()sin 3B C B B B π==+=+,所以cos 0B =,因为(0,)B π∈,所以2B π=.又因为角B 的平分线交AC 于点D ,可得4ABD π∠=,所以5()3412ADB ππππ∠=-+=,则sin sin[()]sin cos cos sin 343434ADB πππππππ∠=-+=+=, 在ABD △中,由正弦定理可得sin sin ABBD A ADB=⋅==∠. 【点睛】方法点睛:对于解三角形问题的常见解题策略:对于解三角形问题,通常利用正弦定理进行“边转角”寻求角的关系,利用“角转边”寻求边的关系,利用正、余弦定理解三角形问题是高考高频考点,同时注意三角形内角和定理,三角形面积公式在解题中的应用. 22.(1)6π;(2) 【分析】(1)先用余弦定理化余弦为边,再用正弦定理化边为角从而求得A ;(2)由余弦定理用c 表示a ,然后把三角形的面积用两种方法表示求得c ,从而可计算出面积. 【详解】(1)由22sin cos 2c a B C ab--=得222sin 2cos ab B ab C c a -=-,由余弦定理得222222sin ab B c a b c a +--=-,所以2sin a B b =, 由正弦定理得2sin sin sin A B B =,B 是三角形内角,sin 0B ≠, 所以1sin 2A =,又A 为锐角,所以6A π=.(2)由(1)2222232cos 2cos 166a b c bc A c c c π=+-=+-⋅⋅2716c =,4a =,所以11sin 22ABC S bc A a ==⨯△2111222⨯=⨯c =b == 111sin 222ABC S bc A ===△【点睛】思路点睛:本题考查正弦定理、余弦定理、三角形面积公式.利用正弦定理和余弦定理进行边角互化是解题关键.三角形的面积采取了二次计算,通过不同的计算方法得出等式,从而求解.这是一种解题技巧.23.(1)23B π=;(2)ABC S =△. 【分析】(1)利用正弦定理角化边,整理求得cos B ,由B 的范围可得结果;(2)利用余弦定理和基本不等式可求得当3a c ==时周长最大,由三角形面积公式可求得结果. 【详解】(1)由正弦定理得:222b ac ac --=,2221cos 22a cb B ac +-∴==-,()0,B π∈,23B π∴=; (2)由余弦定理得:()()222222cos 29b a c ac B a c ac ac a c ac =+-=+-+=+-=,()2292a c ac a c +⎛⎫∴=+-≤ ⎪⎝⎭(当且仅当a c =时取等号),6a c ∴+≤,∴当3a c ==时,ABC 取得最大值,此时19sin 22ABCSac B ===. 【点睛】方法点睛:求解与边长相关的最值或取值范围类问题通常有两种方法:①利用正弦定理边化角,将所求式子转化为与三角函数值域有关的问题的求解,利用三角恒等变换和三角函数的知识来进行求解;②利用余弦定理构造方程,结合基本不等式求得基本范围;应用此方法时,需注意基本不等式等号成立的条件. 24.(1)3A π=;(2)⎫+∞⎪⎪⎣⎭. 【分析】(1)利用正弦定理边化角可化简已知关系式求得cos A ,结合A 的范围可求得结果;(2)解法一:利用正弦定理边化角可整理得到1161sin 262B b c B ππ⎛⎫+ ⎪⎝⎭+=⎛⎫-+⎪⎝⎭,利用B 的范围可求得sin 6B π⎛⎫+⎪⎝⎭的范围,代入整理可求得结果; 解法二:利用余弦定理和基本不等式可求得3bc ≤,整理得到11b c +=合二次函数的性质可求得所求的范围. 【详解】(1)由正弦定理得:()sin sin 2cos sin cos sin cos sin A AA B C C B B C ==++. B C A π+=-,()sin sin B C A ∴+=,2cos 1A ∴=,即1cos 2A =, ()0,A π∈,3A π∴=.(2)解法一:由正弦定理知,2sin sin sin sin 3a b c A B C ====,sin sin 1111sin sin 3612sin 2sin 2sin sin 2sin sin sin 2362B B B B C b c B C B C B B B ππππ⎛⎫⎛⎫+++ ⎪ ⎪+⎝⎭⎝⎭∴+=+===⎛⎫⎛⎫+-+⎪ ⎪⎝⎭⎝⎭.3A π=,20,3B π⎛⎫∴∈ ⎪⎝⎭. 令6B πθ=+,则5,66ππθ⎛⎫∈ ⎪⎝⎭,则1sin ,12θ⎛⎤∈ ⎥⎝⎦.则11cos 24sin sin 22sin 22b cθθθθ⎫+====+∞⎪⎪⎣⎭-+--+⎪⎝⎭.解法二:3a =,3A π=,∴由余弦定理知:2232b c bc bc bc +-=≥-(当且仅当b c =时取等号), 3bc ∴≤,()233b c bc +=+,则113bc ≥,11b c b c bc +∴+===.11b c ∴+的取值范围为⎫+∞⎪⎪⎣⎭. 【点睛】方法点睛:求解与边长相关的取值范围类问题通常有两种方法:①利用正弦定理边化角,将所求式子转化为与三角函数值域有关的问题的求解,利用三角恒等变换和三角函数的知识来进行求解;②利用余弦定理构造方程,结合基本不等式求得基本范围;将所求式子化为符合基本不等式的形式或配凑成函数的形式来进行求解;应用此方法时,需注意基本不等式等号成立的条件.25.2+ 【分析】利用三角形的面积公式,结合已知面积变形可得1sin sin 4B C =,再利用所选条件结合正弦定理求出另外两边,可得三角形的周长. 【详解】由三角形的面积公式可知,1sin 2S ab C =, 21sin 28sin a ab C A∴=, 整理得4sin sin ,b A C a =由正弦定理得:4sin sin sin sin ,B A C A =因为sin 0A ≠,4sin sin 1,B C ∴=1sin sin 4B C ∴=, 若选择条件(1)由6B π=:得1sin 2B =,则1sin 2C =, 又,,A B C 为三角形的内角,6B C π∴==,2,3A π∴= 由正弦定理得sin sin sin a b c A B C ==代入1,b c ==解得a =∴三角形的周长为2若选择条件(2)B C =,则由B C =,得sin sin ,B C = 又1sin sin 4B C =,1sin sin 2B C ∴== 又,,A B C 为三角形的内角,,6B C π∴==23A π∴=. 由正弦定理得:sin sin sin a b c A B C ==,代入1,b c ==解得a =∴三角形的周长为2【点睛】关键点点睛:利用三角形的面积公式和正弦定理求出三角形的另外两边是解题关键. 26.(1)3B π=;(2)()0,3.【分析】(1)利用正弦定理边角互化,再利用余弦定理求出角B 的大小;(2)利用正弦定理结合三角恒等变换化简2a c -,再由锐角三角形得出C 的范围,进而得出答案.【详解】(1)由已知222sin sin sin sin sin A C B A C +=+,结合正弦定理,得222a c b ac +=+. 再由余弦定理,得2221cos 222a cb ac B ac ac +-===,又()0,B π∈,则3B π=.(2)由3B π=,b = 224sin 2sin 4sin 2sin 3a c AC C C π⎛⎫-=-=-- ⎪⎝⎭224sin cos cos sin 2sin 33C C C C ππ⎛⎫=--= ⎪⎝⎭因为ABC 为锐角三角形,则62C ππ<<,则0cos C << 所以2a c -的取值范围为()0,3.。

(压轴题)高中数学必修五第二章《解三角形》测试卷(包含答案解析)(2)

(压轴题)高中数学必修五第二章《解三角形》测试卷(包含答案解析)(2)

一、选择题1.在ABC 中,2sin 22C a b a-=,角A 、B 、C 的对边分别为a 、b 、c ,则ABC 的形状为( ) A .等边三角形 B .等腰三角形 C .等腰直角三角形D .直角三角形2.在ABC 中,内角A 、B 、C 所对的边分别为a 、b 、c ,若()sin sin sin c C a A b a B =+-,角C 的角平分线交AB 于点D ,且CD =,3a b =,则c 的值为( )A .72B C .3 D .3.在ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,已知()()sin sin 3sin 2B A B A A -++=,且c =3C π=,则a =( )A .1B C .1 D4.若ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且b =2,c △ABC 的面积Scos A ,则a =( )A .1B .C .D .5.ABC ∆的内角A ,B ,C 的对边分别为a ,b ,c ,已知2b =,6B π=,4Cπ,则ABC ∆的面积为( )A .2+B 1C .2D 16.在△ABC 中,已知点D 在BC 边上,且0AD AC ⋅=,sin 3BAC ∠=,AB =BD =, 则cos C ( )A .63B .3C .3D .137.ABC 中,内角A ,B ,C 的对边分别是a ,b ,c .已知a =cos sin b A B =,则A =( )A .12πB .6πC .4πD .3π 8.在钝角ABC ∆中,角A B C ,,的对边分别是a b c ,,,若3013C c a =︒==,,,则ABC ∆的面积为A .3 B .3 C .34D .329.在锐角△ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,若22b c ac =+,则角C 的取值范围是( ) A .π(0,)4B .ππ(,)42C .ππ(,)43D .π,64π⎛⎫ ⎪⎝⎭10.如图,在离地面高400m 的热气球上,观测到山顶C 处的仰角为15,山脚A 处的俯角为45,已知60BAC ∠=,则山的高度BC 为( )A .700mB .640mC .600mD .560m11.在ABC 中,角A ,B ,C 的对边分别为a ,b ,c .已知45A =︒,2a =,2b =B 为( ) A .60︒B .60︒或120︒C .30D .30或150︒12.在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .若tan 7C =52cos 8A =,32b =ABC 的面积为( ) A .37B 37C 37D 37二、填空题13.在△ABC 中,∠ABC 为直角,点M 在线段BA 上,满足BM =2MA =2,记∠ACM =θ,若对于给定的θ,这样的△ABC 是唯一确定的,则BC =_____.14.在ABC 中,内角,,A B C 的对边分别是,,a b c ,若223a b bc -=,sin 23C B =,则A =____.15.甲船正离开岛A 沿北偏西10︒的方向以每小时1海里的速度航行,乙船在岛A 处南偏西50︒的B 处,且AB 的距离为2海里,若乙船要用2小时追上甲船,则乙船速度大小为每小时________海里.16.在ABC ∆中,已知角,,A B C 的对边分别为,,a b c ,且a x =,3b =,60B =,若ABC ∆有两解,则x 的取值范围是__________.17.如图,三个全等的三角形ABF ,BCD ,CAE 拼成一个等边三角形ABC ,且DEF 为等边三角形,若2EF AE =,则tan ACE ∠的值为__________.18.在ABC 中,60,12,183ABCA b S=︒==,则sin sin sin a b cA B C____________.19.如图,要计算某湖泊岸边两景点B 与C 的距离,由于受地形的限制,需要在岸上选取A 和D 两点,现测得5km AB =,7km AD =,60ABD ∠=︒,15CBD ∠=︒,120BCD ∠=︒,则两景点B 与C 的距离为________km.20.某环保监督组织为了监控和保护洞庭湖候鸟繁殖区域,需测量繁殖区域内某湿地A 、B 两地间的距离(如图),环保监督组织测绘员在(同一平面内)同一直线上的三个测量点D 、C 、E ,从D 点测得67.5ADC ∠=,从点C 测得45ACD ∠=,75BCE ∠=,从点E 测得60BEC ∠=,并测得23DC =,2CE =(单位:千米),测得A 、B 两点的距离为___________千米.三、解答题21.在ABC 中,角A ,B ,C 所对边分别为a ,b ,c ,5b c =,sin 1c A =.点D 是AC的中点,BD AB ⊥,求c 和ABC ∠. 22.在△ABC 中,A =60°,sin B =12,a =3,求三角形中其他边与角的大小. 23.在①22(sin sin )sin sin sin B C A B C -=-,②sin sin 2B Cb a B +=,③sin cos()6a Bb A π=-这三个条件中任选一个,补充在下面问题中并作答.问题:ΔABC 的内角,,A B C 的对边分别为,,a b c 2b c +=,______,求A 和C .注:若选择多个条件作答,按第一个解答计分.24.在ABC 中,,,a b c 分别是角,,A B C 的对边.若2,cos b c C -==,再从条件①与②中选择一个作为已知条件,完成以下问题: (1)求,b c 的值;(2)求角A 的值及ABC 的面积.条件①:cos cos a B b A +=;条件②:2cos 2b C a =-. 25.在ABC 中a ,b ,c 分别为内角A ,B ,C 所对的边,若()()2sin 2sin sin 2sin sin a A B C b C B c =+++.(1)求A 的大小; (2)求sin sin B C +的最大值.26.已知,,A B C 为ABC 的三内角,且其对边分别为,,a b c ,若()cos 2cos 0a C c b A ++=.(1)求A ;(2)若a =4b c +=,求ABC 的面积.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】利用二倍角公式、正弦定理可得出sin sin cos B A C =,利用两角和的正弦公式可得出cos sin 0A C =,求出A 的值,即可得出结论.【详解】21cos sin 222C C a b a--==,cos b a C ∴=,由正弦定理可得sin sin cos B A C =, 所以,()sin cos sin sin cos cos sin A C A C A C A C =+=+,则cos sin 0A C =,0C π<<,则sin 0C >,cos 0A ∴=,0A π<<,2A π∴=,因此,ABC 为直角三角形.故选:D. 【点睛】方法点睛:在解三角形的问题中,若已知条件同时含有边和角,但不能直接使用正弦定理或余弦定理得到答案,要选择“边化角”或“角化边”,变换原则如下: (1)若式子中含有正弦的齐次式,优先考虑正弦定理“角化边”; (2)若式子中含有a 、b 、c 的齐次式,优先考虑正弦定理“边化角”; (3)若式子中含有余弦的齐次式,优先考虑余弦定理“角化边”; (4)代数式变形或者三角恒等变换前置;(5)含有面积公式的问题,要考虑结合余弦定理求解;(6)同时出现两个自由角(或三个自由角)时,要用到三角形的内角和定理.2.B解析:B 【分析】利用正弦定理边角互化以及余弦定理求出角C 的值,由ABC ACD BCD S S S =+△△△可得出ab a b =+,结合3a b =可求得a 、b 的值,再利用余弦定理可求得c 的值. 【详解】()sin sin sin c C a A b a B =+-,由正弦定理可得()22c a b a b =+-,可得222a b c ab +-=,由余弦定理可得:2221cos 22a b c C ab +-==,0C π<<,所以3C π=,由ABC ACD BCD S S S =+△△△,有111sin sin sin 232626ab a CD b CD πππ=⋅+⋅,得ab a b =+,所以234b b =,0b >,43b ∴=,34a b ==, 由余弦定理可得221616471692cos 33c a b ab C =+--==+.【点睛】方法点睛:在解三角形的问题中,若已知条件同时含有边和角,但不能直接使用正弦定理或余弦定理得到答案,要选择“边化角”或“角化边”,变换原则如下: (1)若式子中含有正弦的齐次式,优先考虑正弦定理“角化边”; (2)若式子中含有a 、b 、c 的齐次式,优先考虑正弦定理“边化角”; (3)若式子中含有余弦的齐次式,优先考虑余弦定理“角化边”; (4)代数式变形或者三角恒等变换前置;(5)含有面积公式的问题,要考虑结合余弦定理求解;(6)同时出现两个自由角(或三个自由角)时,要用到三角形的内角和定理.3.C解析:C 【分析】由题意得3sinBcosA sinAcosA =,分0cosA =和0cosA ≠两种情况求解,可得结果. 【详解】∵()()32sin B A sin B A sin A -++=, ∴3sinBcosA sinAcosA =.①当0cosA =时,ABC 为直角三角形,且2A π=.∵c =3C π=,∴3sin3a π==.②当0cosA ≠时,则有3sinB sinA =, 由正弦定理得3b a =.由余弦定理得2222c a b abcosC =+-, 即()()22173232a a a a =+-⋅⋅, 解得1a =. 综上可得,a =1故选:C . 【点睛】本题考查正余弦定理在解三角形中的应用,考查三角恒等变换,考查学生分类讨论思想,属于中档题.4.A解析:A由三角形的面积公式和已知条件得出sin A =12cos A ,再由同角三角函数间的关系求得cos A =25,运用余弦定理可求得边a . 【详解】因为b =2,c =5,S =5cos A =12bc sin A =5sin A ,所以sin A =12cos A .所以sin 2A +cos 2A =14cos 2A +cos 2A =54cos 2A =1.又0A π<<,所以sin >0,A 所以cos >0A ,故解得cos A =25. 所以a 2=b 2+c 2-2bc cos A =4+5-2×2×5×25=9-8=1,所以a =1. 故选:A. 【点睛】本题综合考查运用三角形面积公式和余弦定理求解三角形,属于中档题.5.B解析:B 【解析】试题分析:根据正弦定理,,解得,,并且,所以考点:1.正弦定理;2.面积公式.6.A解析:A 【分析】求出90BAC BAD ∠=∠+︒,代入利用诱导公式化简sin BAC ∠,求出cos BAD ∠的值,根据余弦定理求出AD 的长度,再由正弦定理求出BC 的长度,求得sin C ,再利用同角三角函数基本关系式即可计算求得结果 【详解】0AD AC ⋅=,可得AD AC ⊥90DAC ∴∠=︒,90BAC BAD DAC BAD ∠=∠+∠=∠+︒()22sin sin 90cos 3BAC BAD BAD ∴∠=∠+︒=∠=在ABC 中,32AB =3BD =根据余弦定理可得22222cos 1883BD AB AD AB AD BAD AD AD =+-∠=+-=解得3AD =或5AD =当5AD =时,AD AB >,不成立,故设去 当3AD =时,在ABD 中,由正弦定理可得:sin sin BD ABBAD ADB=∠∠又cos 3BAD ∠=,可得1sin 3BAD ∠=,则sin ABsin BAD ADB BD ∠∠==ADB DAC C ∠=∠+∠,90DAC ∠=︒cosC =故选A 【点睛】本题是一道关于三角函数的题目,熟练运用余弦定理,正弦定理以及诱导公式是解题的关键,注意解题过程中的计算,不要计算出错,本题有一定综合性7.D解析:D 【分析】由cos sin b A B =有1sin cos b B A =,再由正弦定理有sin sin a b A B =,1cos A=,可解出答案. 【详解】由cos sin b A B =有1sin cos b B A=,由正弦定理有sin sin a b A B=, 又a =即1sin cos A A=.所以tan A =因为A 为ABC 的内角,则3A π=.故选:D 【点睛】本题考查正弦定理的应用,属于中档题.8.A解析:A 【分析】根据已知求出b 的值,再求三角形的面积. 【详解】在ABC ∆中,301C c a =︒==,,由余弦定理得:2222cos c a b a b C =+-⋅⋅, 即2320b b -+=, 解得:1b =或2b =.∵ABC ∆是钝角三角形,∴2b =(此时为直角三角形舍去). ∴ABC ∆的面积为111sin 1222ab C =⨯=. 故选A . 【点睛】本题主要考查余弦定理解三角形和三角形的面积的计算,意在考查学生对这些知识的理解掌握水平,属于基础题.9.D解析:D 【分析】由22b c ac =+,并结合余弦定理,可求得2cos c a c B =-,进而结合正弦定理可得sin sin 2sin cos C A C B =-,由()sin sin A B C =+,代入并整理得sin C ()sin B C =-,结合△ABC 为锐角三角形,可得出2B C =,从而可得π02ππ2B BC ⎧<<⎪⎪⎨⎪<+<⎪⎩,即可求出答案. 【详解】由余弦定理可得,2222cos b a c ac B =+-,所以2222cos a c ac B c ac +-=+,即2cos c a c B =-, 由正弦定理可得,sin sin 2sin cos C A C B =-, 又()sin sin sin cos sin cos A B C B C C B =+=+, 所以sin sin cos sin cos 2sin cos C B C C B C B =+-()sin cos sin cos sin B C C B B C =-=-,因为π,0,2B C ⎛⎫∈ ⎪⎝⎭,所以ππ,22B C ⎛⎫-∈- ⎪⎝⎭, 所以C B C =-,即2B C =.在锐角△ABC 中,π02ππ2B B C ⎧<<⎪⎪⎨⎪<+<⎪⎩,即π022π3π2C C ⎧<<⎪⎪⎨⎪<<⎪⎩,解得ππ64C <<.故选:D. 【点睛】本题考查正弦、余弦定理在解三角形中的运用,考查两角和的正弦公式的运用,考查学生的计算求解能力,属于中档题.10.C解析:C 【分析】可知ADM ∆为等腰直角三角形,可计算出AM 的长度,在ACM ∆中,利用正弦定理求出AC 的长度,然后在ABC ∆中,利用锐角三角函数求出BC ,即可得出答案. 【详解】根据题意,可得在Rt ADM ∆中,45MAD ∠=,400DM =,所以,sin 45DMAM ==因为在ACM ∆中,451560AMC ∠=+=,180456075,AMC ∠=--=180756045ACM ∠=--=,由正弦定理,得sin sin 2AM AMCAC ACM∠===∠在Rt ABC∆中,()sin 600BC AC BAC m =∠==,故选C. 【点睛】本题考查解三角形的实际应用问题,着重考查三角函数的定义、利用正弦定理解三角形等知识,在解题时,要结合三角形已知元素类型合理选择正弦定理和余弦定理解三角形,考查运算求解能力,属于中等题.11.C解析:C 【分析】根据正弦定理得到1sin 2B =,再根据a b >知A B >,得到答案. 【详解】 根据正弦定理:sin sin a bA B =,即1sin 2B =,根据a b >知A B >,故30B =︒. 故选:C . 【点睛】本题考查了根据正弦定理求角度,多解是容易发生的错误.12.B解析:B 【分析】结合同角三角函数的基本关系可求出14sin 4C =,2cos 4C =,14sin 8A =,由两角和的正弦公式可求出sin B ,结合正弦定理即可求出a ,进而可求出三角形的面积.【详解】 因为sin tan 7cos C C C ==,且22sin cos 1C C +=,解得14sin C =,2cos C =, 又52cos A =,所以214sin 1cos A A =-=,故37sin sin[()]sin()sin cos cos sin B A C A C A C A C π=-+=+=+=. 因为sin sin a bA B =,32b =,故sin 2sin b A a B==, 故111437sin 2322242ABC S ab C =⨯=⨯⨯⨯=△. 故选:B . 【点睛】本题考查了同角三角函数的基本关系,考查了两角和的正弦公式,考查了正弦定理,考查了三角形的面积公式,属于中档题.二、填空题13.【分析】由题意利用直角三角形中的边角关系求出的值再利用两角差的正切公式求得从而求出的值【详解】解:设则为锐角∴∴依题意若对于给定的是唯一的确定的可得解得即的值为故答案为:【点睛】本题主要考查直角三角 解析:6【分析】由题意利用直角三角形中的边角关系求出tan ACB ∠、tan NCB ∠的值,再利用两角差的正切公式求得tan tan()ACB MCB θ=∠-∠,从而求出BC 的值. 【详解】解:设BC x =,ACM θ∠=,则θ为锐角,∴3tan ACB x ∠=,2tan MCB x∠=,∴tan tan()ACB MCB θ=∠-∠232132661x x x x x x x x -===+++, 依题意,若对于给定的ACM ∠,ABC ∆是唯一的确定的,可得6x x=,解得x =BC,. 【点睛】本题主要考查直角三角形中的边角关系,两角差的正切公式,属于中档题.14.【分析】由根据正弦定理边化角可得根据余弦定理结合已知联立方程组即可求得角【详解】根据正弦定理:可得根据余弦定理:由已知可得:故可联立方程:解得:由故答案为:【点睛】本题主要考查了求三角形的一个内角解 解析:6π【分析】由sinC B =,根据正弦定理“边化角”,可得c =,根据余弦定理2222cos a b c bc A=+-,结合已知联立方程组,即可求得角A .【详解】sin C B =根据正弦定理:sin sin b cB C= ∴可得c =根据余弦定理:2222cos ab c bc A =+- 由已知可得:22a b-=故可联立方程:222222cos c a b c bc A a b ⎧=⎪=+-⎨⎪-=⎩解得:cos 2A =. 由0A π<<∴6A π=故答案为:6π. 【点睛】本题主要考查了求三角形的一个内角,解题关键是掌握由正弦定理“边化角”的方法和余弦定理公式,考查了分析能力和计算能力,属于中档题.15.【分析】由题意画出示意图三角形(假设在处追上)然后设乙船速度为由此表示出的长度求出的长度在借助于余弦定理求出的长则速度可求【详解】解:由题意设乙船的速度为且在处乙船与甲船相遇做出图形如右:所以由题意 解析:3【分析】由题意画出示意图三角形ABC (假设在C 处追上),然后设乙船速度为x ,由此表示出BC 的长度,求出AC 的长度,在借助于余弦定理求出BC 的长,则速度可求. 【详解】解:由题意,设乙船的速度为x ,且在C 处乙船与甲船相遇, 做出图形如右:所以1801050120BAC ∠=︒-︒-︒=︒.由题意知2AB =,122AC =⨯=,2BC x =,120BAC ∠=︒.在ABC 中由余弦定理得2222cos BC AB AC AB AC CAB =+-∠. 即2444222cos12012x =+-⨯⨯︒=, 所以23x =,3x =/小时). 3 【点睛】本题考查解三角形的应用举例问题,根据题意建立合适的解三角形模型,运用正余弦定理构造方程求解,属于中档题.16.【分析】利用正弦定理得到再根据有两解得到计算得到答案【详解】由正弦定理得:若有两解:故答案为【点睛】本题考查了正弦定理有两解意在考查学生的计算能力 解析:(3,23)【分析】利用正弦定理得到sin 23A =,再根据ABC ∆有两解得到sin sin 123B A <=<,计算得到答案.【详解】由正弦定理得:sinsin sin sin a b x A A B A =⇒== 若ABC ∆有两解:sin sin 13B A x <=<⇒<<故答案为(3, 【点睛】本题考查了正弦定理,ABC ∆有两解,意在考查学生的计算能力.17.【分析】首先设中利用正弦定理表示的值【详解】设因为三角形互为全等三角形且是等边三角形所以且在中根据正弦定理有所以所以即故答案为:【点睛】本题主要考查正弦定理三角函数恒等变换属于中档题型【分析】首先设AE x =,CBD ACE θ∠=∠=,CBD 中,CD AE x ==,3BD x =,6060BCE ACE θ∠=-∠=-,利用正弦定理表示tan ACE ∠的值. 【详解】设AE x =,22EF AE x ==,因为三角形ABF ,BCD ,CAE 互为全等三角形,且ABC 是等边三角形, 所以CBD ACE θ∠=∠=,CD AE x ==,3BD AF AE EF x ==+=,且6060BCE ACE θ∠=-∠=-,在CDB △中,根据正弦定理有sin sin CD BDCBD BCD=∠∠,所以()3sin sin 60x x θθ=-,所以()13sin sin 60cos sin 22θθθθ=-=-,即7sin 2θθ=,sin tan cos θθθ==.【点睛】本题主要考查正弦定理,三角函数恒等变换,属于中档题型.18.【分析】根据三角形面积公式以及余弦定理求解即可【详解】由余弦定理可知故答案为:【点睛】本题主要考查了三角形面积公式以及余弦定理的应用属于中档题 解析:12【分析】根据三角形面积公式以及余弦定理求解即可. 【详解】11sin 1222ABC S bc A c ==⨯=△6c ∴=由余弦定理可知a =12sin sin sin sin a b c a A B C A ++∴===++故答案为:12 【点睛】本题主要考查了三角形面积公式以及余弦定理的应用,属于中档题.19.【分析】在中根据由余弦定理解得然后在中利用正弦定理求解【详解】在中因为由余弦定理得整理得解得或(舍去)在中因为所以由正弦定理得:所以故答案为:【点睛】本题主要考查余弦定理和正弦定理的应用还考查了运算【分析】在ABD △中,根据5km AB =,7km AD =,60ABD ∠=︒,由余弦定理解得8BD =,然后在BCD △中,利用正弦定理sin sin BD BCBCD BDC=∠∠求解.【详解】在ABD △中,因为5km AB =,7km AD =,60ABD ∠=︒, 由余弦定理得2222cos AD AB BD AB BD ABD =+-⋅⋅∠, 整理得249255BD BD =+-, 解得8BD =或3BD =-(舍去),在BCD △中,因为15CBD ∠=︒,120BCD ∠=︒, 所以45BDC ∠=︒, 由正弦定理得: sin sin BD BCBCD BDC=∠∠,所以sin 45sin120BD BC ⋅︒==︒.故答案为:3【点睛】本题主要考查余弦定理和正弦定理的应用,还考查了运算求解的能力,属于中档题.20.【分析】在中分析边角关系可得在中由正弦定理可求得的值然后在中利用余弦定理可求得的长【详解】在中则在中则由正弦定理得可得在中由余弦定理得因此(千米)故答案为:【点睛】本题考查距离的测量问题考查了利用正 解析:3【分析】在ACD △中,分析边角关系可得AC CD ==BCE 中,由正弦定理可求得BC 的值,然后在ABC 中,利用余弦定理可求得AB 的长. 【详解】在ACD △中,45ACD ∠=,67.5ADC ∠=,CD =67.5CAD ∴∠=,则AC CD ==在BCE 中,60BEC ∠=,75BCE ∠=,CE 45CBE ∠=,由正弦定理得sin 45sin 60CE BC=,可得2sin 60sin 452CE BC ===在ABC 中,AC =BC =,18060ACB ACD BCE ∠=-∠-∠=, 由余弦定理得2222cos609AB AC BC AC BC =+-⋅=,因此,3AB =(千米). 故答案为:3. 【点睛】本题考查距离的测量问题,考查了利用正弦定理和余弦定理解三角形,考查计算能力,属于中等题.三、解答题21.c =34ABC π∠=. 【分析】由勾股定理求出BD ,再由sin BDA AD=,sin 1cA =,b =求出c =5b =,再由余弦定理求出a ,最后由正弦定理求出ABC ∠. 【详解】解:在直角三角形ABD 中,22222224b c BD AD AB c ⎛⎫=-=-= ⎪⎝⎭,所以2c BD =.所以5sin BD A AD ==. 又因为sin 1c A =,所以5c =由5b c =得,5b =.因为5sin A =,0,2A π⎛⎫∈ ⎪⎝⎭,所以225cos 1sin A A =-=. 在ABC 中,由余弦定理,得22255(5)255105a =+-⨯⨯⨯= 由正弦定理,得sin sin a b A ABC =∠,即510sin 5ABC =∠2sin ABC ∠=. 又因为,2ABC ππ⎛⎫∠∈ ⎪⎝⎭,所以34ABC π∠=. 【点睛】关键点睛:解决本题的关键在于正余弦定理的综合应用,综合利用两个定理求出c 和ABC ∠.22.B =30°,90C =,3b =23c =.【分析】由三角函数值、三角形内角和性质确定B 、C 的大小,应用正弦定理求,b c 即可. 【详解】 由1sin 2B =且60A =︒,即0120B <<︒,可知:30B =︒. ∴90C =︒, 由正弦定理sin sin sin b c aB C A==, ∴sin 3sin 303sin sin 60a B b A ︒===︒sin 3sin 9023sin sin 60a C c A ︒===︒23.选择见解析;3A π=,512C π=. 【分析】若选择条件①,先由正弦定理和余弦定理求出角A ,再利用正弦定理化简22a b c +=,把23B C π=-代入,化简求值即可;若选择条件②,利用正弦定理和二倍角公式解出sin2A的值,进而得出角A ; 若选择条件③,由正弦定理结合两角和与差的正弦公式可求出tan A ,进而得出角A 和C .【详解】(1)选择条件①,由()22sin sin sin sin sin B C A B C -=-及正弦定理知,()22b c a bc -=-,整理得,222b c a bc +-=;由余弦定理可得,2221cos 222b c a bc A bc bc +-===;又因为()0,A π∈,所以,3A π=.2b c +=sin 2sin A B C +=;由23B C π=-2sin 2sin 33C C ππ⎛⎫+-= ⎪⎝⎭;整理得,sin 62C π⎛⎫-= ⎪⎝⎭, 因为20,3C π⎛⎫∈ ⎪⎝⎭,所以,,662C πππ⎛⎫-∈- ⎪⎝⎭, 从而64C ππ-=,解得512C π=(2)选择条件②,因为A B C π++=,所以222B C Aπ+=-; 由sinsin 2B C b a B +=得,cos sin 2Ab a B =由正弦定理知,sin cos sin sin 2sin cos sin 222A A AB A B B ==; 又sin 0B >,sin02A >,可得1sin 22A =;又因为()0,A π∈,所以,26A π=,故3A π=.2b c +=sin 2sin A B C +=;由23B C π=-2sin 2sin 33C C ππ⎛⎫+-= ⎪⎝⎭;整理得,sin 62C π⎛⎫-= ⎪⎝⎭, 因为20,3C π⎛⎫∈ ⎪⎝⎭,所以,,662C πππ⎛⎫-∈- ⎪⎝⎭,从而64C ππ-=,解得512C π=. (3)选择条件③,由sin cos 6a B b A π⎛⎫=-⎪⎝⎭及正弦定理知, sin sin sin cos 6A B B A π⎛⎫=- ⎪⎝⎭又sin 0B >,从而1sin cos sin 62A A A A π⎛⎫=-=+ ⎪⎝⎭,解得tan A =又因为()0,A π∈,所以,3A π=.2b c +=sin 2sin A B C +=;由23B C π=-2sin 2sin 33C C ππ⎛⎫+-= ⎪⎝⎭;整理得,sin 6C π⎛⎫-= ⎪⎝⎭, 因为20,3C π⎛⎫∈ ⎪⎝⎭,所以,,662C πππ⎛⎫-∈- ⎪⎝⎭, 从而64C ππ-=,解得512C π=. 【点睛】方法点睛:本题考查正余弦定理在解三角形中的应用,考查三角恒等变换,解三角形问题中可以应用正余弦定理的题型有: 1.已知一边和两角;2.已知两边和其中一边的对角;3.已知两边和它们所夹的角;4.已知三边.24.(1)6,4b c ==; (2)3A π=,S =【分析】(1)选用条件①:由正弦定理求得a =2b c -=,即可求解;选用条件②:由正弦定理求得cos 14B =,得出sin 14B =,再由cos 7C =,求得得sin C =(2)由余弦定理求得A 的值,结合面积公式,即可求解. 【详解】(1)选用条件①:因为cos cos 14a Bb A ac +=,由正弦定理得sin cos sin cos sin A B B A C +=,可得sin sin C C =,又因为(0,)C π∈,所以sin 0C ≠,可得a =又由cos C =,由余弦定理得2222a b c ab +-=, 将2b c -=代入上式,解得6,4b c ==.选用条件②:因为2cos 27b C a =-,由正弦定理得2sin cos 2sin 7B C A C =-2sin()7B C C =+-2(sin cos cos sin )B C B C C =+即2cos sin sin 07B C C -=,又因为(0,)C π∈,所以sin 0C ≠,可得cos B =,则sin B =,又由cos C =,可得221sin 1cos C C由正弦定理sin sin b cB C =,得sin 3sin 2b Bc C ==, 又由2b c -=,可得6,4b c ==.(2)由余弦定理得2221cos 22b c a A bc +-==, 因为0A π<<,所以3A π=.所以ABC 的面积为11sin 64222S bc A ==⨯⨯⨯= 【点睛】对于解三角形问题的常见解题策略:对于解三角形问题,通常利用正弦定理进行“边转角”寻求角的关系,利用“角转边”寻求边的关系,利用正、余弦定理解三角形问题是高考高频考点,同时注意三角形内角和定理,三角形面积公式在解题中的应用. 25.(1)23π;(2)1. 【分析】(1)由题意利用正弦定理角化边,然后结合余弦定理可得∠A 的大小;(2)由题意结合(1)的结论和三角函数的性质可得sin sin B C +的最大值.【详解】(1)由己知,根据正弦定理得()()2222a b c b c b c =+++ 即222a b c bc =++由余弦定理得2222cos a b c bc A =+- 故1cos 2A =-,所以23A π=. (2)由(1)得:1sin sin sin sin sin sin 3223B C B B B B B ππ⎛⎫⎛⎫+=+-=+=+ ⎪ ⎪⎝⎭⎝⎭故当6B π=时,sin sin B C +取得最大值1.【点睛】方法点睛:在处理三角形中的边角关系时,一般全部化为角的关系,或全部化为边的关系.题中若出现边的一次式一般采用到正弦定理,出现边的二次式一般采用到余弦定理.应用正、余弦定理时,注意公式变式的应用.解决三角形问题时,注意角的限制范围.26.(1)23π;(2 【分析】(1)由正弦定理,三角函数恒等变换的应用化简已知等式可得sin 2sin cos 0B B A +=,由于sin 0B ≠,可求cos A 的值,结合()0,A π∈,可求A 的值.(2)由已知利用余弦定理可求bc 的值,进而根据三角形的面积公式即可得解.【详解】解:(1)∵()cos 2cos 0a C c b A ++=,∴由正弦定理可得:()sin cos sin 2sin cos 0A C C B A ++=,整理得sin cos sin cos 2sin cos 0A C C A B A ++=,即:()sin 2sin cos 0A C B A ++=,所以sin 2sin cos 0B B A +=,∵sin 0B ≠,∴1cos 2A =-, ∵()0,A π∈,∴23A π=.(2)由a =4b c +=,由余弦定理得2222cos a b c bc A =+-, ∴2212()22cos 3b c bc bc π=+--,即有1216bc =-,∴4bc =,∴ABC 的面积为112sin 4sin 223S bc A π==⨯⨯= 【点评】 本题主要考查了正弦定理,三角函数恒等变换的应用,余弦定理,三角形的面积公式在解三角形中的综合应用,考查了计算能力和转化思想,属于基础题.解题的过程中注意以下公式的灵活应用:22()22cos a b c bc bc A =+--、()sin sin A C B +=、()cos cos A C B +=-.。

北师大版必修5高中数学第2章解三角形小结导学案

北师大版必修5高中数学第2章解三角形小结导学案

高中数学 第2章 解三角形小结导学案北师大版必修5【学习目标】1、通过对任意三角函数边与角度的探索,掌握正弦定理、余弦定理并能解决一些简单的三角形度量问题。

2、能运用正弦定理、余弦定理解决一些计算和测量有关的实际问题 【学习重点】正弦定理、余弦定理【学法指导】阅读课本15-17页内容,结合导学案,要求在30分钟内独学至课内探究。

2、请写出余弦定理及其变形3、请写出三角形面积公式(一) 学习探究(1)(A)在ABC ∆中,45B =,60C =,1c =,求最短边的边长 。

(2)(A)求边长为5、7、8的三角形的最大角与最小角之和。

变式、(1)在ABC ∆中,已知2=b ,︒=30B ,︒=135C ,求a 的长个 性 笔 记(2)(B)在ABC ∆中,AB=3,AC=2,BC=10,则AB AC ⋅= ( )A .23-B .32- C .32 D .23三角形面积例2、(B)在∆A B C 中,s i n c o s A A +=22,A C =2,A B =3,求A tan 的值和∆A B C 的面积。

正、余弦定理判断三角形形状3在△ABC 中,若2cos B sin A =sinC ,则△ABC 的形状一定是( )A.等腰直角三角形B.直角三角形C.等腰三角形D.等边三角形变式、(1)(A)在ABC ∆中,若C B A 222sin sin sin +=,判断ABC ∆的形状变式、(2)(C)在△ABC 中,若,cos cos cos C c B b A a =+判断△ABC 的形状正、余弦定理实际应用1、(B)如图一个三角形的绿地ABC ,AB 边长7米,由C 点看AB 的张角为45,在AC 边上一点D 处看AB 得张角为60,且2AD DC =,试求这块绿地得面积。

变式、(C)货轮在海上A 点处以30 n mile/h 的速度沿方向角(指北方向顺时针转到方向线的水平角)为1500的方向航行,半小时后到达B 点,在B 点处观察灯塔C 的方向角是900, 且灯塔C 到货轮航行方向主最短距离为310 n mile ,求点A 与灯塔C 的距离。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中数学 第2章 解三角形小结导学案
北师大版必修5
【学习目标】1、通过对任意三角函数边与角度的探索,掌握正弦定理、余弦定理并能解决一些简单的三角形度量问题。

2、能运用正弦定理、余弦定理解决一些计算和测量有关的实际问题 【学习重点】正弦定理、余弦定理
【学法指导】阅读课本15-17页内容,结合导学案,要求在30分钟内独学至课内探究。

2、请写出余弦定理及其变形
3、请写出三角形面积公式
(一) 学习探究
(1)(A)在ABC ∆中,45B =,60C =,1c =,求最短边的边长 。

(2)(A)求边长为5、7、8的三角形的最大角与最小角之和。

变式、(1)在ABC ∆中,已知2=b ,︒=30B ,︒=135C ,求a 的长
个 性 笔 记
(2)(B)在ABC ∆中,AB=3,AC=2,BC=10,则AB AC ⋅= ( )
A .23-
B .3
2- C .32 D .23
三角形面积
例2、(B)在∆A B C 中,s i n c o s A A +=2
2
,A C =2,A B =3,求A tan 的值和∆A B C 的面积。

正、余弦定理判断三角形形状
3在△ABC 中,若2cos B sin A =sinC ,则△ABC 的形状一定是( )
A.等腰直角三角形
B.直角三角形
C.等腰三角形
D.等边三角形
变式、(1)(A)在ABC ∆中,若C B A 2
2
2
sin sin sin +=,判断ABC ∆的形状
变式、(2)(C)在△ABC 中,若,cos cos cos C c B b A a =+判断△ABC 的形状
正、余弦定理实际应用
1、(B)如图一个三角形的绿地ABC ,AB 边长7米,由C 点看AB 的张角为
45,在AC 边上一点D 处看AB 得张角为60,且2AD DC =,试求这块绿
地得面积。

变式、(C)货轮在海上A 点处以30 n mile/h 的速度沿方向角(指北方向顺时针
转到方向线的水平角)为1500
的方向航行,半小时后到达B 点,在B 点处观察灯塔C 的方向角是900
, 且灯塔C 到货轮航行方向主最短距离为310 n mile ,
求点A 与灯塔C 的距离。

(三)拓展延伸 余弦定理综合应用
5、(C)(2008辽宁文,17)在ABC △中,内角A B C ,,对边的边长分别是
a b c ,,,已知2c =,3
C π=
. (Ⅰ)若ABC △的面积等于3,求a b ,;
(Ⅱ)若sin sin()2sin 2C B A A +-=,求ABC △的面积.
变式、 1、(C)在
ABC 中,,a b c 分别为,,A B C ∠∠∠的对边,若
2sin (cos cos )3(sin sin )A B C B C +=+,
(1)求A 的大小;
(2)若61,9a b c =+=,求b 和c 的值。

【教与学反思】
本节课你有哪些收获?请写下来,与组内的同学分享
D
C
B
A
总结反思
总结反思。

相关文档
最新文档