2019年数学一轮复习 第9章 解析几何 专题研究1 曲线与方程练习 理
数学(理)一轮复习:第九章 解析几何 双曲线

1.双曲线定义平面内与两个定点F1,F2的距离的差的绝对值等于常数(小于|F1F2|)的点的轨迹叫做双曲线.这两个定点叫做双曲线的焦点,两焦点间的距离叫做双曲线的焦距.集合P={M|||MF1|-|MF2||=2a},|F1F2|=2c,其中a,c 为常数且a〉0,c〉0。
(1)当2a<|F1F2|时,P点的轨迹是双曲线;(2)当2a=|F1F2|时,P点的轨迹是两条射线;(3)当2a〉|F1F2|时,P点不存在.2.双曲线的标准方程和几何性质标准方程错误!-错误!=1(a〉0,b〉0)y2a2-错误!=1(a〉0,b〉0)图形性质范围x≥a或x≤-a,y∈Rx∈R,y≤-a或y≥a 对称性对称轴:坐标轴对称中心:原点顶点A1(-a,0),A2(a,0)A1(0,-a),A2(0,a)渐近线y=±错误!x y=±错误!x离心率e=错误!,e∈(1,+∞),其中c=错误!实虚轴线段A1A2叫做双曲线的实轴,它的长|A1A2|=2a;线段B1B2叫做双曲线的虚轴,它的长|B1B2|=2b;a叫做双曲线的实半轴长,b叫做双曲线的虚半轴长a、b、c的关c2=a2+b2 (c>a>0,c>b〉0)系【知识拓展】巧设双曲线方程(1)与双曲线错误!-错误!=1(a>0,b〉0)有共同渐近线的方程可表示为错误!-错误!=t(t≠0).(2)过已知两个点的双曲线方程可设为错误!+错误!=1(mn〈0).【思考辨析】判断下列结论是否正确(请在括号中打“√"或“×”)(1)平面内到点F1(0,4),F2(0,-4)距离之差的绝对值等于8的点的轨迹是双曲线.( ×)(2)方程错误!-错误!=1(mn〉0)表示焦点在x轴上的双曲线.(×)(3)双曲线方程错误!-错误!=λ(m〉0,n>0,λ≠0)的渐近线方程是错误!-错误!=0,即错误!±错误!=0.( √)(4)等轴双曲线的渐近线互相垂直,离心率等于 2.(√)(5)若双曲线错误!-错误!=1(a〉0,b>0)与错误!-错误!=1(a〉0,b>0)的离心率分别是e1,e2,则错误!+错误!=1(此结论中两条双曲线称为共轭双曲线).(√)1.(教材改编)若双曲线错误!-错误!=1 (a〉0,b>0)的焦点到其渐近线的距离等于实轴长,则该双曲线的离心率为( )A。
2019版高考数学一轮总复习第九章解析几何题组训练65双曲线一理

题组训练 65 双曲线(一)
x2
y2
1.双曲线 36- m2- m2= 1(0<m<3) 的焦距为 (
)
A. 6
B. 12
C. 36
D. 2 36- 2m2
答案 B
解析 c2= 36- m2+ m2= 36,∴ c= 6. 双曲线的焦距为 12.
答案 2 2+ 1 解析 设右焦点为 F2,∵ |PF 1| -|PF 2| = 2 2,
∴|PF 1| = |PF 2| + 2 2,∴ |PF 1| +|PQ| = |PF 2| + 2 2+ |PQ|. 当且仅当 Q, P, F2 三点共线, 且 P 在 F2, Q之间时, |PF 2| + |PQ| 最小,且最小值为 F2 到 l 的距离.
B.
5.(2017 ·河北邢台摸底 ) 双曲线 x 2- 4y2=- 1 的渐近线方程为 (
)
A. x± 2y=0
B. y±2x= 0
C. x± 4y=0
D. y±4x= 0
答案 解析
A 依题意,题中的双曲线即
y2 1-
x
2=
1
,因此其渐近线方程是
4
y2 1-
x
2=
0,即
x±2y= 0,
4
选 A. 6.(2018 ·湖北孝感一中月考
)
A. 2
6 B. 2
5 C.
2
D. 1
答案 D
解析
因为双曲线的方程为
x2 y2 a2- 3 =1,所以
e
2=
1
+
3 a2=
2019高考数学一轮复习 第9章 解析几何 专题研究1 曲线与方程课件 理

专题讲解
设圆 C:(x-1)2+y2=1,过原点 O 作圆的任意弦,设 OQ 为过 O 的一条弦,P(x, y)为其中点,则 CP⊥OP,OC 中点为 M(12,0),
则|MP|=12|OC|=12,得方程(x-12)2+y2=14,考虑轨迹的范围 知 0<x≤1.
(
5,0),离心率为
5 3.
(1)求椭圆C的标准方程;
(2)若动点P(x0,y0)为椭圆C外一点,且点P到椭圆C的两条 切线相互垂直,求点P的轨迹方程.
【思路】 (1)由焦点坐标和离心率可求出椭圆的长半轴 长、半焦距长和短半轴长,可得椭圆的标准方程;(2)讨论两条 切线的斜率是否存在,斜率存在时,设出切线方程,利用直线 与椭圆相切得判别式Δ=0,建立关于k的一元二次方程,利用两 根之积为-1,求出点P的轨迹方程.
(4)参数法:先取适当的参数,分别用参数表示动点坐标 x、 y,得出轨迹的参数方程,消去参数,即得其普通方程.
2.注意事项 (1)轨迹与轨迹方程的区别:求轨迹方程只求出方程即可, 求轨迹时,首先求出轨迹方程,然后说明轨迹的形状、位置、 大小.若轨迹有不同的情况,应分别讨论,以保证它的全面 性. (2)求轨迹方程时,要注意曲线上的点与方程的解是一一对 应关系.检验可以从以下两个方面进行:一是方程的化简是否 是同解变形,二是是否符合题目的实际意义.
(2)已知 A,B,C 是直线 l 上的三点,且|AB|=|BC|=6,圆 Q 切直线 l 于点 A,又过 B,C 作圆 Q 异于 l 的两切线,设这两切 线交于点 P,求点 P 的轨迹方程.
【解析】 (定义法)如图,由切线性质,得
|PB|+|PC|=|BA|+|CA|=18>|BC|=6.可知P点轨迹是以B,C 为焦点的椭圆(但除去与BC的交点).以BC为x轴,BC中点为原 点建立坐标系得P点轨迹方程为8x12 +7y22 =1(y≠0).
2019版高考数学一轮总复习第九章解析几何课件(打包15套)理

直线的斜率 (1)定义:一条直线的倾斜角 α 的正切值叫做这条直线的斜 率,斜率常用小写字母 k 表示,即 k=tanα ,倾斜角是 90°的直 线没有斜率. (2)过两点的直线的斜率公式. 经过两点 P1(x1,y1),P2(x2,y2)(x1≠x2)的直线的斜率公式为 y2-y1 k= . x2-x1
课前自助餐
直线的方向向量 若 P1(x1,y1),P2(x2,y2)是直线 l 上两点,则 l 的方向向量的 坐标为(x2-x1, y2- y1); 若 l 的斜率为 k, 则方向向量的坐标为(1, k).
直线的倾斜角 (1)定义:当直线 l 与 x 轴相交时,取 x 轴作为基准,x 轴正 向与直线 l 向上方向之间所成的角叫做直线 l 的倾斜角. 当直线 l 与 x 轴平行或重合时,规定它的倾斜角为 0°. (2)范围:直线 l 倾斜角的范围是[0°,180°).
=2,∴ m=4.
5. 一条直线经过点 A(2, -3), 并且它的斜率等于直线 x+ 3 y=0 的斜率的 2 倍,则这条直线的方程为________.
答案 2x+ 3y+3 3-4=0
6. 已知直线 l: ax+ y-2-a=0 在 x 轴和 y 轴上的截距相等, 则 a 的值是( A.1 C.-2 或-1
答案 D
) B.-1 D.-2 或 1
授 人 以 渔
题型一
直线的倾斜角与斜率 )
(1)直线 xsinα +y+2=0 的倾斜角的取值范围是( A.[0,π ) π C.[0, ] 4 π 3 B.[0, 4 ]∪[4π ,π ) π π D.[0, ]∪( ,π ) 4 2
【思路】 先求斜率 k,根据其表达式确定其范围,再根据 正切函数的单调性确定倾斜角范围. 【解析】 设直线的倾斜角为 θ,0≤θ<π,根据直线斜率 的计算方法,可得直线的斜率为 k=-sinα,易得-1≤k≤1.由 倾斜角与斜率的关系,易得-1≤tanθ≤1 ,故 θ 的范围是[0, π 3 ]∪[ π,π). 4 4 【答案】 B
高考数学一轮复习 第九章 平面解析几何 第8讲 曲线与方程配套课时作业 理(含解析)新人教A版-新人

第8讲 曲线与方程配套课时作业1.已知点F ⎝ ⎛⎭⎪⎫14,0,直线l :x =-14,点B 是l 上的动点.若过点B 垂直于y 轴的直线与线段BF 的垂直平分线交于点M ,则点M 的轨迹是( )A .双曲线B .椭圆C .圆D .抛物线 答案 D解析 由已知知|MF |=|MB |,根据抛物线的定义知,点M 的轨迹是以点F 为焦点,直线l 为准线的抛物线.2.(2019·某某模拟)如图所示,A 是圆O 内一定点,B 是圆周上一个动点,AB 的中垂线CD 与OB 交于点E ,则点E 的轨迹是( )A .圆B .椭圆C .双曲线D .抛物线 答案 B解析 由题意知,|EA |+|EO |=|EB |+|EO |=r (r 为圆的半径)且r >|OA |,故E 的轨迹为以O ,A 为焦点的椭圆.故选B.3.到点F (0,4)的距离比到直线y =-5的距离小1的动点M 的轨迹方程为( ) A .y =16x 2B .y =-16x 2C .x 2=16y D .x 2=-16y 答案 C解析 由条件知,动点M 到F (0,4)的距离与到直线y =-4的距离相等,所以点M 的轨迹是以F (0,4)为焦点,直线y =-4为准线的抛物线,其标准方程为x 2=16y .4.(2019·某某模拟)设点A 为圆(x -1)2+y 2=1上的动点,PA 是圆的切线,且|PA |=1,则P 点的轨迹方程为( )A .y 2=2x B .(x -1)2+y 2=4 C .y 2=-2x D .(x -1)2+y 2=2 答案 D解析 如图,设P (x ,y ),圆心为M (1,0),连接MA ,则MA ⊥PA ,且|MA |=1.又∵|PA |=1,∴|PM |=|MA |2+|PA |2=2,即|PM |2=2,∴(x -1)2+y 2=2.5.在△ABC 中,已知A (-1,0),C (1,0),且|BC |,|CA |,|AB |成等差数列,则顶点B 的轨迹方程是( )A.x 23+y 24=1B.x 23+y 24=1(x ≠±3)C.x 24+y 23=1 D.x 24+y 23=1(x ≠±2) 答案 D解析 因为|BC |,|CA |,|AB |成等差数列,所以|BC |+|BA |=2|CA |=4.所以点B 的轨迹是以A ,C 为焦点,半焦距c =1,长轴长2a =4的椭圆.又B 是三角形的顶点,A ,B ,C 三点不能共线,故所求的轨迹方程为x 24+y 23=1,且x ≠±2.故选D.6.动圆M 经过双曲线x 2-y 23=1的左焦点且与直线x =2相切,则圆心M 的轨迹方程是( )A .y 2=8x B .y 2=-8x C .y 2=4x D .y 2=-4x 答案 B解析 设双曲线x 2-y 23=1的左焦点为F (-2,0),因为动圆M 经过F 且与直线x =2相切,所以圆心M 到点F 的距离和到直线x =2的距离相等,由抛物线的定义知轨迹是抛物线,其方程为y 2=-8x .7.(2019·某某某某检测)已知F 1,F 2是双曲线的两个焦点,Q 是双曲线上任意一点,从焦点F 1引∠F 1QF 2的平分线的垂线,垂足为P ,则点P 的轨迹为( )A .直线B .圆C .椭圆D .双曲线 答案 B解析 不妨设点Q 在双曲线的右支上,延长F 1P 交直线QF 2于点S ,∵QP 是∠F 1QF 2的平分线,且QP ⊥F 1S ,∴P 是F 1S 的中点.∵O 是F 1F 2的中点,∴PO 是△F 1SF 2的中位线,∴|PO |=12|F 2S |=12(|QS |-|QF 2|)=12(|QF 1|-|QF 2|)=a (定值),∴点P 的轨迹为圆. 8.设线段AB 的两个端点A ,B 分别在x 轴、y 轴上滑动,且|AB |=5,OM →=35OA →+25OB →,则点M 的轨迹方程为( )A.x 29+y 24=1B.y 29+x 24=1C.x 225+y 29=1 D.y 225+x 29=1 答案 A解析 设M (x ,y ),A (x 0,0),B (0,y 0),由OM →=35OA →+25OB →,得(x ,y )=35(x 0,0)+25(0,y 0),则⎩⎪⎨⎪⎧x =35x 0,y =25y 0,解得⎩⎪⎨⎪⎧x 0=53x ,y 0=52y ,由|AB |=5,得⎝ ⎛⎭⎪⎫53x 2+⎝ ⎛⎭⎪⎫52y 2=25,化简得x 29+y 24=1.9.已知A ,B 为平面内两定点,过该平面内动点M 作直线AB 的垂线,垂足为N .若MN →2=λAN →·NB →,其中λ为常数,则动点M 的轨迹不可能是( )A .圆B .椭圆C .抛物线D .双曲线 答案 C解析 以AB 所在直线为x 轴,AB 的中垂线为y 轴,建立坐标系,设M (x ,y ),A (-a,0),B (a,0),则N (x,0).因为MN →2=λAN →·NB →,所以y 2=λ(x +a )(a -x ),即λx 2+y 2=λa 2,当λ=1时,轨迹是圆;当λ>0且λ≠1时,轨迹是椭圆;当λ<0时,轨迹是双曲线;当λ=0时,轨迹是直线.综上,动点M 的轨迹不可能是抛物线.10.已知A (0,7),B (0,-7),C (12,2),以C 为一个焦点作过A ,B 的椭圆,椭圆的另一个焦点F 的轨迹方程是( )A .y 2-x 248=1(y ≤-1) B .y 2-x 248=1C .y 2-x 248=-1 D .x 2-y 248=1 答案 A解析 由题意,得|AC |=13,|BC |=15,|AB |=14,又|AF |+|AC |=|BF |+|BC |,∴|AF |-|BF |=|BC |-|AC |=2.故点F 的轨迹是以A ,B 为焦点,实轴长为2的双曲线的下支.∵双曲线中c =7,a =1,∴b 2=48,∴焦点F 的轨迹方程为y 2-x 248=1(y ≤-1).11.已知正方体ABCD -A 1B 1C 1D 1的棱长为1,点M 在AB 上,且AM =13,点P 在平面ABCD内,且动点P 到直线A 1D 1的距离与动点P 到点M 的距离的平方差为1,则动点P 的轨迹是( )A .直线B .圆C .双曲线D .抛物线 答案 D解析 在平面ABCD 内过点P 作PF ⊥AD ,垂足为F ,过点F 在平面AA 1D 1D 内作FE ⊥A 1D 1,垂足为E ,连接PE ,则有PE ⊥A 1D 1,即PE 为点P 到A 1D 1的距离.由题意知|PE |2-|PM |2=1,又因为|PE |2=|PF |2+|EF |2,所以|PF |2+|EF |2-|PM |2=1,即|PF |2=|PM |2,即|PF |=|PM |,所以点P 满足到点M 的距离等于点P 到直线AD 的距离.由抛物线的定义知点P 的轨迹是以点M 为焦点,AD 为准线的抛物线,所以点P 的轨迹为抛物线.12.(2019·某某质量检查)已知A (-2,0),B (2,0),斜率为k 的直线l 上存在不同的两点M ,N 满足|MA |-|MB |=23,|NA |-|NB |=23,且线段MN 的中点为(6,1),则k 的值为( )A .-2B .-12 C.12 D .2答案 D解析 因为|MA |-|MB |=23,|NA |-|NB |=23,由双曲线的定义知,点M ,N 在以A ,B 为焦点的双曲线的右支上,且c =2,a =3,所以b =1,所以该双曲线的方程为x 23-y 2=1.设M (x 1,y 1),N (x 2,y 2),则x 1+x 2=12,y 1+y 2=2.设直线l 的方程为y =kx +m ,代入双曲线的方程,消去y ,得(1-3k 2)x 2-6mkx -3m 2-3=0,所以x 1+x 2=6mk 1-3k 2=12①,y 1+y 2=k (x 1+x 2)+2m =12k +2m =2②,由①②解得k =2,故选D.13.由动点P 向圆x 2+y 2=1引两条切线PA ,PB ,切点分别为A ,B ,∠APB =60°,则动点P 的轨迹方程为________.答案 x 2+y 2=4解析 设P (x ,y ),x 2+y 2=1的圆心为O ,因为∠APB =60°,OP 平分∠APB ,所以∠OPB =30°,因为|OB |=1,∠OBP 为直角,所以|OP |=2,所以x 2+y 2=4.14.(2019·某某模拟)△ABC 的顶点A (-5,0),B (5,0),△ABC 的内切圆圆心在直线x =3上,则顶点C 的轨迹方程是________.答案x 29-y 216=1(x >3)解析 如图,令内切圆与三边的切点分别为D ,E ,F ,可知|AD |=|AE |=8,|BF |=|BE |=2,|CD |=|CF |,所以|CA |-|CB |=|AE |-|BE |=8-2=6<|AB |=10.根据双曲线定义,所求轨迹是以A ,B 为焦点,实轴长为6的双曲线的右支,其方程为x 29-y 216=1(x >3).15.已知圆M :(x +1)2+y 2=1,圆N :(x -1)2+y 2=9,动圆P 与圆M 外切并且与圆N 内切,圆心P 的轨迹为曲线C ,则曲线C 的方程为________.答案x 24+y 23=1(x ≠-2) 解析 设圆M 的半径为r 1,圆N 的半径为r 2,圆P 的半径为R .因为圆P 与圆M 外切并且与圆N 内切,所以|PM |+|PN |=(R +r 1)+(r 2-R )=r 1+r 2=4.由椭圆的定义可知,曲线C 是以M ,N 为左、右焦点,长半轴长为2,短半轴长为3的椭圆(左顶点除外),其方程为x 24+y 23=1(x ≠-2).16.若过抛物线y 2=4x 的焦点作直线与其交于M ,N 两点,作平行四边形MONP ,则点P的轨迹方程为________.答案 y 2=4(x -2)解析 (1)当直线斜率k 存在时,设直线方程为y =k (x -1),点M (x 1,y 1),N (x 2,y 2),P (x ,y ),由OM →=NP →,得(x 1,y 1)=(x -x 2,y -y 2).得x 1+x 2=x ,y 1+y 2=y .由⎩⎪⎨⎪⎧y =k x -1,y 2=4x ,联立得x =x 1+x 2=2k 2+4k2.y =y 1+y 2=4kk 2,消去参数k ,得y 2=4(x -2).(2)当直线斜率k 不存在时,直线方程为x =1,由O P →=2O F →得P (2,0),适合y 2=4(x -2).综合(1)(2),点P 的轨迹方程为y 2=4(x -2).17.(2019·某某质检)如图所示,动圆C 1:x 2+y 2=t 2,1<t <3,与椭圆C 2:x 29+y 2=1相交于A ,B ,C ,D 四点,点A 1,A 2分别为C 2的左、右顶点.(1)当t 为何值时,矩形ABCD 的面积取得最大值?并求出其最大面积; (2)求直线AA 1与直线A 2B 交点M 的轨迹方程. 解 (1)设A (x 0,y 0),则S 矩形ABCD =4|x 0y 0|, 由x 209+y 20=1,得y 20=1-x 209, 从而x 20y 2=x 20⎝ ⎛⎭⎪⎫1-x 209=-19⎝ ⎛⎭⎪⎫x 20-922+94.当x 20=92,y 20=12时,S max =6.从而t 2=x 20+y 20=5,t =5,所以当t =5时,矩形ABCD 的面积取到最大值6. (2)由椭圆C 2:x 29+y 2=1,知A 1(-3,0),A 2(3,0),由曲线的对称性及A (x 0,y 0),得B (x 0,-y 0), 设点M 的坐标为(x ,y ), 直线AA 1的方程为y =y 0x 0+3(x +3),①直线A 2B 的方程为y =-y 0x 0-3(x -3),② 由①②得y 2=-y 20x 20-9(x 2-9).③又点A (x 0,y 0)在椭圆C 2上,故y 20=1-x 209.④将④代入③,得x 29-y 2=1(x <-3,y <0).因此点M 的轨迹方程为x 29-y 2=1(x <-3,y <0).18.(2019·某某某某模拟)已知动点M (x ,y )满足:x +12+y 2+x -12+y 2=2 2.(1)求动点M 的轨迹E 的方程;(2)设过点N (-1,0)的直线l 与曲线E 交于A ,B 两点,点A 关于x 轴的对称点为C (点C 与点B 不重合).证明:直线BC 恒过定点,并求该定点的坐标.解 (1)由已知,动点M 到点P (-1,0),Q (1,0)的距离之和为22,且 |PQ |<22,所以动点M 的轨迹为椭圆,且a =2,c =1,所以b =1,所以动点M 的轨迹E 的方程为x 22+y 2=1.(2)证明:设A (x 1,y 1),B (x 2,y 2),则C (x 1,-y 1), 由已知得直线l 的斜率存在,设斜率为k , 则直线l 的方程为y =k (x +1).由⎩⎪⎨⎪⎧y =k x +1,x 22+y 2=1得(1+2k 2)x 2+4k 2x +2k 2-2=0,所以x 1+x 2=-4k 21+2k 2,x 1x 2=2k 2-21+2k 2.又直线BC 的方程为y -y 2=y 2+y 1x 2-x 1(x -x 2), 即y =y 2+y 1x 2-x 1x -x 1y 2+x 2y 1x 2-x 1, 令y =0,得x =x 1y 2+x 2y 1y 2+y 1=2kx 1x 2+k x 1+x 2k x 1+x 2+2k=2x 1x 2+x 1+x 2x 1+x 2+2=4k 2-41+2k 2-4k21+2k 2-4k 21+2k 2+2=-2, 所以直线BC 恒过定点D (-2,0).19.(2016·全国卷Ⅲ)已知抛物线C :y 2=2x 的焦点为F ,平行于x 轴的两条直线l 1,l 2分别交C 于A ,B 两点,交C 的准线于P ,Q 两点.(1)若F 在线段AB 上,R 是PQ 的中点,证明:AR ∥FQ ;(2)若△PQF 的面积是△ABF 的面积的两倍,求AB 中点的轨迹方程.解 由题意知F ⎝ ⎛⎭⎪⎫12,0. 设l 1:y =a ,l 2:y =b ,则ab ≠0,且A ⎝ ⎛⎭⎪⎫a 22,a ,B ⎝ ⎛⎭⎪⎫b 22,b ,P ⎝ ⎛⎭⎪⎫-12,a ,Q ⎝ ⎛⎭⎪⎫-12,b , R ⎝ ⎛ -12,⎭⎪⎫a +b 2. 记过A ,B 两点的直线为l ,则l 的方程为2x -(a +b )y +ab =0. (1)证明:由于F 在线段AB 上,故1+ab =0. 记AR 的斜率为k 1,FQ 的斜率为k 2,则k 1=a -b 1+a 2=a -b a 2-ab =1a =-aba=-b =k 2.所以AR ∥FQ .(2)设l 与x 轴的交点为D (x 1,0),则S △ABF =12|b -a |·|FD |=12|b -a |⎪⎪⎪⎪⎪⎪x 1-12,S △PQF =|a -b |2. 由题设可得2×12|b -a |⎪⎪⎪⎪⎪⎪x 1-12=|a -b |2, 所以x 1=0(舍去)或x 1=1.设满足条件的AB 的中点为E (x ,y ). 当AB 与x 轴不垂直时, 由k AB =k DE 可得2a +b =yx -1(x ≠1). 而a +b2=y ,所以y 2=x -1(x ≠1).当AB 与x 轴垂直时,E 与D 重合.所以所求轨迹方程为y 2=x -1.20.(2019·某某模拟)已知椭圆Γ:x 2a 2+y 2b2=1(a >b >0)的右焦点与短轴两端点构成一个面积为2的等腰直角三角形,O 为坐标原点.(1)求椭圆Γ的方程;(2)设点A 在椭圆Γ上,点B 在直线y =2上,且OA ⊥OB ,求证:1|OA |2+1|OB |2为定值;(3)设点C 在椭圆Γ上运动,OC ⊥OD ,且点O 到直线CD 的距离为常数3,求动点D 的轨迹方程.解 (1)∵椭圆Γ:x 2a 2+y 2b2=1(a >b >0)的右焦点与短轴两端点构成一个面积为2的等腰直角三角形,O 为坐标原点,∴b =c =2,∴a =2+2=2,∴椭圆Γ的方程为x 24+y 22=1.(2)证明:设A (x 0,y 0),则OB 的方程为x 0x +y 0y =0,由y =2,得B ⎝⎛⎭⎪⎫-2y 0x 0,2,∴1|OA |2+1|OB |2=1x 20+y 20+14+4y 20x 2=4+x 24x 20+y 2=4+x 24⎝⎛⎭⎪⎫x 20+2-x 22=12, ∴1|OA |2+1|OB |2为定值12. (3)设C (x 1,y 1),D (x ,y ),由OC ⊥OD ,得x 1x +y 1y =0,①由点C 在椭圆上,得x 214+y 212=1,②联立①②,得x 21=4y 22x 2+y 2,y 21=4x 22x 2+y2.③由OC ⊥OD ,点O 到CD 的距离为3,得|OC |·|OD |=3|CD |, ∴|OC |2·|OD |2=3(|OC |2+|OD |2).将③代入得 1|OC |2+1|OD |2=1x 21+y 21+1x 2+y2 =14y 22x 2+y 2+4x 22x 2+y2+1x 2+y 2=2x 2+y 2+44x 2+y 2=13, 化简,得点D 的轨迹方程为y 212-x 26=1.。
高考数学一轮复习 第九章 平面解析几何9 (1)

高考数学一轮复习 第九章 平面解析几何9.12 圆锥曲线中的探索性与综合性问题题型一 探索性问题例1 已知双曲线C 1:x 2a 2-y 2b 2=1(a >0,b >0)与C 2:y 29-x 23=1有相同的渐近线,点F (2,0)为C 1的右焦点,A ,B 为C 1的左、右顶点.(1)求双曲线C 1的标准方程;(2)若直线l 过点F 交双曲线C 1的右支于M ,N 两点,设直线AM ,BN 的斜率分别为k 1,k 2,是否存在实数λ使得k 1=λk 2?若存在,求出λ的值;若不存在,请说明理由. 解 (1)∵C 2的渐近线方程为y =±3x ,∴b a =3, ∵c =a 2+b 2=2,∴a =1,b =3,∴双曲线C 1的标准方程为x 2-y 23=1. (2)由已知,A (-1,0),B (1,0),M (x 1,y 1),N (x 2,y 2),l 过点F (2,0)与右支交于两点,则l 斜率不为零,设l :x =my +2,由⎩⎪⎨⎪⎧ x 2-y 23=1,x =my +2,消元得(3m 2-1)y 2+12my +9=0, ∵l 与双曲线右支交于两点,∴⎩⎪⎨⎪⎧3m 2-1≠0,y 1y 2=93m 2-1<0,解得m ∈⎝⎛⎭⎫-33,33, Δ=(12m )2-4×9(3m 2-1)=36(m 2+1)>0,∴y 1+y 2=-12m 3m 2-1,y 1y 2=93m 2-1,∵k 1=y 1x 1+1,k 2=y 2x 2-1≠0, ∴k 1k 2=y 1x 2-1y 2x 1+1=y 1my 2+1y 2my 1+3=my 1y 2+y 1my 1y 2+3y 2, ∵y 1+y 2y 1y 2=-12m 9=-4m 3, ∴my 1y 2=-34(y 1+y 2), ∴k 1k 2=-34y 1+y 2+y 1-34y 1+y 2+3y 2=14y 1-34y 2-34y 1+94y 2 =-13, ∴存在λ=-13使得k 1=λk 2. 教师备选(2022·洛阳模拟)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为33,点E ,F 分别为其下顶点和右焦点,坐标原点为O ,且△EOF 的面积为 2.(1)求椭圆C 的方程;(2)是否存在直线l ,使得l 与椭圆C 相交于A ,B 两点,且点F 恰为△EAB 的垂心?若存在,求直线l 的方程,若不存在,请说明理由.解 (1)由题意可知⎩⎨⎧c a =33,12bc =2,a 2=b 2+c 2,解得⎩⎨⎧ a =6,b =2,c =2, 所以椭圆C 的方程为x 26+y 24=1. (2)假设满足条件的直线l 存在,由E (0,-2),F (2,0),得k EF =2,因为点F 为△EAB 的垂心,所以AB ⊥EF ,所以k AB =-22, 设直线l 的方程为y =-22x +t , 代入x 26+y 24=1, 得7x 2-62tx +6(t 2-4)=0,Δ=(-62t )2-4×7×6(t 2-4)=-96t 2+672>0,即-7<t <7,记A (x 1,y 1),B (x 2,y 2),则⎩⎨⎧ x 1+x 2=627t ,x 1x 2=6t 2-47,由AF ⊥BE 得y 1x 1-2·y 2+2x 2=-1, 所以y 1y 2+2y 1+x 1x 2-2x 2=0,将y 1=-22x 1+t ,y 2=-22x 2+t 代入上式,得3x 1x 2-2(t +2)(x 1+x 2)+(2t 2+4t )=0,所以3×6t 2-47-2(t +2)·62t 7+(2t 2+4t ) =0,所以5t 2+t -18=0,解得t =95(t =-2舍去), 满足Δ>0,所以直线l 的方程为y =-22x +95. 思维升华 存在性问题的解题策略存在性的问题,先假设存在,推证满足条件的结论,若结论正确则存在,若结论不正确则不存在.(1)当条件和结论不唯一时要分类讨论.(2)当给出结论而要推导出存在的条件时,先假设成立,再推出条件.(3)当要讨论的量能够确定时,可先确定,再证明结论符合题意.跟踪训练1 (2022·南京模拟)在平面直角坐标系xOy 中,已知抛物线C :y 2=4x ,经过P (t ,0)(t >0)的直线l 与C 交于A ,B 两点.(1)若t =4,求AP 长度的最小值;(2)设以AB 为直径的圆交x 轴于M ,N 两点,问是否存在t ,使得OM →·ON →=-4?若存在,求出t 的值;若不存在,请说明理由.解 (1)设A ⎝⎛⎭⎫y 204,y 0,由P (4,0),可得|AP |2=⎝⎛⎭⎫y 204-42+y 20 =y 4016-y 20+16 =116(y 20-8)2+12≥12, 当y 0=±22时,|AP |取得最小值2 3.(2)设直线AB 的方程为x =my +t ,A (x 1,y 1),B (x 2,y 2),联立⎩⎪⎨⎪⎧x =my +t ,y 2=4x ,可得y 2-4my -4t =0, 即有y 1+y 2=4m ,y 1y 2=-4t ,设以AB 为直径的圆上任一点Q (x ,y ),M (x 3,0),N (x 4,0),所以Q 的轨迹方程为(x -x 1)(x -x 2)+(y -y 1)(y -y 2)=0.x 1+x 2=m (y 1+y 2)+2t =4m 2+2t ,x 1x 2=(my 1+t )(my 2+t )=m 2y 1y 2+mt (y 1+y 2)+t 2=-4m 2t +4m 2t +t 2=t 2.所以Q 的轨迹方程化为x 2-(4m 2+2t )x +t 2+y 2-4my -4t =0.令y =0,得x 2-(4m 2+2t )x +t 2-4t =0.所以上式方程的两根分别为x 3,x 4,则x 3x 4=t 2-4t .由OM →·ON →=x 3x 4=-4,即有t 2-4t =-4,解得t =2.所以存在t =2,使得OM →·ON →=-4.题型二 圆锥曲线的综合问题例2 (2022·梅州模拟)在平面直角坐标系xOy 中,椭圆C :x 2a 2+y 2b 2=1(a >b >0)的两焦点与短轴的一个端点的连线构成等边三角形,直线x +y +22-1=0与以椭圆C 的右焦点为圆心,椭圆C 的长半轴长为半径的圆相切.(1)求椭圆C 的方程;(2)△BMN 是椭圆C 的内接三角形,若坐标原点O 为△BMN 的重心,求点B 到直线MN 的距离的取值范围.解 (1)设椭圆C :x 2a 2+y 2b 2=1的右焦点F 2(c ,0),则以椭圆C 的右焦点为圆心,椭圆C 的长半轴长为半径的圆(x -c )2+y 2=a 2,所以圆心到直线x +y +22-1=0的距离 d =|c +22-1|12+12=a , 又椭圆的两焦点与短轴的一个端点的连线构成等边三角形,所以a =2c ,b =3c , 解得a =2,b =3,c =1,所以椭圆的标准方程为x 24+y 23=1. (2)设B (m ,n ),线段MN 的中点为D ,直线OD 与椭圆交于A ,B 两点,因为O 为△BMN 的重心,则|BO |=2|OD |=|OA |,所以D ⎝⎛⎭⎫-m 2,-n 2, 即B 到直线MN 的距离是原点O 到直线MN 的距离的3倍.当MN 的斜率不存在时,点D 在x 轴上,所以此时点B 在长轴的端点处.由|OB |=2,得|OD |=1,则点O 到直线MN 的距离为1,点B 到直线MN 的距离为3. 当MN 的斜率存在时,设M (x 1,y 1),N (x 2,y 2),则有⎩⎨⎧ x 214+y 213=1,x 224+y 223=1,两式相减得x 1+x 2x 1-x 24+y 1+y 2y 1-y 23=0,因为D 为线段MN 的中点,所以x 1+x 2=-m ,y 1+y 2=-n ,所以k =y 1-y 2x 1-x 2=-3m 4n , 所以直线MN 的方程为y +n 2=-3m 4n ⎝⎛⎭⎫x +m 2,即6mx +8ny +4n 2+3m 2=0,所以原点O 到直线MN 的距离d =4n 2+3m 264n 2+36m 2. 因为m 24+n 23=1,所以3m 2=12-4n 2, 所以d =4n 2+3m 264n 2+36m 2=12144+16n 2=39+n 2. 因为0<n 2≤3,所以3<9+n 2≤23,所以123≤19+n 2<13, 所以332≤3d <3, 即点B 到直线MN 的距离的取值范围为⎣⎡⎦⎤332,3. 教师备选(2022·开封模拟)已知抛物线C :y 2=2px (p >0)的焦点为F ,P 是抛物线C 上一点,且满足FP →=(0,-2).(1)求抛物线C 的方程;(2)已知斜率为2的直线l 与抛物线C 交于A ,B 两点,若|F A →|,|FP →|,|FB →|成等差数列,求该数列的公差.解 (1)由题设知F ⎝⎛⎭⎫p 2,0,设点P (x 0,y 0),由FP →=(0,-2),即⎝⎛⎭⎫x 0-p 2,y 0=(0,-2), ∴x 0=p 2,y 0=-2,代入y 2=2px , 得4=p 2,又p >0,∴p =2,则抛物线C 的方程为y 2=4x .(2)设直线l :y =2x +m ,则⎩⎪⎨⎪⎧y =2x +m ,y 2=4x , 消去y 得4x 2+(4m -4)x +m 2=0,满足Δ=(4m -4)2-16m 2=-32m +16>0,即m <12, 设点A (x 1,y 1),B (x 2,y 2),则x 1+x 2=1-m ,x 1x 2=m 24, 若|F A →|,|FP →|,|FB →|成等差数列,则|F A →|+|FB →|=2|FP →|,即x 1+x 2+2=4,即3-m =4,m =-1.即x 1+x 2=2,x 1x 2=14, 又∵公差d 满足2d =|FB →|-|F A →|=x 2-x 1,而|x 2-x 1|=x 1+x 22-4x 1x 2=3,∴2d =±3,即d =±32. 思维升华 圆与圆锥曲线综合问题中,圆大多数是以工具的形式出现,解决此类问题的关键是掌握圆的一些常用性质.如:圆的半径r ,弦长的一半h ,弦心距d 满足r 2=h 2+d 2;圆的弦的垂直平分线过圆心;若AB 是圆的直径,则圆上任一点P 有P A →·PB →=0.跟踪训练2 (2022·鹰潭模拟)如图,O 为坐标原点,抛物线C 1:y 2=2px (p >0)的焦点是椭圆C 2:x 2a 2+y 2b2=1(a >b >0)的右焦点,A 为椭圆C 2的右顶点,椭圆C 2的长轴长为|AB |=8,离心率e =12.(1)求抛物线C 1和椭圆C 2的方程;(2)过A 点作直线l 交C 1于C ,D 两点,射线OC ,OD 分别交C 2于E ,F 两点,记△OEF 和△OCD 的面积分别为S 1和S 2,问是否存在直线l ,使得S 1∶S 2=3∶13?若存在,求出直线l 的方程;若不存在,请说明理由.解 (1)由题知,a =4,c a =12, 所以c =2,所以b =a 2-c 2=23,p =4.所以抛物线C 1的方程为y 2=8x ,椭圆C 2的方程为x 216+y 212=1. (2)由题设知直线l 的斜率不为0,设直线l 的方程为x =my +4.则⎩⎪⎨⎪⎧y 2=8x ,x =my +4⇒y 2-8my -32=0. 设C (x 1,y 1),D (x 2,y 2),则y 1+y 2=8m ,y 1y 2=-32.所以S 2S 1=12|OC |·|OD |sin ∠COD 12|OE |·|OF |sin ∠EOF =|OC |·|OD ||OE |·|OF |=|y 1|·|y 2||y E |·|y F |=32|y E |·|y F |, 因为直线OC 的斜率为y 1x 1=y 1y 218=8y 1,所以直线OC 的方程为y =8y 1x . 由⎩⎨⎧ y =8y 1x ,x 216+y 212=1, 得y 2⎝⎛⎭⎫y 2164×16+112=1, 则y 2E⎝⎛⎭⎫y 2164×16+112=1, 同理可得y 2F⎝⎛⎭⎫y 2264×16+112=1, 所以y 2E ·y 2F ⎝⎛⎭⎫y 2264×16+112⎝⎛⎭⎫y 2164×16+112=1, 所以y 2E ·y 2F =36×256121+48m 2, 要使S 1∶S 2=3∶13,只需322121+48m 236×256=⎝⎛⎭⎫1332, 解得m =±1,所以存在直线l :x ±y -4=0符合条件.课时精练1.已知椭圆C :x 28+y 24=1的左、右焦点为F 1,F 2,点P 为双曲线x 24-y 24=1上异于顶点的任意一点,直线PF 1和PF 2与椭圆的交点分别为A ,B 和C ,D .(1)设直线PF 1,PF 2的斜率分别为k 1,k 2,证明:k 1·k 2=1;(2)是否存在常数λ,使得1|AB |+1|CD |=λ恒成立?若存在,求λ的值;若不存在,请说明理由. (1)证明 设A (x 1,y 1),B (x 2,y 2),P (x 0,y 0),则k 1=y 0x 0+2,k 2=y 0x 0-2, 因为点P 为双曲线x 24-y 24=1上异于顶点的任意一点, 所以x 20-y 20=4(x 0≠±2),所以k 1k 2=y 0x 0+2·y 0x 0-2=y 20x 20-4=1, 即k 1k 2=1.(2)解 由直线PF 1的方程为y =k 1(x +2), 代入椭圆C :x 28+y 24=1, 可得(1+2k 21)x 2+8k 21x +8k 21-8=0,所以x 1+x 2=-8k 212k 21+1,x 1x 2=8k 21-82k 21+1, 所以|AB |=1+k 21x 1+x 22-4x 1x 2=42·k 21+12k 21+1, 同理可得|CD |=42·k 22+12k 22+1, 因为k 1k 2=1,可得|CD |=42·k 21+1k 21+2, 则1|AB |+1|CD |=142·⎝ ⎛⎭⎪⎫2k 21+1k 21+1+k 21+2k 21+1 =328, 即存在常数λ=328, 使得1|AB |+1|CD |=328恒成立. 2.已知双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的实半轴长为1,且C 上的任意一点M 到C 的两条渐近线的距离的乘积为34. (1)求双曲线C 的方程;(2)设直线l 过双曲线C 的右焦点F ,与双曲线C 相交于P ,Q 两点,问在x 轴上是否存在定点D ,使得∠PDQ 的平分线与x 轴或y 轴垂直?若存在,求出定点D 的坐标;若不存在,请说明理由.解 (1)由题意可得a =1,所以双曲线C :x 2-y 2b 2=1, 所以渐近线方程为bx ±y =0,设M (x 0,y 0), 则|bx 0-y 0|b 2+1·|bx 0+y 0|b 2+1=34, 即|b 2x 20-y 20|b 2+1=34, 因为M (x 0,y 0)在双曲线上,所以x 20-y 20b2=1, 即b 2x 20-y 20=b 2,所以b 2b 2+1=34, 解得b 2=3,所以双曲线C 的方程为x 2-y 23=1. (2)假设存在D (t ,0),使得∠PDQ 的平分线与x 轴或y 轴垂直,则可得k PD +k QD =0,F (2,0),设P (x 1,y 1),Q (x 2,y 2),当直线l 的斜率存在时,直线l :y =k (x -2),由⎩⎪⎨⎪⎧y =k x -2,3x 2-y 2=3, 可得(3-k 2)x 2+4k 2x -4k 2-3=0,所以x 1+x 2=4k 2k 2-3, x 1x 2=4k 2+3k 2-3, 所以k PD +k QD =y 1x 1-t +y 2x 2-t =y 1x 2-t +y 2x 1-t x 1x 2-t x 1+x 2+t 2=0, 即k (x 1-2)(x 2-t )+k (x 2-2)(x 1-t )=0恒成立,整理可得k [2x 1x 2-(t +2)(x 1+x 2)+4t ]=0,所以k ⎣⎢⎡⎦⎥⎤2×4k 2+3k 2-3-t +2×4k 2k 2-3+4t =0, 即2×4k 2+3k 2-3-(t +2)×4k 2k 2-3+4t =0, 所以8k 2+6-4k 2(t +2)+4t (k 2-3)=0,所以6-12t =0,解得t =12, 当直线l 的斜率不存在时,t =12也满足题意. 所以存在点D ⎝⎛⎭⎫12,0,使得∠PDQ 的平分线与x 轴或y 轴垂直.3.(2022·承德模拟)已知M (-2,0),N (2,0),动点P 满足:直线PM 与直线PN 的斜率之积为-14,设动点P 的轨迹为曲线C 1.抛物线C 2:x 2=2py (p >0)与C 1在第一象限的交点为A ,过点A 作直线l 交曲线C 1于点B ,交抛物线C 2于点E (点B ,E 不同于点A ).(1)求曲线C 1的方程;(2)是否存在不过原点的直线l ,使点E 为线段AB 的中点?若存在,求出p 的最大值;若不存在,请说明理由.解 (1)设动点P (x ,y )(x ≠±2),则k PM =y x +2,k PN =y x -2. ∵k PM ·k PN =-14, ∴y x +2·y x -2=-14, 即y 2x 2-4=-14, 即x 24+y 2=1(x ≠±2), ∴曲线C 1的方程为x 24+y 2=1(x ≠±2). (2)设A (x 1,y 1)(x 1>0,y 1>0),B (x 2,y 2),E (x 0,y 0),显然直线l 存在斜率,设l :y =kx +m (k ≠0,m ≠0),由⎩⎪⎨⎪⎧x 2+4y 2=4,y =kx +m , 得(1+4k 2)x 2+8kmx +4m 2-4=0,Δ=16(4k 2-m 2+1)>0,∴x 1+x 2=-8km 1+4k 2,x 0=-4km 1+4k 2. 又由⎩⎪⎨⎪⎧x 2=2py ,y =kx +m , 得x 2=2p (kx +m ),即x 2-2pkx -2pm =0,∴x 1x 0=-2pm ,∴x 1·-4km 1+4k 2=-2pm ⇒x 1=p ⎝⎛⎭⎫1+4k 22k , ∴k >0,∵⎩⎪⎨⎪⎧ x 24+y 2=1,x 2=2py , 即x 2+x 4p 2=4, ∴p 2⎝⎛⎭⎫1+4k 22k 2+p 4⎝⎛⎭⎫1+4k 22k 4p 2=4, ∴p 2=4⎝⎛⎭⎫1+4k 22k 2+⎝⎛⎭⎫1+4k 22k 4,设⎝⎛⎭⎫1+4k 22k 2=⎝⎛⎭⎫12k +2k 2 =t ≥⎝⎛⎭⎫212k ·2k 2=4, 当且仅当12k =2k ,即k =12时取等号, 则p 2=4t +t 2=4⎝⎛⎭⎫t +122-14, 当t ≥4时,⎝⎛⎭⎫t +122-14≥20, 当k =12,即t =4时,p 2取得最大值,最大值为15, 即p =55. 此时A ⎝⎛⎭⎫255,255,满足Δ>0, 故存在不过原点的直线l ,使点E 为线段AB 的中点,且p 的最大值为55.4.(2022·九江模拟)在平面直角坐标系xOy 中,已知抛物线C :x 2=2py (p >0),P 为直线y =x -2上的动点,过点P 作抛物线C 的两条切线,切点分别为A ,B .当P 在y 轴上时,OA ⊥OB .(1)求抛物线C 的方程;(2)求点O 到直线AB 距离的最大值.解 (1)P 为直线y =x -2上的动点,当P 在y 轴上时,则P (0,-2),由x 2=2py (p >0),得y =x 22p (p >0), 所以y ′=x p(p >0), 设A ⎝⎛⎭⎫x 1,x 212p ,B ⎝⎛⎭⎫x 2,x 222p ,x 1>0,x 2<0, 所以过点A 的切线方程为y -x 212p =x 1p(x -x 1), 又因为点P 在过点A 的切线上,所以-2-x 212p =x 1p(0-x 1), 解得x 21=4p ,又因为OA ⊥OB ,所以直线OA 的斜率为1,所以x 1=x 212p,解得x 1=2p , 解得p =1,所以抛物线C 的方程为x 2=2y .(2)由(1)得抛物线的切线的斜率y ′=x ,A ⎝⎛⎭⎫x 1,x 212,B ⎝⎛⎭⎫x 2,x 222, 所以切线P A 的方程为y -x 212=x 1(x -x 1), 切线PB 的方程为y -x 222=x 2(x -x 2), 两切线方程联立解得P ⎝⎛⎭⎫x 1+x 22,x 1x 22,又点P 在直线y =x -2上,所以x 1x 22=x 1+x 22-2, 由题意知直线AB 的斜率一定存在,所以设直线AB 的方程为y =kx +m ,与抛物线的方程联立⎩⎪⎨⎪⎧y =kx +m ,x 2=2y , 消元得x 2-2kx -2m =0,Δ=4k 2+8m >0,所以x 1+x 2=2k ,x 1x 2=-2m , 所以-2m 2=2k 2-2,即k +m =2,满足Δ>0, 所以点O 到直线AB 的距离为d =|m |1+k 2=2-k 21+k 2=1+-4k +31+k 2, 令t =-4k +31+k 2, 则t ′=2k -22k +11+k 22, 令t ′=0,得k =2或k =-12, 所以当k ∈⎝⎛⎭⎫-∞,-12∪(2,+∞)时, t ′>0,t 单调递增,当k ∈⎝⎛⎭⎫-12,2时,t ′<0,t 单调递减, 当k =-12时,t =4,当k →+∞时,t →0且t <0, 所以t max =4,所以d max =1+4=5,所以点O 到直线AB 距离的最大值为 5.。
近年高考数学一轮复习第9章解析几何第1课时直线方程练习理(2021年整理)

2019高考数学一轮复习第9章解析几何第1课时直线方程练习理编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2019高考数学一轮复习第9章解析几何第1课时直线方程练习理)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2019高考数学一轮复习第9章解析几何第1课时直线方程练习理的全部内容。
第1课时直线方程1.直线3x+错误!y-1=0的倾斜角是()A.错误!B.错误!C.错误!D。
错误!答案C解析直线3x+错误!y-1=0的斜率k=-错误!,倾斜角为错误!。
2.直线l过点M(-2,5),且斜率为直线y=-3x+2的斜率的14,则直线l的方程为()A.3x+4y-14=0 B.3x-4y+14=0C.4x+3y-14=0 D.4x-3y+14=0答案A解析因为直线l的斜率为直线y=-3x+2的斜率的错误!,则直线l的斜率为k=-错误!,故y-5=-错误!(x+2),得3x+4y-14=0,故选A.3.直线(2m2-m+3)x+(m2+2m)y=4m+1在x轴上的截距为1,则实数m的值为( )A.2或错误!B.2或-错误!C.-2或-错误!D.-2或错误!答案A解析令y=0,则(2m2-m+3)x=4m+1,又2m2-m+3≠0,所以错误!=1,即2m2-5m+2=0,解得m=2或m=错误!.4.两直线错误!-错误!=1与错误!-错误!=1的图像可能是图中的哪一个( )答案B5.若直线l经过点A(1,2),且在x轴上的截距的取值范围是(-3,3),则其斜率的取值范围是( )A.-1〈k<错误!B.k〉1或k〈错误!C。
错误!<k〈1 D.k〉错误!或k<-1答案D解析设直线的斜率为k,则直线方程为y-2=k(x-1),直线在x轴上的截距为1-错误!,令-3<1-错误!〈3,解不等式可得.也可以利用数形结合.6.直线ax+by+c=0同时要经过第一、第二、第四象限,则a,b,c应满足( ) A.ab〉0,bc<0 B.ab〉0,bc〉0C.ab〈0,bc〉0 D.ab<0,bc〈0答案A解析由于直线ax+by+c=0经过第一、二、四象限,∴直线存在斜率,将方程变形为y =-错误!x-错误!,易知-错误!〈0且-错误!>0,故ab>0,bc<0。
高考数学一轮总复习:第九章 解析几何1

高考数学一轮总复习:第九章解析几何目录第1课时直线方程第2课时两直线的位置关系第3课时圆的方程及直线与圆的位置关系第4课时圆与圆的位置关系及圆的综合问题第5课时椭圆(一)第6课时椭圆(二)第7课时双曲线(一)第8课时双曲线(二)第9课时抛物线(一)第10课时抛物线(二)第11课时直线与圆锥曲线的位置关系专题研究一求曲线的轨迹方程专题研究二最值与范围问题专题研究三定点、定值问题专题研究四探索性问题第1课时直线方程1.直线x-3y+a=0(a为常数)的倾斜角为( )A.π6B.π3C.23π D.56π答案 A2.过点(-1,2)且倾斜角为150°的直线方程为( ) A.3x-3y+6+3=0 B.3x-3y-6+3=0C.3x+3y+6+3=0D.3x+3y-6+3=0答案 D3.在等腰三角形AOB中,AO=AB,点O(0,0),A(1,3),点B在x轴的正半轴上,则直线AB的方程为( )A.y-1=3(x-3) B.y-1=-3(x-3)C.y-3=3(x-1) D.y-3=-3(x-1)答案 D解析因为AO=AB,所以直线AB的斜率与直线AO的斜率互为相反数,所以kAB =-kOA=-3,所以直线AB的点斜式方程为y-3=-3(x-1).4.已知直线l的倾斜角为α,斜率为k,那么“α>π3”是“k>3”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件答案 B解析当π2<α<π时,k<0;当k>3时,π3<α<π2.所以“α>π3”是“k>3”的必要不充分条件,故选B.5.如果AC<0且BC<0,那么直线Ax+By+C=0不通过( )A.第一象限B.第二象限C.第三象限D.第四象限答案 C解析由条件知直线在两个坐标轴上的截距为正数.6.过点(5,2)且在y轴上的截距是在x轴上的截距的2倍的直线方程是( )A.2x+y-12=0 B.2x+y-12=0或2x-5y=0C.x-2y-1=0 D.x-2y-1=0或2x-5y=0答案 B解析设所求直线在x轴上的截距为a,则在y轴上的截距为2a.①当a=0时,所求直线经过点(5,2)和(0,0),所以直线方程为y=25x,即2x-5y=0;②当a≠0时,设所求直线方程为xa+y2a=1,又直线过点(5,2),所以5a+22a=1,解得a=6,所以所求直线方程为x6+y12=1,即2x+y-12=0.综上,所求直线方程为2x-5y=0或2x+y-12=0.故选B.7.若直线ax+by=ab(a>0,b>0)过点(1,1),则该直线在x轴,y轴上的截距之和的最小值为( )A.1 B.2C.4 D.8答案 C解析∵直线ax+by=ab(a>0,b>0)过点(1,1),∴a+b=ab,即1a+1b=1,∴a+b=(a+b)(1a+1b)=2+ba+ab≥2+2ba·ab=4,当且仅当a=b=2时上式等号成立.∴直线在x轴,y轴上的截距之和的最小值为4.8.在同一平面直角坐标系中,直线l1:ax+y+b=0和直线l2:bx+y+a=0有可能是( )答案 B解析当a>0,b>0时,-a<0,-b<0,B项符合.9.已知A(2,5),B(4,1).若点P(x,y)在线段AB上,则2x-y的最大值为( )A.-1 B.3C.7 D.8答案 C解析依题意得kAB =5-12-4=-2,所以线段lAB:y-1=-2(x-4),x∈[2,4],即y=-2x+9,x∈[2,4],故2x-y=2x-(-2x+9)=4x-9,x∈[2,4].设h(x)=4x-9,易知h(x)=4x-9在[2,4]上单调递增,故当x=4时,h(x)max=4×4-9=7.10.曲线y=13x3-x2+5在x=1处的切线的倾斜角为( )A.π6B.3π4C.π4D.π3答案 B解析y′=x2-2x,当x=1时,切线斜率k=12-2×1=-1,设切线的倾斜角为θ,则tanθ=-1,∴θ=3π4.11.已知点A(2,3),B(-3,-2),若直线kx-y+1-k=0与线段AB相交,则k的取值范围是( )A.[34,2] B.(-∞,34]∪[2,+∞)C.(-∞,1]∪[2,+∞) D.[1,2] 答案 B解析直线kx-y+1-k=0恒过P(1,1),kPA =2,kPB=34,故k的取值范围是(-∞,34]∪[2,+∞).故选B.12.已知直线l的斜率为16,且和坐标轴围成面积为3的三角形,则直线l的方程为________.答案x-6y+6=0或x-6y-6=0解析设所求直线l的方程为xa+yb=1.∵k=16,即ba=-16,∴a=-6b.又三角形面积S=3=12|a|·|b|,∴|ab|=6.则当b=1时,a=-6;当b=-1时,a=6.∴所求直线方程为x -6+y 1=1或x 6+y -1=1. 即x -6y +6=0或x -6y -6=0.13.已知P(-3,2),Q(3,4)及直线ax +y +3=0.若沿PQ →的方向延长线段PQ 与直线有交点(不含Q 点),则a 的取值范围是________.答案 (-73,-13)解析 直线l :ax +y +3=0是过点A(0,-3)的直线系,斜率为参变数-a ,易知PQ ,QA ,l 的斜率分别为:k PQ =13,k AQ =73,k l =-a.若l 与PQ 延长线相交,由图可知k PQ <k l <k AQ ,解得-73<a<-13.14. 若关于x 的方程|x -1|-kx =0有且只有一个正实数根,则实数k 的取值范围是________.答案 k =0或k≥1解析 由题意,知|x -1|=kx ,有且只有一个正实根,结合图形,可得k =0或k≥1.15.在△ABC 中,已知A(1,1),AC 边上的高线所在直线方程为x -2y =0,AB 边上的高线所在直线方程为3x +2y -3=0.求BC 边所在直线方程.答案 2x +5y +9=0 解析 k AC =-2,k AB =23.∴l AC :y -1=-2(x -1),即2x +y -3=0,l AB :y -1=23(x -1),即2x -3y +1=0.由⎩⎨⎧2x +y -3=0,3x +2y -3=0,得C(3,-3). 由⎩⎨⎧2x -3y +1=0,x -2y =0,得B(-2,-1). ∴l BC :2x +5y +9=0.16.如图,射线OA ,OB 分别与x 轴正半轴成45°和30°角,过点P(1,0)作直线AB 分别交OA ,OB 于A ,B 两点,当AB 的中点C 恰好落在直线y =12x 上时,求直线AB 的方程.答案 (3+3)x -2y -3-3=0 解析 由题意可得k OA =tan45°=1, k OB =tan(180°-30°)=-33, 所以直线l OA :y =x ,l OB :y =-33x. 设A(m ,m),B(-3n ,n), 所以AB 的中点C(m -3n 2,m +n2), 由点C 在直线y =12x 上,且A ,P ,B 三点共线得⎩⎪⎨⎪⎧m +n 2=12·m -3n 2,m -0m -1=n -0-3n -1, 解得m =3,所以A(3,3).又P(1,0),所以k AB =k AP =33-1=3+32,所以l AB :y =3+32(x -1), 即直线AB 的方程为(3+3)x -2y -3-3=0. 17.已知直线l :kx -y +1+2k =0(k∈R ), (1)求证:直线l 过定点;(2)若直线l 不经过第四象限,求k 的取值范围;(3)若直线l 交x 轴负半轴于点A ,交y 轴正半轴于点B ,O 为坐标原点,设△AOB 的面积为S ,求S 的最小值及此时直线l 的方程.答案 (1)定点(-2,1) (2)k≥0 (3)S 最小值为4,x -2y +4=0 解析 (1)证明:设直线过定点(x 0,y 0), 则kx 0-y 0+1+2k =0对任意k∈R 恒成立, 即(x 0+2)k -y 0+1=0恒成立. 所以x 0+2=0,-y 0+1=0.解得x 0=-2,y 0=1,故直线l 总过定点(-2,1). (2)直线l 的方程为y =kx +2k +1, 则直线l 在y 轴上的截距为2k +1, 要使直线l 不经过第四象限,则⎩⎨⎧k≥0,1+2k≥0,解得k 的取值范围是k≥0. (3)依题意,直线l 在x 轴上的截距为-1+2kk ,在y 轴上的截距为1+2k ,则A(-1+2kk ,0),B(0,1+2k).又-1+2kk<0,且1+2k>0, ∴k>0.故S =12|OA||OB|=12×1+2k k×(1+2k)=12(4k+1k+4)≥12(4+4)=4,当且仅当4k=1k,即k=12时,等号成立.故S的最小值为4,此时直线l的方程为x-2y+4=0.第2课时两直线的位置关系1.设a∈R,则“a=1”是“直线l1:ax+2y-1=0与直线l2:x+(a+1)y+4=0平行”的( )A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件答案 A解析若两直线平行,则a(a+1)=2,即a2+a-2=0,∴a=1或-2,故a=1是两直线平行的充分不必要条件.2.若直线mx+4y-2=0与直线2x-5y+n=0垂直,垂足为(1,p),则实数n的值为( )A.-12 B.-2C.0 D.10答案 A解析由2m-20=0,得m=10.由垂足(1,p)在直线mx+4y-2=0上,得10+4p-2=0.∴p=-2.又垂足(1,-2)在直线2x-5y+n=0上,则解得n=-12.3.若l1:x+(1+m)y+(m-2)=0,l2:mx+2y+6=0平行,则实数m的值是( )A.m=1或m=-2 B.m=1C.m=-2 D.m的值不存在答案 A解析 方法一:据已知若m =0,易知两直线不平行,若m≠0,则有1m =1+m2≠m -26⇒m =1或m =-2.方法二:由1×2=(1+m)m ,得m =-2或m =1.当m =-2时,l 1:x -y -4=0,l 2:-2x +2y +6=0,平行. 当m =1时,l 1:x +2y -1=0,l 2:x +2y +6=0,平行.4. 直线kx -y +2=4k ,当k 变化时,所有直线都通过定点( ) A .(0,0) B .(2,1) C .(4,2) D .(2,4)答案 C解析 直线方程可化为k(x -4)-(y -2)=0,所以直线恒过定点(4,2). 5. 分别过点A(1,3)和点B(2,4)的直线l 1和l 2互相平行且有最大距离,则l 1的方程是( )A .x -y -4=0B .x +y -4=0C .x =1D .y =3 答案 B解析 连接AB ,当l 1与l 2分别与AB 垂直时,l 1与l 2之间有最大距离且d =|AB|,此时k AB =1,∴kl 1=-1,则y -3=-(x -1),即x +y -4=0.6.光线沿直线y =2x +1射到直线y =x 上,被y =x 反射后的光线所在的直线方程为( )A .y =12x -1B .y =12x -12C .y =12x +12D .y =12x +1答案 B解析 由⎩⎨⎧y =2x +1,y =x ,得⎩⎨⎧x =-1,y =-1,即直线过(-1,-1).又直线y =2x +1上一点(0,1)关于直线y =x 对称的点(1,0)在所求直线上, ∴所求直线方程为y -0-1-0=x -1-1-1,即y =x 2-12.7.点A(1,1)到直线xcosθ+ysinθ-2=0的距离的最大值是( ) A .2 B .2- 2 C .2+ 2 D .4答案 C解析 由点到直线的距离公式,得d =|cosθ+sinθ-2|cos 2θ+sin 2θ=2-2sin (θ+π4),又θ∈R , ∴d max =2+ 2.8.若曲线y =x 4的一条切线l 与直线x +4y -8=0垂直,则l 的方程为( ) A .4x -y -3=0 B .x +4y -5=0 C .4x -y +3=0 D .x +4y +3=0答案 A解析 令y′=4x 3=4,得x =1,∴切点为(1,1),l 的斜率为4.故l 的方程为y -1=4(x -1),即4x -y -3=0.9. 若动点A(x 1,y 1),B(x 2,y 2)分别在直线l 1:x +y -7=0,l 2:x +y -5=0上移动,则AB 的中点M 到原点距离的最小值为( )A .3 2B .2 3C .3 3D .4 2 答案 A解析 由题意知,点M 所在直线与l 1,l 2平行且与两直线距离相等.设该直线的方程为x +y +c =0,则|c +7|2=|c +5|2,解得c =-6.点M 在直线x +y -6=0上.点M 到原点的最小值就是原点到直线x +y -6=0的距离,即d =|-6|2=3 2.故选A.10. 复数z 满足zi =3+4i ,若复数z -在复平面内对应的点为M ,则点M 到直线3x -y +1=0的距离为( )A.4105B.7105C.8105D.10答案 D解析 由zi =3+4i ,得z =3+4i i =3i -4-1=4-3i ,∴z -=4+3i ,∴z -在复平面内对应的点M(4,3),∴所求距离d =|3×4-3+1|10=10.11. 三条直线l 1:x -y =0,l 2:x +y -2=0,l 3:5x -ky -15=0构成一个三角形,则k 的取值范围是( )A .k ∈RB .k ∈R 且k≠±1,k ≠0C .k ∈R 且k≠±5,k ≠-10D .k ∈R 且k≠±5,k ≠1答案 C解析 由l 1∥l 3,得k =5;由l 2∥l 3,得k =-5;由x -y =0与x +y -2=0,得⎩⎨⎧x =1,y =1,若(1,1)在l 3上,则k =-10.若l 1,l 2,l 3能构成一个三角形,则k≠±5且k≠-10,故选C.12. 已知倾斜角为α的直线l 与直线m :x -2y +3=0垂直,则cos2α=________.答案 -35解析 直线m :x -2y +3=0的斜率是12,∵l ⊥m ,∴直线l 的斜率是-2,故tanα=-2,∴π2<α<2π3,sin α=255,cos α=-55,∴cos2α=2cos 2α-1=2×(-55)2-1=-35.13.若函数y =ax +8与y =-12x +b 的图像关于直线y =x 对称,则a +b =________.答案 2解析 直线y =ax +8关于y =x 对称的直线方程为x =ay +8,所以x=ay+8与y=-12x+b为同一直线,故得⎩⎨⎧a=-2,b=4.所以a+b=2.14.已知点M(a,b)在直线3x+4y=15上,则a2+b2的最小值为________.答案 3解析∵M(a,b)在直线3x+4y=15上,∴3a+4b=15.而a2+b2的几何意义是原点到M点的距离|OM|,所以(a2+b2)min =1532+42=3.15.已知直线l过点P(3,4)且与点A(-2,2),B(4,-2)等距离,则直线l的方程为________.答案2x+3y-18=0或2x-y-2=0解析设所求直线方程为y-4=k(x-3),即kx-y+4-3k=0,由已知,得|-2k-2+4-3k|1+k2=|4k+2+4-3k|1+k2.∴k=2或k=-2 3 .∴所求直线l的方程为2x+3y-18=0或2x-y-2=0.16.如图所示,已知A(4,0),B(0,4),从点P(2,0)射出的光线经直线AB 反射后再射到直线OB上,最后经直线OB反射后又回到P点,则光线所经过的路程是________.答案210解析由题意,求出P关于直线x+y=4及y轴的对称点分别为P1(4,2),P 2(-2,0),由物理知识知,光线所经路程即为|P1P2|=210.17.在△ABC中,BC边上的高所在直线l1的方程为x-2y+1=0,∠A的平分线所在的直线l2的方程为y=0,若点B的坐标为(1,2),求点A,C的坐标.答案A(-1,0),C(5,-6)解析如图,设C(x0,y),由题意知l1∩l2=A,则⎩⎨⎧x -2y +1=0,y =0⇒⎩⎨⎧x =-1,y =0. 即A(-1,0).又∵l 1⊥BC ,∴k BC ·kl 1=-1. ∴k BC =-1kl 1=-112=-2. ∴由点斜式可得BC 的直线方程为y -2=-2(x -1),即2x +y -4=0.又∵l 2:y =0(x 轴)是∠A 的平分线,∴B 关于l 2的对称点B′在直线AC 上,易得B′点的坐标为(1,-2),由两点式可得直线AC 的方程为x +y +1=0.由C(x 0,y 0)在直线AC 和BC 上,可得⎩⎨⎧x 0+y 0+1=0,2x 0+y 0-4=0⇒⎩⎨⎧x 0=5,y 0=-6.即C(5,-6).18.设一直线l 经过点(-1,1),此直线被两平行直线l 1:x +2y -1=0和l 2:x +2y -3=0所截得线段的中点在直线x -y -1=0上,求直线l 的方程.答案 2x +7y -5=0解析 方法一:设直线x -y -1=0与l 1,l 2的交点为C(x C ,y C ),D(x D ,y D ),则⎩⎨⎧x +2y -1=0,x -y -1=0⇒⎩⎨⎧x C =1,y C =0,∴C(1,0). ⎩⎨⎧x +2y -3=0,x -y -1=0⇒⎩⎪⎨⎪⎧x D =53,y D=23,∴D(53,23).则C ,D 的中点M 为(43,13).又l 过点(-1,1),由两点式得l 的方程为 y -131-13=x -43-1-43, 即2x +7y -5=0为所求方程.方法二:∵与l 1,l 2平行且与它们的距离相等的直线方程为x +2y +-1-32=0,即x +2y -2=0.由⎩⎨⎧x +2y -2=0,x -y -1=0,得M(43,13).(以下同方法一)方法三:过中点且与两直线平行的直线方程为x +2y -2=0, 设所求方程为(x -y -1)+λ(x+2y -2)=0,∵(-1,1)在此直线上,∴-1-1-1+λ(-1+2-2)=0,∴λ=-3,代入所设得2x +7y -5=0.方法四:设所求直线与两平行线l 1,l 2的交点为A(x 1,y 1),B(x 2,y 2),则 ⎩⎨⎧x 1+2y 1-1=0,x 2+2y 2-3=0⇒(x 1+x 2)+2(y 1+y 2)-4=0. 又A ,B 的中点在直线x -y -1=0上, ∴x 1+x 22-y 1+y 22-1=0.解得⎩⎪⎨⎪⎧x 1+x 22=43,y 1+y 22=13.(以下同方法一)第3课时 圆的方程及直线与圆的位置关系1.如果圆的方程为x 2+y 2+kx +2y +k 2=0,那么当圆面积最大时,圆心坐标为( )A .(-1,1)B .(1,-1)C .(-1,0)D .(0,-1)答案 D解析r=12k2+4-4k2=124-3k2,当k=0时,r最大.2.圆C与x轴相切于T(1,0),与y轴正半轴交于A,B两点,且|AB|=2,则圆C的标准方程为( )A.(x-1)2+(y-2)2=2 B.(x-1)2+(y-2)2=2C.(x+1)2+(y+2)2=4 D.(x-1)2+(y-2)2=4答案 A解析由题意得,圆C的半径为1+1=2,圆心坐标为(1,2),∴圆C 的标准方程为(x-1)2+(y-2)2=2,故选A.3.已知圆C:x2+y2+Dx+Ey+F=0,则“E=F=0且D<0”是“圆C与y 轴相切于原点”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件答案 A解析圆C与y轴相切于原点⇔圆C的圆心在x轴上(设坐标为(a,0)),且半径r=|a|.∴当E=F=0且D<0时,圆心为(-D2,0),半径为|D2|,圆C与y轴相切于原点;圆(x+1)2+y2=1与y轴相切于原点,但D=2>0,故选A.4.直线mx-y+2=0与圆x2+y2=9的位置关系是( )A.相交B.相切C.相离D.无法确定答案 A解析方法一:圆x2+y2=9的圆心为(0,0),半径为3,直线mx-y+2=0恒过点A(0,2),而02+22=4<9,所以点A在圆的内部,所以直线mx-y+2=0与圆x2+y2=9相交.故选A.方法二:求圆心到直线的距离,从而判定.5.一条光线从点(-2,-3)射出,经y轴反射后与圆(x+3)2+(y-2)2=1相切,则反射光线所在直线的斜率为( )A.-53或-35B.-32或-23C.-54或-45D.-43或-34答案 D解析由光的反射原理知,反射光线的反向延长线必过点(2,-3),设反射光线所在直线的斜率为k,则反射光线所在直线的方程为y+3=k(x-2)即kx-y-2k-3=0,又因为反射光线与圆相切,所以|-3k-2-2k-3|k2+1=1⇒12k2+25k+12=0⇒k=-43,或k=-34,故选D项.6.已知圆C关于x轴对称,经过点(0,1),且被y轴分成两段弧,弧长之比为2∶1,则圆的方程为( )A.x2+(y±33)2=43B.x2+(y±33)2=13C.(x±33)2+y2=43D.(x±33)2+y2=13答案 C解析方法一:(排除法)由圆心在x轴上,则排除A,B,再由圆过(0,1)点,故圆的半径大于1,排除D,选C.方法二:(待定系数法)设圆的方程为(x-a)2+y2=r2,圆C与y轴交于A(0,1),B(0,-1),由弧长之比为2∶1,易知∠OCA=12∠ACB=12×120°=60°,则tan60°=|OA||OC|=1|OC|,所以a=|OC|=33,即圆心坐标为(±33,0),r2=|AC|2=12+(33)2=43.所以圆的方程为(x±33)2+y2=43,选C.7.过点P(-1,0)作圆C:(x-1)2+(y-2)2=1的两条切线,设两切点分别为A ,B ,则过点A ,B ,C 的圆的方程是( )A .x 2+(y -1)2=2B .x 2+(y -1)2=1C .(x -1)2+y 2=4D .(x -1)2+y 2=1答案 A解析 P ,A ,B ,C 四点共圆,圆心为PC 的中点(0,1),半径为12|PC|=12(1+1)2+22=2,则过点A ,B ,C 的圆的方程是x 2+(y -1)2=2. 8.直线xsinθ+ycosθ=2+sinθ与圆(x -1)2+y 2=4的位置关系是( )A .相离B .相切C .相交D .以上都有可能 答案 B解析 圆心到直线的距离d =|sinθ-2-sinθ|sin 2θ+cos 2θ=2.所以直线与圆相切.9. 过点(3,1)作圆(x -1)2+y 2=1的两条切线,切点分别为A ,B ,则直线AB 的方程为( )A .2x +y -3=0B .2x -y -3=0C .4x -y -3=0D .4x +y -3=0 答案 A解析 如图,圆心坐标为C(1,0),易知A(1,1).又k AB ·k PC =-1,且k PC=1-03-1=12,∴k AB =-2. 故直线AB 的方程为y -1=-2(x -1),即2x +y -3=0,故选A.另解:易知P ,A ,C ,B 四点共圆,其方程为(x -1)(x -3)+(y -0)(y -1)=0,即x 2+y 2-4x -y +3=0.又已知圆为x 2+y 2-2x =0,∴切点弦方程为2x +y -3=0,选A.10. 已知圆x 2+(y -1)2=2上任一点P(x ,y),其坐标均使得不等式x +y +m≥0恒成立,则实数m 的取值范围是( )A .[1,+∞)B .(-∞,1]C .[-3,+∞)D .(-∞,-3]答案 A解析 如图,圆应在直线x +y +m =0的右上方,圆心C(0,1)到l 的距离为|1+m|2,切线l 1应满足|1+m|2=2,∴|1+m|=2,m =1或m =-3(舍去).从而-m≤-1,∴m ≥1.11. 直线x -y +2=0与圆C :(x -3)2+(y -3)2=4相交于A ,B 两点,则CA →·CB →的值为( )A .-1B .0C .1D .6答案 B解析 联立⎩⎨⎧(x -3)2+(y -3)2=4,x -y +2=0,消去y ,得x 2-4x +3=0.解得x 1=1,x 2=3. ∴A(1,3),B(3,5).又C(3,3),∴CA →=(-2,0),CB →=(0,2). ∴CA →·CB →=-2×0+0×2=0.12.由直线y =x +1上的一点向圆(x -3)2+y 2=1引切线,则切线长的最小值为( )A .1B .2 2 C.7 D .3答案 C解析设直线上一点P,切点为Q,圆心为M,则|PQ|即为切线长,MQ为圆M的半径,长度为1,|PQ|=|PM|2-|MQ|2=|PM|2-1,要使|PQ|最小,即求|PM|最小,此题转化为求直线y=x+1上的点到圆心M的最小距离,设圆心到直线y=x+1的距离为d,则d=|3-0+1|12+(-1)2=22,∴|PM|最小值为22,|PQ|=|PM|2-1=(22)2-1=7,选C.13.以直线3x-4y+12=0夹在两坐标轴间的线段为直径的圆的方程为________.答案(x+2)2+(y-32)2=254解析对于直线3x-4y+12=0,当x=0时,y=3;当y=0时,x=-4.即以两点(0,3),(-4,0)为端点的线段为直径,则r=32+422=52,圆心为(-4 2,32),即(-2,32).∴圆的方程为(x+2)2+(y-32)2=254.14.从原点O向圆C:x2+y2-6x+274=0作两条切线,切点分别为P,Q,则圆C上两切点P,Q间的劣弧长为________.答案π解析如图,圆C:(x-3)2+y2=9 4,所以圆心C(3,0),半径r=3 2 .在Rt△POC中,∠POC=π6.则劣弧PQ所对圆心角为2π3.弧长为23π×32=π.15.若直线l:4x-3y-12=0与x,y轴的交点分别为A,B,O为坐标原点,则△AOB内切圆的方程为________.答案(x-1)2+(y+1)2=1解析由题意知,A(3,0),B(0,-4),则|AB|=5.∴△AOB的内切圆半径r=3+4-52=1,内切圆的圆心坐标为(1,-1).∴内切圆的方程为(x-1)2+(y+1)2=1.16.一个圆与y轴相切,圆心在直线x-3y=0上,且在直线y=x上截得的弦长为27,求此圆的方程.答案x2+y2-6x-2y+1=0或x2+y2+6x+2y+1=0解析方法一:∵所求圆的圆心在直线x-3y=0上,且与y轴相切,∴设所求圆的圆心为C(3a,a),半径为r=3|a|.又圆在直线y=x上截得的弦长为27,圆心C(3a,a)到直线y=x的距离为d=|3a-a| 12+12.∴有d2+(7)2=r2.即2a2+7=9a2,∴a=±1.故所求圆的方程为(x-3)2+(y-1)2=9或(x+3)2+(y+1)2=9.方法二:设所求的圆的方程是(x-a)2+(y-b)2=r2,则圆心(a,b)到直线x-y=0的距离为|a-b|2.∴r2=(|a-b|2)2+(7)2.即2r2=(a-b)2+14.①由于所求的圆与y 轴相切,∴r 2=a 2.② 又因为所求圆心在直线x -3y =0上, ∴a -3b =0.③ 联立①②③,解得a =3,b =1,r 2=9或a =-3,b =-1,r 2=9. 故所求的圆的方程是(x -3)2+(y -1)2=9或(x +3)2+(y +1)2=9. 方法三:设所求的圆的方程是x 2+y 2+Dx +Ey +F =0, 圆心为(-D 2,-E 2),半径为12D 2+E 2-4F.令x =0,得y 2+Ey +F =0.由圆与y 轴相切,得Δ=0,即E 2=4F.④ 又圆心(-D 2,-E2)到直线x -y =0的距离为|-D 2+E 2|2,由已知,得⎝⎛⎭⎪⎫|-D 2+E 2|22+(7)2=r 2,即(D -E)2+56=2(D 2+E 2-4F).⑤ 又圆心(-D 2,-E2)在直线x -3y =0上,∴D -3E =0.⑥ 联立④⑤⑥,解得D =-6,E =-2,F =1或D =6,E =2,F =1. 故所求圆的方程是x 2+y 2-6x -2y +1=0 或x 2+y 2+6x +2y +1=0.17. 已知圆C :x 2+y 2+2x +a =0上存在两点关于直线l :mx +y +1=0对称.(1)求实数m 的值;(2)若直线l 与圆C 交于A ,B 两点,OA →·OB →=-3(O 为坐标原点),求圆C 的方程.答案 (1)m =1 (2)x 2+y 2+2x -3=0解析 (1)圆C 的方程为(x +1)2+y 2=1-a ,圆心C(-1,0). ∵圆C 上存在两点关于直线l :mx +y +1=0对称, ∴直线l :mx +y +1=0过圆心C. ∴-m +1=0,解得m =1.(2)联立⎩⎨⎧x 2+y 2+2x +a =0,x +y +1=0,消去y ,得2x 2+4x +a +1=0. 设A(x 1,y 1),B(x 2,y 2), Δ=16-8(a +1)>0,∴a<1. 由x 1+x 2=-2,x 1x 2=a +12,得 y 1y 2=(-x 1-1)(-x 2-1)=a +12-1. ∴OA →·OB →=x 1x 2+y 1y 2=a +1-1=a =-3. ∴圆C 的方程为x 2+y 2+2x -3=0.第4课时 圆与圆的位置关系及圆的综合问题1.两圆C 1:x 2+y 2+2x -6y -26=0,C 2:x 2+y 2-4x +2y +4=0的位置关系是( )A .内切B .外切C .相交D .外离答案 A解析 由于圆C 1的标准方程为(x +1)2+(y -3)2=36,故圆心为C 1(-1,3),半径为6;圆C 2的标准方程为(x -2)2+(y +1)2=1,故圆心为C 2(2,-1),半径为1.因此,两圆的圆心距|C 1C 2|=(-1-2)2+(3+1)2=5=6-1,显然两圆内切.2. 直线x -3y =0截圆(x -2)2+y 2=4所得劣弧所对的圆心角是( )A.π6B.π3C.π2D.2π3答案 D解析画出图形,如图,圆心(2,0)到直线的距离为d=|2|12+(3)2=1,∴sin∠AOC=d|OC|=12,∴∠AOC=π6,∴∠CAO=π6,∴∠ACO=π-π6-π6=2π3.3.已知直线l:x+ay-1=0(a∈R)是圆C:x2+y2-4x-2y+1=0的对称轴.过点A(-4,a)作圆C的一条切线,切点为B,则|AB|=( ) A.2 B.4 2C.6 D.210答案 C解析由题意得圆C的标准方程为(x-2)2+(y-1)2=4,所以圆C的圆心为(2,1),半径为2.因为直线l为圆C的对称轴,所以圆心在直线l上,则2+a -1=0,解得a=-1,连接AC,BC,所以|AB|2=|AC|2-|BC|2=(-4-2)2+(-1-1)2-4=36,所以|AB|=6,故选C.4.直线y=-33x+m与圆x2+y2=1在第一象限内有两个不同的交点,则m的取值范围是( )A.(3,2) B.(3,3)C.(33,233) D.(1,233)答案 D解析当直线经过点(0,1)时,直线与圆有两个不同的交点,此时m=1;当直线与圆相切时有圆心到直线的距离d =|m|1+(33)2=1,解得m =233(切点在第一象限),所以要使直线与圆在第一象限内有两个不同的交点,需要1<m<233.5.圆x 2+y 2-4x +2y +c =0与y 轴交于A 、B 两点,其圆心为P ,若∠APB =90°,则实数c 的值是( )A .-3B .3C .2 2D .8答案 A解析 由题知圆心为(2,-1),半径为r =5-c.令x =0得y 1+y 2=-2,y 1y 2=c ,∴|AB|=|y 1-y 2|=21-c.又|AB|=2r ,∴4(1-c)=2(5-c).∴c=-3.6.圆x 2+y 2+2x +4y -3=0上到直线x +y +1=0的距离为2的点共有( )A .1个B .2个C .3个D .4个 答案 C解析 把x 2+y 2+2x +4y -3=0化为(x +1)2+(y +2)2=8,圆心为(-1,-2),半径r =22,圆心到直线的距离为2,所以在圆上共有三个点到直线的距离等于 2.7. 在平面直角坐标系xOy 中,已知圆C :x 2+y 2-4x =0及点A(-1,0),B(1,2).在圆C 上存在点P ,使得|PA|2+|PB|2=12,则点P 的个数为( )A .1B .2C .3D .4 答案 B解析 设P(x ,y),则(x -2)2+y 2=4,|PA|2+|PB|2=(x +1)2+(y -0)2+(x -1)2+(y -2)2=12,即x 2+y 2-2y -3=0,即x 2+(y -1)2=4,因为|2-2|<(2-0)2+(0-1)2<2+2,所以圆(x -2)+y 2=4与圆x 2+(y -1)2=4相交,所以点P的个数为2.选B.8.已知点P在圆x2+y2=5上,点Q(0,-1),则线段PQ的中点的轨迹方程是( )A.x2+y2-x=0 B.x2+y2+y-1=0C.x2+y2-y-2=0 D.x2+y2-x+y=0答案 B解析设P(x0,y),PQ中点的坐标为(x,y),则x=2x,y=2y+1,代入圆的方程即得所求的方程是4x2+(2y+1)2=5,化简,得x2+y2+y-1=0.9.在圆x2+y2-2x-6y=0内,过点E(0,1)的最长弦和最短弦分别为AC 和BD,则四边形ABCD的面积为( )A.5 2 B.10 2C.15 2 D.20 2答案 B解析圆的标准方程为(x-1)2+(y-3)2=10,则圆心(1,3),半径r=10,由题意知AC⊥BD,且|AC|=210,|BD|=210-5=25,所以四边形ABCD的面积为S=12|AC|·|BD|=12×210×25=10 2.10.已知两点A(0,-3),B(4,0),若点P是圆x2+y2-2y=0上的动点,则△ABP面积的最小值为( )A.6 B.11 2C.8 D.21 2答案 B解析如图,过圆心C向直线AB作垂线交圆于点P,连接BP,AP,这时△ABP的面积最小.直线AB的方程为x4+y-3=1,即3x -4y -12=0,圆心C 到直线AB 的距离为d =|3×0-4×1-12|32+(-4)2=165,∴△ABP 的面积的最小值为12×5×(165-1)=112.11. 若直线l :y =kx +1被圆C :x 2+y 2-2x -3=0截得的弦最短,则直线l 的方程是( )A .x =0B .y =1C .x +y -1=0D .x -y +1=0答案 D解析 依题意,直线l :y =kx +1过定点P(0,1).圆C :x 2+y 2-2x -3=0化为标准方程为(x -1)2+y 2=4.故圆心为C(1,0),半径为r =2.则易知定点P(0,1)在圆内.由圆的性质可知当PC⊥l 时,此时直线l :y =kx +1被圆C :x 2+y 2-2x -3=0截得的弦最短.因为k PC =1-00-1=-1,所以直线l 的斜率k =1,即直线l 的方程是x -y +1=0.12.若双曲线C :x 2a 2-y 2b 2=1(a>0,b>0)的一条渐近线被圆(x -2)2+y 2=4所截得的弦长为2,则C 的离心率为( )A .2 B. 3 C. 2 D.233答案 A解析 依题意,双曲线C :x 2a 2-y 2b 2=1(a>0,b>0)的一条渐近线方程为bx -ay=0.因为直线bx -ay =0被圆(x -2)2+y 2=4所截得的弦长为2,所以|2b|b 2+a 2=4-1,所以3a 2+3b 2=4b 2,所以3a 2=b 2,所以e =1+b 2a2=1+3=2,选择A.13.已知直线3x -y +2=0及直线3x -y -10=0截圆C 所得的弦长均为8,则圆C 的面积是________.答案 25π解析 因为已知的两条直线平行且截圆C 所得的弦长均为8,所以圆心到直线的距离d 为两直线距离的一半,即d =12×|2+10|3+1=3.又因为直线截圆C 所得的弦长为8,所以圆的半径r =32+42=5,所以圆C 的面积是25π.14. 设抛物线y 2=4x 的焦点为F ,准线为l.已知点C 在l 上,以C 为圆心的圆与y 轴的正半轴相切于点A.若∠FAC=120°,则圆的方程为________.答案 (x +1)2+(y -3)2=1解析 由题意知该圆的半径为1,设圆心坐标为C(-1,a)(a>0),则A(0,a),又F(1,0),所以AC →=(-1,0),AF →=(1,-a),由题意得AC →与AF →的夹角为120°,得cos120°=-11×1+a 2=-12,解得a =3,所以圆的方程为(x +1)2+(y -3)2=1.15.在不等式组⎩⎪⎨⎪⎧x -3y +3≥0,x +3y +3≥0,x ≤3,表示的平面区域内作圆M ,则最大圆M 的标准方程为________.答案 (x -1)2+y 2=4解析 不等式组构成的区域是三角形及其内部,要作最大圆其实就是三角形的内切圆,由⎩⎪⎨⎪⎧x -3y +3=0,x +3y +3=0,得交点(-3,0), 由⎩⎨⎧x -3y +3=0,x =3,得交点(3,23),由⎩⎨⎧x +3y +3=0,x =3,得交点(3,-23),可知三角形是等边三角形,所以圆心坐标为(1,0),半径为(1,0)到直线x =3的距离,即半径为2,所以圆的方程为(x -1)2+y 2=4.16.在平面直角坐标系xOy 中,已知圆P 在x 轴上截得线段长为22,在y 轴上截得线段长为2 3.(1)求圆心P 的轨迹方程; (2)若P 点到直线y =x 的距离为22,求圆P 的方程. 答案 (1)y 2-x 2=1(2)x 2+(y -1)2=3或x 2+(y +1)2=3 解析 (1)设P(x ,y),圆P 的半径为r. 由题设y 2+2=r 2,x 2+3=r 2. 从而y 2+2=x 2+3.故P 点的轨迹方程为y 2-x 2=1. (2)设P(x 0,y 0).由已知得|x 0-y 0|2=22. 又P 点在双曲线y 2-x 2=1上,从而得⎩⎨⎧|x 0-y 0|=1,y 02-x 02=1.由⎩⎨⎧x 0-y 0=1,y 02-x 02=1,得⎩⎨⎧x 0=0,y 0=-1. 此时,圆P 的半径r = 3. 由⎩⎨⎧x 0-y 0=-1,y 02-x 02=1,得⎩⎨⎧x 0=0,y 0=1. 此时,圆P 的半径r = 3.故圆P 的方程为x 2+(y -1)2=3或x 2+(y +1)2=3.17. 已知圆C 经过(2,4),(1,3),圆心C 在直线x -y +1=0上,过点A(0,1)且斜率为k 的直线l 与圆C 相交于M ,N 两点.(1)求圆C 的方程;(2)①请问AM →·AN →是否为定值,若是,请求出该定值,若不是,请说明理由; ②若OM →·ON →=12(O 为坐标原点),求直线l 的方程.答案 (1)(x -2)2+(y -3)2=1 (2)①AM →·AN →为定值,且定值为7 ②y=x+1解析 (1)设圆C 的方程为(x -a)2+(y -b)2=r 2,则依题意,得⎩⎨⎧(2-a )2+(4-b )2=r 2,(1-a )2+(3-b )2=r 2,a -b +1=0,解得⎩⎨⎧a =2,b =3,r =1,∴圆C 的方程为(x -2)2+(y -3)2=1. (2)①AM →·AN →为定值.过点A(0,1)作直线AT 与圆C 相切,切点为T ,易得|AT|2=7, ∴AM →·AN →=|AM →|·|AN →|cos0°=|AT|2=7,∴AM →·AN →为定值,且定值为7.②依题意可知,直线l 的方程为y =kx +1,设M(x 1,y 1),N(x 2,y 2),将y =kx +1代入(x -2)2+(y -3)2=1并整理,得(1+k 2)x 2-4(1+k)x +7=0,∴x 1+x 2=4(1+k )1+k 2,x 1x 2=71+k 2, ∴OM →·ON →=x 1x 2+y 1y 2=(1+k 2)x 1x 2+k(x 1+x 2)+1=4k (1+k )1+k 2+8=12,即4k (1+k )1+k 2=4,解得k =1,又当k =1时Δ>0,∴k =1,∴直线l 的方程为y=x +1.第5课时 椭圆(一)1. 已知椭圆x 225+y 2m 2=1(m>0)的左焦点为F 1(-4,0),则m =( )A .2B .3C .4D .9答案 B解析 由4=25-m 2(m>0)⇒m =3,故选B.2.若椭圆x 2+my 2=1的焦点在y 轴上,且长轴长是短轴长的两倍.则m 的值为( )A.14B.12 C .2 D .4答案 A解析 将原方程变形为x 2+y 21m=1.由题意知a 2=1m ,b 2=1,∴a =1m,b =1. ∴1m =2,∴m =14. 3. 已知椭圆C :x 2a 2+y 2b 2=1(a>b>0),若长轴的长为6,且两焦点恰好将长轴三等分,则此椭圆的标准方程为( )A.x 236+y 232=1 B.x 29+y 28=1 C.x 29+y 25=1 D.x 216+y 212=1 答案 B解析 由题意知2a =6,2c =13×6,所以a =3,c =1,则b =32-12=22,所以此椭圆的标准方程为x 29+y 28=1.4. 若椭圆mx 2+ny 2=1的离心率为12,则mn =( )A.34 B.43 C.32或233D.34或43 答案 D解析将椭圆方程标准化为x21m+y21n=1,∵e2=1-b2a2,∴b2a2=1-e2=34,①若a2=1m,b2=1n,则mn=34;②若a2=1n,b2=1m,则mn=43,故选D.5.在平面直角坐标系xOy中,椭圆C的中心为原点,焦点F1,F2在x轴上,离心率为22.过F1的直线l交C于A,B两点,且△ABF2的周长为16,那么C的方程为( )A.x216+y212=1 B.x216+y28=1C.x28+y24=1 D.x28+y22=1答案 B解析根据椭圆焦点在x轴上,可设椭圆方程为x2a2+y2b2=1(a>b>0).∵e=22,∴ca=22.根据△ABF2的周长为16得4a=16,因此a=4,b=22,所以椭圆方程为x216+y28=1.6.在平面直角坐标系xOy中,P是椭圆y24+x23=1上的一个动点,点A(1,1),B(0,-1),则|PA|+|PB|的最大值为( )A.5 B.4C.3 D.2答案 A解析∵椭圆的方程为y24+x23=1,∴a2=4,b2=3,c2=1,∴B(0,-1)是椭圆的一个焦点,设另一个焦点为C(0,1),如图所示,根据椭圆的定义知,|PB|+|PC|=4,∴|PB|=4-|PC|,∴|PA|+|PB|=4+|PA|-|PC|≤4+|AC|=5.7.若一个椭圆长轴的长度、短轴的长度和焦距成等差数列,则该椭圆的离心率是( )A.45B.35C.25D.15答案 B解析由题意有2a+2c=2(2b),即a+c=2b.又c2=a2-b2,消去b整理,得5c2=3a2-2ac,即5e2+2e-3=0,∴e=3 5或e=-1(舍去).8.如图,已知椭圆C:x2a2+y2b2=1(a>b>0),其中左焦点为F(-25,0),P为C上一点,满足|OP|=|OF|,且|PF|=4,则椭圆C的方程为( )A.x225+y25=1 B.x236+y216=1C.x236+y210=1 D.x245+y225=1答案 B解析设椭圆的焦距为2c,右焦点为F1,连接PF1,如图所示.由F(-25,0),得c=2 5.由|OP|=|OF|=|OF1|,知PF1⊥PF.在Rt△PFF1中,由勾股定理,得|PF1|=|F1F|2-|PF|2=(45)2-42=8.由椭圆定义,得|PF1|+|PF|=2a=4+8=12,从而a=6,得a2=36,于是b2=a2-c2=36-(25)2=16,所以椭圆C的方程为x236+y216=1.9.已知椭圆x2a2+y2b2=1(a>b>0)的左、右焦点分别为F1,F2,过F2的直线与椭圆交于A,B两点,若△F1AB是以A为直角顶点的等腰直角三角形,则椭圆的离心率为( )A.22B.2- 3C.5-2D.6- 3 答案 D解析设|F1F2|=2c,|AF1|=m,若△ABF1是以A为直角顶点的等腰直角三角形,则|AB|=|AF1|=m,|BF1|=2m.由椭圆的定义可得△ABF1的周长为4a,即有4a=2m+2m,即m=(4-22)a,则|AF2|=2a-m=(22-2)a,在Rt△AF1F2中,|F1F2|2=|AF1|2+|AF2|2,即4c2=4(2-2)2a2+4(2-1)2a2,即有c2=(9-62)a2,即c=(6-3)a,即e=ca=6-3,故选D.10.椭圆x25+y24=1的左焦点为F,直线x=m与椭圆相交于点M,N,当△FMN的周长最大时,△FMN的面积是( )A.55B.655C.855D.455答案 C解析 设右焦点为F′,由椭圆的定义得,△FMN 的周长C =|MN|+|MF|+|NF|=|MN|+(2a -|F′M|)+(2a -|F′N|)=4a +|MN|-|F′M|-|F′N|≤4a,当MN 过点F′时取等号,即当直线x =m 过右焦点F′时,△FMN 的周长最大. 由椭圆的定义可得c =5-4=1.把x =1代入椭圆标准方程可得15+y 24=1,解得y =±455.所以△FMN 的面积S =12×2×2×455=855.故选C.11. 焦点在x 轴上的椭圆方程为x 2a 2+y 2b 2=1(a>b>0),短轴的一个端点和两个焦点相连构成一个三角形,该三角形内切圆的半径为b3,则椭圆的离心率为( )A.14B.13C.12D.23答案 C解析 由短轴的一个端点和两个焦点相连构成一个三角形,又由三角形面积公式得12×2c ·b =12(2a +2c)·b 3,得a =2c ,即e =c a =12,故选C.12. 椭圆x 2a 2+y 2b 2=1(a>b>0)的一个焦点为F 1,若椭圆上存在一点P ,满足以椭圆短轴为直径的圆与线段PF 1相切于该线段的中点,则椭圆的离心率为( )A.22B.23C.59D.53 答案 D解析设线段PF1的中点为M,另一个焦点为F2,由题意知,|OM|=b,又OM是△F2PF1的中位线,∴|OM|=12|PF2|=b,|PF2|=2b,由椭圆的定义知|PF1|=2a-|PF2|=2a-2b.又|MF1|=12|PF1|=12(2a-2b)=a-b,又|OF1|=c,在直角三角形OMF1中,由勾股定理得(a-b)2+b2=c2,又a2-b2=c2,可得2a=3b,故有4a2=9b2=9(a2-c2),由此可求得离心率e=ca=53,故选D.13.设F1,F2为椭圆的两个焦点,以F2为圆心作圆,已知圆F2经过椭圆的中心,且与椭圆相交于点M,若直线MF1恰与圆F2相切,则该椭圆的离心率为( )A.3-1 B.2- 3C.22D.32答案 A解析由题意知∠F1MF2=π2,|MF2|=c,|F1M|=2a-c,则c2+(2a-c)2=4c2,e2+2e-2=0,解得e=3-1.14.若点O和点F分别为椭圆x22+y2=1的中心和左焦点,点P为椭圆上的任意一点,则|OP|2+|PF|2的最小值为________.答案 2解析由题意可知,O(0,0),F(1,0),设P(2cosα,sinα),则|OP|2+|PF|2=2cos2α+sin2α+(2cosα-1)2+sin2α=2cos2α-22cosα+3=2(cosα-22)2+2,所以当cosα=22时,|OP|2+|PF|2取得最小值2. 15. 椭圆x 29+y 225=1上的一点P 到两焦点的距离的乘积为m ,当m 取最大值时,点P 的坐标是________.答案 (-3,0)或(3,0)解析 记椭圆的两个焦点分别为F 1,F 2,有|PF 1|+|PF 2|=2a =10.则m =|PF 1|·|PF 2|≤(|PF 1|+|PF 2|2)2=25,当且仅当|PF 1|=|PF 2|=5,即点P 位于椭圆的短轴的顶点处时,m 取得最大值25.所以点P 的坐标为(-3,0)或(3,0).16 一个底面半径为2的圆柱被与底面所成角是60°的平面所截,截面是一个椭圆,则该椭圆的焦距等于________.答案 4 3解析 ∵底面半径为2的圆柱被与底面成60°的平面所截,其截面是一个椭圆,∴这个椭圆的短半轴长为2,长半轴长为2cos60°=4.∵a 2=b 2+c 2,∴c=42-22=23,∴椭圆的焦距为4 3.17.如图所示,已知椭圆x 2a 2+y 2b 2=1(a>b>0),F 1,F 2分别为椭圆的左、右焦点,A 为椭圆的上顶点,直线AF 2交椭圆于另一点B.(1)若∠F 1AB =90°,求椭圆的离心率;(2)若椭圆的焦距为2,且AF 2→=2F 2B →,求椭圆的方程. 答案 (1)22 (2)x 23+y 22=1解析 (1)若∠F 1AB =90°,则△AOF 2为等腰直角三角形.所以有|OA|=|OF 2|,即b =c.所以a =2c ,e =c a =22.(2)由题知A(0,b),F 2(1,0),设B(x ,y), 由AF 2→=2F 2B →,解得x =32,y =-b 2. 代入x 2a 2+y 2b 2=1,得94a 2+b 24b 2=1.即94a 2+14=1,解得a 2=3. 所以椭圆方程为x 23+y 22=1.18. 设F 1,F 2分别是椭圆C :x 2a 2+y 2b 2=1(a>b>0)的左、右焦点,M 是C 上一点且MF 2与x 轴垂直,直线MF 1与C 的另一个交点为N.(1)若直线MN 的斜率为34,求C 的离心率;(2)若直线MN 在y 轴上的截距为2,且|MN|=5|F 1N|,求a ,b. 答案 (1)12(2)a =7,b =27解析 (1)根据c =a 2-b 2及题设知M ⎝⎛⎭⎪⎫c ,b 2a ,b 2a 2c =34,2b 2=3ac.将b 2=a 2-c 2代入2b 2=3ac ,解得c a =12,c a =-2(舍去).故C 的离心率为12.(2)由题意,原点O 为F 1F 2的中点,MF 2∥y 轴,所以直线MF 1与y 轴的交点D(0,2)是线段MF 1的中点.故b 2a=4,即b 2=4a.①由|MN|=5|F 1N|,得|DF 1|=2|F 1N|. 设N(x 1,y 1),由题意知y 1<0,则⎩⎨⎧2(-c -x 1)=c ,-2y 1=2,即⎩⎨⎧x 1=-32c ,y 1=-1.代入C 的方程,得9c 24a 2+1b2=1.②将①及c =a 2-b 2代入②得9(a 2-4a )4a 2+14a=1.解得a =7,b 2=4a =28. 故a =7,b =27.第6课时 椭圆(二)1.已知对任意k∈R ,直线y -kx -1=0与椭圆x 25+y 2m =1恒有公共点,则实数m 的取值范围是( )A .(0,1)B .(0,5)C .[1,5)∪(5,+∞)D .[1,5)思路 该题有两种解题思路,一是根据直线和圆锥曲线位置关系的讨论方法,由直线方程和椭圆方程联立组成的方程组必有解,通过消元,进一步转化为方程恒有解的问题,利用判别式Δ≥0求解参数的取值范围;二是由直线系方程得到直线所过的定点,由直线和椭圆恒有公共点可得,定点在椭圆上或在椭圆内,这样便可得到关于参数m 的不等式,解之即可.答案 C解析 方法一:由椭圆的方程,可知m>0,且m≠5. 将直线与椭圆的方程联立方程组,得⎩⎨⎧y -kx -1=0,①x 25+y 2m=1,②由①,得y =kx +1. 代入②,得x 25+(kx +1)2m=1.整理,得(5k 2+m)x 2+10kx +5(1-m)=0.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题研究1 曲线与方程1.已知点A(-1,0),B(2,4),△ABC 的面积为10,则动点C 的轨迹方程是( ) A .4x -3y -16=0或4x -3y +16=0 B .4x -3y -16=0或4x -3y +24=0 C .4x -3y +16=0或4x -3y +24=0 D .4x -3y +16=0或4x -3y -24=0答案 B解析 可知AB 的方程为4x -3y +4=0,又|AB|=5,设动点C(x ,y).由题意可知12×5×|4x -3y +4|5=10,所以4x -3y -16=0或4x -3y +24=0.故选B.2.方程x -1lg(x 2+y 2-1)=0所表示的曲线图形是( )答案 D3.动圆M 经过双曲线x 2-y23=1的左焦点且与直线x =2相切,则圆心M 的轨迹方程是( )A .y 2=8x B .y 2=-8x C .y 2=4x D .y 2=-4x答案 B解析 双曲线x 2-y23=1的左焦点F(-2,0),动圆M 经过F 且与直线x =2相切,则圆心M 经过F 且与直线x=2相切,则圆心M 到点F 的距离和到直线x =2的距离相等,由抛物线的定义知轨迹是抛物线,其方程为y 2=-8x.4.(2017·皖南八校联考)设点A 为圆(x -1)2+y 2=1上的动点,PA 是圆的切线,且|PA|=1,则P 点的轨迹方程为( ) A .y 2=2x B .(x -1)2+y 2=4 C .y 2=-2x D .(x -1)2+y 2=2答案 D解析 (直译法)如图,设P(x ,y),圆心为M(1,0).连接MA ,PM. 则MA⊥PA,且|MA|=1,又因为|PA|=1,所以|PM|=|MA|2+|PA|2=2, 即|PM|2=2,所以(x -1)2+y 2=2.5.(2017·吉林市毕业检测)设圆O 1和圆O 2是两个定圆,动圆P 与这两个定圆都外切,则圆P 的圆心轨迹可能是( )A .①②③⑤B .②③④⑤C .①②④⑤D .①②③④答案 A解析 当两定圆相离时,圆P 的圆心轨迹为①;当两定圆外切时,圆P 的圆心轨迹为②;当两定圆相交时,圆P 的圆心轨迹为③;当两定圆内切时,圆P 的圆心轨迹为⑤.6.已知A(0,7),B(0,-7),C(12,2),以C 为一个焦点作过A ,B 的椭圆,椭圆的另一个焦点F 的轨迹方程是( )A .y 2-x248=1(y≤-1)B .y 2-x248=1C .y 2-x248=-1D .x 2-y248=1答案 A解析 由题意,得|AC|=13,|BC|=15,|AB|=14,又|AF|+|AC|=|BF|+|BC|,∴|AF|-|BF|=|BC|-|AC|=2.故点F 的轨迹是以A ,B 为焦点,实轴长为2的双曲线下支.∵双曲线中c =7,a =1,∴b 2=48,∴轨迹方程为y 2-x248=1(y≤-1).7.△ABC 的顶点为A(-5,0)、B(5,0),△ABC 的内切圆圆心在直线x =3上,则顶点C 的轨迹方程是( ) A.x 29-y216=1 B.x 216-y29=1 C.x 29-y216=1(x>3) D.x 216-y29=1(x>4) 答案 C解析 设△ABC 的内切圆与x 轴相切于D 点,则D(3,0).由于AC 、BC 都为圆的切线. 故有|CA|-|CB|=|AD|-|BD|=8-2=6. 由双曲线定义知所求轨迹方程为x 29-y216=1(x>3).故选C.8.(2017·宁波十校联考)在直角坐标平面中,△ABC 的两个顶点A 、B 的坐标分别为A(-1,0),B(1,0),平面内两点G ,M 同时满足下列条件:①GA →+GB →+GC →=0,②|MA →|=|MB →|=|MC →|,③GM →∥AB →.则△ABC 的顶点C 的轨迹方程为( ) A.x 23+y 2=1(y≠0) B.x 23-y 2=1(y≠0) C .x 2+y23=1(y≠0)D .x 2-y23=1(y≠0)答案 C解析 根据题意,G 为△ABC 的重心,设C(x ,y),则G(x 3,y3),而M 为△ABC 的外心,∴M 在AB 的中垂线上,即y 轴上,由GM →∥AB →,得M(0,y 3),根据|MA →|=|MC →|,得1+(y 3)2=x 2+(y -y 3)2,即x 2+y 23=1,又C 点不在x轴上,∴y ≠0,故选C.9.如图,在平面直角坐标系xOy 中,圆x 2+y 2=r 2(r>0)内切于正方形ABCD ,任取圆上一点P ,若OP →=aOA →+bOB →(a ,b ∈R ),若M(a ,b),则动点M 所形成的轨迹曲线的长度为( ) A .π B.2π C.3π D .2π答案 B解析 设P(x ,y),则x 2+y 2=r 2,A(r ,r),B(-r ,r).由OP →=aOA →+bOB →,得⎩⎪⎨⎪⎧x =(a -b )r ,y =(a +b )r ,代入x 2+y 2=r 2,得(a -b)2+(a +b)2=1,即a 2+b 2=12,故动点M 所形成的轨迹曲线的长度为2π.10.已知抛物线y 2=nx(n<0)与双曲线x 28-y2m=1有一个相同的焦点,则动点(m ,n)的轨迹方程是________.答案 n 2=16(m +8)(n<0)解析 抛物线的焦点为(n 4,0),在双曲线中,8+m =c 2=(n 4)2,n<0,即n 2=16(m +8)(n<0).11.长为3的线段AB 的端点A ,B 分别在x ,y 轴上移动,动点C(x ,y)满足:AC →=2CB →,则动点C 的轨迹方程为________________. 答案 x 2+14y 2=1解析 设A(a ,0),B(0,b),则a 2+b 2=9.又C(x ,y),则由AC →=2CB →,得(x -a ,y)=2(-x ,b -y).即⎩⎪⎨⎪⎧x -a =-2x ,y =2b -2y ,即⎩⎪⎨⎪⎧a =3x ,b =32y ,代入a 2+b 2=9,并整理,得x 2+14y 2=1.12.若过抛物线y 2=4x 的焦点作直线与其交于M ,N 两点,作平行四边形MONP ,则点P 的轨迹方程为________. 答案 y 2=4(x -2)解析 设直线方程为y =k(x -1),点M(x 1,y 1),N(x 2,y 2),P(x ,y),由OM →=NP →,得(x 1,y 1)=(x -x 2,y -y 2). 得x 1+x 2=x ,y 1+y 2=y.由⎩⎪⎨⎪⎧y =k (x -1),y 2=4x ,联立得x =x 1+x 2=2k 2+4k 2.y =y 1+y 2=4k k2,消去参数k ,得y 2=4(x -2).13.如图所示,直角三角形ABC 的顶点坐标A(-2,0),直角顶点B(0,-22),顶点C 在x 轴上,点P 为线段OA 的中点. (1)求BC 边所在直线方程;(2)M 为直角三角形ABC 外接圆的圆心,求圆M 的方程;(3)若动圆N 过点P 且与圆M 内切,求动圆N 的圆心N 的轨迹方程. 答案 (1)y =22x -2 2 (2)(x -1)2+y 2=9 (3)49x 2+45y 2=1 解析 (1)∵k AB =-2,AB ⊥BC , ∴k CB =22.∴BC :y =22x -2 2. (2)在上式中,令y =0,得C(4,0).∴圆心M(1,0). 又∵|AM|=3,∴外接圆的方程为(x -1)2+y 2=9. (3)∵P(-1,0),M(1,0),∵圆N 过点P(-1,0), ∴PN 是该圆的半径.又∵动圆N 与圆M 内切, ∴|MN|=3-|PN|,即|MN|+|PN|=3.∴点N 的轨迹是以M ,P 为焦点,长轴长为3的椭圆. ∴a =32,c =1,b =a 2-c 2=54. ∴轨迹方程为49x 2+45y 2=1.14.已知动点P(x ,y)与两定点M(-1,0),N(1,0)连线的斜率之积等于常数λ(λ≠0). (1)求动点P 的轨迹C 的方程; (2)讨论轨迹C 的形状.答案 (1)x 2-y2λ=1(λ≠0,x ≠±1) (2)略解析 (1)由题设知直线PM 与PN 的斜率存在且均不为零,所以k PM ·k PN =y x +1·yx -1=λ.整理,得x 2-y2λ=1(λ≠0,x ≠±1).(2)①当λ>0时,轨迹C 为中心在原点,焦点在x 轴上的双曲线(除去顶点); ②当-1<λ<0时,轨迹C 为中心在原点,焦点在x 轴上的椭圆(除去长轴两个端点); ③当λ=-1时,轨迹C 为以原点为圆心,1为半径的圆除去点(-1,0),(1,0); ④当λ<-1时,轨迹C 为中心在原点,焦点在y 轴上的椭圆(除去短轴的两个端点).15.已知点A(-4,4),B(4,4),直线AM 与BM 相交于点M ,且直线AM 的斜率与直线BM 的斜率之差为-2,点M 的轨迹为曲线C. (1)求曲线C 的轨迹方程;(2)Q 为直线y =-1上的动点,过Q 作曲线C 的切线,切点分别为D ,E ,求△QDE 的面积S 的最小值. 答案 (1)x 2=4y(x≠±4) (2)4解析 (1)设M(x ,y),则k AM =y -4x +4,k BM =y -4x -4.∵直线AM 的斜率与直线BM 的斜率的差为-2,∴y -4x +4-y -4x -4=-2,∴x 2=4y(x≠±4). (2)设Q(m ,-1).∵切线斜率存在且不为0,故可设一条切线的斜率为k ,则切线方程为y +1=k(x -m).联立得方程组⎩⎪⎨⎪⎧y +1=k (x -m ),x 2=4y ,得x 2-4kx +4(km +1)=0.由相切得Δ=0,将k 2-km -1=0代入,得x 2-4kx +4k 2=0, 即x =2k ,从而得到切点的坐标为(2k ,k 2). 在关于k 的方程k 2-km -1=0中,Δ>0,∴方程k 2-km -1=0有两个不相等的实数根,分别为k 1,k 2,则⎩⎪⎨⎪⎧k 1+k 2=m ,k 1·k 2=-1,故QD⊥QE,S =12|QD||QE|.记切点(2k ,k 2)到Q(m ,-1)的距离为d ,则d 2=(2k -m)2+(k 2+1)2=4(k 2-km)+m 2+k 2m 2+4km +4, 故|QD|=(4+m 2)(k 12+1), |QE|=(4+m 2)(k 22+1), S =12(4+m 2)1+1-2k 1k 2+(k 1+k 2)2=12(4+m 2)4+m 2≥4, 即当m =0,也就是Q(0,-1)时面积的最小值为4.16.已知椭圆E :x 2a 2+y 2b 2=1(a>b>0)的离心率为22,过左焦点倾斜角为45°的直线被椭圆截得的弦长为423.(1)求椭圆E 的方程;(2)若动直线l 与椭圆E 有且只有一个公共点,过点M(1,0)作l 的垂线,垂足为Q ,求点Q 的轨迹方程. 答案 (1)x 22+y 2=1 (2)x 2+y 2=2解析 (1)因为椭圆E 的离心率为22,所以a 2-b 2a =22.解得a 2=2b 2,故椭圆E 的方程可设为x 22b 2+y 2b 2=1,则椭圆E 的左焦点坐标为(-b ,0),过左焦点倾斜角为45°的直线方程为l ′:y =x +b. 设直线l ′与椭圆E 的交点为A ,B ,由⎩⎪⎨⎪⎧x 22b 2+y 2b 2=1,y =x +b ,消去y ,得3x 2+4bx =0,解得x 1=0,x 2=-4b 3.因为|AB|=1+12|x 1-x 2|=42b 3=423,解得b =1.∴a 2=2,∴椭圆E 的方程为x 22+y 2=1.(2)①当切线l 的斜率存在且不为0时,设l 的方程为y =kx +m ,联立直线l 和椭圆E 的方程,得⎩⎪⎨⎪⎧y =kx +m ,x 22+y 2=1.消去y 并整理,得(2k 2+1)x 2+4kmx +2m 2-2=0. 因为直线l 和椭圆E 有且仅有一个交点, 所以Δ=16k 2m 2-4(2k 2+1)(2m 2-2)=0. 化简并整理,得m 2=2k 2+1.因为直线MQ 与l 垂直,所以直线MQ 的方程为y =-1k (x -1).联立得方程组⎩⎪⎨⎪⎧y =-1k (x -1),y =kx +m ,解得⎩⎪⎨⎪⎧x =1-km1+k 2,y =k +m 1+k2,∴x 2+y 2=(1-km )2+(k +m )2(1+k 2)2=k 2m 2+k 2+m 2+1(1+k 2)2=(k 2+1)(m 2+1)(1+k 2)2=m 2+11+k2,把m 2=2k 2+1代入上式得x 2+y 2=2.(*)②当切线l 的斜率为0时,此时Q(1,1)或(1,-1),符合(*)式. ③当切线l 的斜率不存在时,此时Q(2,0)或(-2,0),符合(*)式. 综上所述,点Q 的轨迹方程为x 2+y 2=2.1.(2018·河南洛阳二模)已知动圆M 过定点E(2,0),且在y 轴上截得的弦PQ 的长为4.则动圆圆心M 的轨迹C 的方程是________. 答案 y 2=4x解析 设M(x ,y),PQ 的中点为N ,连MN ,则|PN|=2,MN ⊥PQ , ∴|MN|2+|PN|2=|PM|2.又|PM|=|EM|,∴|MN|2+|PN|2=|EM|2, ∴x 2+4=(x -2)2+y 2,整理得y 2=4x. ∴动圆圆心M 的轨迹C 的方程为y 2=4x.2.已知直线l 与平面α平行,P 是直线l 上一定点,平面α内的动点B 满足PB 与直线l 成30°角,那么B 点轨迹是( ) A .两条直线 B .椭圆 C .双曲线 D .抛物线答案 C解析 P 是直线l 上的定点,平面α与直线l 平行,平面α内的动点B 满足PB 与直线l 成30°角,因为空间中过P 与l 成30°角的直线构成两个相对顶点的圆锥,α即为平行于圆锥轴的平面,点B 的轨迹可理解为α与圆锥侧面的交线,所以点B 的轨迹为双曲线,故选C.3.(2018·安徽安庆二模)已知抛物线x 2=2py(p>0),F 为其焦点,过点F 的直线l 交抛物线于A ,B 两点,过点B 作x 轴的垂线,交直线OA 于点C ,如图所示.求点C 的轨迹M 的方程.答案 y =-p2解析 依题意可得,直线l 的斜率存在,故设其方程为y =kx +p2,又设A(x 1,y 1),B(x 2,y 2),C(x ,y),由⎩⎪⎨⎪⎧x 2=2py ,y =kx +p 2⇒x 2-2pkx -p 2=0⇒x 1·x 2=-p 2.易知直线OA :y =y 1x 1x =x 12p x ,直线BC :x =x 2,由⎩⎪⎨⎪⎧y =x 12p x ,x =x 2,得y =x 1·x 22p =-p2,即点C 的轨迹M 的方程为y =-p 2.4.(2014·课标全国Ⅰ,文)已知点P(2,2),圆C :x 2+y 2-8y =0,过点P 的动直线l 与圆C 交于A ,B 两点,线段AB 的中点为M ,O 为坐标原点. (1)求M 的轨迹方程;(2)当|OP|=|OM|时,求l 的方程及△POM 的面积. 答案 (1)(x -1)2+(y -3)2=2 (2)x +3y -8=0,S △POM =165解析 (1)圆C 的方程可化为x 2+(y -4)2=16,所以圆心为C(0,4),半径为4.设M(x ,y),则CM →=(x ,y -4),MP →=(2-x ,2-y).由题设知CM →·MP →=0,故x(2-x)+(y -4)(2-y)=0,即(x -1)2+(y -3)2=2.由于点P 在圆C 的内部,所以M 的轨迹方程是(x -1)2+(y -3)2=2. (2)由(1)可知M 的轨迹是以点N(1,3)为圆心,2为半径的圆. 由于|OP|=|OM|,故O 在线段PM 的垂直平分线上. 又P 在圆N 上,从而ON⊥PM.因为ON 的斜率为3,所以l 的斜率为-13.故l 的方程为y =-13x +83,即x +3y -8=0.又|OM|=|OP|=22,O 到l 的距离为4105,|PM|=4105,所以△POM 的面积为165.。