荧光蛋白基因在大肠杆菌中的表达与检测

合集下载

实验 7 外源基因在大肠杆菌中的表达(或诱导表达)和检测 (1)

实验 7  外源基因在大肠杆菌中的表达(或诱导表达)和检测 (1)

显色反应: 在1ml样品(细胞与培养基混合液)中直接加入 X-Gal 200ul. 充分混合,观察颜色反应
(如果时间紧张,将三个样品带回,观察、拍照!)
Introduction of pRSET Vector The pRSET vectors are pUC-derived expression vectors designed for high-level protein expression and purification from cloned genes in E. coli. High levels of expression of DNA sequences cloned into the pRSET vectors are made possible by the presence of the T7 promoter. In addition, DNA inserts are positioned downstream and in frame with a sequence that encodes an N-terminal fusion peptide. This sequence includes an ATG translation initiation codon, a polyhistidine tag that functions as a metal binding domain in the translated protein, a transcript stabilizing sequence from gene 10 of phage T7, the Xpress. epitope, and the enterokinase cleavage recognition sequence.

荧光蛋白基因在大肠杆菌中的表达与检测

荧光蛋白基因在大肠杆菌中的表达与检测

绿色荧光蛋白基因在大肠杆菌中的表达与检测一、背景介绍1.绿色荧光蛋白1955年,Davenport和Nicol 在太平洋海里的一种发光生物—维多利亚水母(Aequorea victoria)中发现并发表了荧光蛋白的生物发光现象,但是对生物发光现象的机理并不了解。

1962年,日本科学家下村修在水母中纯化鉴定出了一种能催化化学发光的蛋白质分子并将其命名为aequorin,aequorin能将化学能转化为光能,从而产生出波长为470nm的蓝色光(lmax=470nm),但是水母发出的光是独有的绿色,因此水母发光的蛋白质并非aequorin。

与此同时,发现和分离了一个受紫外线激发能发出绿色荧光的蛋白质—绿色荧光蛋白(GFP)。

1971年,Morin和Hastings提出了GFP这个名称。

1985到1992年间,科学家Douglas Prasher 测定完成了aequorin 和GFP的基因和蛋白质序列,并通过蛋白质序列分析和核磁共振分光术(NMR spectroscopy)确定了GFP发光位点。

1994年,美国科学家钱永健开始改造GFP,目前所用的大多数是钱永健实验室改造后的变种,有的荧光更强,有的可激活、变色。

1996年,解析得到了GFP的晶体结构,它的发光过程是也在日后的应用中得到了解答。

纵观整个过程,从1961年到1974年,下村修的研究遥遥领先,却很少有人注意。

在1974年以后,特别是八十年代后,绿色荧光蛋白的研究得到了广泛的重视和发展。

绿色荧光蛋白,分子质量约为28kDa,由238个氨基酸构成,第65~67位氨基酸(Ser-Tyr-Gly)形成发光团,经共价键连接而成对羟苯甲基咪唑烷酮,它可以被光激发产生荧光,是主要发光的位置。

绿色荧光蛋白分子的形状呈圆柱形,就像一个桶,发光的基团位于桶中央,因此,它可形象地比喻成一个装有色素的“油漆桶”。

其发光团的形成不具有物种专一性,发出的荧光稳定,且不需要依赖其他基质而发光。

绿色荧光蛋白在大肠杆菌中的克隆表达

绿色荧光蛋白在大肠杆菌中的克隆表达
菌体内成功诱导表达。
实验用品
PEGFP -N3模板、菌株E. coli DH5 α、E. coli BL21 、质粒 pET28a 、 限制性内切酶 EcoRⅠ、 Hind Ⅲ、T4 DNA连接酶、1 kb DNA ladder
DNA 凝胶回收试剂盒及质粒小提试剂盒、DNA 纯化试剂盒及 IPTG、 PCR用试剂、卡那霉素、琼脂糖及 PCR 合成引物等、蛋白胨、酵母浸出 粉、琼脂粉等。
转化 筛选及复筛及酶切验证
PCR检测 IPTG诱导表达
SDS-PAGE检测目的蛋白
包涵体检测 分离纯化
电泳检测 酶切
pET28a质粒酶切位点选择
实验用品及方法介绍
方法介绍
研究绿色荧光蛋白在大肠杆菌体内的基因克隆和表达。通过质粒重 组形成所需要的重组质粒pET-28a-GFP,将重组质粒导入大肠杆菌 体内,通过酶切、PCR及用IPTG诱导检测是否在大肠杆菌体内诱导 表达成功。根据电泳结果及荧光现象得出结论,重组质粒在大肠杆

1 实验背景
2 实验用品及方法介绍

3 实验流程
4 实验原理
5 具体实验步骤
6 实验结果预测
7 参考文献
实验背景
200810月8日,瑞典皇家科学院宣布,2008年诺贝尔化学奖由 日本科学家下村修、美国科学家马丁·沙尔菲和美籍华裔科学 家钱永健获得,他们三人在发现和研究绿色荧光蛋白(GFP)方 面取得了突出成就。
目前应用较多的是GFP的突变体—增强型绿色荧光蛋白(简称EGFP)。 EGFP将GFP的第64位氨基酸苯丙氨酸突变成为亮氨酸,从而发射出的荧光 强度比GFP大6倍以上。
所以,EGFP比GFP更适合作为报告基因来研究基因表达、调控、细胞 分化及蛋白质在生物体内的定位和转运等

荧光蛋白基因在大肠杆菌中的表达与检测

荧光蛋白基因在大肠杆菌中的表达与检测

1μL 1μL 0.2μL
12.3μL 20μL 5min 45s 45s 120s 10min 无限制
}
29次循环
PCR扩增完后可进行琼脂糖凝胶电泳检测看是否有目的基 因。
6.目的基因的诱导表达——IPTG诱导表达
1.取含有重组质粒pET-28a的BL21(DE)菌株的单菌落,接种于 20mL含100μg/mL卡那霉素的LB液体培养基,37℃培养过夜。同 时取只含质粒载体pET-28a的BL21(DE)菌株的单菌落做实验对照。 2.分别取过夜培养物100μL接种于10mL含100μg/mL卡那霉素的 LB液体培养基(实验组转接两瓶),37℃恒温培养1~2h。当细菌 浓度A600达到0.4~0.6时,分别取出样品1mL作为IPTG诱导前的样 品,其余样品中添加100mmol/L的IPTG至终浓度为2mmol/L,其 中一瓶实验组不加IPTG的对照。继续培养,分别在1、2、3h和过 夜培养后各取1mL样品,作为诱导后的样品。
GFP各种突变体
GFP工作原理
• GFP形状呈圆柱形,如一个桶,负责发光的基团位于桶中 央,因此,GFP可形象地比喻成一个装有色素的“油漆桶”。 装在“桶”中的发光基团对蓝色光照特别敏感。当它受到蓝 光照射时,会吸收蓝光的部分能量,然后发射出绿色的荧 光。利用这一性质,生物学家们可以用绿色荧光蛋白来标 记几乎任何生物分子或细胞,然后在蓝光照射下进行显微 镜观察。原本黑暗或透明的视场马上变得星光点点——那 是被标记了的活动目标。
所用器材:
恒温水浴锅、EP管、微量移液器、PCR仪、His-Tag亲 和纯化柱等。
所用培养基:
LB培养基、麦康凯培养基
时间安排:
第一天:PCR获得目的基因,验证; 第二天:目的基因、pET-28a质粒双酶切,连接; E.coliBL21(DE)感受态细胞的制备; 第三天:重组质粒的转化; 第四、五天:重组子的筛选与验证:酶切验证和PCR验 证; 第六天:目的基因诱导表达; 第七天:目的蛋白的检测; 第八天:目的蛋白的纯化。

南方医科大学分生实验-绿色荧光蛋白(EGFP)的基因克隆

南方医科大学分生实验-绿色荧光蛋白(EGFP)的基因克隆

绿色荧光蛋白(EGFP)的基因克隆南方医科大学学院摘要本实验旨在学习基因克隆并检验,绿色荧光蛋白基因转化入宿主细胞后很稳定,对多数宿主的生理无影响,是常用的报道基因,便于实验。

本实验通过将含有目的基因GFP的pEGFP-N1质粒和pMD18-T载体进行酶切、电泳、回收、连接、转入、筛选之后,把GFP基因成功导入到大肠杆菌DH5α(克隆菌)中,从而实现荧光蛋白基因的克隆和表达。

关键词:绿色荧光蛋白克隆表达实验名称绿色荧光蛋白的基因克隆2015- ~实验日期实验地点2015-合作者指导老师评分教师签名批改日期一、实验目的1.学习使用限制性内切酶进行DNA酶切的原理和方法。

2.学习掌握琼脂糖凝胶电泳的基本原理和操作方法。

3.掌握PCR技术原理和PCR仪的操作方法。

4.学习PCR产物的TA克隆的基本原理和操作步骤。

5.了解和掌握大肠杆菌的制备方法的基本原理和操作要点以及DNA转化大肠杆菌的原理和方法。

6.掌握双酶切法鉴定重组DNA的基本原理和操作步骤,以及菌落PCR鉴定重组DNA的基本原理和方法。

7.掌握IPTG诱导GFP基因表达的基本原理和操作步骤二、实验原理1.pEGFP-N1质粒2.T载体三、材料与方法:1.实验材料:质粒:pEGFP-N1T载体:pUCm-T菌种:DH5(克隆菌)PCR引物:F——GGCATATGGTGAGCAAGGGCGAR——CGGGATCCCTTGTACAGCTCGTCTm=56实验试剂:即用型蓝白T载体(pMD18-T vector cloning kit)快速DNA连接试剂盒限制性内切酶:EcoR I(Fermentas)Axygen质粒提取试剂盒抗生素:氨苄青霉素(Amp)、卡那霉素(Kan)X-gal、IPTG等实验仪器:超净工作台,恒温摇床,高压灭菌锅,恒温培养箱,台式高速离心机,大容量冷冻离心机,PCR仪,紫外分光光度计,水平电泳槽,垂直电泳槽,电泳仪,凝胶成像系统,制冰机、超低温冰箱等2.方法分离目的基因→限制酶切割目的基因与载体→连接重组体→转入受体细胞→筛选重组体、转化子四、实验具体流程1.获取外源基因1)碱裂解法提取质粒使用Axygen质粒提取试剂盒离心1300r pm,1min瞬时离心漩涡震荡颠倒数次悬浮沉淀颠倒数次离心放置3-5min 13000rpm,1min离心13000rpm,1min2)取0.2 ml PCR反应管一支,用微量加样枪按下述顺序分别加入各试剂(注意每换一种试剂换一个新吸头):H2O 6μl质粒DNA(pEGFP-N1)2μl引物GFP1 (10μM) 1μl引物GFP2 (10μM) 1μlPremix Taq 10μl总体积20μl加完试剂后,将PCR反应管放到PCR仪上。

绿色荧光蛋白基因在大肠杆菌中的克隆与表达

绿色荧光蛋白基因在大肠杆菌中的克隆与表达

/view/992207.ht m /view/2261117.h tm 郝福英 周先碗 朱玉贤 主编《基础分子生物 学实验》 北京大学出版社 2010年11月第 一版


实验仪器 实验材料 实验试剂

将pET-28a-GFP重组质粒转化入表达菌株 · 制备BL21(DE3)菌株的感受态细胞

10uL BL21(DE3)菌液接入3mL LB液体培养基,摇床培养过夜
二次活化:1:50比例接入新的试管摇床培养2h
1.5mL冰上10min
4 度,4000r/min离心2min收集细胞
涂平板: a)分别取50、100、150uL加入重组质粒的感 受态细胞悬液涂布于含抗生素的平板 b)抗生素板+IPTG+100uL重组质粒的感受态 细胞悬液 c)对照组感受态细胞100uL+抗生素平板 d)正面向上放置片刻,后37度倒置培养20h
重组阳性克隆菌接至3mL LB(Kan)液体培养基中,37度 培养16h 过夜菌1:50比例接种至4支试管中(每支试管含3mL LB(Kan)),扩大培养2h,测量A600值为0.5,停止 分别使用IPTG(最后总浓度为1mmol/L)诱导 0,2,4h 离心并照相
丝氨酸-酪氨酸-甘氨酸 生色基团 蛋白质折叠,生色基团得以“亲密接触”, 经环化形成咪唑酮,并发生脱水反应。但此 时还不能发射荧光,只有当有分子氧存在的 条件下,发生氧化脱氢,方能导致绿色荧光蛋 白发色团的“成熟”,形成可发射荧光的形 式。

蓝光、绿光与黄光 基因克隆 变体

分子标记 药物筛选 融合抗体 生物传感器 信号传导

标记!
真核细胞表达载体,pEGFP-N3载体上携带 有EGFP蛋白表达基因 很强的复制能力 高效的功能强大的启动子SV40和PCMV 多克隆位点 具有neo基因,可以采用G418来筛选已成 功转染了该载体的靶细胞

大肠杆菌荧光染色方法

大肠杆菌荧光染色方法

大肠杆菌荧光染色方法1.引言1.1 概述大肠杆菌荧光染色方法是一种常用的实验技术,用于检测和观察大肠杆菌的存在和分布情况。

大肠杆菌作为一种常见的肠道细菌,对于人类和动物的健康具有重要的影响。

因此,快速、准确地检测大肠杆菌的存在是非常重要的。

荧光染色技术是一种基于分子生物学原理的方法,通过将荧光染料与目标菌株的特定成分或结构相互作用来实现细胞的染色。

相比传统的染色方法,荧光染色具有显著的优势,如高灵敏度、高特异性和直观的成像效果。

因此,荧光染色方法在大肠杆菌的检测中得到了广泛的应用。

本文的主要目的是介绍大肠杆菌荧光染色方法的原理、优点和应用前景。

首先,我们将详细阐述大肠杆菌的重要性,包括其在人类肠道和环境中的分布情况以及与人类健康相关的疾病。

接下来,我们将重点介绍荧光染色方法的原理,包括选择合适的荧光染料和适当的染色条件,以达到对大肠杆菌的准确和可靠的染色结果。

在结论部分,我们将总结荧光染色方法的优点,如高灵敏度可以提高大肠杆菌的检测效率,高特异性可避免误判,直观的成像效果方便观察和分析。

此外,我们还将展望这种方法在临床诊断、食品安全监测、环境卫生等领域的应用前景,希望能为相关研究提供参考和借鉴。

总之,本文将全面介绍大肠杆菌荧光染色方法,旨在推广和应用这一技术,在大肠杆菌相关领域的检测和研究中发挥重要作用,为保障人类健康和环境安全做出贡献。

1.2文章结构文章结构:本文主要分为引言、正文和结论三个部分。

引言部分包括概述、文章结构和目的三个小节。

在概述部分,我们将介绍大肠杆菌荧光染色方法的背景和意义。

随后,在文章结构部分,我们将详细介绍本文的组织结构和各节的内容。

最后,在目的部分,我们将阐述本文的主要目的和意义。

正文部分主要分为两个小节,分别是大肠杆菌的重要性和荧光染色的原理。

在大肠杆菌的重要性部分,我们将介绍大肠杆菌在生物学研究中的重要地位和广泛应用领域。

随后,在荧光染色的原理部分,我们将详细讲解大肠杆菌荧光染色方法的原理、步骤和关键技术。

绿色荧光蛋白(GFP)基因的克隆、表达和粗提取

绿色荧光蛋白(GFP)基因的克隆、表达和粗提取

绿色荧光蛋白(GFP)基因的克隆、表达和粗提取欧阳学文南方医科大学预防医学(卫生检验检疫)摘要目的:研究绿色荧光蛋白(green fluorescent protein,GFP)基因在大肠杆菌中的基因克隆与重组表达,以及对其进行粗提取。

方法:从E.coli DH5ɑ中用碱提取质粒的方法提取质粒pEGFPN3和质粒pET28a。

然后用质粒DNA的琼脂糖凝胶电泳对已经提取的产物进行电泳,确定从大肠杆菌中成功提取了质粒。

再用限制性内切酶BamHI和NotI对成功提取的质粒进行酶切,并对酶切后的质粒进行琼脂糖凝胶电泳,用以确定已经提取了GFP基因。

将含有GFP基因的质粒转化到感受态细胞E.coli BL21中,用LB培养基对转化后的E.coli进行扩大培养。

用IPTG诱导GFP基因表达可以看到浅绿色菌落。

最后对绿色荧光蛋白进行粗提取。

结论:本实验有助于学生掌握最基本的分子生物学实验技术,为进一步的实验奠定基础。

关键词:绿色荧光蛋白基因克隆重组表达转化粗提取目录1 前言32 实验目的43 实验设备44 材料及试剂55 实验操作步骤55.1操作流程55.2质粒DNA的分离与纯化65.2.1 质粒的培养65.2.2 质粒的DNA的碱提取法65.2.3 质粒DNA的鉴定与纯化75.3酶切及连接85.3.1 双酶切85.3.2 回收酶切产物(采用DNA回收试剂盒进行回收)8 5.3.3 连接95.4大肠杆菌感受态细胞的制备及转化95.4.1 LB(LuriaBertain)液体和固体培养基的配制(参考附录)95.4.2.感受态细胞的制备 (CaCl2法)95.4.3 转化涂板105.5GFP蛋白的诱导表达105.6绿色荧光蛋白的粗提取11参考文献11附录121LB培养基的配制:122.溶液Ⅰ123.溶液Ⅱ124.溶液Ⅲ(100ML)125.DN ASEFREE RN ASE A136.TE缓冲液(P H8.0)137.20×TBE138.G ENE F INDER溴酚蓝上样缓冲液139.PEGFPN3质粒全图谱1310.P ET28A质粒全图谱141 前言绿色荧光蛋白(green fluorescent protein,GFP)是一类存在于包括水母、水螅和珊瑚等腔肠动物体内的生物发光蛋白。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

绿色荧光蛋白基因在大肠杆菌中的表达与检测一、背景介绍1.绿色荧光蛋白1955年,Davenport和Nicol 在太平洋海里的一种发光生物—维多利亚水母(Aequorea victoria)中发现并发表了荧光蛋白的生物发光现象,但是对生物发光现象的机理并不了解。

1962年,日本科学家下村修在水母中纯化鉴定出了一种能催化化学发光的蛋白质分子并将其命名为aequorin,aequorin能将化学能转化为光能,从而产生出波长为470nm的蓝色光(lmax=470nm),但是水母发出的光是独有的绿色,因此水母发光的蛋白质并非 aequorin。

与此同时,发现和分离了一个受紫外线激发能发出绿色荧光的蛋白质—绿色荧光蛋白(GFP)。

1971年,Morin和Hastings提出了GFP这个名称。

1985到1992年间,科学家 Douglas Prasher 测定完成了aequorin 和GFP 的基因和蛋白质序列,并通过蛋白质序列分析和核磁共振分光术(NMR spectroscopy)确定了GFP发光位点。

1994年,美国科学家钱永健开始改造GFP,目前所用的大多数是钱永健实验室改造后的变种,有的荧光更强,有的可激活、变色。

1996年,解析得到了GFP的晶体结构,它的发光过程是也在日后的应用中得到了解答。

纵观整个过程,从1961年到1974年,下村修的研究遥遥领先,却很少有人注意。

在1974年以后,特别是八十年代后,绿色荧光蛋白的研究得到了广泛的重视和发展。

绿色荧光蛋白,分子质量约为28kDa,由238个氨基酸构成,第65~67位氨基酸(Ser-Tyr-Gly)形成发光团,经共价键连接而成对羟苯甲基咪唑烷酮,它可以被光激发产生荧光,是主要发光的位置。

绿色荧光蛋白分子的形状呈圆柱形,就像一个桶,发光的基团位于桶中央,因此,它可形象地比喻成一个装有色素的“油漆桶”。

其发光团的形成不具有物种专一性,发出的荧光稳定,且不需要依赖其他基质而发光。

GFP的优点很多:首先,它本身稳定,不需要任何反应底物和辅助因子,且无种属限制,可在多种生物细胞中表达发出稳定荧光,在450~490nm 蓝光激发下,发光能保持 10min 以上。

其次,其分子量小,对目的基因的功能无任何影响,融合蛋白具有与GFP一样的荧光性质,对细胞没有毒性。

最后,GFP观察方便,利用激光扫描共聚焦显微镜,甚至普通显微镜都可以观察到活细胞内蛋白的变化、活动,用肉眼就可对辨别细胞是否表达及其表达水平。

作为一种新型的报告基因,绿色荧光蛋白在生命科学的各个领域得到广泛的应用:利用绿色荧光蛋白的特有发光机制,可将GFP作为蛋白标签。

就是利用 DNA 重组技术,将目的基因与GFP基因构成融合基因,转染或转化至合适的细胞进行表达,而后借助荧光显微镜观察细胞内活体中标记的蛋白质。

绿色荧光蛋白也可用于大规模药物筛选。

另外,由于绿色荧光蛋白独特的光信号传导机制及其在表达后易被周围化学环境和蛋白之间的相互作用影响的特性,极适用于成为活细胞体内的光学感受器。

近年来,由于融合抗体具有发射荧光和与抗原结合两种特性,所以将其用做免疫染色的检测试剂,直接用于流式细胞仪、免疫荧光的标记、肿瘤的检测等。

目前应用较多的是GFP的突变体—增强型绿色荧光蛋白(Enhanced Green Fluorescent Protein,简称EGFP)。

EGFP将GFP 的第64位氨基酸苯丙氨酸突变成为亮氨酸,从而发射出的荧光强度比GFP大6倍以上。

所以,EGFP比GFP更适合作为报告基因来研究基因表达、调控、细胞分化及蛋白质在生物体内的定位和转运等EGFP (720bp)的基因片段: ATGGTGAGCAAGGGCGAGGAGCTGTTCACCGGGGTGGTGCCCATCCTGGTCGAGCTGGA CGGCGACGTAAACGGCCACAAGTTCAGCGTGTCCGGCGAGGGCGAGGGCGATGCCACCT ACGGCAAGCTGACCCTGAAGTTCATCTGCACCACCGGCAAGCTGCCCGTGCCCTGGCCC ACCCTCGTGACCACCCTGACCTACGGCGTGCAGTGCTTCAGCCGCTACCCCGACCACAT GAAGCAGCACGACTTCTTCAAGTCCGCCATGCCCGAAGGCTACGTCCAGGAGCGCACCA TCTTCTTCAAGGACGACGGCAACTACAAGACCCGCGCCGAGGTGAAGTTCGAGGGCGAC ACCCTGGTGAACCGCATCGAGCTGAAGGGCATCGACTTCAAGGAGGACGGCAACATCCT GGGGCACAAGCTGGAGTACAACTACAACAGCCACAACGTCTATATCATGGCCGACAAGC AGAAGAACGGCATCAAGGTGAACTTCAAGATCCGCCACAACATCGAGGACGGCAGCGTG CAGCTCGCCGACCACTACCAGCAGAACACCCCCATCGGCGACGGCCCCGTGCTGCTGCC CGACAACCACTACCTGAGCACCCAGTCCGCCCTGAGCAAAGACCCCAACGAGAAGCGCG ATCACATGGTCCTGCTGGAGTTCGTGACCGCCGCCGGGATCACTCTCGGCATGGACGAG CTGTACAAGTAA2.大肠杆菌表达载体及表达系统大肠杆菌质粒是一类独立于染色体外自主复制的双链、闭环DNA分子,大肠杆菌质粒可分为结合转移型和非结合转移型两种,非结合转移型质粒在通常培养条件下不在宿主间转移,整合到染色体上的频率也很低,具有遗传学上的稳定性和安全性。

又因其大小一般在2-50kb范围内,适合于制备和重组DNA的体外操作,因此几乎所有的大肠杆菌表达系统都选用非结合转移型质粒作为运载外源基因的载体,这些表达载体通过对天然质粒的改造获得。

理想的大肠杆菌表达载体要求具有以下特征:(1)稳定的遗传复制、传代能力,在无选择压力下能存在于大肠杆菌细胞内。

(2)具有显性的转化筛选标记。

(3)启动子的转录是可以调控的,抑制时本底转录水平较低。

(4)启动子的转录的mRNA能够在适当的位置终止,转录过程不影响表达载体的复制。

(5)具备适用于外源基因插入的酶切位点。

复制子、筛选标志、启动子、终止子和核糖体结合位点是构成表达载体的最基本元件。

大肠杆菌表达系统是基因表达技术中发展最早,目前应用最广泛的经典表达系统。

一个完整的大肠杆菌表达系统至少要有表达载体和宿主菌两部分构成。

为了改善表达系统的性能和对各类外源基因的适应能力,表达系统有时还需要有特定功能基因的质粒或溶源化噬箘体参与。

到目前为止已经成功发展了许多表达载体和相应的宿主菌。

由于大肠杆菌本身的蛋白质翻译后修饰加工体系相当不完善,因此不能对重组蛋白质进行修饰加工,这是大肠杆菌系统与其它表达系统相比存在的一个比较突出的缺陷。

大肠杆菌的表达系统包括:Lac和Tac 表达系统,这是最早建立并得到广泛应用的表达系统,它是以大肠杆菌lac操纵子调控机理为基础设计、构建的表达系统。

PL和PR表达系统,它是以λ噬箘体早期转录启动子PL、PR为核心构建的表达系统称为PL和PR表达系统。

T7表达系统,大肠杆菌T7噬箘体具有一套专一性非常强的转录体系,利用这一体系中的元件为基础构建的表达系统称为T7表达系统。

此外还有其他表达系统,如营养调控型、糖原调控型、pH调控型等。

3.SDS-PAGE原理SDS-聚丙烯酰胺凝胶电泳,是在聚丙烯酰胺凝胶系统中引进SDS,SDS能断裂分子内和分子间氢键,破坏蛋白质的二级和三级结构,强还原剂能使半胱氨酸之间的二硫键断裂,蛋白质在一定浓度的含有强还原剂的SDS溶液中,与SDS分子按比例结合,形成带负电荷的SDS-蛋白质复合物,这种复合物由于结合大量的SDS,使蛋白质丧失了原有的电荷状态形成仅保持原有分子大小为特征的负离子团块,从而降低或消除了各种蛋白质分子之间天然的电荷差异,由于SDS与蛋白质的结合是按重量成比例的,因此在进行电泳时,蛋白质分子的迁移速度取决于分子大小。

当分子量在15KD到200KD之间时,蛋白质的迁移率和分子量的对数呈线性关系,符合下式:logMW=K-bX,式中:MW 为分子量,X为迁移率,k、b均为常数,若将已知分子量的标准蛋白质的迁移率对分子量对数作图,可获得一条标准曲线,未知蛋白质在相同条件下进行电泳,根据它的电泳迁移率即可在标准曲线上求得分子量。

SDS- 聚丙烯酰胺凝胶使用一种不连续的缓冲系统。

在这一系统中,一般凝胶分为低浓度的成层胶(浓缩胶)和较高浓度的分离胶。

在电泳时, SDS-多肽复合物向两胶界面迁移,在分离胶表面形成了一个极薄的层,极大地浓缩了样品的体积,使样品在分离之前处于同一起跑线。

一般来说,在被分析的蛋白质稳定的pH范围,凡是不与SDS发生相互作用的缓冲液都可以使用,但缓冲液的选择对蛋白带的分离和电泳的速度是非常关键的。

Tris-甘氨酸系统是目前使用最多的缓冲系统。

如果要测定糖蛋白的分子量,最好采用Tris-硼酸盐缓冲系统,对于分子质量小于15kDa的蛋白样品,可以使用SDS-尿素系统,也可以采用Tris-tricine缓冲系统。

4.蛋白分离与检测蛋白质的分离方法很多,依据分子大小分离的方法包括:透析和超过滤,透析指利用蛋白质分子不能通过半透膜而与小分子分离;超滤是利用压力或离心力使小分子溶质通过半透膜而蛋白质被截留在膜上而分离。

密度梯度离心,蛋白质颗粒在具有密度梯度的介质中离心时,质量和密度大的颗粒比质量和密度小的颗粒沉降得快,且每种蛋白质颗粒沉降到与其自身密度相等的介质密度梯度时,即停止不前,最后各种蛋白质在离心管中被分离成不同的区带。

凝胶过滤,即分子排阻层析。

凝胶颗粒内部为多孔的网状结构。

大分子最先流出层析柱。

根据溶解度分离的方法包括:盐溶和盐析,中性盐在低浓度时可增加蛋白质的溶解度,即盐溶。

原因是蛋白质分子吸附盐类离子后,带电层使蛋白质分子彼此排斥,而与水分子相互作用加强;当离子强度增大到足够高时,此时与蛋白质疏水基团接触的自由水被移去以溶剂化盐离子,导致蛋白质疏水基团暴露,使蛋白质因疏水作用凝聚沉淀。

根据所带电荷分离的方法包括:电泳(净电荷、分子大小、形状),区带电泳、聚丙烯酰氨凝胶电泳(PAGE)、毛细管电泳离子交换层析。

其余的方法还有吸附层析、亲和层析、高效液相层析(HPLC),快速蛋白液相层析(FPLC)等。

蛋白质的检测方法包括:凯氏定氮法,它是样品与浓硫酸共热。

含氮有机物即分解产生氨(消化),氨又与硫酸作用,变成硫酸氨。

经强碱碱化使之分解放出氨,借蒸汽将氨蒸至酸液中,根据此酸液被中和的程度可计算得样品之氮含量。

相关文档
最新文档