2017年浙江普通专升本高等数学考试大纲-学研教育专升本
2017年专升本高数真题答案解析(浙江)

浙江省2017年选拔优秀高职高专毕业生进入本科学习统一考试高等数学参考答案选择题部分一、选择题:本大题共5小题,每小题4分,共20分。
题号12345答案DACDD1.D 解析:0lim )(lim 10==--→→xx x e x f ,;lim )(lim 10+∞==++→→xx x e x f 所以0=x 是)(x f 的无穷间断点,即属于第二类间断点,选项D 正确。
2.A 解析:选项A :由积分中值定理:若)(x f 在],[b a 连续,则至少存在一点),(b a ∈ξ,使得()()()ξ=-⎰baf x dx f b a ,选项A 正确。
选项B :由拉格朗日中值定理:)(x f 在],[b a 上连续,在),(b a 内可导,则至少存在一点),(b a ∈ξ,使得()()'()()ξ-=-f b f a f b a ,选项B 错误。
选项C :由零点定理:若)(x f 在],[b a 连续,且0)()(<⋅b f a f ,则至少存在一点),(b a ∈ξ,使得()0ξ=f ,选项C 错误。
选项D :由罗尔定理:若)(x f 在],[b a 连续,在),(b a 内可导,且)()(b f a f =,则至少存在一点),(b a ∈ξ,使得()0ξ'=f ,选项D 错误。
3.C 解析:);()(; )()( ; )()('x f dx x f dxd C x f x df C x f dx x f =+=+=⎰⎰⎰⎰=dx x f dx x f d )()(,可见选项C 正确。
4.D 解析:2|2110102110===⎰⎰-x dx x dx x ;所以⎰101dx x收敛,故选项A 错误。
2|arcsin 1110102π==-⎰x dx x ;所以⎰-10211dx x收敛,故选项B 错误。
111lim |)1(1112=+-=-=+∞→∞++∞⎰x x dx x x ;所以⎰+∞121dx x 收敛,故选项C 错误。
专升本的数学考试大纲

专升本的数学考试大纲专升本的数学考试是高等教育自学考试中的重要组成部分,它旨在检验学生对高等数学基础知识的掌握程度和应用能力。
考试大纲通常包括以下几个主要部分:函数、极限与连续性、导数与微分、积分、无穷级数、多元函数微分学、常微分方程等。
以下是对这些部分的概述:# 函数、极限与连续性- 函数:理解函数的概念,包括定义域、值域、函数的表示方法等。
- 极限:掌握极限的基本概念,包括数列极限和函数极限,以及极限的运算法则。
- 连续性:理解连续函数的定义,连续函数的性质,以及间断点的分类。
# 导数与微分- 导数:掌握导数的定义、几何意义、基本求导公式和求导法则。
- 微分:理解微分的概念,微分与导数的关系,以及一阶微分的计算。
# 积分- 不定积分:掌握基本积分公式,换元积分法和分部积分法。
- 定积分:理解定积分的定义、性质和计算方法,包括几何意义和物理意义。
- 反常积分:了解反常积分的概念和计算方法。
# 无穷级数- 数项级数:掌握正项级数的收敛性判别方法,包括比较判别法、比值判别法等。
- 幂级数:理解幂级数的收敛半径和收敛区间,以及幂级数的运算。
# 多元函数微分学- 偏导数:理解偏导数的定义和计算方法。
- 全微分:掌握全微分的概念和计算。
- 多元函数的极值:了解多元函数极值的概念和求法。
# 常微分方程- 一阶微分方程:掌握可分离变量方程、一阶线性微分方程的解法。
- 高阶微分方程:理解高阶微分方程的基本概念,包括齐次和非齐次方程的解法。
- 微分方程的应用:了解微分方程在实际问题中的应用,如物理、工程等领域。
# 线性代数基础- 矩阵:理解矩阵的概念,矩阵的运算,包括加法、乘法、转置、求逆等。
- 行列式:掌握行列式的定义、性质和计算方法。
- 向量空间:了解向量空间的概念,基、维数、线性组合等。
- 线性变换:理解线性变换的定义和矩阵表示。
# 概率论与数理统计基础- 随机事件:掌握随机事件的概率计算,包括加法公式、乘法公式等。
浙江省高等数学专升本教材

浙江省高等数学专升本教材根据您提供的题目,我将按照教材的格式编写相关内容如下:浙江省高等数学专升本教材一、导言在现代社会中,数学作为一门基础学科,对于各行各业的学习和应用具有重要的意义。
浙江省高等数学专升本教材的编写旨在为有意向提升学历的学生提供全面而系统的数学知识。
本教材力求结合实际问题,理论与实践相结合,使学生能够灵活运用数学知识解决实际问题,并为进一步深造打下坚实的基础。
二、教材结构1. 基础知识1.1 数与代数1.1.1 实数与复数1.1.2 数列与数列极限1.1.3 代数基本运算1.2 函数与极限1.2.1 函数的基本性质1.2.2 一元函数的极限1.2.3 多元函数的极限1.3 线性代数1.3.1 向量及其运算1.3.2 矩阵及其运算1.3.3 行列式与特征值2. 高等应用2.1 微积分与微分方程2.1.1 导数与微分2.1.2 不定积分与定积分2.1.3 常微分方程2.2 概率统计与随机过程2.2.1 随机变量与概率2.2.2 统计与抽样2.2.3 随机过程与马尔可夫链 2.3 数学建模与优化2.3.1 建模方法与步骤2.3.2 优化理论与方法2.3.3 数学模型在实际问题中的应用三、教材特点1. 理论与实践相结合本教材注重将数学理论与实际问题相结合,通过案例分析和实际应用,引导学生将所学的数学知识应用于实际情境中,增强学生的实践能力。
2. 强调问题解决能力本教材在内容设计上,注重培养学生综合思考和解决问题的能力。
通过引导学生分析问题,运用数学工具和方法解决问题,培养学生独立思考和创新的能力。
3. 注重数学思维的培养本教材在内容安排和教学方法上,注重培养学生的数学思维,包括逻辑思维、定性与定量思维、抽象与具体思维等方面的训练,培养学生的数学思维能力。
四、教学方法1. 理论讲授与实例演示相结合在教学过程中,教师可以通过理论讲授来向学生介绍基本概念和原理,并结合具体的实例进行演示,使学生更好地理解和应用数学知识。
浙江专升本高数提纲

一、试卷结构二、考试大纲一、 函数、极限和连续 (一)函数1.理解函数的概念,会求函数的定义域、表达式及函数值,会作出一些简单的分段函数图像。
2.掌握函数的单调性、奇偶性、有界性和周期性。
3.理解函数 y =ƒ(x )与其反函数y =ƒ - 1(x )之间的关系(定义域、值域、图像),会求单调函数的反函数。
4.掌握函数的四则运算与复合运算;掌握复合函数的复合过程。
5.掌握基本初等函数的性质及其图像。
6.理解初等函数的概念。
7.会建立一些简单实际问题的函数关系式。
(二)极限1.理解极限的概念(只要求极限的描述性定义),能根据极限概念描述函数的变化趋势。
理解函数在一点处极限存在的充分必要条件,会求函数在一点处的左极限与右极限。
2.理解极限的唯一性、有界性和保号性,掌握极限的四则运算法则。
3.理解无穷小量、无穷大量的概念,掌握无穷小量的性质,无穷小量与无穷大量的关系。
会 比较无穷小量的阶(高阶、低阶、同阶和等价)。
会运用等价无穷小量替换求极限。
4.理解极 限存在 的两个收敛准则(夹逼准则与单调有界准则),掌握两个重要极限:1x sinx lim 0x =→,e x 11lim xx =⎪⎭⎫ ⎝⎛+∞→,并能用这两个重要极限求函数的极限。
(三)连续1.理解函数在一点处连续的概念,函数在一点处连续与函数在该点处极限存在的关系。
会判断分段函数在分段点的连续性。
2.理解函数在一点处间断的概念,会求函数的间断点,并会判 断间断点的类型。
3.理解“一切初等函数在其定义区间上都是连续的”,并会利用初等函数的连续性求函数的极限。
4.掌握闭区间上连续函数的性质:最值定理(有界性定理),介值定理(零点存在定理)。
会运用介值定理推证一些简单命题。
二、一元函数微分学 (一)导数与微分1.理解导数的概念及其几何意义,了解左导数与右导数的定义,理解函数的可导性与连续性的关系,会用定义求函数在一点处的导数。
2.会求曲线上一点处的切线方程与法线方程。
2017考试大纲数学

2017考试大纲数学2017年的数学考试大纲通常包括了数学基础知识点的复习指导和考试重点的说明,旨在帮助学生系统地复习数学课程内容,并为即将到来的考试做好准备。
虽然具体的考试大纲内容会根据不同的教育体系和考试要求有所变化,但一般会涵盖以下几个方面:1. 基础数学概念:包括但不限于数的概念、运算法则、分数、小数、百分数、比例等。
2. 代数:涉及变量和表达式、方程和不等式、函数、多项式、指数和对数等。
3. 几何:包括点、线、面、体的基本概念,以及角度、三角形、四边形、圆和其他几何图形的性质和关系。
4. 统计与概率:涉及数据的收集、整理、描述和分析,以及概率的基本概念和计算。
5. 微积分:对于高年级学生,可能会包括极限、导数、积分等概念。
6. 数学应用:将数学知识应用于解决实际问题,如物理、经济、社会科学等领域的问题。
7. 解题技巧:包括如何快速准确地解决数学问题,以及如何检查和验证答案。
8. 考试技巧:提供考试策略,如时间管理、答题顺序、避免常见错误等。
考试大纲还会指出哪些是重点内容,哪些是次要内容,以及不同知识点在考试中可能出现的题型和分值分布。
此外,考试大纲可能会提供一些样题或模拟题,帮助学生了解考试的难度和风格。
为了更好地准备考试,学生应该:- 仔细阅读并理解考试大纲中的每一个要求。
- 根据大纲重点复习相关章节和知识点。
- 定期进行模拟测试,以检验复习效果。
- 学会从错误中学习,及时调整复习策略。
最后,考试大纲是复习的指南,但学生也应该根据自己的实际情况,制定个性化的复习计划,确保全面而深入地掌握数学知识。
同时,保持积极的心态,合理安排学习时间,也是成功的关键。
浙江省专升本《高等数学》考试大纲

浙江省普通高校“专升本”统考科目:《高等数学》考试大纲考试要求考生应按本大纲的要求,掌握“高等数学”中函数、极限和连续、一元函数微分学、一元函数积分学、无穷级数、常微分方程、向量代数与空间解析几何的基本概念、基本理论和基本方法。
考生应注意各部分知识的结构及知识的联系;具有一定的抽象思维能力、逻辑推理能力、运算能力和空间想象能力;能运用基本概念、基本理论和基本方法进行推理、证明和计算;能运用所学知识分析并解决一些简单的实际问题。
求某点处极限,连续,和导数都要考虑其邻域。
即有左极限,右极限;左连续,右连续;左导,右导(有无定义,左导等不等于右导,对分段函数(只要有定义就要去求导,有的时候公式不能用的要用定义去求,例如)只要讨论有左右之分的分段点处)考试内容一、函数、极限和连续(一)函数1.理解函数的概念,会求函数的定义域、表达式及函数值,会作出一些简单的分段函数图像。
2.掌握函数的单调性、奇偶性、有界性和周期性。
3.理解函数y=ƒ(x)与其反函数y =ƒ-1(x)之间的关系(定义域、值域、图像),会求单调函数的反函数。
4.掌握函数的四则运算与复合运算; 掌握复合函数的复合过程。
5.掌握基本初等函数的性质及其图像。
6.理解初等函数的概念。
7.会建立一些简单实际问题的函数关系式。
(二)极限1.理解极限的概念(只要求极限的描述性定义),能根据极限概念描述函数的变化趋势。
理解函数在一点处极限存在的充分必要条件,会求函数在一点处的左极限与右极限。
2.理解极限的唯一性、有界性和保号性,掌握极限的四则运算法则。
3.理解无穷小量、无穷大量的概念,掌握无穷小量的性质,无穷小量与无穷大量的关系。
会比较无穷小量的阶(高阶、低阶、同阶和等价)。
会运用等价无穷小量替换求极限。
4.理解极限存在的两个收敛准则(夹逼准则与单调有界准则),掌握两个重要极限:1sin lim0=→x x x ,e )11(lim =+∞→x x x,并能用这两个重要极限求函数的极限。
2017浙江专升本高等数学真题答案

3
1 0
f ( x 2)dx f (t )dt f (t )dt f (t )dt f ( x)dx f ( x)dx
1 1 0 1 0 1 0
1
0
1
0
1
(1 x 2 )dx e x dx
1
(x
1 3 x ) 3
0 1
18、解:原式 x arcsin x x
1 1 x2
dx
x arcsin x
1 1 d (1 x 2 ) 2 1 x2
x arcsin x 1 x 2 C
19、解:令 t x 2, 则 x t 2 当 x 1 时, t 1 ,当 x 3 时, t 1 则
2 a 2 ................................................ ○ 1 ○ 2 可知: a 2, b 1 则联立○ 21、解: lim n
an 1 n 1 lim Fra bibliotek n an n
收敛半径 R 1 ,收敛区间 (1,1)
0,
1 ,无极小值. 2
则 f ( x ) 的单调增区间 ,0 ,单调减区间 0, ,极大值 f (0)
1 2 又 f ' ' ( x) ○ 2
x x e 2 xe 2 ( x)
2 2
1 2 e (1 x 2 ) 2
即微分方程: xy ' y x 即 y '
1 y 1 x
y e
1 dx x
( 1 e
2017数学考试大纲

2017数学考试大纲2017年的数学考试大纲通常会涵盖基础数学知识、代数、几何、统计与概率、微积分等核心领域。
考试大纲是指导学生复习和教师教学的重要文件,它规定了考试的范围和重点。
以下是对2017年数学考试大纲的一般性描述,具体内容可能因地区和教育体系的不同而有所差异。
基础数学知识:- 数字和计数:理解数字系统,包括整数、分数和小数。
- 基本运算:掌握加法、减法、乘法和除法。
- 四则运算:能够解决包含加减乘除的复合运算问题。
代数:- 变量和表达式:理解变量的概念,能够构建和简化代数表达式。
- 一元一次方程:解决线性方程,包括方程的解法和应用问题。
- 多项式:理解多项式的基本性质,包括加法、减法和乘法。
- 二次方程:掌握二次方程的解法,包括因式分解、配方法和求根公式。
几何:- 平面几何:理解直线、角度、三角形、四边形和圆的基本性质。
- 空间几何:掌握立体图形,如多面体和圆锥体的性质和计算。
- 坐标几何:理解坐标系,能够解决点、线和图形的坐标问题。
统计与概率:- 数据收集和呈现:理解数据的收集方法和图表的呈现方式。
- 描述性统计:掌握平均数、中位数、众数和标准差等统计量。
- 概率基础:理解事件的独立性和互斥性,掌握概率的计算方法。
微积分:- 极限和连续性:理解函数的极限和连续性的概念。
- 导数:掌握导数的定义、性质和计算方法。
- 积分:理解不定积分和定积分,掌握基本积分技巧。
其他数学主题:- 数列和级数:理解数列的通项公式和级数的收敛性。
- 矩阵和线性方程组:掌握矩阵的基本运算和线性方程组的解法。
- 复数:理解复数的表示和基本运算。
考试大纲还可能包含一些特定主题的深入研究,例如组合数学、图论、数论等,这些内容可能会根据具体的课程设置和考试要求而有所不同。
考生在复习时,应参考具体的考试大纲和教材,确保全面覆盖所有考试内容。
同时,考生还应注重解题技巧和策略的培养,提高解题速度和准确性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2017年浙江普通专升本高等数学考试大纲学研教育专升本
考试要求
考生应按本大纲的要求,掌握“高等数学”中函数、极限和连续、一元函数微分学、一元函数积分学、无穷级数、常微分方程、向量代数与空间解析几何的基本概念、基本理论和基本方法。
考生应注意各部分知识的结构及知识的联系;具有一定的抽象思维能力、逻辑推理能力、运算能力和空间想象能力;能运用基本概念、基本理论和基本方法进行推理、证明和计算;能运用所学知识分析并解决一些简单的实际问题。
考试内容
一、函数、极限和连续
(一)函数
1.理解函数的概念,会求函数的定义域、表达式及函数值,会作出一些简单的分段函数图像。
2.掌握函数的单调性、奇偶性、有界性和周期性。
3.理解函数y =ƒ(x)与其反函数y =ƒ-1(x)之间的关系(定义域、值域、图像),会求单调函数的反函数。
4.掌握函数的四则运算与复合运算; 掌握复合函数的复合过程。
5.掌握基本初等函数的性质及其图像。
6.理解初等函数的概念。
7.会建立一些简单实际问题的函数关系式。
(二)极限
1.理解极限的概念(只要求极限的描述性定义),能根据极限概念描述函数的变化趋势。
理解函数在一点处极限存在的充分必要条件,会求函数在一点处的左极限与右极限。
2.理解极限的唯一性、有界性和保号性,掌握极限的四则运算法则。
3.理解无穷小量、无穷大量的概念,掌握无穷小量的性质,无穷小量与无穷大量的关系。
会比较无穷小量的阶(高阶、低阶、同阶和等价)。
会运用等价无穷小量替换求极限。
4.理解极限存在的两个收敛准则(夹逼准则与单调有界准则),掌握两个重要极限:
,,
并能用这两个重要极限求函数的极限。
(三)连续
1.理解函数在一点处连续的概念,函数在一点处连续与函数在该点处极限存在的关系。
会判断分段函数在分段点的连续性。
2.理解函数在一点处间断的概念,会求函数的间断点,并会判断间断点的类型。
3.理解“一切初等函数在其定义区间上都是连续的”,并会利用初等函数的连续性求函数的极限。
4.掌握闭区间上连续函数的性质:最值定理(有界性定理),介值定理(零点存在定理)。
会运用介值定理推证一些简单命题。
二、一元函数微分学
(一)导数与微分
1.理解导数的概念及其几何意义,了解左导数与右导数的定义,理解函数的可导性与连续性的关系,会用定义求函数在一点处的导数。
2.会求曲线上一点处的切线方程与法线方程。
3.熟记导数的基本公式,会运用函数的四则运算求导法则,复合函数求导法则和反函数求
导法则求导数。
会求分段函数的导数。
4.会求隐函数的导数。
掌握对数求导法与参数方程求导法。
5.理解高阶导数的概念,会求一些简单的函数的n阶导数。
6.理解函数微分的概念,掌握微分运算法则与一阶微分形式不变性,理解可微与可导的关系,会求函数的一阶微分。
(二)中值定理及导数的应用
1.理解罗尔(Rolle)中值定理、拉格朗日(Lagrange)中值定理及它们的几何意义,理解柯西(Cauchy)中值定理、泰勒(Taylor)中值定理。
会用罗尔中值定理证明方程根的存在性。
会用拉格朗日中值定理证明一些简单的不等式。
2.掌握洛必达(L’Hospital)法则,会用洛必达法则求“”,“”,“”,“”,“”,“”和“”型未定式的极限。
3.会利用导数判定函数的单调性,会求函数的单调区间,会利用函数的单调性证明一些简单的不等式。
4.理解函数极值的概念,会求函数的极值和最值,会解决一些简单的应用问题。
5.会判定曲线的凹凸性,会求曲线的拐点。
6.会求曲线的渐近线(水平渐近线、垂直渐近线和斜渐近线)。
7.会描绘一些简单的函数的图形。
三、一元函数积分学
(一)不定积分
1.理解原函数与不定积分的概念及其关系,理解原函数存在定理,掌握不定积分的性质。
2.熟记基本不定积分公式。
3.掌握不定积分的第一类换元法(“凑”微分法),第二类换元法(限于三角换元与一些简单的根式换元)。
4.掌握不定积分的分部积分法。
5.会求一些简单的有理函数的不定积分。
(二)定积分
1.理解定积分的概念与几何意义, 掌握定积分的基本性质。
2.理解变限积分函数的概念,掌握变限积分函数求导的方法。
3.掌握牛顿—莱布尼茨(Newton—Leibniz)公式。
4.掌握定积分的换元积分法与分部积分法。
5.理解无穷区间上有界函数的广义积分与有限区间上无界函数的瑕积分的概念,掌握其计算方法。
6.会用定积分计算平面图形的面积以及平面图形绕坐标轴旋转一周所得的旋转体的体积。
四、无穷级数
(一)数项级数
1.理解级数收敛、级数发散的概念和级数的基本性质,掌握级数收敛的必要条件。
2.熟记几何级数,调和级数和p—级数的敛散性。
会用正项级数的比较审敛法与比值审敛法判别正项级数的敛散性。
3.理解任意项级数绝对收敛与条件收敛的概念。
会用莱布尼茨(Leibnitz) 判别法判别交错级数的敛散性。
(二)幂级数
1.理解幂级数、幂级数收敛及和函数的概念。
会求幂级数的收敛半径与收敛区间。
2.掌握幂级数和、差、积的运算。
3.掌握幂级数在其收敛区间内的基本性质:和函数是连续的、和函数可逐项求导及和函数
可逐项积分。
4.熟记ex,sinx,cosx,ln(1+x),的麦克劳林(Maclaurin)级数,会将一些简单的初等函数展开为x-x0的幂级数。
五、常微分方程
(一)一阶常微分方程
1.理解常微分方程的概念,理解常微分方程的阶、解、通解、初始条件和特解的概念。
2.掌握可分离变量微分方程与齐次方程的解法。
3.会求解一阶线性微分方程。
(二)二阶常系数线性微分方程
1.理解二阶常系数线性微分方程解的结构。
2.会求解二阶常系数齐次线性微分方程。
3.会求解二阶常系数非齐次线性微分方程(非齐次项限定为(Ⅰ) f(x),其中为x的n次多项式,为实常数;(Ⅱ),其中,为实常数,,分别为x的n次,m次多项式)。
六、向量代数与空间解析几何
(一)向量代数
1.理解向量的概念,掌握向量的表示法,会求向量的模、非零向量的方向余弦和非零向量在轴上的投影。
2.掌握向量的线性运算(加法运算与数量乘法运算),会求向量的数量积与向量积。
3.会求两个非零向量的夹角,掌握两个非零向量平行、垂直的充分必要条件。
(二)平面与直线
1.会求平面的点法式方程与一般式方程。
会判定两个平面的位置关系。
2.会求点到平面的距离。
3.会求直线的点向式方程、一般式方程和参数式方程。
会判定两条直线的位置关系。
4.会求点到直线的距离,两条异面直线之间的距离。
5.会判定直线与平面的位置关系。
试卷结构
试卷总分:150分
考试时间:150分钟
试卷内容比例:
函数、极限和连续约20%
一元函数微分学约30%
一元函数积分学约30%
无穷级数、常微分方程约15%
向量代数与空间解析几何约5%
试卷题型分值分布:
选择题共5题,每小题4 分,总分20分;
填空题共10题,每小题4 分,总分40分;
计算题共8题,总分60分;。