平面向量与圆锥曲线
高中数学圆锥曲线与向量的交汇(解析版)

圆锥曲线与向量的交汇一、考情分析平面向量与圆锥曲线的交汇是高考命题的一个显著特征,这类试题的常规形式是用向量形式给出某些条件或结论,其难点往往不在向量上,对向量部分只需运用向量基础知识即可实现相应转化.平面向量作为工具可以处理圆锥曲线中的长度、角度、共线、垂直、射影等许多问题,使得这类问题成为高考命题的一个热点,且时常出现在解答题中.二、解题秘籍(一)圆锥曲线中常见的向量条件及求解圆锥曲线与向量问题的策略1.设u 为直线l 的方向向量,若u =1,k ,则l 斜率为k ;若u =m .n (m ≠0),则l 斜率为n m;2.A 、B 、C 是平面内不重合的三点,若有下列条件之一,则A 、B 、C 共线:①AB =λAC ;②OC=λOA +μOB 且λ+μ=1;③OC =(OA +λOB)/(1+λ);④AB ∥AC .3.A 、B 、C 是平面内不重合的三点,若有下列条件之一,则C 为线段AB 的中点:①AC =CB ;②OC =12(OA +OB ).4.在四边形ABCD 中,若AB ∙AC =0,则AB ⊥AC ;若∣AB +AD ∣=∣AB -AD ∣,则AB ⊥AD ;若AB∙AC =AD ∙AC,则AC ⊥BD .5.圆锥曲线中涉及向量相等,通常利用横坐标或纵坐标相等进行转化,涉及向量共线问题,通项利用非零向量a=x 1,y 1 ,b =x 2,y 2 共线⇔x 1y 2-x 2y 1=0转化,涉及向量的数量积,通常利用数量积的坐标运算进行转化.6.圆锥曲线中两直线垂直问题,通常转化为两直线的方向向量的数量积为零,这样做可避免讨论直线的斜率是否存在.7.圆锥曲线中涉及数量积问题,通常利用数量积的坐标运算把所给条件转化为关于横(纵)坐标的表达式.【例1】(2023届黑龙江省鸡西市鸡东县高三上学期月考)已知两点M 0,-4 ,N 0,4 ,动点P 在x 轴的投影为Q ,且PM ⋅PN=3PQ 2,记动点P 的轨迹为曲线C .(1)求C 的方程.(2)过点F 26,0 的直线与曲线C 在y 轴右侧相交于A ,B 两点,线段AB 的垂直平分线与x 轴相交于点H ,试问ABFH是否为定值?若是,求出该定值;若不是,请说明理由.【解析】(1)设P x ,y ,则Q x ,0 ,PM =-x ,-4-y ,PN=-x ,4-y ,PQ =0,-y .因为PM ⋅PN=3PQ 2,所以x 2+y 2-16=3y 2,故C 的方程为x 216-y 28=1.(2)由题可知直线AB 的斜率一定存在,且不为0,不妨设直线AB 的方程为y =k x -26 ,A x 1,y 1 ,B x 2,y 2 .联立方程组y =k (x -26)x 216-y 28=1,消去y 整理得1-2k 2 x 2+86k 2x -48k 2-16=0,则Δ=384k 4+1-2k 2 192k 2+64 >0x 1+x 2=-86k 21-2k 2>0x 1x 2=-48k 2-161-2k 2>0 ,整理得k 2>12.x 1+x 22=-46k 21-2k 2,y 1+y 22=-26k1-2k 2,则线段AB 的垂直平分线的方程为y +26k 1-2k 2=-1k x +46k 21-2k 2,令y =0,得x =-66k 21-2k 2,则H -66k 21-2k 2,0,FH =26+66k 21-2k 2=261+k 2 1-2k 2.AB =1+k 2⋅x 1+x 22-4x 1x 2=1+k 2⋅-86k 21-2k 2 2-4⋅-48k 2-161-2k 2=1+k 2⋅384k 41-2k 2 2+192k 2+64 1-2k 21-2k 22=81+k 21-2k 2则AB FH =826=263.故AB FH是定值,该定值为263.(二)把点共线问题转化为向量共线此类问题通常是把点A ,B ,C 共线转化为AB =λBC,或点C 在直线AB 上.【例2】(2022届新疆昌吉教育体系高三上学期诊断)已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的左、右顶点分別为A 1,A 2,右焦点为F (1,0),且椭圆C 的离心率为12,M ,N 为椭圆C 上任意两点,点P 的坐标为(4,t )(t ≠0),且满足A 1M =λ1MP ,A 2N =λ2NP.(1)求椭圆C 的方程;(2)证明:M ,F ,N 三点共线.【解析】(1)椭圆C 的右焦点为F (1,0),且离心率为12,∴a =2,c =1,则b 2=a 2-c 2=3,∴椭圆C 的方程为x 24+y 23=1.(2)由(1)知,A 1,A 2的坐标分别为(-2,0),(2,0),设M x 1,y 1 ,N x 2,y 2 ,∴A 1M =(x 1+2,y 1),A 1P =(6,t ),A 2N =(x 2-2,y 2),A 2P=(2,t ),∵A 1M =λ1MP ,A 2N =λ2NP ,∴A 1,M ,P 三点共线,A 2,N ,P 三点共线,即6y 1=t x 1+2 2y 2=t x 2-2 ,整理得3y 1y 2=x 1+2x 2-2,两边平方得9y 21y 22=x 1+2 2x 2-2 2,①又M ,N 在椭圆上,则y 21=3-34x 21y 22=3-34x 22,代入①并化简得2x 1x 2-5x 1+x 2 +8=0,又FM =(x 1-1,y 1),FN=(x 2-1,y 2),∴要证M ,F ,N 三点共线,只需证y 2x 1-1 =y 1x 2-1 ,即y 1y 2=x 1-1x 2-1,只需证x 1+23x 2-2=x 1-1x 2-1,整理得2x 1x 2-5x 1+x 2 +8=0,∴M ,F ,N 三点共线.(三)利用向量共线求双变量的关系式此类问题一般是给出形如b =λa ,d =μc的条件,确定关于λ,μ的等式,求解思路是利用两向量相等横坐标与纵坐标分别相等(注意一般情况下横坐标相等与纵坐标相等,使用一个即可,解题时哪一个简单使用哪一个),把λ,μ用其他变量(若点的横坐标或纵坐标)表示,再利用题中条件消去其他变量.【例3】(2023届甘肃省张掖市高三上学期检测)椭圆C 的方程为x 2a 2+y 2b2=1a >b >0 ,过椭圆左焦点F 1且垂直于x 轴的直线在第二象限与椭圆相交于点P ,椭圆的右焦点为F 2,已知tan ∠PF 2F 1=312,椭圆过点A 3,12.(1)求椭圆C 的标准方程;(2)过椭圆C 的右焦点F 2作直线l 交椭圆C 于A 、B 两点,交y 轴于M 点,若MA =λ1AF 2 ,MB =λ2BF 2,求证:λ1+λ2为定值.【解析】(1)依题可知:PF 1=b 2a ,tan ∠PF 2F 1=b 2a2c =a 2-c 22ac =312,所以12a 2-12c 2=23ac ,即6c a 2+3ca-6=0,解得c a =32又∵椭圆C 过点A 3,12 ,则3a 2+14b2=1联立a 2=b 2+c 2c a =323a 2+14b 2=1可得a =2b =1c =3,椭圆C 的标准方程为x 24+y 2=1.(2)设点A x 1,y 1 、B x 2,y 2 ,F 3,0 ,由题意可知,直线l 的斜率存在,可设直线l 的方程为y =k x -3 ,联立y =k x -3 x 24+y 2=1,可得4k 2+1 x 2-83k 2x +12k 2-4=0,由于点F 2在椭圆C 的内部,直线l 与椭圆C 必有两个交点,由韦达定理可得x 1+x 2=83k 24k 2+1,x 1⋅x 2=12k 2-44k 2+1,∵MA =λ1AF 2 ,MB =λ2BF 2,M 0,y 0 ,得x 1,y 1-y 0 =λ13-x 1,-y 1 ,x 2,y 2-y 0 =λ23-x 2,-y 2 ,∴λ1=x 13-x 1,λ2=x 23-x 2,∴λ1+λ2=x 13-x 1+x 23-x 2=3x 1+x 2 -2x 1x 23-3x 1+x 2 +x 1x 2=24k 2-212k 2-44k 2+13+12k 2-4 -24k24k 2+1=-8.(四)利用向量加法的几何意义构造平行四边形若点A ,B ,C .D 满足AB +AD =AC,则四边形ABCD 是平行四边形,涉及圆锥曲线中的平行四边形要注意对边长度相等、斜率相等,两对角线中点为同一个点等条件的应用.【例4】(2023届四川省广安市岳池县高三上学期10月月考)已知椭圆C :x 2a 2+y 2b2=1(a >b >0)经过点M 3,12,左焦点F 1-3,0 .(1)求椭圆C 的方程;(2)过点D 0,3 作直线l 与椭圆C 交于A ,B 两点,点N 满足ON =OA+OB (O 为原点),求四边形OANB 面积的最大值.【解析】(1)设椭圆的焦距为2c ,则c =3,又因为椭圆经过点M 3,12 ,所以3a 2+14b2=1,又a 2-b 2=3 2∴c 2=3,a 2=4,b 2=1,所以椭圆C 的方程为x 24+y 2=1.(2)因为ON =OA+OB ,所以四边形OANB 为平行四边形,当直线l 的斜率不存在时,显然不符合题意;当直线l 的斜率存在时,设直线l 的方程为y =kx +3,l 与椭圆交于A (x 1,y 1),B (x 2,y 2)两点,由y =kx +3x 24+y 2=1⇒(1+4k 2)x 2+24kx +32=0.由Δ=242k 2-128(1+4k 2)>0⇒k 2>2.x 1+x 2=-24k 1+4k 2,x 1x 2=321+4k 2,∵S △OAB =12|OD ||x 1-x 2|=32|x 1-x 2|,∴S ▱OANB =2S △OAB =3|x 1-x 2|=3(x 1+x 2)2-4x 1x 2=3-24k 1+4k 2 2-4×321+4k 2=3242k 2-128(1+4k 2)(1+4k 2)2=24k 2-2(1+4k 2)2,令k 2-2=t ,则k 2=t +2(由上式知t >0),∴S ▱OANB =24t (4t +9)2=24172+16t +81t≤241144=2,当且仅当t =94,即k 2=174>2时取等号.∴当k =±172时,平行四边形OANB 的面积最大值为2.(五)把向量的数量积转化为代数式若圆锥曲线问题有用向量数量积给出的条件,通常是利用向量数量积的坐标运算进行转化.【例5】(2023届广东省荔湾区高三上学期10月调研)已知双曲线C :x 2a 2-y 2b2=1(a >b >0)的右焦点为F 2,0 ,O 为坐标原点,双曲线C 的两条渐近线的夹角为π3.(1)求双曲线C 的方程;(2)过点F 作直线l 交C 于P ,Q 两点,在x 轴上是否存在定点M ,使MP ⋅MQ为定值?若存在,求出定点M 的坐标及这个定值;若不存在,说明理由.【解析】(1)双曲线x 2a 2-y 2b2=1的渐近线为y =±ba x ,又a >b >0,0<b a <1,故其渐近线y =b a x 的倾斜角小于π4,而双曲线C 的两条渐近线的夹角为π3,则渐近线的y =b a x 的倾斜角为π6,则b a =33,即a =3b .又a 2+b 2=2,则a =3,b =1.所以双曲线C 的方程是x 23-y 2=1.(2)当直线l 不与x 轴重合时,设直线l 的方程为x =ty +2,代入x 23-y 2=1,得(ty +2)2-3y 2=3,即t 2-3 y 2+4ty +1=0.设点P x 1,y 1 ,Q x 2,y 2 ,则y 1+y 2=-4t t 2-3,y 1y 2=1t 2-3.设点M m ,0 ,则MP ⋅MQ=x 1-m x 2-m +y 1y 2=ty 1+2-m ty 2+2-m +y 1y 2=t 2+1 y 1y 2+t 2-m y 1+y 2 +(2-m )2=t 2+1t 2-3-4t 22-m t 2-3+(2-m )2=m 2-3 t 2-3m 2-12m +11 t 2-3令3m 2-12m +11=3m 2-3 ,得m =53,此时MP ⋅MQ =m 2-3=-29.当直线l 与x 轴重合时,则点P ,Q 为双曲线的两顶点,不妨设点P -3,0 ,Q 3,0 .对于点M 53,0 ,MP ⋅MQ =-3-53,0 ·3-53,0 =-29.所以存在定点M 53,0 ,使MP ⋅MQ =m 2-3=-29为定值.(六)把垂直问题转化为向量的数量积为零求解圆锥曲线中的垂直问题,通常可转化为向量的数量积为零,然后利用向量数量积的坐标运算进行转化,这种转化可避免讨论直线的斜率是否存在.【例6】已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的右焦点为F ,椭圆C 上的点到F 的距离的最大值和最小值分别为2+3和2-3.(1)求椭圆C 的标准方程;(2)若圆O :x 2+y 2=r 2的切线l 与椭圆C 交于A ,B 两点,是否存在正数r ,使得OA ⊥OB ?若存在,求出r 的值;若不存在,请说明理由.【解析】(1)由题意可得,a +c =2+3a -c =2-3 ,解得a =2,c =3,则b 2=4-3=1,所以椭圆方程为x 24+y 2=1;(2)假设存在正数r ,使得OA ⊥OB ,即使得OA ⋅OB=0,当直线l 的斜率不存在时,设直线l 的方程为x=t ,可得A t ,4-t 22 ,B t ,-4-t 22,因为OA ⋅OB =0,则有t 2-4-t 24=0,解得t =±255,又直线l 为圆O :x 2+y 2=r 2的切线,所以r =255;当直线l 的斜率存在时,设直线l 的方程为y =kx +m (m ≠0),A (x 1,y 1),B (x 2,y 2),联立y =kx +m x 24+y 2=1,可得(1+4k 2)x 2+8km x +4(m 2-1)=0,则Δ=64k 2m 2-16(1+4k 2)(m 2-1)=16(4k 2-m 2+1)>0,所以4k 2-m 2+1>0,且x 1+x 2=-8km 1+4k 2,x 1x 2=4(m 2-1)1+4k 2,所以y 1y 2=(kx 1+m )(kx 2+m )=kx 1x 2+km (x 1+x 2)+m 2,因为OA ⋅OB =0,则y 1y 2x 1x 2=k 2x 1x 2+km (x 1+x 2)+m 2x 1x 2=-1,所以(k 2+1)x 1x 2+km (x 1+x 2)+m 2=0,整理可得4k 2+4=5m 2,则m 21+k 2=45,所以|m |1+k 2=255,因为直线l 为圆O :x 2+y 2=r 2的切线,故原点(0,0)到y =kx +m 的距离为r =|m |1+k2=255,所以存在正数r =255,使得OA ⊥OB .三、跟踪检测1.(2023届重庆市第八中学校高三上学期月考)已知双曲线E :x 2a 2-y 2b2=1(a >0,b >0)一个顶点为A -2,0 ,直线l 过点Q 3,0 交双曲线右支于M ,N 两点,记△AMN ,△AOM ,△AON 的面积分别为S ,S 1,S 2.当l 与x 轴垂直时,S 1的值为152.(1)求双曲线E 的标准方程;(2)若l 交y 轴于点P ,PM =λMQ ,PN=μNQ ,求证:λ+μ为定值;(3)在(2)的条件下,若1625S =μS 1+mS 2,当5<λ≤8时,求实数m 的取值范围.【解析】(1)由题意得a =2,OA =2,则当l 与x 轴垂直时,不妨设M 3,y 1 ,由S 1=12OA ⋅y 1 =152,得y 1 =152,将M 3,y 1 代入方程x 24-y 2b 2=1,得94-154b2=1,解得b 2=3,所以双曲线E 的方程为x 24-y 23=1.(2)设M x 1,y 1 ,N x 2,y 2 ,P 0,y 0 ,由PM=λMQ 与Q 3,0 ,得x 1,y 1-y 0 =λ3-x 1,-y 1 ,即x 1=3λ1+λ,y 1=y 01+λ,将M 3λ1+λ,y 01+λ代入E 的方程得:3λ1+λ 24-y 01+λ 23=1,整理得:15λ2-24λ-4y 20-12=0①,同理由PN =μNQ 可得15μ2-24μ-4y 20-12=0②.由①②知,λ,μ是方程15x 2-24x -4y 20-12=0的两个不等实根.由韦达定理知λ+μ=2415=85,所以λ+μ为定值.(3)又1625S =μS 1+mS 2,即1625⋅12⋅AQ ⋅y 1-y 2 =μ12⋅2⋅y 1 +m ⋅12⋅2⋅y 2 ,整理得:85y 1-y 2 =μy 1 +m y 2 ,又y 1y 2<0,不妨设y 2<0<y 1,则85y 1-y 2 =μy 1-my 2,整理得m =85-85-μ y 1y 2,又λ+μ=85,故m =85-λy 1y 2,而由(2)知y 1=y 01+λ,y 2=y 01+μ,故y 1y 2=1+μ1+λ,代入m =85-λ⋅1+μ1+λ=85-λ135-λ 1+λ,令1+λ=t t ∈6,9 ,得m =85-t -1 185-t t =-3+t +185t,由双勾函数y =t +185t 在6,9 上单调递增,得m =-3+t +185t ∈185,325 ,所以m 的取值范围为185,325.2.(2023届江苏省连云港市高三上学期10月联考)已知椭圆中有两顶点为A -1,0 ,B 1,0 ,一个焦点为F 0,1 .(1)若直线l 过点F 且与椭圆交于C ,D 两点,当CD =322时,求直线l 的方程;(2)若直线l 过点T 0,t t ≠0 且与椭圆交于C ,D 两点,并与x 轴交于点P ,直线AD 与直线BC 交于点Q ,当点P 异A ,B 两点时,试问OP ⋅OQ是否是定值?若是,请求出此定值,若不是,请说明理由.【解析】(1)∵椭圆的焦点在y 轴上,设椭圆的标准方程为y 2a 2+x 2b2=1(a >b >0),由已知得b =1,c =1,所以a =2,椭圆的方程为y 22+x 2=1,当直线l 与x 轴垂直时与题意不符,设直线l 的方程为y =kx +1,C x 1,y 1 ,D x 2,y 2 ,将直线l 的方程代入椭圆的方程化简得k 2+2 x 2+2kx -1=0,则x 1+x 2=-2k k 2+2,x 1⋅x 2=-1k 2+2,∴CD =1+k 2⋅x 1+x 2 2-4x 1x 2=1+k 2⋅-2k k 2+2 2+4⋅1k 2+2=22(k 2+1)k 2+2=322,解得k =±2.∴直线l 的方程为y =±2x +1;(2)当l ⊥x 轴时,AC ⎳BD ,不符合题意,当l 与x 轴不垂直时,设l :y =kx +t ,则P -tk,0 ,设C x 1,y 1 ,D x 2,y 2 ,联立方程组y =kx +tx 2+y 22=1得2+k 2 x 2+2ktx +t 2-2=0,∴x 1+x 2=-2kt 2+k 2,x 1x 2=t 2-22+k 2,又直线AD :y =y 2x 2+1(x +1),直线BC :y =y 1x 1-1(x -1),由y =y 2x 2+1(x +1)y =y 1x 1-1(x -1)可得y 2x 2+1(x +1)=y 1x 1-1(x -1),即kx 2+t x 2+1(x +1)=kx 1+t x 1-1(x -1),kx 2+t x 1-1 (x +1)=kx 1+t x 2+1 (x -1),kx 1x 2-kx 2+tx 1-t x +1 =kx 1x 2+kx 1+tx 2+t x -1 ,k x 1+x 2 +t x 2-x 1 +2t x =2kx 1x 2-k x 2-x 1 +t x 1+x 2 ,k ⋅-2kt 2+k 2+t x 2-x 1 +2t x =2k ⋅t 2-22+k 2-k x 2-x 1 +t ⋅-2kt 2+k 2,4t 2+k 2+t x 2-x 1 x =-4k 2+k2-k x 2-x 1 ,即t 42+k 2+x 2-x 1 x =-k 42+k 2+x 2-x 1 ,得x =-kt,∴Q 点坐标为Q -kt,y Q ,∴OP ⋅OQ =-t k ,0 ⋅-k t ,y Q =-t k-kt +0⋅y Q =1,所以OP ⋅OQ=1为定值.3.(2023届四川省成都市郫都区高三上学期检测)已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的离心率为32,短轴长为4.(1)求椭圆C 的方程;(2)若过点P 0,1 的直线交椭圆C 于A ,B 两点,求OA ⋅OB的取值范围.【解析】(1)∵e =c a =32,2b =4,∴b =2,又a 2=b 2+c 2,即a 2=4+34a 2,解得:a =4,c =23,∴椭圆的标准方程为x 216+y 24=1;(2)当直线AB 的斜率不存在时,AB :x =0,不妨设A 0,2 ,B 0,-2 ,则OA ⋅OB=-4当直线AB 的斜率存在时,设AB :y =kx +1,A x 1,y 1 ,B x 2,y 2 ,由x 216+y 24=1y =kx +1得4k 2+1 x 2+8kx -12=0,Δ=64k 2+484k 2+1 >0恒成立,故x 1+x 2=-8k 4k 2+1,x 1x 2=-124k 2+1,∴OA ⋅OB=x 1x 2+y 1y 2=x 1x 2+kx 1+1 kx 2+1=k 2+1 x 1x 2+k x 1+x 2 +1=k 2+1 -124k 2+1 -8k 24k 2+1+1=-12k 2-12-8k 2+4k 2+14k 2+1=-16k 2-114k 2+1=-4-74k 2+1∈-11,-4 ,综上:OA ⋅OB ∈-11,-4 ,故OA ⋅OB的取值范围为-11,-4 .4.(2023届江苏省南通市如皋市高三上学期9月诊断测试)已知点B 、A 分别是椭圆Γ:x 24+y 23=1的左、右顶点,过Γ的右焦点F 作直线l 交Γ于M ,N 两点,(1)设直线AM ,AN ,BM 的斜率分别为k 1,k 2,k 3,求k 1k 2和k2k 3的值;(2)若直线AM ,AN 分别交椭圆Γ的右准线于P ,Q 两点,证明:以PQ 为直径的圆经过定点.【解析】(1)由已知F (1,0),A (2,0),B (-2,0),直线l 的斜率不存在时,方程为x =1,不妨设M 1,32 ,N 1,-32,k 1=321-2=-32,同理k 2=32,k 3=321-(-2)=12,k 1k 2=-94,k2k 3=3,直线l 斜率存在时,设直线方程为y =k (x -1),设M (x 1,y 1),N (x 2,y 2),由x 24+y 23=1y =k (x -1),得(3+4k 2)x 2-8k 2x +4k 2-12=0,x 1+x 2=8k 23+4k 2,x 1x 2=4k 2-123+4k 2,k 1=y 1x 1-2,k 2=y 2x 2-2,k 3=y 1x 1+2,k 1k 2=y 1y 2(x 1-2)(x 2-2)=k 2(x 1-1)(x 2-1)(x 1-2)(x 2-2)=k 2(x 1x 2-x 1-x 2+1)x 1x 2-2(x 1+x 2)+4=k 24k 2-123+4k 2-8k 23+4k 2+1 4k 2-123+4k 2-16k 23+4k 2+4=k 2(4k 2-12-8k 2+3+4k 2)4k 2-12-16k 2+12+16k 2=-94,k 2k 3=y 2(x 1+2)y 1(x 2-2)=k (x 2-1)(x 1+2)k (x 1-1)(x 2-2)=x 1x 2-x 1+2x 2-2x 1x 2-2x 1-x 2+2因为2x 1x 2-5(x 1+x 2)+8=2(4k 2-12)3+4k 2-40k 23+4k 2+8=0,所以x 1x 2-x 1+2x 2-2=3(x 1x 2-2x 1-x 2+2),所以k2k 3=3,综上,k 1k 2=-94,k2k 3=3;(2)由已知a =2,b =3,c =1,右准线方程为x =a 2c=4,由(1)知直线AM 方程为y =y 1x 1-2(x -2),令x =4得y P =2y 1x 1-2=2k 1,同理y Q =2y 2x 2-2=2k 2,由椭圆的对称性知,以PQ 为直径的圆有一个圆心x 轴上方的圆,则必定也有一个与之关于x 轴对称的圆,这两个圆的交点在x 轴上,以PQ 为直径的圆经过定点,这个定点必在x 轴上,设定点为G (t ,0),则GP ⋅GQ =0,由(1)得GP ⋅GQ=(4-t ,2k 1)⋅(4-t ,2k 2)=(4-t )2+4k 1k 2=(4-t )2-9=0,t =7或t =1,所以以PQ 为直径的圆经过定点(1,0),(7,0).5.(2023届湖南省部分校高三上学期9月月考)已知双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的离心率为62,点A 6,4 在C 上.(1)求双曲线C 的方程.(2)设过点B 1,0 的直线l 与双曲线C 交于D ,E 两点,问在x 轴上是否存在定点P ,使得PD ⋅PE为常数?若存在,求出点P 的坐标以及该常数的值;若不存在,请说明理由.【解析】(1)因为双曲线C 的离心率为62,所以62 2=1+b 2a2,化简得a 2=2b 2.将点A 6,4 的坐标代入x 22b 2-y 2b 2=1,可得18b 2-16b2=1,解得b 2=2,所以C 的方程为x 24-y 22=1.(2)设D x 1,y 1 ,E x 2,y 2 ,直线l 的方程为y =k (x -1),联立方程组y =k x -1 ,x 24-y 22=1,消去y 得(1-2k 2)x 2+4k 2x -2k 2-4=0,由题可知1-2k 2≠0且Δ>0,即k 2<23且k 2≠12,所以x 1+x 2=-4k 21-2k 2,x 1x 2=-2k 2+41-2k 2.设存在符合条件的定点P t ,0 ,则PD =x 1-t ,y 1 ,PE=x 2-t ,y 2 ,所以PD ⋅PE=x 2-t x 1-t +y 1y 2=k 2+1 x 1x 2-t +k 2 x 1+x 2 +t 2+k 2.所以PD ⋅PE =k 2+1 -2k 2-4 +4k 2t +k 2 +t 2+k 2 1-2k 2 1-2k 2,化简得PD ⋅PE =k 2-2t 2+4t -5 +t 2-4-2k 2+1.因为PD ⋅PE 为常数,所以-2t 2+4t -5-2=t 2-41,解得t =134.此时该常数的值为t 2-4=10516,所以,在x 轴上存在点P 134,0 ,使得PD ⋅PE 为常数,该常数为10516.6.(2023届广东省茂名市高三上学期9月联考)如图,平面直角坐标系xOy 中,点Q 为x 轴上的一个动点,动点P 满足PO =PQ =32,又点E 满足PE =12EQ .(1)求动点E 的轨迹Γ的方程;(2)过曲线Γ上的点A x 0,y 0 (x 0y 0≠0)的直线l 与x ,y 轴的交点分别为M 和N ,且NA =2AM,过原点O 的直线与l 平行,且与曲线Γ交于B 、D 两点,求△ABD 面积的最大值.【解析】(1)由题意,设E x ,y ,P 12x ,y,由PO =PQ =32得Q x,0 ,且x 24+y 2=94,由PE =12EQ 得E 23x ,23y ,则x =23x y =23y ,得x =32x y =32y,代入x 24+y 2=94整理得x 24+y 2=1,故动点E 的轨迹Γ的方程为x 24+y 2=1.(2)如图,设A x 0,y 0 (x 0y 0≠0),又直线l 的斜率存在且k ≠0,∴设直线l 为:y -y 0=k x -x 0 ,可得:M x 0-y 0k,0 ,N 0,y 0-kx 0 ,由NA =2AM ,则x 0,kx 0 =2-y 0k ,-y 0 ,故x 0=-2y 0k,kx 0=-2y 0,联立x 204+y 20=1x 0=-2y 0k,可得:y 20=k 21+k 2,即y 0 =k 1+k 2,又BD ⎳l ,故直线BD 的方程为y =kx ,联立x 24+y 2=1y =kx,得:x 2=41+4k 2,即B 、D 的横坐标为±21+4k 2,∴BD =1+k 2x B -x D =41+k 21+4k 2,∵点A 到直线BD 的距离d =kx 0-y 0 1+k 2=3y 01+k 2=3k 1+k 2,∴S △ABD =12BD ⋅d =6k 1+4k 21+k 2=61+k 2 1+4k 2k 2=64k 2+1k2+5≤624k 2×1k2+5=2,当且仅当4k 2=1k2,即k =±22时等号成立,∴△ABD 面积的最大值为2.7.(2023届福建师范大学附属中学高三上学期月考)在平面直角坐标系xOy 中, 设点P -13,0 ,Q 13,0 ,点G 与P ,Q 两点的距离之和为43,N 为一动点, 点N 满足向量关系式:GN +GP +GQ =0 .(1)求点N 的轨迹方程C ;(2)设C 与x 轴交于点A ,B (A 在B 的左侧), 点M 为C 上一动点(且不与A ,B 重合).设直线AM ,x 轴与直线x =4分别交于点R ,S ,取E (1,0),连接ER ,证明:ER 为∠MES 的角平分线.【解析】(1)设点N (x ,y ),G (x ,y ),则由点G 与P ,Q 两点的距离之和为43>|PQ |=23,可得点G 的轨迹是以P ,Q 为焦点且长轴长为43的椭圆,其轨迹方程为94x 2+3y 2=1,由GN +GP +GQ =0 ,可得x =x 3,y =y 3,代入点G 的轨迹方程,可得:94x 3 2+3y 32=1,所以点N 的轨迹方程C :x 24+y 23=1;(2)设点M (x 0,y 0),则ME :y =y 0x 0-1(x -1),即y 0x -(x 0-1)y -y 0=0,MA :y =y 0x 0+2(x +2),令x =4,得y =6y 0x 0+2,∴R 4,6y 0x 0+2,则点R 到直线ME 的距离为:d =4y 0-6y 0(x 0-1)x 0+2-y 0y 20+(x 0-1)2=|3y 0(4-x 0)|(x 0+2)y 20+(x 0-1)2=(12-3x 0)|y 0|(x 0+2)y 20+(x 0-1)2,要证ER 为∠MES 的角平分线,只需证d =|RS |,又|RS |=|y R |=6|y 0|x 0+2,∵y 0≠0,所以d =|RS |,当且仅当4-x 0y 20+(x 0-1)2=2,即(4-x 0)2=4[y 20+(x 0-1)2]时,又(x 0,y 0)在C 上,则x 204+y 203=1,即4y 20=12-3x 20,代入上式可得16-8x 0+x 20=12-3x 20+4x 20-8x 0+4恒成立,∴ER 为∠MES 的角平分线.8.(2023届山西省山西大学附属中学校高三上学期9月诊断)如图,椭圆C :x 2a 2+y 2b2=1((a >b >0),|A 1B 1|=7,F 1是椭圆C 的左焦点,A 1是椭圆C 的左顶点,B 1是椭圆C 的上顶点,且A 1F 1 =F 1O,点P (n ,0)(n ≠0)是长轴上的任一定点,过P 点的任一直线l 交椭圆C 于A ,B 两点.(1)求椭圆C 的方程;(2)是否存在定点Q (x 0,0),使得QA ⋅QB为定值,若存在,试求出定点Q 的坐标,并求出此定值;若不存在,请说明理由.【解析】(1)由已知知a 2+b 2=7a -c =c a 2=b 2+c 2 ,解得a =2b =3c =1,所以椭圆方程为x 24+y 23=1;(2)假设存在Q (x 0,0)满足题意,设A (x 1,y 1),B (x 2,y 2),QA =(x 1-x 0,y 1),QB=(x 2-x 0,y 2),①当直线l 与x 轴不垂直时,设l :y =k (x -n ),代入x 24+y 23=1并整理得(4k 2+3)x 2-8k 2nx +4k 2n 2-12=0∴x 1+x 2=8k 2n 4k 2+3,x 1x 2=4k 2n 2-124k 2+3QA ⋅QB=(x 1-x 0)(x 2-x 0)+y 1y 2=(x 1-x 0)(x 2-x 0)+k 2(x 1-n )(x 2-n )=(k 2+1)x 1x 2-(k 2n +x 5)(x 1+x 2)-x 20+k 2n 2=k 2+1 4k 2n 2-124k 2+3-k 2n +x 0 8k 2n 4k 2+3-x 20+k 2v 2=7n 2-8nx 0+4x 20-12 k 2+3x 20-124k 2+3 (*)(*)式是与k 无关的常数,则3(7n 2-8nx 0+4x 20-12)=4(3x 20-12)解得x 0=12n +7n 8,此时QA ⋅QB =x 20-4=12n +7n 82-4为定值;②当直线l 与x 垂直时,l :x =n ,A n ,31-n 24 ,B n ,-31-n 24,QA ⋅QB =(n -x 0)2-31-n 24 =x 20-4=12n +7n 82-4也成立,所以存在定点Q 12n +7n 8,0 ,使得QA ⋅QB =12n +7n 82-4为定值.9.(2023届北京市第四中学高三上学期开学测试)已知中心在原点,焦点在x 轴上的椭圆C 过点1,32,离心率为32,点A 为其右顶点.过点B 1,0 作直线l 与椭圆C 相交于E 、F 两点,直线AE 、AF 与直线x =3分别交于点M 、N .(1)求椭圆C 的方程;(2)求EM ⋅FN的取值范围.【解析】(1)由题意设椭圆的标准方程为x 2a 2+y 2b2=1(a >b >0),由题意,得1a 2+34b 2=1c a =32a 2=b 2+c 2,解得a 2=4,b 2=1,即椭圆C 的标准方程为x 24+y 2=1.(2)由(1)得A (2,0),设l :x =ty +1,E (x 1,y 1),F (x 2,y 2),联立x =ty +1x 2+4y 2-4=0,得(ty +1)2+4y 2-4=0,即(t 2+4)y 2+2ty -3=0,则y 1+y 2=-2t t 2+4,y 1y 2=-3t 2+4,直线AE ,AF 的方程分别为y =y 1x 1-2(x -2),y =y 2x 2-2(x -2),令x =3,则M 3,y 1x 1-2 ,N 3,y 2x 2-2,则EM =3-x 1,y 13-x 1 x 1-2 =2-ty 1,y 12-ty 1 ty 1-1,FN =3-x 2,y 23-x 2 x 2-2 =2-ty 2,y 22-ty 2 ty 2-1,所以EM ⋅FN =2-ty 1 2-ty 1 +y 1y 22-ty 1 2-ty 2 ty 1-1 ty 2-1 =t 2y 1y 2-2t y 1+y 2 +4 1+y 1y 2t 2y 1y 2-t y 1+y 2 +1=-3t 2t 2+4+4t 2t 2+4+4 1+-3t 2+4-3t 2t 2+4+2t 2t 2+4+1 =5t 2+164(t 2+4)=5(t 2+4)-44(t 2+4)=54-1t 2+4因为t 2+4≥4,所以0<1t 2+4≤14,1≤54-1t 2+4<54,即EM ⋅FN 的取值范围为1,54 .10.(2023届湖北省“宜荆荆恩”高三上学期考试)已知双曲线C 与双曲线x 212-y 23=1有相同的渐近线,且过点A (22,-1).(1)求双曲线C 的标准方程;(2)已知D (2,0),E ,F 是双曲线C 上不同于D 的两点,且DE ⋅DF=0,DG ⊥EF 于G ,证明:存在定点H ,使|GH |为定值.【解析】(1)因为双曲线C 与已知双曲线有相同的渐近线,设双曲线C 的标准方程为x 2-4y 2=λ代入点A 坐标,解得λ=4所以双曲线C 的标准方程为x 24-y 2=1(2)(i )当直线EF 斜率存在时,设EF :y =kx +m ,设E x 1,y 1 F x 2,y 2 ,联立y =kx +m 与双曲线x 24-y 2=1,化简得4k 2-1 x 2+8km x +4m 2+1 =0,Δ=(8km )2-44m 2+4 4k 2-1 >0,即4k 2-m 2-1<0,则有x 1+x 2=-8km4k 2-1x 1x 2=4m 2+44k 2-1,又y 1y 2=kx 1+m kx 2+m =k 2x 1x 2+km x 1+x 2 +m 2,因为DE ⋅DF=x 1-2 x 2-2 +y 1y 2=0,所以k 2+1 ⋅x 1x 2+km -2 ⋅x 1+x 2 +m 2+4=0,所以k 2+1 ⋅4m 2+44k 2-1+km -2 ⋅-8km 4k 2-1+m 2+4=0,化简,得3m 2+16km +20k 2=0,即3m +10k m +2k =0,所以m 1=-2k ,m 2=-103k ,且均满足4k 2-m 2-1<0,当m 1=-2k 时,直线l 的方程为y =k x -2 ,直线过定点2,0 ,与已知矛盾,当m 2=-103k 时,直线l 的方程为y =k x -103,过定点103,0 (ii )当直线EF 斜率不存在时,由对称性不妨设直线DE :y =x -2,与双曲线C 方程联立解得x E =x F =103,此时EF 也过点M 103,0 ,综上,直线EF 过定点M 103,0 .由于DG ⊥EF ,所以点G 在以DM 为直径的圆上,H 为该圆圆心,GH 为该圆半径,所以存在定点H 83,0,使GH 为定值23.11.(2023届四川省达州市开江县高三上学期考试)已知椭圆C :x 2a 2+y 2b2=1(a >b >0),F 1、F 2为椭圆C 的左、右焦点,过点F 1的任意直线l 交椭圆C 于A 、B 两点,且△ABF 2的周长为8,椭圆C 的离心率为12.(1)椭圆C 的方程;(2)若P 为椭圆C 上的任一点,PM 、PN 为过焦点F 1、F 2的弦,且PF 1 =λ1F 1M ,PF 2 =λ2F 2N,求λ1+λ2的值.【解析】(1)由题意可知, △ABF 2的周长为AF 1+AF 2+BF 1+BF 2=4a =8.所以a =2,又c a =12,所以c =1,则b =3,所以椭圆C 的方程为x 24+y 23=1.(2)不妨令P x 0,y 0 ,M x 1,y 1 ,N x 2,y 2 .所以x 204+y 203=1,即3x 20+4y 20=12.当y 0≠0时,不妨设直线PM 为x =m 1y -1,其中m 1=x 0+1y 0.直线PN 为x =m 2y +1,其中m 2=x 0-1y 0.联立方程3x 2+4y 2=12x =m 1y -1 ,得3m 21+4 y 2-6m 1y -9=0.所以y 0y 1=-93m 21+4,即1y 1=3m 21+4 y 0-9.同理可得:1y 2=3m 22+4 y 0-9.又PF 1 =λ1F 1M ,PF 2 =λ2F 2M .所以λ1y 1+y 0=0λ2y 2+y 0=0.则λ1+λ2=-y 01y 1+1y 2=y 2093m 21+m 22 +8 =y 203m 21+m 22 +8y 209=13m 1y 0 2+m 2y 0 2+8y 209=13x 0+1 2+x 0-1 2+8y 209=293x 20+4y 20 +23=103,综上所述,λ1+λ2=103.12.(2022届上海市普陀区高三一模)已知点M x ,y 与定点F 1,0 的距离是点M 到直线x -2=0距离的22倍,设点M 的轨迹为曲线Γ,直线l :x +my +1=0m ∈R 与Γ交于A 、B 两点,点C 是线段AB 的中点,P 、Q 是Γ上关于原点O 对称的两点,且PO =λOCλ>0 .(1)求曲线Γ的方程;(2)当λ=3时,求直线l 的方程;(3)当四边形PAQB 的面积S =6时,求λ的值.【解析】(1)由题意可得x -12+y 2x -2=22,化简可得x 22+y 2=1,因此,曲线Γ的方程为x 22+y 2=1.(2)设点A x 1,y 1 、B x 2,y 2 ,联立x +my +1=0x 22+y 2=1,可得m 2+2 y 2+2my -1=0,Δ=4m 2+4m 2+2 =8m 2+1 >0,由韦达定理可得y 1+y 2=-2m m 2+2,y 1y 2=-1m 2+2,则y 1+y 22=-m m 2+2,x 1+x 22=-m ⋅y 1+y 22-1=-2m 2+2,所以点C 的坐标为-2m 2+2,-mm 2+2,因为PO =3OC =-23m 2+2,-3m m 2+2,可得点P 23m 2+2,3m m 2+2 ,将点P 的坐标代入曲线Γ的方程得6+3m 2m 2+22=3m 2+2=1,解得m =±1,因此,直线l 的方程为x ±y +1=0.(3)由(2)可得PO =λOC =-2λm 2+2,-λm m 2+2 ,则点P 2λm 2+2,λmm 2+2,则点Q -2λm 2+2,-λmm 2+2,因为点P 在曲线Γ上,则2λ2+λ2m 2m 2+22=1,可得λ2=m 2+2,因为λ>0,则λ=m 2+2≥2,点P 到直线l 的距离为d 1=2λ+λm 2m 2+2+1m 2+1=λ+1m 2+1,点Q 到直线l 的距离为d 2=-2λ+λm 2m 2+2+1m 2+1=λ-1m 2+1,AB =1+m 2⋅y 1+y 2 2-4y 1y 2=1+m 2⋅-2m m 2+2 2+4m 2+2=22m 2+1 m 2+2,所以,S =12AB ⋅d 1+d 2 =12×22m 2+1 m 2+2×2λm 2+1=22⋅λ2-1λ=6,因为λ>0,解得λ=2.13.(2022届内蒙古赤峰市高三上学期11月联考)已知椭圆C :x 2a 2+y 2b2=1a >b >0 的焦点恰为椭圆D :x 24+y 23=1长轴的端点,且C 的短轴长为2(1)求椭圆C 的方程.(2)若直线l 与直线y =2x -1平行,且l 与C 交于A ,B 两点,M 1,0 ,求MA ⋅MB的最小值.【解析】(1)由椭圆D :x 24+y 23=1,可得其长轴的端点分别为(-2,0),(2,0),根据题意,可得a 2-b 2=42b =2 ,解得a 2=5,b 2=1,故C 的方程为x 25+y 2=1.(2)设直线l 的方程为y =2x +m m ≠-1 ,联立方程组x 25+y 2=1y =2x +m,整理得21x 2+20mx +5m 2-5=0,设A x 1,y 1 ,B x 2,y 2 ,则x 1+x 2=-20m 21,x 1x 2=5m 2-521,且Δ=400m 2-845m 2-5 =2021-m 2 >0,解得m 2<21且m ≠-1所以MA ⋅MB=x 1-1 x 2-1 +y 1y 2=x 1x 2-x 1+x 2 +1+2x 1+m 2x 2+m=5x 1x 2+(2m -1)x 1+x 2 +m 2+1=25m 2-25-40m 2+20m +21m 2+2121=6m 2+20m -421因为6m 2+20m -4=6m +53 2-623,其中m 2<21且m ≠-1,所以当m =-53时,6m 2+20m -4取得最小值,且最小值为-623,故MA ⋅MB 的最小值为-6263.14.(2022届辽宁省大连市高三上学期期中)在平面直角坐标系xOy 中,点D ,E 的坐标分别为-2,0 ,2,0 ,P 是动点,且直线DP 与EP 的斜率之积等于-14.(1)求动点P 的轨迹C 的方程;(2)已知直线y =kx +m 与椭圆:x 24+y 2=1相交于A ,B 两点,与y 轴交于点M ,若存在m 使得OA +3OB =4OM,求m 的取值范围.【解析】(1)设P x ,y ,则k EP ⋅k DP =y x -2⋅y x +2=-14x ≠±2 ,所以可得动点P 的轨迹C 的方程为x24+y 2=1x ≠±2 .(2)设A x 1,y 1 ,B x 2,y 2 ,又M 0,m ,由OA +3OB =4OM得x 1+3x 2,y 1+3y 2 =0,4m ,x 1=-3x 2联立y =kx +m x 24+y 2=1可得4k 2+1 x 2+8km x +4m 2-4=0∵Δ=(8km )2-4×(4k 2+1)×(4m 2-4)>0,即64k 2-16m 2+16>0∴4k 2-m 2+1>0,且x 1+x 2=-8km4k 2+1x 1x 2=4m 2-44k 2+1, 又x 1=-3x 2∴x 2=4km 4k 2+1,则x 1⋅x 2=-3x 22=4km 4k 2+1 2=4m 2-44k 2+1,∴16k 2m 2-4k 2+m 2-1=0,∴k 2=m 2-14-16m 2代入4k 2-m 2+1>0得m 2-11-4m 2+1-m 2>0,14<m 2<1,解得m ∈-1,-12 ∪12,1 .∴m 的取值范围是-1,-12 ∪12,1 15.(2022届河北省邢台市“五岳联盟”部分重点学校高三上学期12月联考)已知点F 1,F 2是已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的左、右焦点,点P 在椭圆上,当∠PF 1F 2=π3时,△PF 1F 2面积达到最大,且最大值为3.(1)求椭圆C 的标准方程;(2)过F 2的直线与椭圆C 交于A ,B 两点,且两点与左右顶点不重合,若F 1M =F 1A +F 1B,求四边形AMBF 1面积的取值范围.【解析】(1)由题可知,当点P 在短轴端点时,△PF 1F 2的面积最大,且为正三角形,∴bc =3,b =3c ,又a 2=b 2+c 2,由bc =3b =3c a 2=b 2+c 2,解得a =2b =3c =1,所以椭圆C 的标准方程为x 24+y 23=1.(2)设A x 1,y 1 ,B x 2,y 2 ,AB :x =my +1,则由x =my +1x 24+y 23=1,可得3(my +1)2+4y 2=12,即3m 2+4 y 2+6my -9=0,Δ=36m 2+363m 2+4 =144m 2+1 >0,又因为F 1M =F 1A +F 1B,所以四边形AMBF 1是平行四边形,设平面四边形AMBF 1的面积为S ,则S =2S △ABF 1=2×12F 1F 2 ×y 1-y 2 =2×12F 1F 2 ×y 1+y 22-4y 1y 2=2×144m 2+13m 2+4=24×m 2+13m 2+4.设t =m 2+1,则m 2=t 2-1(t ≥1),所以S =24×t 3t 2+1=24×13t +1t 因为t ≥1,而对勾函数y =3t +1t 在[1,+∞)上单调递增,所以3t +1t≥4,所以S ∈(0,6].所以四边形AMBF 1面积的取值范围为(0,6].16.(2022届四川省成都市高三上学期期中)已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的左顶点为A ,右焦点为F ,过点A 作斜率为33的直线与C 相交于A ,B ,且以AO 为直径的圆过点B ,其中O 为坐标原点.(1)求椭圆的离心率e ;(2)若b =1,过点F 作与直线AB 平行的直线l ,l 与椭圆C 相交于P ,Q 两点.①求k OP ⋅k OQ 的值;②点M 满足2OM =OP ,直线MQ 与椭圆的另一个交点为N ,求NMNQ的值.【解析】(1)依题意,如图,△ABO ,∠ABO =π2,OA =a ,∠BAO =π6,OB =a 2,则B -a 4,3a4,而点B 在椭圆C 上,于是得:a 216a 2+3a 216b 2=1,整理得a 2=5b 2,即a =5b ,c =a 2-b 2=2b ,所以椭圆的离心率e =c a =255.(2)①由(1)及b =1得,a =5,椭圆C 的方程为x 25+y 2=1,而直线l 与直线AB 平行,则直线l 的方程为x =3y +2,P x 1,y 1 ,Q x 2,y 2 ,由x =3y +2x 2+5y 2=5消去x 得:8y 2+43y -1=0,显然�>0于是得y 1+y 2=-32,y 1y 2=-18,x 1x 2=(3y 1+2)(3y 2+2)=3y 1y 2+23(y 1+y 2)+4=58,所以k OP ⋅k OQ =y 1y 2x 1x 2=-15.②因2OM =OP ,由①得M x 12,y 12 ,设N x 3,y3 ,NM NQ=λ(0<λ<1),则NM =λNQ ,NM =x 12-x 3,y 12-y 3 ,NQ =x 2-x 3,y 2-y 3 ,x 12-x 3=λx 2-x 3 y 12-y 3=λy 2-y 3 ,即x 1-2λx 2=2(1-λ)x 3y 1-2λy 2=2(1-λ)y 3 ,解得x 3=12(1-λ)x 1-2λx 2 y 3=12(1-λ)y 1-2λy 2,而P ,Q ,N 都在椭圆上,即x 21+5y 21=5,x 22+5y 22=5,x 23+5y 23=5,x 1-2λx 2 24(1-λ)2+5⋅y 1-2λy 2 24(1-λ)2=5,整理得:x 21+5y 21+4λ2x 22+5y 22 -4λx 1x 2+5y 1y 2 =20(1-λ)2,由①可知x 1x 2+5y 1y 2=0,则有1+4λ2=4(1-λ)2,解得λ=38,所以NM NQ 的值是38.17.(2022届广东省江门市高三上学期10月月考)设i ,j分别是平面直角坐标系中x ,y 轴正方向上的单位向量,若向量a =(x +2)i +yj ,b =(x -2)i +yj ,且a+b =8,其中x ,y ∈R .(1)求动点M (x ,y )的轨迹E 的方程;(2)过点(3,0)作直线l 与轨迹E 交于A ,B 两点,设OP =OA+OB ,是否存在直线l ,使得四边形OAPB 是矩形?若存在,求出直线l 的方程;若不存在,试说明理由.【解析】(1)由题意得a=(x +2,y ),b =(x -2,y ),∴a+b =8,∴(x +2)2+y 2+(x -2)2+y 2=8,设F 1(-2,0),F 2(2,0),则动点M 满足MF 1 +MF 2 =8>F 1F 2 =4,由椭圆的定义可知动点M 的轨迹是以F 1(-2,0),F 2(2,0)为焦点的椭圆,设椭圆E 的方程为x 2a 2+y 2b2=1(a >b >0),则2a =8,2c =4,∴a =4,c =2,b 2=42-22=12,故轨迹E 的方程为x 216+y 212=1(2)存在满足条件的直线l .设直线l 的方程为x =ky +3,由方程组x =ky +3x 216+y 212=1,消去x ,整理得:(3k 2+4)y 2+18ky -21=0则Δ=(18k )2+84(3k 2+4)>0恒成立,即直线l 与椭圆E 恒有两个不同的交点,设交点为A (x 1,y 1),B (x 2,y 2),则y 1+y 2=-18k 3k 2+4①,y 1⋅y 2=-213k 2+4②由OP =OA +OB 得OP -OA=OB ,即AP =OB ,∴四边形OAPB 为平行四边形若存在直线l 使四边形OAPB 为矩形,则OA ⊥OB ,OA⋅OB =x 1x 2+y 1y 2=0即(ky 1+3)(ky 2+3)+y 1y 2=(k 2+1)y 1y 2+3k (y 1+y 2)+9=0③将①、②代入③式得:-18k (k 2+1)3k 2+4-54k 23k 2+4+9=0,解得k =±54,所以直线l 的方程为x =±54y +3,此时四边形OAPB 为矩形.18.过双曲线Γ:x 2a 2-y 2b2=1(a >0,b >0)的左焦点F 1的动直线l 与Γ的左支交于A ,B 两点,设Γ的右焦点为F 2.(1)若△ABF 2是边长为4的正三角形,求此时Γ的标准方程;(2)若存在直线l ,使得AF 2⊥BF 2,求Γ的离心率的取值范围.【解析】(1)依题意,结合双曲线的对称性得AF 1 =2,AF 2 =4,F 1F 2 =23,所以2a =|AF 2|-|AF 1|=2,a =1,2c =F 1F 2 =23,c =3,b 2=c 2-a 2=2,此时Γ的标准方程为x 2-y 22=1.(2)依题意知直线l 的斜率不为0,设l 的方程为x =my -c ,联立x =my -c x 2a 2-y 2b2=1,消去x ,得(b 2m 2-a 2)y 2-2b 2cm y +b 4=0,设A (x 1,y 1),B (x 2,y 2),则y 1+y 2=2b 2cm b 2m 2-a 2,y 1y 2=b 4b 2m 2-a 2, 由AF 2⊥BF 2得AF 2 ⋅BF 2=0,故(x 1-c )(x 2-c )+y 1y 2=0,即(my 1-2c )(my 2-2c )+y 1y 2=0,整理得m 2+1 y 1y 2-2cm y 1+y 2 +4c 2=0,即(m 2+1)b 4-4m 2c 2b 2+4c 2(b 2m 2-a 2)=0,则(m 2+1)b 4=4a 2c 2,所以m 2+1=4a 2c 2b4≥1,故4a 2c 2≥(c 2-a 2)2,所以c 4+a 4-6a 2c 2≤0,两边除以a 4,得e 4-6e 2+1≤0,解得3-22≤e 2≤3+22,又因为e >1,所以1≤e 2≤1+2 2,故1≤e ≤1+2,又A ,B 在左支且l 过F 1,所以y 1y 2<0,即b 4b 2m 2-a 2<0,故m 2<a 2b2,所以m 2+1=4a 2c 2b 4<a2b2+1,所以4a 2c 2<a 2b 2+b 4=b 2a 2+b 2 =b 2c 2,即4a 2<b 2=c 2-a 2,则5a 2<c 2,故e 2>5,即e >5,综上:5<e ≤1+2,即e ∈5,1+2 .。
专题四 平面向量与圆锥曲线综合应用

专题四 平面向量与圆 曲线 鬻 锥 曲线 冀 嚣
:
:
!
⑤了解圆锥曲线的初步应用.
3 矗鸯命 题规 律 : .
( ) 面向量 常 以选 择题 、 1平 填空 题 及 与三 角 函 数 、 解析 几 何 、 体 几 何 等单 元 综 合 成 解答 题 的 i 立 形式 出现. 主要 考 查平 面 向量 的概 念 、 质 、 何 意义 、 面 向量 的数 量积 、 面 向量 的坐 标 运算 和 性 几 平 平 几何 运算 等 , 出向量 自身性 质 的考查 和 向量 工具 性 的考查 . 突
i
; 垂直的问题 , 向量垂直的条件. 掌握
t Βιβλιοθήκη 移公式. ⑦掌握正弦定理 、 余弦定理 , 并能初步运用它们解斜三角形.
;
:
() 2 直线 : ①理解直线的倾斜角和斜率的概念 , 掌握过两点的直线的斜率公式. 掌握直线方程 的点斜式、
两点式 、 一般 式 , 能根 据条 件熟 练地求 出直线 方程. 并
个向 ” 解成“ 个向 量分 两 量:
A 外心 .
麓
B .内心
C 重心 .
D 垂心 .
() 1 解法 一 ( 特例 法 ) :
之和” ‘ 向量之: 或把‘ 两个 和 写 一 量” ” 成“ 个向 . :
() 2 掌握共线 ( 平行 ) :
设 AA C是一个 直 角三 角形 , 0为 斜 边 中点 , B 则 日点 为 直 角顶 点 , 这 时有 明 =O A+O B+O .m:1 C,. ’ . 解 法二 ( 接推 导 ) 直 :
的数量积. 平面两点间的距离. 平移. i 直线的倾斜角和斜率. 直线方程的点斜式和两点式. 直线方程的一般式. i 两 条直 线平 行与 垂直 的条件 . 两条 直线 的交 角. 点到 直线 的距离 . i 用二元一次不等式表示平面区域. 简单 的线性规划问题. ’
向量在圆锥曲线中的应用

向量在圆锥曲线中的应用赵春祥由于平面向量融数、形于一体,具有几何形式与代数形式的“双重身份”,使它成为中学数学知识的一个交汇点和联系多项内容的媒介。
因此,向量的引入大大拓宽了解题的思路,使它在研究许多问题时获得广泛的应用。
利用平面向量这一工具解题,可以简捷、规范地处理数学中的许多问题。
下面介绍向量在圆锥曲线中的应用。
一、在椭圆中的应用例1. 椭圆的焦点为F1,F2,点P为椭圆上的动点,当∠F1PF2为钝角时,点P横坐标的取值范围是___________。
解:由题意,设三点坐标分别为:P(x0,y)、F1()、F2(),则。
由∠F1PF2为钝角,得,即。
①又点P(x0,y)在椭圆上,所以。
②联合①、②不难求得。
二、在双曲线中的应用例2. 双曲线的两个焦点为F1、F2,点P在双曲线上,若PF1⊥PF2,则点P到x轴的距离为_________。
解:由已知可得双曲线的两焦点坐标F1(-5,0)、F2(5,0)。
设P(x,y),则。
因为,即,所以。
又因为P(x,y)在双曲线上,所以从而y=±。
因此,点P到x轴的距离为。
三、在抛物线中的应用例3. 设抛物线的焦点为F,经过点F的直线交抛物线于A、B两点,点C在抛物线的准线上,且BC∥x轴,证明直线AC经过原点。
证明:如图,抛物线,焦点是,准线为。
设,A、F、B共线,则设,所以有,由BC∥x轴,可得。
又由点A在抛物线上,得。
化简后,得。
则,从而。
而,即共线,也就是直线AC经过原点。
巧用平面向量的数量积,妙解圆锥曲线问题雷文阁两个非零向量的数量积的定义式含有“角”和“长度”;而该式又可变形为,此式与三角形正弦面积有关;数量积还有坐标形式。
因此,通过数量积可沟通长度、角、坐标及三角形面积之间的关系。
利用数量积解题,可以避繁就简。
以下列举其在圆锥曲线中的应用。
一、证明问题例1. (二册上P82)已知一个圆的直径的端点是,求证圆的方程是证明:设是圆上不同于A、B的任意一点,由圆的性质知又所以当M与A或B重合时,仍满足上式,故得证。
高三公开课向量与圆锥曲线课件

• 向量基础 • 圆锥曲线基础 • 向量与圆锥曲线的结合 • 向量与圆锥曲向量的定义与表示
01
基本概念
02
03
04
向量是有大小和方向的量,通 常用有向线段表示。
向量可以用大写字母表示,如 A、B、C等。
向量的长度或模用|a|表示, 其中a是向量。
解析
根据双曲线的渐近线方程,得到$a$和$b$ 的关系,再利用离心率公式求离心率。
向量与圆锥曲线的结合习题及解析
题目3
已知椭圆C的中心在原点,焦点在$x$轴上,离心率为$frac{sqrt{3}}{2}$,且经过点 $(1,frac{sqrt{3}}{2})$,点$P$为椭圆C上任意一点,点$Q(1,0)$,求$overset{longrightarrow}{OP} cdot overset{longrightarrow}{OQ}$的最大值。
04
数量积和向量积是向量 的基本运算,用于描述 向量的关系和几何意义 。
02
圆锥曲线基础
圆锥曲线的定义与分类
圆锥曲线的定义
圆锥曲线是平面与一个固定圆锥相交形成的平面曲线的总称。
圆锥曲线的分类
椭圆、双曲线、抛物线等。
圆锥曲线在平面上的投影
通过改变平面与圆锥的相对位置,可以得到不同类型的圆锥曲线。
圆锥曲线的标准方程
圆锥曲线标准方程的求解方法
利用圆锥曲线的定义和几何性质,通过代 数方法求解标准方程。
圆锥曲线的几何性质
圆锥曲线的焦点和准线
根据不同类型的圆锥曲线,焦点和准线的位 置和数量也不同。
圆锥曲线的对称性
不同类型的圆锥曲线具有不同的对称性,如 中心对称、轴对称等。
圆锥曲线的离心率
湖南省高三数学教学研讨会交流材料:平面向量与圆锥曲线

某某省高三数学教学研讨会交流材料:平面向量与圆锥曲线某某师大附中朱海棠平面向量与圆锥曲线是高考数学试题中的两个基本板块,二者相互渗透,联系密切. 深入研究三年来某某高考数学试卷在这两方面的命题特点,对把握高考方向具有积极的意义.一、平面向量平面向量融数、形于一体,不仅其自身有一个完整的理论体系,而且还能够与函数、不等式、数列、复数、三角、解析几何等各个数学分支有机结合,因而在高中数学及高考中都有其特定的地位与作用.1、高考命题特点平面向量作为高考的一个必考内容,已形成了在小题中为主体,在大题中为客体的命题格局,并显示出如下主要特点: (1)题量保持稳定三年来,某某高考数学卷每年都有两道与平面向量有关的试题,分值保持在10分左右,在小题中,文、理科试题基本不同,差异明显,其题量分布如下表:(2)注重基本运算平面向量的基本运算包括几何运算、字符运算和坐标运算三大类,高考试题都立足于这些基本运算,其中有关数量积的运算是考试的重点,并与平行、垂直、夹角、距离相关联.(3)强调综合应用以平面向量为载体,结合代数、三角、几何等知识设计试题,是向量试题的一个命题特色,理科试卷尤为突出. 这是基于“在知识网络交汇点设计试题”的命题理念,能使试题达到一定的广度和深度. 例1(2004年理13题)已知向量(cos ,sin )a θθ=,向量(3,1)b =-,则|2|a b -的最大值是4 .本题考查向量与三角函数的综合应用.例2(2005年理13题)已知直线0ax by c ++=与圆O :221x y +=相交于A 、B 两点,且||AB =则OA OB ⋅=12-. 本题考查向量与直线、圆的综合应用.例3(2006年理5题)已知||2||0a b =≠,且关于x 的方程2||0x a x a b ++⋅=有实根,则a 与b的夹角的取值X 围是( B )A .[0]6π,B .[]3ππ,C .2[]33ππ,D .[]6ππ,本题考查向量与方程、三角函数的的综合应用.(4)凸显能力立意从解题方法的多样性和选择性,试题背景的新颖性和抽象性等方面立意,着力考查学生的思维能力和数学素养,在向量试题中也有充分体现.例4(2004年文8题)已知向量(cos ,sin )a θθ=,向量(3,1)b =-,则|2|a b -的最大值、最小值分别是(D )A .B .4,C .16,0本题有多种解法,能有效检测考生的思维水平. 例5(2006年理15题)如图,OM//AB ,点P 在由射线 OM 、线段OB 及AB 的延长线围成的阴影区域内(不含边界) 运动,且OP xOA yOB =+,则x 的取值X 围是(,0)-∞; 当12x =-时,y 的取值X 围是13(,)22. 本题立意新颖别致,起点高,落点低,重点考查化归转换能力.2、复习备考建议高考命题始终贯彻“继承与发展”的原则,保持稳定、不断创新,也是高考命题的基本思想.基于前三年某某卷的命题特点,在平面向量的复习备考过程中,我们应加强以下几方面的教学.(1)深化对平面向量基本理论的认识平面向量的基本理论包括向量的有关概念、原理、运算法则、定律和性质等,学生不仅要掌握这些基本理论的具体内容,还要了解其深层内涵.例如,平面向量基本定理:如果12e e 、是同一平面内的两个不共线向量,那么对于这一平面内的任一向量a ,有且只有一对实数12λλ、,使1122a e e λλ=+.其中12λλ、的几何意义如何?该定理有何功能作用?这些都是需要有所了解的.(2)学会在对比中选择向量的运算形式合理选择向量的运算形式,是提高运算效率的关键. 有些向量题,表面上看是坐标运算,而用字符运算或几何运算将很简单,这需要一种对比意识.例6 已知向量13(3,1),(,)22a b =-=,设向量2(3)m a t b =+-,n ka tb =-+ (,,0)k t R t ∈≠,若m n ⊥,求2k t t+的最小值. 本题中用字符运算比用坐标运算要简单些.(3)加强以向量为载体的综合应用把平面向量与其它数学知识有机结合,培养学生综合运用多个知识点解决实际问题的能力.(4)重视向量与几何的相互转化通过变式,从向量关系中发掘问题的几何意义;通过对几何图形的分析,从中抽象出向量关系,是学生学习上的薄弱环节,教学中应加强这方面的指导和训练.例7(2005年文9题)P 是△ABC 所在平面上一点,若PA PB PB PC PC PA ⋅=⋅=⋅,则P 是△ABC 的(D )A .外心B .内心C .重心D .垂心例8 设O 为△ABC 内部一点,且23OA OB OC O ++=,则△AOC 与△BOC 的面积之比是 2 .上述两例都要求从向量关系中找出问题的几何意义. (5)注意向量方法的工具作用在没有向量内容的数学问题中,运用向量知识解决有关平行、垂直、夹角、距离、最值等问题,是一种向量方法,也是教材的基本内容,学生应了解向量方法的工具作用,开拓解题思路.例9 (2005年某某理18题)在△ABC 中,已知AB B ==AC 边上的中线BD =sin A 的值.本题从向量入手,有2BA BC BD +=. 再两边平方可求得BC 边的长,进而求得sin A 的值.二、直线与圆锥曲线直线与圆锥曲线的有关概念、方程和几何性质,是解析几何的主要内容,是数与形的完美结合,历年来都是高考考查的重点. 它在考查学生的逻辑思维能力、运算能力、实践能力、创新意识等方面,都有着特定的功能作用,也是整套高考试卷中所占分值比例最高的一个知识板块.1、高考命题特点三年来,某某卷对直线与圆锥曲线的考查有如下一些共同特点。
向量在圆锥曲线中的妙用 高中数学

向量在圆锥曲线中的妙用江西省 徐文晖向量用于圆锥曲线中,可把一些复杂的几何问题转化为简单的代数运算,避繁就简,化难为易,常出新招,充分体现数形结合思想,为解决圆锥曲线问题开辟了一条新途径.例1、在平面直角坐标系中,有一定长为6的线段,其端点A 、B 分别在x 轴、y 轴上滑动,若点M 为AB 的三等分点,求点M 的轨迹方程.分析:由M 为AB 的三等分点,合理联想到MB AM MB AM 212==或 解:设),(y x M A (),o a B ),0(b 则3622=+b a当),(2),(,2y b x y a x MB AM --=-=时 ⎩⎨⎧-=-=-)(22y b y x a x 解得⎪⎩⎪⎨⎧==y b x a 233 .1164364992222=+=+∴y x y x 即 当MB AM 21=时,同理可得141622=+y x 点评:求轨迹方程的方法较多,如直接法、定义法、参数法、交轨法等,本题采用了代入法,巧妙地运用向量共线列出方程,达到解决问题目的.例2、已知双曲线13422=-y x 的焦点F 1、F 2,点M 在双曲线上且021=⋅MF MF 求ΔMF 1F 2的面积分析:由021=⋅MF MF 可得MF 12MF ⊥解:不妨设M 在右支上,则MF 12MF ⊥,设2211,r MF r MF ==由定义知 4221==-a r r又 28)2(22221==+c r r .3216212121===∴∆r r S r r F MF 即 点评:此题中给出了向量的数量积为零,不难得出21F MF ∆为K tΔ,结合双曲线的第一定义知识可轻松得出结论,在求解该题中运用了“设而不求”等技巧.例3、在平面直角坐标系中,以点(1,0)为圆心,以R 为半径的圆与抛物线x y =2交于A 、B 、C 、D 四点,是否存在正实数R ,使AC 与BD 的交点为抛物线的焦点F.分析:若焦点F 为AC ,BD 的交点,则有FA ∥FC解:⎩⎨⎧=+-=2222)1(R y x x y 得0122=-+-R x x Δ=0)1(412>--R 得R>23 而01221>-=R x x .123<<∴R 圆和抛物线都关于x 轴对称 ∴四边形ABCD 是等腰梯形,且AC 与BD 交点一定在x 轴上,假设交点恰为焦点F.则FA ∥FC ,设A (11,x x ) C (22,x x -) (0<21x x <),)0,41(F 0)41())(41(2121=----∴x x x x 得16121=x x 由1-R 2= 161得R=415(满足123<<R ),故存在. 点评:恰当引入向量,能激活求解策略,解决此题时大胆假设,把圆锥曲线问题变为向量的计算,构思新颖.。
平面向量与圆锥曲线

平面向量与圆锥曲线
平面向量是二维向量,它们可以在平面上描述方向和大小。
平面向量可以用两个数对表示,分别表示在平面的 x 和 y 轴方向上的分量。
例如,平面向量 (3,4) 表示在 x 轴方向上有 3 个单位长度的分量,在 y 轴方向上有 4 个单位长度的分量。
圆锥曲线是一种曲线,它在平面上像一个扁圆锥形,并且有一个点叫做焦点。
圆锥曲线可以用一个二次方程来表示,例如:
y = x^2。
这是一条圆锥曲线,其中 x 和 y 是平面上的变量。
平面向量和圆锥曲线之间没有直接联系。
但是,你可以使用平面向量来描述圆锥曲线上的一个点的位置,或者使用圆锥曲线来描述平面上的一个向量的方向。
【精品】平面向量与圆锥曲线共15页文档

36、“不可能”这个字(法语是一个字 ),只 在愚人 的字典 中找得 到。--拿 破仑。 37、不要生气要争气,不要看破要突 破,不 要嫉妒 要欣赏 ,不要 托延要 积极, 不要心 动要行 动。 38、勤奋,机会,乐观是成功的三要 素。(注 意:传 统观念 认为勤 奋和机 会是成 功的要 素,但 是经过 统计学 和成功 人士的 分析得 出,乐 观是成 功的第 三要素 。
39 ,义无 反顾。 40、对时间的价值没有没有深切认识 的人, 决不会 坚韧勤 勉。
31、只有永远躺在泥坑里的人,才不会再掉进坑里。——黑格尔 32、希望的灯一旦熄灭,生活刹那间变成了一片黑暗。——普列姆昌德 33、希望是人生的乳母。——科策布 34、形成天才的决定因素应该是勤奋。——郭沫若 35、学到很多东西的诀窍,就是一下子不要学很多。——洛克
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
平面向量与圆锥曲线教学目标:巩固平面向量的基本知识;掌握运用向量知识解决与圆锥曲线有关的问题;明确知识之间的连贯性,融汇性;培养学生运用向量工具分析问题和解决问题的能力.重点难点: 运用向量知识解决与圆锥曲线有关的问题 教具准备:多媒体课件教学过程: 一.知识回顾若a={x 1,y 1},b={x 2,y 2}则 1212a b x x y y ∙=+ 1. 向量的夹角公式为2. 向量a ∥b 的充要条件为3. 向量a ⊥b 的充要条件为二.课前热身1.直线 x +2y -2=0 的一个方向向量是 ( ) A. (1,2) B . (1,-2) C.(2,1) D.(2,-1)2.设坐标原点为O,抛物线22y x =与过焦点的直线交于A,B 两点, 则OA OB ∙等于( )A.34 B. 34- C.3 D.-3 3.(2002年高考题)已知两点 ()()3,1,1,3A B - ,若 C 点满足OC OA OB αβ=+,其中,R αβ∈ 且有1αβ+= ,则点C 的轨迹方程为 ( )()32110A x y +-= ()()22()125B x y -+-= ()20C x y -= ()250D x y +-=4.过点P(2,4)作两条互相垂直的直线分别交x 轴,y 轴于A,B 两点, 则线段AB 中点的轨迹方程为三.例题讲解例1.设F 1,F 2是双曲线 2214x y -= 的两个焦点,点P 在双曲线右支上,且 12PF PF ⋅ =2..若12F PF α∠=(1)求角 α 的值. (2)求12F PF 的面积. (3)求P 点的坐标.例2.(2003年高考题)已知常数 0a >,向量(0,),(1,0).c a i == 经过原点O 以c i λ+为方向向量的直线与经过定点A (0,a )以 2i c λ-为方向向量的直线相交于点P ,其中.R λ∈试问:是否存在两个定点E 、F ,使得|PE|+|PF|为定值.若存在,求出E 、F 的坐标;若不存在,说明理由.四.课堂小结:五.课后练习1.已知向量,的夹角为3π,=-⋅+==||||,1||,2||则 2.O 是平面上一定点,A 、B 、C 是平面上不共线的三个点,动点P 满足 ),,0[||||(+∞∈++=λλAC AB 则P 的轨迹一定通过△ABC 的( )A .外心B .内心C .重心D .垂心3.设F 1,F 2是双曲线1422=-y x 的两个焦点,点P 在双曲线上,且21PF ⋅=0,则 ||||21PF PF ⋅的值等于( )A .2B .22C .4D .84. 如图所示,在Rt △ABC 中,∠CAB=90°, AB=2, AC=22, D 是线段AB 的垂直平分线上的一点, D 到AB 的距离为2, 过点C 的曲线E 上任一点P 满足||||+为常数. ①建立适当的坐标系,并求出曲线E 的方程.②过点P 的直线 l 与曲线E 相交于不同的两点M , N , 且M 点在D, N 之间,若DN DM λ=, 求λ的取值范围.5.如图所示,已知圆M A y x C ),0,1(,8)1(:22定点=++为圆上一动点,点P 在AM 上, 点N 在CM 上,且满足N AM NP AP AM 点,0,2=⋅=的轨迹为曲线E. (I )求曲线E 的方程;(II )若过定点F (0,2)的直线交曲线E 于不同的两点G 、H (点G 在点F 、H 之间),且满足λ=,求λ的取值范围.4.①以AB 、OD 所在直线分别为X 轴、Y 轴建立直角坐标系),2(22||||||||>=+=+CB CA PB PA ∴动点的轨迹为以A 、B 为焦点的椭圆12:,1,1,222=+∴===y x E b c a (4分)②l 与y 轴重合,DM=1,DN=3,31==DNDM λ,(5分) l 不与y 轴重合,D (0,2)令直线MN 的方程为:y =kx +2与曲线C 的方程联立得0216,218,068)21(22122122>+=+=+=+++k x x k k x x ks x k (8分) △=21222)9(,23,0)21(2464x x x x x x DN DM k k kD N D M =--==>∴>+-λ分)21(36202)(122212211221k k x x x x x x x x t +-=-+=+=+=λλ(10分)131131,10,331,31012<≤<<∴<<<<∴<+<∴λλλλλλ综上 (12分) 5.解:(1).0,2=⋅=∴NP 为AM 的垂直平分线,∴|NA|=|NM|.…………………………2分 又.222||||,22||||>=+∴=+AN CN NM CN ∴动点N 的轨迹是以点C (-1,0),A (1,0)为焦点的椭圆. 且椭圆长轴长为,222=a 焦距2c=2. .1,1,22===∴b c a ……………5分∴曲线E 的方程为.1222=+y x ………………6分 (2)当直线GH 斜率存在时,设直线GH 方程为,12,222=++=y x kx y 代入椭圆方程得.230.034)21(222>>∆=+++k kx x k 得由设2121221113,14),,(),,(x x k x x y x H y x G =-=+则……………………8分)2,()2,(,2211-=-∴=y x y x λλ 又λλλλλ2122221222122121)1(.,)1(,x x x x x x x x x x x x x ==++∴=+=+∴=∴, λλλλ222222)1()121(316,213)1()214(+=++=++-∴kk k k 整理得……………………10分 .331.316214.316323164,2322<<<++<∴<+<∴>λλλ解得k k .131,10<<∴<<λλ 又 又当直线GH 斜率不存在,方程为.31,31,0===λx )1,31[,131的取值范围是即所求λλ<≤∴……………………………………12分例1、在,90,2,R t A B C C A B A B A C ∆∠===中,D 是线段AB 的垂直平分线上的一点,D 到AB 的距离为2,过点C 的曲线E 上的任一点P 满足||||PA PB +为常数。
①建立适当的坐标系,并求出曲线E 方程;②过点D 的直线l 与E 相交于不同的点M N 、,且点M 在D N 、之间,若DM DN λ=,求λ的取值范围。
解:①(易判断曲线E 方程为椭圆)如右图所示,以AB 的中点为坐标原点,AB 所在直线为x 轴,AB 的中垂线为y 轴建立直角坐标系, 设椭圆方程为22221,(0)x y a b a b +=>>,则2||||a PA PB CA CB a =+=+==又11c b =∴= ,故所求椭圆方程为2212y x += ②设:2l y kx =+,当l 与y 轴重合时,1DM=,3DN =,此时13λ=;当l 与y 轴不重合时,设1122(,)(,)M x y N x y 、,方法一、由22222(12)86012y kx k x kx x y ⎧=+⎪⇒+++=⎨+=⎪⎩2302k ∆>∴>,且22121286,1212kx x x x k k +=-⋅=++12112212,(,)(,2)(2)x x DM DN x y x y y y λλλλ⎧=⎪=∴=-⎨=-⎪⎩ ,即22228(1)(12)82(1)(12)k x k k y k λλ⎧=-⎪++⎪∴⎨-⎪=+⎪++⎩又222212x y += 2222222583883(1)2444(1)(12)12k k y k kλλλλλλλ∴-+-+==+⇒=-+++ 2233(1)3241433k λλλ+>∴<<⇒<< ,又10113λλ<<∴<< 综上所述113λ≤<评注:此方法注意到了直线与圆锥曲线相交时的充要条件,利用232k >来求参数λ的范围,但运算量较大。
方法二、1122(,)(,)M x y N x y 、在椭圆E 上221122221212x y x y ⎧+=⎪⎪∴⎨⎪+=⎪⎩ 又12112212,(,)(,2)(2)x x DM DN x y x y y y λλλλ⎧=⎪=∴=-⎨=-⎪⎩ ,即22222222()[(2)]1212x y x y λλ⎧+-=⎪⎪∴*⎨⎪+=⎪⎩22258344y λλλλ∴-+=- 又∵222583144y λλλλ-+=≤-,且01λ<< 113λ∴<<综上所述113λ≤<评注:在方程组*中,通过消去2x ,得出2y 与λ的关系,后借助椭圆的几何意义,比较简单的求出参数λ的范围。
方法三、由22222(12)86012y kx k x kx x y ⎧=+⎪⇒+++=⎨+=⎪⎩2302k ∆>∴>,且121286,1212kx x x x k k +=-⋅=++DM DNλ= 1M D DM x x x x x x DNλ-∴===-令2121221121()20623(12)x x x x k x x x x k μλ+-=+=+=-=⋅+ 23()2k > 则11023133μλλλ<=+<⇒<< 又10113λλ<<∴<< 综上所述113λ≤< 评注:巧妙的利用了232k >来求参数的范围,但构造1μλλ=+时,比较困难。
也可如右图所示,在ABC ∆,12DM MP x NQ x DNλ===,下面如方法三。
例2、已知中心在原点,顶点12A A 、(2A 为右顶点)在x轴上,离心率为e =的双曲线C 经过点(6,6)P ,动直线l 经过点(0,1)与双曲线C 交于M N 、两点,Q 为线段MN 的中点,①求双曲线C 的标准方程;②若E 点为(1,0),是否存在实数λ,使2EQ A P λ=,若存在,求λ的值;若不存在,说明理由。
解:①设双曲线的方程为22221,(0,0)x y a b a b-=>>3e =,即22433c b a a =⇒= ∵双曲线C 经过点(6,6)P , 即2236361a b -= ∴229,12a b ==,故所求双曲线方程为221912x y -=②设112200(,)(,)(,)M x y N x y Q x y 、、,:1l y kx =+22221(43)63901912y kx k x kx x y ⎧=+⎪⇒---=⎨-=⎪⎩ ∵2430k ⎧-≠⎪⎨∆>⎪⎩∴33k k -<<≠且又2221200122634434343x x kk x x x y k k k+==+=⇒⇒=--- ∴2234(,)4343k Q k k -- ∴22341,4343kEQ k k ⎛⎫=-⎪--⎝⎭∵()23,6A P =且2EQ A P λ= ,∴223461043433k k k ⎛⎫⎛⎫⨯-= ⎪ ⎪--⎝⎭⎝⎭-⨯ ∴220k k +-= 即12k k ==-或(舍)所以存在23λ=,使2EQ A P λ=。