专升本高等常数(二)真题2005年
2005—2010年江苏专转本高等数学真题(附答案)

2005年江苏省普通高校“专转本”统一考试高等数学一、选择题(本大题共6小题,每小题4分,满分24分)1、0=x 是xx x f 1sin )(=的 ( ) A 、可去间断点B 、跳跃间断点C 、第二类间断点D 、连续点2、若2=x 是函数)21ln(ax x y +-=的可导极值点,则常数=a ( ) A 、1- B 、21 C 、21- D 、13、若⎰+=C x F dx x f )()(,则⎰=dx x xf )(cos sin ( )A 、C x F +)(sinB 、C x F +-)(sin C 、C F +(cos)D 、C x F +-)(cos4、设区域D 是xoy 平面上以点)1,1(A 、)1,1(-B 、)1,1(--C 为顶点的三角形区域,区域1D 是D 在第一象限的部分,则:=+⎰⎰dxdy y x xy D)sin cos ( ( )A 、⎰⎰1)sin (cos 2D dxdy y xB 、⎰⎰12D xydxdyC 、⎰⎰+1)sin cos (4D dxdy y x xyD 、05、设yx y x u arctan),(=,22ln ),(y x y x v +=,则下列等式成立的是 ( ) A 、y v x u ∂∂=∂∂ B 、xvx u ∂∂=∂∂ C 、x v y u ∂∂=∂∂ D 、y v y u ∂∂=∂∂ 6、正项级数(1)∑∞=1n nu、(2)∑∞=13n nu,则下列说法正确的是 ( )A 、若(1)发散、则(2)必发散B 、若(2)收敛、则(1)必收敛C 、若(1)发散、则(2)可能发散也可能收敛D 、(1)、(2)敛散性相同二、填空题(本大题共6小题,每小题4分,满分24分)7、=----→xx xe e x x x sin 2lim0 ; 8、函数x x f ln )(=在区间[]e ,1上满足拉格郎日中值定理的=ξ ; 9、=++⎰-11211x x π ;10、设向量{}2,4,3-=α、{}k ,1,2=β;α、β互相垂直,则=k ; 11、交换二次积分的次序=⎰⎰-+-dy y x f dx x x 2111),( ;12、幂级数∑∞=-1)12(n nxn 的收敛区间为 ;三、解答题(本大题共8小题,每小题8分,满分64分)13、设函数⎪⎩⎪⎨⎧+=a xx x f x F sin 2)()( 00=≠x x 在R 内连续,并满足:0)0(=f 、6)0('=f ,求a .14、设函数)(x y y =由方程⎩⎨⎧-==t t t y t x cos sin cos 所确定,求dx dy 、22dx yd .15、计算⎰xdx x sec tan 3.16、计算⎰1arctan xdx17、已知函数),(sin 2y x f z =,其中),(v u f 有二阶连续偏导数,求x z ∂∂、yx z∂∂∂218、求过点)2,1,3(-A 且通过直线12354:zy x L =+=-的平面方程.19、把函数222)(xx x x f --=展开为x 的幂级数,并写出它的收敛区间.20、求微分方程0'=-+xe y xy 满足e y x ==1的特解.四、证明题(本题8分)21、证明方程:0133=+-x x 在[]1,1-上有且仅有一根.五、综合题(本大题共4小题,每小题10分,满分30分)22、设函数)(x f y =的图形上有一拐点)4,2(P ,在拐点处的切线斜率为3-,又知该函数的二阶导数a x y +=6'',求)(x f .23、已知曲边三角形由x y 22=、0=x 、1=y 所围成,求: (1)、曲边三角形的面积;(2)、曲边三角形饶X 轴旋转一周的旋转体体积.24、设)(x f 为连续函数,且1)2(=f ,dx x f dy u F uyu⎰⎰=)()(1,)1(>u(1)、交换)(u F 的积分次序; (2)、求)2('F .2006年江苏省普通高校“专转本”统一考试高等数学一、选择题(本大题共6小题,每小题4分,满分24分)1、若21)2(lim0=→x xf x ,则=→)3(lim 0x f x x ( ) A 、21B 、2C 、3D 、312、函数⎪⎩⎪⎨⎧=≠=001sin)(2x x xx x f 在0=x 处 ( )A 、连续但不可导B 、连续且可导C 、不连续也不可导D 、可导但不连续3、下列函数在[]1,1-上满足罗尔定理条件的是 ( )A 、xe y = B 、x y +=1 C 、21x y -= D 、xy 11-= 4、已知C e dx x f x +=⎰2)(,则=-⎰dx x f )(' ( )A 、C ex+-22B 、C e x +-221 C 、C e x +--22D 、C e x +--2215、设∑∞=1n nu为正项级数,如下说法正确的是 ( )A 、如果0lim 0=→n n u ,则∑∞=1n n u 必收敛 B 、如果l u u nn n =+∞→1lim )0(∞≤≤l ,则∑∞=1n n u 必收敛C 、如果∑∞=1n nu收敛,则∑∞=12n nu必定收敛 D 、如果∑∞=-1)1(n n nu 收敛,则∑∞=1n n u 必定收敛6、设对一切x 有),(),(y x f y x f -=-,}0,1|),{(22≥≤+=y y x y x D ,=1D }0,0,1|),{(22≥≥≤+y x y x y x ,则⎰⎰=Ddxdy y x f ),( ( )A 、0B 、⎰⎰1),(D dxdy y x f C 、2⎰⎰1),(D dxdy y x f D 、4⎰⎰1),(D dxdy y x f二、填空题(本大题共6小题,每小题4分,满分24分)7、已知0→x 时,)cos 1(x a -与x x sin 是等级无穷小,则=a8、若A x f x x =→)(lim 0,且)(x f 在0x x =处有定义,则当=A 时,)(x f 在0x x =处连续.9、设)(x f 在[]1,0上有连续的导数且2)1(=f ,⎰=103)(dx x f ,则⎰=1')(dx x xf101=,b a ⊥,则=+⋅)(b a a11、设x e u xysin =,=∂∂xu12、=⎰⎰Ddxdy . 其中D 为以点)0,0(O 、)0,1(A 、)2,0(B 为顶点的三角形区域.三、解答题(本大题共8小题,每小题8分,满分64分)13、计算11lim 31--→x x x .14、若函数)(x y y =是由参数方程⎩⎨⎧-=+=tt y t x arctan )1ln(2所确定,求dx dy 、22dx yd .15、计算⎰+dx xxln 1.16、计算dx x x ⎰202cos π.17、求微分方程2'2y xy y x -=的通解.18、将函数)1ln()(x x x f +=展开为x 的幂函数(要求指出收敛区间).19、求过点)2,1,3(-M 且与二平面07=-+-z y x 、0634=-+-z y x 都平行的直线方程.20、设),(2xy x xf z =其中),(v u f 的二阶偏导数存在,求y z ∂∂、xy z∂∂∂2.四、证明题(本题满分8分). 21、证明:当2≤x 时,233≤-x x .五、综合题(本大题共3小题,每小题10分,满分30分)22、已知曲线)(x f y =过原点且在点),(y x 处的切线斜率等于y x +2,求此曲线方程.23、已知一平面图形由抛物线2x y =、82+-=x y 围成. (1)求此平面图形的面积;(2)求此平面图形绕y 轴旋转一周所得的旋转体的体积.24、设⎪⎩⎪⎨⎧=≠=⎰⎰00)(1)(t a t dxdy x f t t g tD ,其中t D 是由t x =、t y =以及坐标轴围成的正方形区域,函数)(x f 连续.(1)求a 的值使得)(t g 连续; (2)求)('t g .2007年江苏省普通高校“专转本”统一考试高等数学一、单项选择题(本大题共6小题,每小题4分,满分24分)1、若2)2(lim 0=→x x f x ,则=∞→)21(lim xxf x ( )A 、41 B 、21 C 、2 D 、42、已知当0→x 时,)1ln(22x x +是x n sin 的高阶无穷小,而x nsin 又是x cos 1-的高阶无穷小,则正整数=n ( ) A 、1B 、2C 、3D 、43、设函数)3)(2)(1()(---=x x x x x f ,则方程0)('=x f 的实根个数为 ( ) A 、1B 、2C 、3D 、44、设函数)(x f 的一个原函数为x 2sin ,则=⎰dx x f)2('( ) A 、C x +4cos B 、C x +4cos 21C 、C x +4cos 2D 、C x +4sin5、设dt t x f x ⎰=212sin )(,则=)('x f ( )A 、4sin x B 、2sin 2x x C 、2cos 2x x D 、4sin 2x x 6、下列级数收敛的是 ( )A 、∑∞=122n nnB 、∑∞=+11n n n C 、∑∞=-+1)1(1n nnD 、∑∞=-1)1(n nn二、填空题(本大题共6小题,每小题4分,满分24分)7、设函数⎪⎩⎪⎨⎧=≠+=020)1()(1x x kx x f x ,在点0=x 处连续,则常数=k8、若直线m x y +=5是曲线232++=x x y 的一条切线,则常数=m9、定积分dx x x x )cos 1(43222+-⎰-的值为10、已知→a ,→b 均为单位向量,且21=⋅→→b a ,则以向量→→⋅b a 为邻边的平行四边形的面积为11、设yxz =,则全微分=dz 12、设x xe C eC y 3221+=为某二阶常系数齐次线性微分方程的通解,则该微分方程为三、解答题(本大题共8小题,每小题8分,满分64分)13、求极限xx x e x x tan 1lim 0--→.14、设函数)(x y y =由方程xy e e yx=-确定,求0=x dx dy 、022=x dx yd .15、求不定积分dx e x x ⎰-2.16、计算定积分dx x x ⎰-122221.17、设),32(xy y x f z +=其中f 具有二阶连续偏导数,求yx z∂∂∂2.18、求微分方程2'2007x y xy =-满足初始条件20081==x y 的特解.19、求过点)3,2,1(且垂直于直线⎩⎨⎧=++-=+++01202z y x z y x 的平面方程.20、计算二重积分dxdy y x D⎰⎰+22,其中{}0,2|),(22≥≤+=y x y x y x D .四、综合题(本大题共2小题,每小题10分,满分20分) 21、设平面图形由曲线21x y -=(0≥x )及两坐标轴围成.(1)求该平面图形绕x 轴旋转所形成的旋转体的体积;(2)求常数a 的值,使直线a y =将该平面图形分成面积相等的两部分.22、设函数9)(23-++=cx bx ax x f 具有如下性质: (1)在点1-=x 的左侧临近单调减少; (2)在点1-=x 的右侧临近单调增加; (3)其图形在点)2,1(的两侧凹凸性发生改变. 试确定a ,b ,c 的值.五、证明题(本大题共2小题,每小题9分,满分18分)23、设0>>a b ,证明:dx x f e e dx ex f dy baa x xb yyx ba⎰⎰⎰++-=)()()(232.24、求证:当0>x 时,22)1(ln )1(-≥-x x x .2008年江苏省普通高校“专转本”统一考试高等数学一、单项选择题(本大题共6小题,每小题4分,满分24分)1、设函数)(x f 在),(+∞-∞上有定义,下列函数中必为奇函数的是 ( ) A 、)(x f y -= B 、)(43x f x y = C 、)(x f y --=D 、)()(x f x f y -+=2、设函数)(x f 可导,则下列式子中正确的是 ( )A 、)0()()0(lim'0f xx f f x -=-→B 、)()()2(lim0'00x f x x f x x f x =-+→C 、)()()(lim 0'000x f xx x f x x f x =∆∆--∆+→∆D 、)(2)()(lim 0'000x f xx x f x x f x =∆∆+-∆-→∆3、设函数)(x f ⎰=122sin xdt t t ,则)('x f 等于 ( ) A 、x x 2sin 42B 、x x 2sin 82C 、x x 2sin 42-D 、x x 2sin 82-4、设向量)3,2,1(=→a ,)4,2,3(=→b ,则→→⨯b a 等于 ( ) A 、(2,5,4) B 、(2,-5,-4)C 、(2,5,-4)D 、(-2,-5,4)5、函数xyz ln=在点(2,2)处的全微分dz 为 ( ) A 、dy dx 2121+- B 、dy dx 2121+ C 、dy dx 2121- D 、dy dx 2121--6、微分方程123'''=++y y y 的通解为 ( ) A 、1221++=--x xe c ec yB 、21221++=--x xe c ec y C 、1221++=-xxec e c yD 、21221++=-xxec e c y 二、填空题(本大题共6小题,每小题4分,满分24分)7、设函数)1(1)(2--=x x x x f ,则其第一类间断点为 .8、设函数{=)(x f ,0,3tan ,0,<≥+x xxx x a 在点0=x 处连续,则a = .9、已知曲线543223++-=x x x y ,则其拐点为 . 10、设函数)(x f 的导数为x cos ,且21)0(=f ,则不定积分⎰dx x f )(= . 11、定积分dx x x⎰-++1121sin 2的值为 .12、幂函数∑∞=⋅12n nnn x 的收敛域为 . 三、计算题(本大题共8小题,每小题8分,满分64分) 13、求极限:xx xx 3)2(lim -∞→ 14、设函数)(x y y =由参数方程Z n n t t y t t x ∈≠⎩⎨⎧-=-=,2,cos 1,sin π所决定,求22,dx yd dx dy15、求不定积分:⎰+dx x x 13. 16、求定积分:⎰10dx e x .17、设平面π经过点A (2,0,0),B (0,3,0),C (0,0,5),求经过点P (1,2,1)且与平面π垂直的直线方程.18、设函数),(x y y x f z +=,其中)(x f 具有二阶连续偏导数,求yx z ∂∂∂2.19、计算二重积分⎰⎰Ddxdy x 2,其中D 是由曲线xy 1=,直线2,==x x y 及0=y 所围成的平面区域.20、求微分方程2'2x y xy +=的通解.四、综合题(本大题共2小题,每小题10分,满分20分) 21、求曲线)0(1>=x xy 的切线,使其在两坐标轴上的截距之和最小,并求此最小值.22、设平面图形由曲线2x y =,22x y =与直线1=x 所围成.(1)求该平面图形绕x 轴旋转一周所得的旋转体的体积.(2)求常数a ,使直线a x =将该平面图形分成面积相等的两部分.五、证明题(本大题共2小题,每小题9分,满分18分)23、设函数)(x f 在闭区间[]a 2,0)0(>a 上连续,且)()2()0(a f a f f ≠=,证明:在开区间),0(a 上至少存在一点ξ,使得)()(a f f +=ξξ.24、对任意实数x ,证明不等式:1)1(≤-xe x .2009年江苏省普通高校“专转本”统一考试高等数学一、单项选择题(本大题共6小题,每小题4分,满分24分)1、已知32lim 22=-++→x bax x x ,则常数b a ,的取值分别为 ( )A 、2,1-=-=b aB 、0,2=-=b aC 、0,1=-=b aD 、1,2-=-=b a2、已知函数423)(22-+-=x x x x f ,则2=x 为)(x f 的A 、跳跃间断点B 、可去间断点C 、无穷间断点D 、震荡间断点3、设函数⎪⎩⎪⎨⎧>≤=0,1sin 0,0)(x x x x x f α在点0=x 处可导,则常数α的取值范围为 ( )A 、10<<αB 、10≤<αC 、1>αD 、1≥α4、曲线2)1(12-+=x x y 的渐近线的条数为 ( ) A 、1B 、2C 、3D 、45、设)13ln()(+=x x F 是函数)(x f 的一个原函数,则=+⎰dx x f )12(' ( )A 、C x ++461B 、C x ++463C 、C x ++8121D 、C x ++81236、设α为非零常数,则数项级数∑∞=+12n n n α( ) A 、条件收敛B 、绝对收敛C 、发散D 、敛散性与α有关二、填空题(本大题共6小题,每小题4分,满分24分) 7、已知2)(lim =-∞→xx Cx x ,则常数=C . 8、设函数dt te x x t ⎰=20)(ϕ,则)('x ϕ= .9、已知向量)1,0,1(-=→a ,)1,2,1(-=→b ,则→→+b a 与→a 的夹角为 .10、设函数),(y x z z =由方程12=+yz xz 所确定,则xz∂∂= . 11、若幂函数)0(12>∑∞=a x na nn n 的收敛半径为21,则常数=a .12、微分方程0)2()1(2=--+xdy y ydx x 的通解为 .三、计算题(本大题共8小题,每小题8分,满分64分)13、求极限:xx x x sin lim 30-→14、设函数)(x y y =由参数方程⎩⎨⎧-+=+=32)1ln(2t t y t x 所确定,,求22,dx yd dx dy .15、求不定积分:⎰+dx x 12sin .16、求定积分:⎰-10222dx xx .17、求通过直线12213-=-=z y x 且垂直于平面02=+++z y x 的平面方程.18、计算二重积分⎰⎰Dyd σ,其中}2,2,20),{(22≥+≤≤≤≤=y xy x x y x D .19、设函数),(sin xy x f z =,其中)(x f 具有二阶连续偏导数,求yx z∂∂∂2.20、求微分方程x y y =-''的通解.四、综合题(本大题共2小题,每小题10分,满分20分)21、已知函数13)(3+-=x x x f ,试求: (1)函数)(x f 的单调区间与极值; (2)曲线)(x f y =的凹凸区间与拐点;(3)函数)(x f 在闭区间]3,2[-上的最大值与最小值.22、设1D 是由抛物线22x y =和直线0,==y a x 所围成的平面区域,2D 是由抛物线22x y =和直线2,==x a x 及0=y 所围成的平面区域,其中20<<a .试求:(1)1D 绕y 轴旋转所成的旋转体的体积1V ,以及2D 绕x 轴旋转所成的旋转体的体积2V . (2)求常数a 的值,使得1D 的面积与2D 的面积相等.五、证明题(本大题共2小题,每小题9分,满分18分)23、已知函数⎩⎨⎧≥+<=-0,10,)(x x x e x f x ,证明函数)(x f 在点0=x 处连续但不可导.24、证明:当21<<x 时,32ln 42-+>x x x x .2010年江苏省普通高校“专转本”统一考试高等数学一、单项选择题(本大题共6小题,每小题4分,满分24分)1.设当0x →时,函数()sin f x x x =-与()ng x ax =是等价无穷小,则常数,a n 的值为 ( ) A. 1,36a n == B. 1,33a n == C. 1,412a n == D. 1,46a n == 2.曲线223456x x y x x -+=-+的渐近线共有 ( )A. 1条B. 2条C. 3条D. 4条 3.设函数22()cos t xx e tdt Φ=⎰,则函数()x Φ的导数()x 'Φ等于 ( ) A. 222cos x xe x B. 222cos x xe x - C. 2cos xxe x - D. 22cos x e x -4.下列级数收敛的是 ( )A. 11n nn ∞=+∑ B.2121n n n n∞=++∑C. nn ∞= D. 212nn n ∞=∑ 5.二次积分111(,)y dy f x y dx +⎰⎰交换积分次序后得 ( )A. 111(,)x dx f x y dy +⎰⎰B. 2110(,)x dx f x y dy -⎰⎰C.2111(,)x dx f x y dy -⎰⎰D.2111(,)x dx f x y dy -⎰⎰6.设3()3f x x x =-,则在区间(0,1)内 ( ) A. 函数()f x 单调增加且其图形是凹的 B. 函数()f x 单调增加且其图形是凸的 C. 函数()f x 单调减少且其图形是凹的 D. 函数()f x 单调减少且其图形是凸的 二、填空题(本大题共6小题,每小题4分,满分24分)7. 1lim()1xx x x →∞+=-8. 若(0)1f '=,则0()()limx f x f x x→--=9. 定积分312111x dx x -++⎰的值为 10. 设(1,2,3),(2,5,)a b k ==,若a 与b 垂直,则常数k = 11.设函数z =,则10x y dz===12. 幂级数0(1)n nn x n ∞=-∑的收敛域为三、计算题(本大题共8小题,每小题8分,满分64分) 13、求极限2011lim()tan x x x x→-14、设函数()y y x =由方程2x yy e x ++=所确定,求22,dy d ydx dx15、求不定积分arctan x xdx ⎰16、计算定积分4⎰17、求通过点(1,1,1),且与直线23253x t y t z t =+⎧⎪=+⎨⎪=+⎩垂直,又与平面250x z --=平行的直线的方程。
2005年河南省专升本高等数学真题答案及解析

1河南省2005年普通高等学校 专科毕业生进入本科阶段学习考试高等数学 答案及解析一、单项选择题(每小题2分,共计60分) 1.答案:C【解析】:C x x x ⇒<<⇒⎩⎨⎧>->-510501.2.答案:D【解析】:图形关于y 轴对称,就是考察函数是否为偶函数,显然函数222xx y -+=为偶函数,应选D.3.答案:B【解析】: ⇒-x e x~12~12x e x -,应选B.4.答案:B【解析】:2)1(2lim2)1(22121lim 21lim 21lim e n n n nn n n nn n n n n n =⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛+=⎪⎭⎫ ⎝⎛+=⎪⎭⎫⎝⎛++∞→+⋅∞→+∞→∞→,应选B.5.答案:C【解析】:21)11(1lim )11(lim 11lim)(lim 0000=-+=-+=--=→→→→x x x x x x x f x x x x ,应选C.6.答案:D 【解析】:41)1(21)1(22)1()21(lim 2)1()21(lim 020-='⇒='-=----=--→-→f f h f h f h f h f h h ,应选D.7.答案:A【解析】:对方程yx exy +=两边微分得)(dy dx eydx xdy yx +=++,即dy x e dx ey y x yx )()(-=-++,dy x xy dx xy y )()(-=-,所以dy dx )1()1(x y y x --=,应选A. 8.答案:B 【解析】:423)]([3)()(32)()]([2)()(2)(x f x f x f x f x f x f x f x f !='⋅='''⇒='=''⇒ΛΛ=)()(x f n 1)]([!+n x f n ,应选B.9.答案:A【解析】:由罗尔中值定理条件:连续、可导及端点的函数值相等来确定,只有]1,1[,1)(2--=x x f 满足,应选A. 10.答案:B【解析】:在)1,21(内,显然有0)12)(1()(<+-='x x x f ,而014)(>-=''x x f ,故函数)(x f 在)1,21(内单调减少,且曲线)(x f y =为凹的,应选B.211.答案:C 【解析】:0lim ;11lim 0=⇒∞==⇒=-→±∞→x y y y x x ,应选C.12.答案:B【解析】:dxdt t a t b t a t b dx y d t a t b x y dx dy t x t t ⨯'⎪⎭⎫ ⎝⎛-='⎪⎭⎫ ⎝⎛-=⇒-=''=sin cos sin cos sin cos 22ta bt a t a b 322sin sin 1sin -=-⨯=,应选B. 13.答案:B【解析】:两边对x 求导 22111)()1()(xx f x e e x f xx-=⇒-⨯=,应选B. 14.答案:A【解析】:⎰⎰+==C x F x d x f dx x xf )(sin )(sin )(sin )(sin cos ,应选A. 15.答案:C 【解析】:2arctan 11002π==+∞++∞⎰x dx x ;2arcsin 1110102π==-⎰x dx x; ∞==+∞∞+⎰eex dx x x 2)(ln 21ln ;10=-=+∞-+∞-⎰xx e dx e ,应选C.16.答案:A【解析】:被积函数||x x 在积分区间[-1,1]上是奇函数,应选A. 17.答案:D 【解析】:⎰⎰⎰⎰-----===-===-aaaaa aaaut dx x f du u f u d u f dx x f )()()()()(,应选D.18.答案:B 【解析】:x x f x x f x f x sin )(cos )()()(sin -='⇒=⇒='C x x dx x xdx xdx x f ++-=--=-='⎰⎰⎰2sin 412122cos 1sin sin )(2,应选B. 19.答案:A 【解析】:⎰badx x f )(是常数,它的导数为零,而不是)(x f ,即⎰badx x f )(不是)(x f 的原函数 ,应选A.20.答案:D【解析】:n s n s ρρρρ⊥⇒--=-=)1,1,1{},2,1,1{ ,另一方面点)2,0,3(-不在平面内,所以应为平行关系,应选D. 21.答案:B 【解析】:两个偏导数存在,不一定可微,但可微一定有偏导数存在,因此为必要条件,应选B. 22.答案:C 【解析】:dy y dx x dz y x y x z 11ln 2ln 2ln -=⇒-==dy dx dz 21)2,1(-=⇒,应选C. 23.答案:B【解析】:)1,1(),(012012-=⇒⎪⎪⎩⎪⎪⎨⎧=-+=∂∂=++=∂∂y x y x yz y x xz,应选B.24.答案:A325.答案:C【解析】:积分区域在极坐标下可表示为:}θcos 20,2πθ0|)θ,{(a r r D ≤≤≤≤=,从而⎰⎰=σDd y x f ),(⎰⎰πθθθθ20cos 20)sin ,cos (a rdr r r f d ,应选C.26.答案:B【解析】:L :,2⎩⎨⎧==x y xx x 从0变到1 , 1422210410310332===+=+⎰⎰⎰x dx x dx x dx x dy x xydx L,应选B.27.答案:B【解析】:∑∞=+-11)1(n nn n 发散, ∑∞=-121)1(n n n 和∑∞=+-1)1()1(n n n n 绝对收敛,∑∞=-1321)1(n nn 是收敛的,但∑∞=1321n n是32=p 的级数发散的,从而级数∑∞=-1321)1(n nn条件收敛,应选B. 28. 答案:C 【解析】:正项级数∑∞=1n nu与∑∞=1n nv收敛⇒∑∞=12n nu与∑∞=12n nv收敛,而)(2)(222nnn n v u v u +≤+,所以级数21)(n n nv u+∑∞=收敛 ,应选C.29. 答案:D【解析】:注意对所给的方程两边求导进行验证,可得通解应为222C y xy x =+-,应选D. 30.答案:A【解析】:微分方程的特征方程为0βλ22=+,有两个复特征根i βλ±=,所以方程的通解为t C t C x βsin βcos 21+=,应选A.二、填空题(每小题2分,共30分) 1.答案:116)2(2+-=-x x x f【解析】:⇒+-=⇒++-+=+32)(3)1(2)1()1(22x x x f x x x f116)2(2+-=-x x x f .2.答案:1=a【解析】:因10)6(lim 0)2(lim 222=⇒=-+⇒=-→→a ax x x x x .3.答案:02π12=+--y x 【解析】:2111121=+='===x x x y k ,则切线方程为)1(214π-=-x y , 即02π12=+--y x 02π12=+--y x .44.答案:dx x xe x dy xx]1ln 1[21+-= 【解析】:dx x x e x x x x d edy ey x x x xxx xx]1ln 1[)ln (21ln ln +-=+=⇒=++ .5.答案:),21(∞+ 或),21[∞+【解析】:⇒>⇒⎪⎩⎪⎨⎧>>-⇒-='21001414x x xx x x y ),21(∞+ 或),21[∞+. 6.答案:),1(e【解析】:104)1(21=⇒=-=''⇒⨯='x xx x e y xe y x x,得拐点为),1(e .7.答案:271【解析】:等式x dt t f x ⎰=3)(两边求导有13)(23=x x f ,取3=x 有271)27(=f . 8.答案:45 【解析】:⎰⎰⎰'-'='=''10101012)2(41)2(21)2(21)2(x d x f x f x x f xd dx x f x 45)0(41)2(41)2(21)2(41)2(2110=+-'=-'=f f f x f f . 9.答案:0 【解析】:0)0(00=⇒=⇒=='-f x xey x.10.答案:C x x ++|cos |ln【解析】:⎰⎰++=++=+-C x x xx x x d dx x x x |cos |ln cos )cos (cos sin 1.11. 答案:6【解析】: 6||2210101=⨯=⇒+-=-=⨯b a S k j i k j i b a ρρρρρρρρρρ .12.答案:)()(z x y z y z ++【解析】:令y z z xy z z x F ln ln ln +-=-= ,则221,1,1zz x z z x F y F z F z y x +-=--='='='.)(;2z x y z F F y z z x z F F x z z y z x +=''-=∂∂+=''-=∂∂ ,所以)()(z x y z y z y z x z ++=∂∂+∂∂ .513.答案:821π- 【解析】:积分区域在极坐标系下表示为}10,4πθ0|)θ,{(≤≤≤≤=r r D ,则 ⎰⎰⎰⎰⎰⎰-=⎪⎭⎫ ⎝⎛=104π021024π02θ)1θ(sec θcos θsin θ)(rdr d rdr d dxdy x y D8π21)θθ(tan 21θ)1θ(sec 214π024π02-=-=-=⎰d .14.答案:)11(,21)1()2(21)()(0100<<-⎥⎦⎤⎢⎣⎡+-=+-=∑∑∑∞=+∞=∞=x x x x x f n n n nn n n n【解析】:21121112111)2)(1(323)(2x x x x x x xx x f -++=-++=-+=-+=, 所以)11(,21)1()2(21)()(0100<<-⎥⎦⎤⎢⎣⎡+-=+-=∑∑∑∞=+∞=∞=x x x x x f n n n nn n n n .15.答案:xe B Ax x 22)(+【解析】:2是特征方程04λ4λ2=+-的二重根,且)12(+x 是一次多项式,特解应设为 xe B Ax x 22)(+.三、计算题(每小题5分,共40分)1.xx x x x cos sin 1lim2-+→.【解析】:x x x x x x x xx x x x x cos sin 1)cos sin 1(limcos sin 1lim 2020-+++=-+→→ )cos sin 1(lim cos sin 1lim20x x x x x x x x x ++⨯-+=→→ xx x xx x x x x x cos sin 22lim 2cos sin 1lim 20020+=-+=→→34314sin cos 31lim4000=⨯=-=→x x x x .2.已知2arctan )(,2523x x f x x y ='⎪⎭⎫ ⎝⎛+-=,求0=x dx dy . 【解析】:令u x x =+-2523,则)(u f y = , 22)25(162523arctan 2523)(+⨯⎪⎭⎫ ⎝⎛+-='⎪⎭⎫ ⎝⎛+-'=⨯=x x x x x u f dx du du dy dx dy ,3.求不定积分⎰+dx xx 231.【解析】:⎰⎰⎰+=+=+222223111x d x dx x x x dx x x)1(11)(1122222222x d x x x x d x x x ++-+=+-+=⎰⎰C x x x ++-+=23222)1(321.4.设⎪⎩⎪⎨⎧<+≥+=0,210),1ln()(x xx x x f ,求⎰-20)1(dx x f .【解析】:令t x =-1 ,则⎰⎰-=-112)()1(dt t f dx x f⎰⎰⎰⎰+++=+=--10011001)1ln(21)()(dt t dt t dt t f dt t f ⎰+-+++=-1010011)1ln()2ln(dt tt t t t⎰+--+=10)111(2ln 2ln dt t12ln 3)1ln(2ln 21010-=++-=t t .5.设),sin (22y x y e f z x += ,其中),(v u f 可微,求yz x z ∂∂∂∂,. 【解析】:令v y x u y e x=+=22,sin ,则),(v u f z =,复合关系结构如图05-1所示,x vv z x u u z x z ∂∂⨯∂∂+∂∂⨯∂∂=∂∂),(2),(sin v u f x v u f y e v u x'+'=,yvv z y u u z y z ∂∂⨯∂∂+∂∂⨯∂∂=∂∂ ),(2),(cos v u f y v u f y e v u x'+'=.6.求⎰⎰D dxdy y x 22,其中D 是由2,1===x x y xy 及所围成的闭区域.【解析】:积分区域如图05-2所示,曲线x y xy ==,1在第一象限内的交点为(1,1),积分区域可表示为:x y xx ≤≤≤≤1,21.则⎰⎰⎰⎰⎰-==21121222122)1(dx y x dy y x dx dxdy y x x xx x D z vu x xy y 图05-1xx 图05-27⎰⎰-=⎥⎦⎤⎢⎣⎡-=213212)(1dx x x dx x x x49242124=⎪⎪⎭⎫ ⎝⎛-=x x . 7.求幂级数12012)1(+∞=∑+-n n n x n 的收敛域(考虑区间端点).【解析】: 这是缺项的标准的幂级数,因为 221232113212lim )1(1232)1(lim lim ρx n n x x n n x u u n n n n n n nn n =++=-+⋅+-==∞→+++∞→+∞→, 当1ρ<,即11<<-x 时,幂级数绝对收敛; 当1ρ>,即1>x 或1-<x 时,幂级数发散; 当1ρ=,即1±=x 时,若1=x 时,幂级数化为∑∞=+-012)1(n nn 是交错级数,满足来布尼兹定理的条件,是收敛的,若1-=x 时,幂级数化为∑∞=++-0112)1(n n n 也是交错级数,也满足来布尼兹定理的条件,是收敛的.故幂级数的收敛域为[-1,1].8.求微分方程 0cos 2)1(2=-+'+x xy y x 通解. 【解析】:微分方程可化为 1cos 1222+=++'x xy x x y ,这是一阶线性非齐次微分方程,它对应的齐次线性微分方程0122=++'y x x y 的通解为12+=x Cy . 设非齐次线性微分方程的通解为1)(2+=x x C y ,则222)1()(21)(+-+'='x x xC x x C y ,代入方程得x x C cos )(=',所以C x x C +=sin )(.故原微分方程的通解为1sin 2++=x Cx y (C 为任意常数).四、应用题(每小题7分,共计14分)1. 一房地产公司有50套公寓要出租,当月租金定为2000元时,公寓会全部租出去,当月租金每增加100元时,就会多一套公寓租不出去,而租出去的公寓每月需花费200元的维修费.试问租金定为多少可获得最大收入?最大收入是多少? 【解析】:设每套公寓租金为x 元时,所获收入为y 元,则 )2000(),200](100200050[>---=x x x y , 整理得 ),14000007200(10012-+-=x x y )72002(1001+-='x y 均有意义,8令0='y 得唯一可能的极值点3600=x ,而此时0501<-=''y ,所以3600=x 是使y 达到极大值的点,即为最大值的点.最大收入为115600340034)2003600](1002000360050[=⨯=---=y (元).故 租金定为每套3600元时,获得的收入最大,最大收入为115600元. 2.平面图形由抛物线x y 22=与该曲线在点)1,21(处法线所围成,试求: (1)该平面图形的面积;(2)该平面图形绕x 轴旋转所成的旋转体的体积.【解析】:平面图形如图05-3所示,切点)1,21(A 处的切线斜率为21='=x y k ,由x y 22=得yy 1=',故A 点处的切线斜率 1121='='===y x y y k ,从而A 点处的法线斜率为-1, 法线方程为023=-+y x . 联立方程组⎪⎩⎪⎨⎧=-+=02322y x xy 得另一交点)3,29(-B(1) 把该平面图形看作Y 型区域,其面积为316)6223(2)23(1332132=--=⎥⎦⎤⎢⎣⎡--=--⎰y y y dy y y S ;(2) 根据抛物线的对称性知,该平面图形绕x 轴旋转所成的旋转体的体积等于平面图形OBC 绕x 轴旋转所成旋转体的体积,有故 ⎰⎰+--=--=292329233229022290)312349(ππ)23(π2πx x x xdx x xdx V xπ445]9481[π=-=. 五、证明题(6分)试证:当0>x 时,有xx x x 11ln 11<+<+. 【证明】:构造函数x x f ln )(=,它在)0(∞+,内连续, 当0>x 时,函数在区间]1,[x x +上连续,且xx f 1)(='. 故)(x f 在]1,[x x +上满足Lagrange 中值定理,存在)1,(ξ+∈x x , 使得)ξ()()1(f x f x f '=-+,)1ξ(+<<x x .x图05-3023=-y9而x f x 1ξ1)ξ(11<='<+,故有xx x x 1ln )1ln(11<-+<+, 即0>x 时,xx x x 11ln 11<+<+成立.。
5河南专升本高数真题及答案

2005年河南省普通高等学校 选拔优秀专科生进入本科阶段学习考试高等数学 试卷一、单项选择题(每小题2分,共计60分)在每小题的四个备选答案中选出一个正确答案,并将其代码写在题 干后面的括号内。
不选、错选或多选者,该题无分。
1.函数xx y --=5)1ln(的定义域为为 ( )A 。
1>x B.5<x C.51<<x D. 51≤<x解:C x x x ⇒<<⇒⎩⎨⎧>->-510501.2.下列函数中,图形关于y 轴对称的是 ( )A .x x y cos = B. 13++=x x yC. 222x x y --= D 。
222xx y -+=解:图形关于y 轴对称,就是考察函数是否为偶函数,显然函数222xx y -+=为偶函数,应选D 。
3. 当0→x 时,与12-x e 等价的无穷小量是 ( ) A. x B.2x C 。
x 2 D. 22x解: ⇒-x e x ~12~12x e x -,应选B.4.=⎪⎭⎫⎝⎛++∞→121lim n n n ( ) A. e B 。
2e C.3e D.4e解:2)1(2lim2)1(22121lim 21lim 21lim e n n n nn n n nn n n n n n =⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛+=⎪⎭⎫⎝⎛+=⎪⎭⎫⎝⎛++∞→+⋅∞→+∞→∞→,应选B 。
5.设⎪⎩⎪⎨⎧=≠--=0,0,11)(x a x xxx f 在0=x 处连续,则 常数=a ( )A 。
1 B.-1 C.21 D.21-解:21)11(1lim )11(lim 11lim )(lim 0000=-+=-+=--=→→→→x x x x x x x f x x x x ,应选C.6。
设函数)(x f 在点1=x 处可导,且21)1()21(lim0=--→h f h f h ,则=')1(f ( )A. 1B.21-C.41 D 。
2005年普通专升本高等数学真题

2005年普通高等学校选拔 优秀专科生进入本科阶段考试试题高等数学一、单项选择题(每小题2分,共60分)在每小题的四个备选答案中选出一个正确答案,并将其代码写在题干后面的括号内。
不选、错选或多选者,该题不得分。
1.函数xx y --=5)1ln(的定义域为( )。
A.x>1B.x<5C.1<x<5D.1<x ≤5 2.下列函数中,图形关于y 轴对称的是( )。
A.y=xcosx B.13++=x x y C.222xxy --=D. 222xxy -+=3.当x →0时,12-xe等价的无穷小量是 ( )。
A.x B.x 2 C.2x D.2x 2 4.∞→n lim 1)21(++n n=( )。
A.eB.e 2C.e 3D.e 45.设函数f(x)=⎪⎩⎪⎨⎧=≠--0,0,11x a x xx在x=0处连续,则a=( )。
A. 1 B. -1 C. 21 D. 21-6.设函数f(x)在点x=1出可导,则21)1()21(lim =--∞→hf h f h ,则=)1('f ( )。
A. 21B. 21-C.41 D. 41-7.由方程y x e xy +=确定的隐函数x(y)的导数dxdy 为( )A.)1()1(x y y x -- B.)1()1(y x x y -- C.)1()1(-+y x x y D.)1()1(-+x y y x8.设函数f(x)具有任意阶导数,且()()[]x f x f n =)('=( )。
A.()[]1+n x f n B.()[]1!+n x f n C.()[]1)1(++n x f n D.()[]1)!1(++n x f n9.下列函数在给定区间上满足罗尔定理条件的是( )。
A.[]1,1,1)(2--=x x f B.[]1,1,)(-=-xxe x fC.[]1,1,11)(2--=xx f D. []1,1,)(-=x x f10.设)12)(1()('+-=x x x f ,),(+∞-∞∈x ,则在(21,1)内,f(x)单调( )。
2005年陕西高校专升本招生高等数学试题

2005年陕西高校专升本招生高等数学试题一. 单选题 (每题5分,共25 分)1. 设函数⎪⎩⎪⎨⎧=≠=0,00,1sin )(x x xx x f ,则0=x 是( ) A. 可去间断点 B. 跳跃间断点 C. 第二类间断点 D. 连续点 2.⎰='dx x f )3(( )A. c x f +)3(B.c x f +)3(31 C. c x f +)(3 D.c x f +)(313. 设由方程0),(=++bz y az x F 确定隐函数),(y x z z =,则yzb x z a ∂∂+∂∂= ( ) A. a B. b C. 1- D. 1 4. 下列级数为绝对收敛的是( ) A.n n n1)1(1∑∞=- B. ∑∞=-12)1(n nn C. ∑∞=-12)1(n nnD.nn n )23()1(0∑∞=- 5.=⎰⎰-dx e dy yx112( ) A.)11(21e - B. )11(21-e C. )11(2e - D. )11(2-e二. 填空题 (每题5分,共25 分)6. 已知)(x f 的定义域为[0,2], 则)21()21(-++x f x f 的定义域为__________. 7. 设e xm xx =+∞→3)1(lim ,则=m __________. 8. 设23)(23+-=x x x f ,则曲线)(x f y =的拐点是__________.9.dx x x x)1sin (1122⎰--+=___________.10. 设)cos(y x ez xy-+=,则=)1,1(|dz __________.三. 计算题 (每题9分.共81分)11. 计算.sin )1ln(lim2202xx dtt x x ⎰+→12. 已知参数方程 ⎩⎨⎧+-==)1ln(1arctan 2t y t x ,求.,|221dx yd dx dy t = 13. 求不定积分.1arctan 22dx xxx ⎰+ 14. 已知)(x f 是可导函数,且0)1(=f ,,311)(=⎰dx ex f 求dx x f xe x f )(1)('⎰.15. 已知xy v y x u v u f z =+==,),,(,f 具有二阶连续的偏导数,求.2y x z∂∂∂16. 已知曲线方程⎩⎨⎧==21x y xyz ,求在点(1,1,1)处曲线的切线方程和法平面方程. 17. 求曲线积分,22⎰+-Lyx xdyydx 其中L 为)0(222>=+a a y x 取逆时针方向. 18. 将函数24xxy +=展开为麦克劳林级数,并确定其定义域. 19. 求微分方程xxe y y y 244=+'-''的通解. 四. 应用与证明题 (20题11分,21题8分)20. 设抛物线,2bx ax y +=当0,10≥≤≤y x 时,已知它与直线1,0==x y 所围成的图形的面积为31.求b a ,的值,使此图形绕X 轴旋转一周而成的旋转体的体积最小. 21. 证明:若)(),(x g x f 在],[b a 上连续,在),(b a 内可导,,0)(,0)()(≠==x g b f a f 则至少存在一点),(b a ∈ξ,使.0)()(2)()(='+'ξξξξf g g f2005年陕西高校专升本招生高等数学试题答案一. 单选题1. D2. B3. C4. B5. A 二. 填空题6. ]23,21[ 7. 31 8. )0,1( 9. 2π10. )(dy dx e + 三. 计算题11. 21 12. 2|)2(|11-=-===t t t dx dy . )1(2112)2()(2222t t dt dx t dt ddx dy dx d dxy d +-=+-=-== 13. C x x x x +++-22)(arctan 21)1ln(21arctan14.dx x f xex f )(10)('⎰=32311|)(1)(1)(1)(=-=-=⎰⎰dx e xeexd x f x f x f 15. 2222112112)(f y x f f x f f yx z +⋅++⋅+=∂∂∂16. ⎪⎪⎩⎪⎪⎨⎧+-==⇒⎪⎪⎩⎪⎪⎨⎧=-=+⇒⎪⎩⎪⎨⎧==y x xz dx dz x dx dyx dx dy x dx dz y dx dy z x y x yz 222122211,在(1,1,1)处 3,2)1,1,1()1,1,1(-==dx dz dx dy, 切向量)3,2,1(-=T 切线为312111--=-=-z y x 法平面为0)1(3)1(2)1(1=---+-⋅z y x 即032=-+z y x 17. 不能用格林公式. L:π20,sin ,cos ≤≤==t t a y t a x 有.2cos sin 202222222⎰⎰-=--=+-Ldt a ta t a yx xdy ydx ππ 18. )2,2(,2)1()2()1(4)2(1144112022-∈-=-⋅=+⋅=+=+∞=+∞=∑∑x x x x x xx x y n n n n n nn 19. 特征根221==r r ,齐次方程通解为x xxe C e C Y 2221+=.设非齐次方程的特解形式为xeb ax x y 22)(+=*,代入非齐次方程比较系数得:0,61==b a .故非齐次方程的通 解为x xxe x xeC e C y 2322216++= 四. 应用题与证明题20. 有3123)(102=+=+⎰b a dx bx ax ,)325()(22122b ab a dx bx ax V ++=+=⎰ππ 因)1(32a b -=,故)94954514(2+-=a a V π,令0='V ,得2825=a ,又 04528)2825(>=''V ,于是141,2825==b a 时旋转体的体积最小. 21. 令)()()(2x g x f x F =,则)(x F 在],[b a 上连续,在),(b a 内可导.0)()(==b F a F ,由 罗尔定理知,至少存在),(b a ∈ξ使0)(='ξF , 0)()()(2)()(2='+'ξξξξξf g g g f即.0)()(2)()(='+'ξξξξf g g f。
2005河南专升本高数真题

2005年河南省普通高等学校 选拔优秀专科生进入本科阶段学习考试高等数学 试卷一、单项选择题(每小题2分,共计60分) 在每小题的四个备选答案中选出一个正确答案,并将其代码写在题 干后面的括号内。
不选、错选或多选者,该题无分.1.函数xx y --=5)1ln(的定义域为为 ( )A. 1>xB.5<xC.51<<xD. 51≤<x解:C x x x ⇒<<⇒⎩⎨⎧>->-510501.2.下列函数中,图形关于y 轴对称的是 ( )A .x x y cos = B. 13++=x x yC. 222x x y --=D. 222x x y -+=解:图形关于y 轴对称,就是考察函数是否为偶函数,显然函数222xx y -+=为偶函数,应选D.3. 当0→x 时,与12-x e 等价的无穷小量是 ( )A. xB.2xC. x 2D. 22x 解: ⇒-x e x~12~12x e x -,应选B.4.=⎪⎭⎫⎝⎛++∞→121lim n n n ( ) A. e B. 2e C. 3e D. 4e解:2)1(2lim2)1(22121lim 21lim 21lim e n n n nn n n nn n n n n n =⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛+=⎪⎭⎫ ⎝⎛+=⎪⎭⎫⎝⎛++∞→+⋅∞→+∞→∞→,应选B.5.设⎪⎩⎪⎨⎧=≠--=0,0,11)(x a x xxx f 在0=x 处连续,则 常数=a ( ) A. 1 B. -1 C. 21 D. 21-解:21)11(1lim )11(lim 11lim)(lim 0000=-+=-+=--=→→→→x x x x x x x f x x x x ,应选C.6.设函数)(x f 在点1=x 处可导,且21)1()21(lim 0=--→h f h f h ,则=')1(f ( )A. 1B. 21-C. 41D. 41-解:41)1(21)1(22)1()21(lim 2)1()21(lim020-='⇒='-=----=--→-→f f h f h f h f h f h h ,应选D.7.由方程y x e xy +=确定的隐函数)(y x 的导数dydx为( )A.)1()1(x y y x --B.)1()1(y x x y --C.)1()1(-+y x x yD.)1()1(-+x y y x 解:对方程y x e xy +=两边微分得)(dy dx e ydx xdy y x +=++, 即dy x e dx e y y x y x )()(-=-++, dy x xy dx xy y )()(-=-,所以dy dx )1()1(x y y x --=,应选A. 8.设函数)(x f 具有任意阶导数,且2)]([)(x f x f =',则=)()(x f n ( ) A. 1)]([+n x f n B. 1)]([!+n x f nC. 1)]()[1(++n x f nD. 1)]([)!1(++n x f n 解:423)]([3)()(32)()]([2)()(2)(x f x f x f x f x f x f x f x f !='⋅='''⇒='='',⇒ =)()(x f n 1)]([!+n x f n ,应选B.9.下列函数在给定的区间上满足罗尔定理的条件是 ( ) A.]1,1[,1)(2--=x x f B.]1,1[,)(-=-x xe x fC.]1,1[,11)(2--=xx f D .]1,1[|,|)(-=x x f 解:由罗尔中值定理条件:连续、可导及端点的函数值相等来确定,只有]1,1[,1)(2--=x x f 满足,应选A.10.设),(),12)(1()(+∞-∞∈+-='x x x x f ,则在)1,21(内,)(x f 单调 ( )A.增加,曲线)(x f y =为凹的B.减少,曲线)(x f y =为凹的C.增加,曲线)(x f y =为凸的D.减少,曲线)(x f y =为凸的解: 在)1,21(内,显然有0)12)(1()(<+-='x x x f ,而014)(>-=''x x f ,故函数)(x f 在)1,21(内单调减少,且曲线)(x f y =为凹的,应选B.11.曲线xey 1-=( )A. 只有垂直渐近线B. 只有水平渐近线C. 既有垂直渐近线,又有水平渐近线,D. 无水平、垂直渐近线解:0lim ;11lim 0=⇒∞==⇒=-→±∞→x y y y x x ,应选C. 12.设参数方程为⎩⎨⎧==t b y t a x s i n c os ,则二阶导数=22dx yd ( )A.t a b 2sin B.t a b32sin - C.t a b 2cos D.t t a b22cos sin -解:dxdt t a t b t a t b dx y d t a t b x y dx dy t x t t ⨯'⎪⎭⎫ ⎝⎛-='⎪⎭⎫ ⎝⎛-=⇒-=''=sin cos sin cos sin cos 22ta b t a t a b 322sin sin 1sin -=-⨯=,应选B. 13.若⎰+=C e dx e x f xx 11)(,则=)(x f ( )A. x 1-B. 21x -C. x 1D. 21x解:两边对x 求导 22111)()1()(xx f x e e x f x x -=⇒-⨯=,应选B.14. 若⎰+=C x F dx x f )()( ,则⎰=dx x xf )(sin cos ( )A.C x F +)(sinB.C x F +-)(sinC.C x F +)(cosD.C x F +-)(cos 解:⎰⎰+==C x F x d x f dx x xf )(sin )(sin )(sin )(sin cos ,应选A.15.下列广义积分发散的是 ( )A.⎰+∞+0211dx xB.⎰-10211dx xC.⎰+∞e dx x x lnD.⎰+∞-0dx e x解:2arctan 11002π==+∞++∞⎰x dx x ;2arcsin 1110102π==-⎰x dx x ; ∞==+∞∞+⎰eex dx x x 2)(ln 21ln ;10=-=+∞-+∞-⎰xx e dx e ,应选C.16.=⎰-11||dx x x( )A.0B.32C.34D.32-解:被积函数||x x 在积分区间[-1,1]上是奇函数,应选A.17.设)(x f 在],[a a -上连续,则定积分⎰-=-aadx x f )( ( )A.0B.⎰a dx x f 0)(2 C.⎰--a adx x f )( D.⎰-aadx x f )(解:⎰⎰⎰⎰-----===-===-aaaaa aaaut dx x f du u f u d u f dx x f )()()()()(,应选D.18.设)(x f 的一个原函数是x sin ,则='⎰xdx x f sin )( ( )A.C x x +-2sin 2121B.C x x ++-2sin 4121 C.x 2sin 21 D.C x +-2sin 21解: x x f x x f x f x sin )(cos )()()(sin -='⇒=⇒='C x x dx x xdx xdx x f ++-=--=-='⎰⎰⎰2sin 412122cos 1sin sin )(2,应选B. 19.设函数)(x f 在区间],[b a 上连续,则不正确的是 ( )A.⎰b a dx x f )(是)(x f 的一个原函数B.⎰xadt t f )(是)(x f 的一个原函数 C.⎰ax dt t f )(是)(x f -的一个原函数 D.)(x f 在],[b a 上可积解: ⎰badx x f )(是常数,它的导数为零,而不是)(x f ,即⎰badx x f )(不是)(x f 的原函数 ,应选A.20.直线22113+=-=-z y x 与平面01=+--z y x 的关系是 ( ) A. 垂直 B.相交但不垂直 C. 直线在平面上 D. 平行 解:n s n s⊥⇒--=-=)1,1,1{},2,1,1{ ,另一方面点)2,0,3(-不在平面内,所以应为平行关系,应选D..21.函数),(y x f z =在点),(00y x 处的两个偏导数x z ∂∂和yz∂∂存在是它在该点处可微的 ( )A.充分条件B.必要条件C.充要条件D.无关条件解:两个偏导数存在,不一定可微,但可微一定有偏导数存在,因此为必要条件,应选B.22.设yxz 2ln = ,则=)2,1(dz ( )A.dx x y 2B.dy dx 2121-C.dy dx 21-D.dy dx 21+ 解:dy ydx x dz y x y x z 11ln 2ln 2ln -=⇒-==dy dx dz 21)2,1(-=⇒,应选C.23.函数1),(22+-+++=y x y xy x y x f 的极小值点是 ( )A.)1,1(-B.)1,1(-C. )1,1(--D. )1,1(解:)1,1(),(012012-=⇒⎪⎪⎩⎪⎪⎨⎧=-+=∂∂=++=∂∂y x y x y z y x xz,应选B.24.二次积分⎰⎰202),(x dy y x f dx 写成另一种次序的积分是 ( )A. ⎰⎰402),(y dx y x f dy B. ⎰⎰400),(ydx y x f dy C. ⎰⎰4022),(xdx y x f dy D. ⎰⎰402),(ydx y x f dy解:积分区域}2,40|),{(}0,20|),{(2≤≤≤≤=≤≤≤≤=x y y y x x y x y x D ,应选A.25.设D 是由上半圆周22x ax y -=和x 轴所围成的闭区域,则⎰⎰=σDd y x f ),(()A.⎰⎰πθθθ2020)sin ,cos (a rdr r r f d B.⎰⎰πθθθ2020)sin ,cos (adr r r f d C.⎰⎰πθθθθ20cos 20)sin ,cos (a rdr r r f d D.⎰⎰πθθθθ20cos 20)sin ,cos (a dr r r f d解:积分区域在极坐标下可表示为:}θcos 20,2πθ0|)θ,{(a r r D ≤≤≤≤=,从而⎰⎰=σDd y x f ),(⎰⎰πθθθθ20cos 20)sin ,cos (a rdr r r f d ,应选C.26.设L 为抛物线2x y =上从)0,0(O 到)1,1(B 的一段弧,=+⎰Ldy x xydx 22( )A. -1B.1C. 2D. -1解:L :,2⎩⎨⎧==xy xx x 从0变到1 , 1422210410310332===+=+⎰⎰⎰x dx x dx x dx x dy x xydx L,应选B.27.下列级数中,条件收敛的是 ( )A .∑∞=+-11)1(n nn n B .∑∞=-1321)1(n n nC .∑∞=-121)1(n nn D .∑∞=+-1)1()1(n nn n解:∑∞=+-11)1(n n n n 发散, ∑∞=-121)1(n n n 和∑∞=+-1)1()1(n n n n 绝对收敛,∑∞=-1321)1(n nn 是收敛的,但∑∞=1321n n 是32=p 的级数发散的,从而级数∑∞=-1321)1(n n n条件收敛,应选B.28. 下列命题正确的是( )A .若级数∑∞=1n n u 与∑∞=1n n v 收敛,则级数21)(n n n v u +∑∞=收敛B .若级数∑∞=1n n u 与∑∞=1n n v 收敛,则级数)(212n n nv u +∑∞=收敛 C .若正项级数∑∞=1n n u 与∑∞=1n n v 收敛,则级数21)(n n n v u +∑∞=收敛D .若级数∑∞=1n n n v u 收敛,则级数∑∞=1n n u 与∑∞=1n n v 都收敛解:正项级数∑∞=1n n u 与∑∞=1n n v 收敛⇒ ∑∞=12n nu 与∑∞=12n n v 收敛,而)(2)(222n n n n v u v u +≤+,所以级数21)(n n n v u +∑∞=收敛 ,应选C 。
2004至2005年江苏专转本高数真题附答案

2004年江苏省普通高校“专转本”统一考试高等数学一、单项选择题(本大题共6小题,每小题3分,满分18分.)1、[](]⎩⎨⎧∈--∈=2,00,3)(33x xx x x f ,是: ( ) A 、有界函数B 、奇函数C 、偶函数D 、周期函数2、当0→x 时,x x sin 2-是关于x 的 ( ) A 、高阶无穷小B 、同阶但不是等价无穷小C 、低阶无穷小D 、等价无穷小3、直线L 与x 轴平行且与曲线x e x y -=相切,则切点的坐标是 ( ) A 、()1,1B 、()1,1-C 、()1,0-D 、()1,04、2228R y x =+设所围的面积为S ,则dx x R R⎰-220228的值为 ( )A 、SB 、4SC 、2S D 、S 25、设yx y x u a r c ta n),(=、22ln ),(y x y x v +=,则下列等式成立的是 ( ) A 、y v x u ∂∂=∂∂ B 、xv x u ∂∂=∂∂ C 、xv y u ∂∂=∂∂ D 、yv y u ∂∂=∂∂ 6、微分方程xxe y y y 22'3''=+-的特解*y 的形式应为( ) A 、xAxe 2B 、xe B Ax 2)(+C 、xeAx 22 D 、x e B Ax x 2)(+二、填空题(本大题共6小题,每小题3分,满分18分)7、设xx x x f ⎪⎭⎫⎝⎛++=32)(,则=∞→)(lim x f x 8、过点)2,0,1(-M 且垂直于平面2324=-+z y x 的直线方程为9、设)()2)(1()(n x x x x x f +++= ,N n ∈,则=)0('f 10、求不定积分=-⎰dx xx 231arcsin 11、交换二次积分的次序=⎰⎰-dy y x f dx x x 212),(12、幂级数∑∞=-12)1(n nnx 的收敛区间为三、解答题(本大题共8小题,每小题5分,满分40分) 13、求函数xxx f sin )(=的间断点,并判断其类型.14、求极限)31ln()1()sin (tan lim22x e dtt t x xx +--⎰→.15、设函数)(x y y =由方程1=-yxe y 所确定,求22=x dx yd 的值.16、设)(x f 的一个原函数为xe x ,计算⎰dx x xf )2('.17、计算广义积分dx x x ⎰+∞-211.18、设),(xy y x f z -=,且具有二阶连续的偏导数,求x z ∂∂、yx z∂∂∂2.19、计算二重积分dxdy y yD⎰⎰sin ,其中D 由曲线x y =及x y =2所围成.20、把函数21)(+=x x f 展开为2-x 的幂级数,并写出它的收敛区间.四、综合题(本大题共3小题,每小题8分,满分24分)21、证明:⎰⎰=πππ)(sin 2)(sin dx x f dx x xf ,并利用此式求dx xxx⎰+π2cos 1sin .22、设函数)(x f 可导,且满足方程)(1)(20x f x dt t tf x++=⎰,求)(x f .23、甲、乙二城位于一直线形河流的同一侧,甲城位于岸边,乙城离河岸40公里,乙城在河岸的垂足与甲城相距50公里,两城计划在河岸上合建一个污水处理厂,已知从污水处理厂到甲乙二城铺设排污管道的费用分别为每公里500、700元。
2005年河南专升本高数真题及答案

2005 年河南省普通高等学校
选拔优秀专科生进入本科阶段学习考试
高等数学试卷
题号一二三四五六总分核分人
分数
得分评卷人
一、单项选择题(每小题 2 分,共计 60 分)
在每小题的四个备选答案中选出一个正确答案,并将其代码写在题
干后面的括号内。
不选、错选或多选者,该题无分 .
1. 函数的定义域为为()
A. B. C. D.
解:.
2. 下列函数中 , 图形关于轴对称的是()
A . B.
C. D.
解:图形关于轴对称 , 就是考察函数是否为偶函数 , 显然函数为偶函数 , 应选 D.
3 . 当时,与等价的无穷小量是()
A. B. C. D.
解:, 应选 B.
4. ()
A. B. C. D.
解:, 应选 B.
5. 设在处连续,则常数()
A. 1
B. -1 C . D.
解:, 应选 C.
6. 设函数在点处可导 , 且, 则()
A. 1
B.
C.
D.
解:, 应选
D.
7. 由方程确定的隐函数的导数为()
A. B. C. D.
解:对方程两边微分得,
即,
,
所以, 应选 A.
8. 设函数具有任意阶导数 , 且,则()
A. B.
C. D.
解:,
, 应选 B.
9. 下列函数在给定的区间上满足罗尔定理的条件是()。