部编版人教初中数学九年级上册《23.1 第1课时 认识图形的旋转 导学案》最新精品导学单

合集下载

人教版数学九年级上册23 第1课时 旋转的概念与性质导学案

人教版数学九年级上册23 第1课时 旋转的概念与性质导学案

第二十三章旋转投我以桃,报之以李。

《诗经·大雅·抑》原创不容易,【关注】,不迷路!23.1图形的旋转23.1.1第1课时旋转的概念与性质学习目标:1.掌握旋转的有关概念及基本性质.2.能够根据旋转的基本性质解决实际问题.重点:掌握旋转的有关概念及基本性质.难点:探索旋转的性质并能运用旋转的性质解决实际问题.一、知识链接1.将图①平移,使点A的对应点为点C,画出平移后的图形.2.如图②,已知△ABC和直线l,请画出△ABC关于直线l的对称图形.图①图②二、要点探究探究点1:旋转的概念观察与思考观察荡秋千、转动的钟表和风车,它们有什么共同的特征?思考怎样来定义上面这些图形的变换?知识要点在平面内,将一个图形绕一个定点按某个方向转动一个角度,这样的图形运动称为旋转.这个定点称为旋转中心.转动的角称为旋转角.如果图形上的点P经过旋转变为点P',这两个点叫做这个旋转的对应点.转动的方向分为顺时针与逆时针.例1下列物体的运动是旋转的有.①电梯的升降运动;②行驶中的汽车车轮;③方向盘的转动;④骑自行车的人;⑤坐在摩天轮里的小朋友.方法总结:判断一种运动是否属于旋转,先看图形是否在同一平面内运动,其次要看是否有旋转中心,旋转角,旋转方向,还要注意判断变化前后图形大小是否发生了变化.例2若叶片A绕O顺时针旋转到叶片B,则旋转中心是______,旋转角是_________,旋转角等于____度,其中的对应点有_______、_______、_______、_______、_______、_______.练习如图,三角形ABD经过旋转后到三角形ACE的位置,其中∠BAC=60°.(1)旋转中心是哪一点?(2)旋转了多少度?顺时针还是逆时针?(3)如果M是AB的中点,经过上述旋转后,点M转到什么位置?要点归纳:确定一次图形的旋转时,必须明确旋转中心、旋转角、旋转方向.旋转的范围是“平面内”,其中“旋转中心,旋转方向,旋转角度”称之为旋转的三要素.典例精析例3如图,点A、B、C、D都在方格纸的格点上,若△AOB绕点O按逆时针方向旋转到△COD的位置,则旋转的角度为( )A.30°B.45°C.90°D.135°方总结:一个图形由一个位置旋转到另一个位置,如果有固定不动的点,那么这个点就是旋转中心,对应点与旋转中心所连线段的夹角等于旋转角.探究点2:旋转的性质合作探究1根据图形填空旋转中心是点__________;图中对应点有;图中对应线段有_____________________________________.每对对应线段的长度有怎样的关系?________.图中旋转角等于________.合作探究2观察下图,你能得到什么结论?知识要点:旋转的性质1.对应点到旋转中心的离相等;2.两组对应点分别与旋转中心的连线所成的角相等;3.旋转中心是唯一不动的点;4.旋转不改变图形的形状和大小.想一想如图,将△ABC逆时针旋转△ADE,如何确定它们的旋转中心位置?练一练如图,在平面直角坐标系xOy中,△ABC的顶点A(1,2)、B(-2,2)、C(-1,0).若将△ABC以某点为旋转中心,顺时针旋转90°得到△DEF,则旋转中心的坐标是()A.0,0)B.(1,0)C.(1,-1)D.(2.5,0.5)方法总结:旋转中心在对应点连线的垂直平分线上,找到旋转中心,找到两组对应点连线的垂直平分线的交点即可.例4如图,将△ABC绕点A逆时针旋转150°,得到△ADE,这时点B,C,D 恰好在同一直线上,求∠B的度数.变式如图,△ABC为钝角三角形,将△ABC绕点A逆时针旋转120°,得到△AB'C',连接B'.若AC'∥BB,则∠CAB'的度数为多少?例5如图,四边形ABCD是正方形,△ADF按顺时针方向旋转一定角度后得到△ABE,已知AF=5,AB=8,求DE的长度.方法总结:利用旋转的性质解决问题时应抓住以下几点:(1)明确旋转中的“变”与“不变”;(2)找准旋转前后的“对应关系”;(3)充分挖掘旋转过程中的相等关系.三、课堂小结旋转定义三要素:旋中心,旋转方向和旋转角度性质①旋转前后的图形全等;②对应点到旋转中心的距离相等;③对应点与旋转中心所连线段的夹角等于旋转角.1.下列现象中属于旋转的有()①地下水位逐年下降;②传送带的移动;③水龙头开关的转动;④钟摆的运动;⑤荡秋千运动.A.2个B.3个C.4个D.5个2.下列说法正确的是()A.旋转改变图形的形状和大小B.平移改变图形的位置C.图形可以沿某直线方向旋转一定距离D.由平移得到的图形也一定可由旋转得到3.△ABC绕点A旋转一定角度后得到△ADE,若BC=4,AC=3,则下列说法正确的是()A.DE=3B.AE=4C.∠CAB是旋转角D.∠CAE是旋转角第3题图第4题图第5题图4.如图,在平面直角坐标系中,有一个Rt△ABC,且A(-1,3),B(-3,-1),C(-3,3),已知△A1AC1是由△ABC旋转得到的.则旋转中心的坐标是()A.(0,0)B.(-1,0)C.(1,0)D.(0,-1)5.如图,点E是正方形ABCD内一点,连接AE、BE、CE,将△ABE绕点B顺时针旋转90°到△CBE′的位置,若AE=1,BE=2,CE=3则∠BE′C=________度.拓展提高:6.如图,已知正方形ABCD的边长为3,E、F分别是AB、BC边上的点,且∠EDF=45°,将△DAE绕点D按逆时针方向旋转90°得到△DCM.(1)求证:EF=MF;(2)当AE=1时,求EF的长.参考答案自主学习一、知识链接1.图略2.图略课堂探究二、要点探究探究点1:观察与思考思考答:把时针当成一个图形,那么它可以绕着中心固定点转动一定角度.钟表的指针在不停地转动,从3时到5时,时针转动了60度;把叶片当成一个平面图形,那么它可以绕着平面内中心固定点转动一定角度.风车风轮的每个叶片在风的吹动下转动到新的位置.例1③⑤例2O∠AOB60A与BB与CC与DD与EE与FF与A练习解:(1)旋转中心是点A.(2)旋转了60°,逆时针.(3)点M转到了AC的中点上.例3C探究点2:合作探究1C点A与点A′,点B与点B′,点M与点M′,点N与点N′线段CA与CA′、CB与CB′、AB与A′B′相等45°合作探究2解:角:∠AOA'=∠BOB'=∠COC';线:AO=A'O,BO=B'O,CO=C'O 想一想解:如图,两条对应点连线段的垂直平分线的交点O即为旋转中心.练一练C例4解:∵将△ABC绕点A逆时针旋转150°,得到△ADE,∴∠BAD=150°,AB=AD.∴∠B=1(180°-150°)=15°.2变式解:∵将△ABC绕点A逆时针旋转120°,得到△AB'C',∴∠BAB'=∠CAC'=120°,AB=AB'.∴∠AB'B=1(180°-120°)=30°.又∵AC'∥BB',∴∠2B'AC'=∠AB'B=30°.∴∠CAB'=∠CAC'-∠B'AC'=120°-30°=90°.例5解:∵△ADF按顺时针方向旋转一定角度后得到△ABE,∴AE=AF=5,AD=AB=8.∴DE=AD-AE=8-5=3.当堂检测1.B2.B3.D4.A5.135拓展提高:(1)证明:∵△DAE绕点D逆时针旋转90°得到△DCM,∴DE=DM,∠EDM=90°,∵∠EDF=45°,∴∠FDM=45°,∴∠EDF=∠FDM.又∵DF=DF,DE=DM,∴△DEF ≌△DMF,∴EF=MF.(2)解:设EF=MF=x,∵AE=CM=1,AB=BC=3,∴EB=AB-AE=3-1=2,BM=BC+CM=3+1=4,∴BF=BM-MF=4-x.在Rt△EBF中,由勾股定理得EB2+BF2=EF2,即22+(4-x)2=x2,解得x=52.则EF的长为52.【素材积累】岳飞应募参军,因战功累累不断升职,宋高宗亲手写了“精忠岳飞”四个字,制成旗后赐给他。

人教版九年级数学上册23.1:图形的旋转(教案)

人教版九年级数学上册23.1:图形的旋转(教案)
五、教学反思
在今天的课堂中,我们探讨了图形的旋转,这是一个既有趣又富有挑战性的课题。我发现,学生们对旋转的概念接受度很高,他们能够很快地理解旋转的基本性质和三要素。在讲授过程中,我尽量用生动的例子和实际操作来解释抽象的几何概念,这样做的效果似乎不错,学生们能够积极参与并有所收获。
让我印象深刻的是,在实践活动环节,学生们分组讨论并操作旋转实验时,他们表现出了极大的兴趣和热情。通过亲自动手,他们不仅加深了对旋转原理的理解,还学会了如何将理论知识应用到解决实际问题中。尤其是在成果展示环节,每个小组都能够清晰地表达他们的思考过程和解决方案,这让我感到很欣慰。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解图形旋转的基本概念。图形旋转是指将一个图形绕着某个点进行转动,这个点称为旋转中心。旋转可以是顺时针或逆时针方向,转动的角度可以是任意度数。图形旋转是几何变换的一种,它在艺术、工程等多个领域有着广泛的应用。
2.案例分析:接下来,我们来看一个具体的案例。这个案例展示了如何将一个三角形绕着某个点旋转一定角度,以及这个过程在建筑设计中的应用。
-创设情境,让学生运用旋转知识解决实际问题,如设计图案、计算工程量等。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《图形的旋转》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过物体旋转的情况?”比如,门的开合、风车的转动等。这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索图形旋转的奥秘。
(3)运用旋转解决实际问题,如计算旋转后的图形的面积、周长等。
2.教学难点
(1)旋转中心的确定:帮助学生理解旋转中心对图形旋转效果的影响,掌握如何准确找出旋转中心。

人教版数学九年级上册23.1.1《图形的旋转》教学设计

人教版数学九年级上册23.1.1《图形的旋转》教学设计

人教版数学九年级上册23.1.1《图形的旋转》教学设计一. 教材分析《图形的旋转》是人民教育出版社九年级上册数学教材第五章第二节的内容。

本节内容是在学生已经掌握了图形的平移、缩放、轴对称等基本变换的基础上进行学习的,是进一步培养学生的空间想象能力和抽象思维能力的重要内容。

图形旋转的概念和性质在日常生活和生产实践中有着广泛的应用,如地图的绘制、机械设计等。

通过本节课的学习,让学生了解图形的旋转概念,理解旋转的性质,学会用旋转来解决实际问题。

二. 学情分析九年级的学生已经具备了一定的空间想象能力和抽象思维能力,对于图形的平移、缩放、轴对称等基本变换已经有了一定的了解。

但是,学生在学习过程中可能对旋转的概念和性质理解不深,不易掌握旋转的计算方法。

因此,在教学过程中,教师需要通过大量的实例和练习,帮助学生理解和掌握旋转的相关知识。

三. 教学目标1.知识与技能:使学生掌握图形旋转的概念,理解旋转的性质,学会用旋转来解决实际问题。

2.过程与方法:通过观察、操作、猜想、验证等方法,培养学生的空间想象能力和抽象思维能力。

3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的合作意识和创新精神。

四. 教学重难点1.教学重点:图形旋转的概念,旋转的性质。

2.教学难点:旋转的计算方法,旋转在实际问题中的应用。

五. 教学方法1.情境教学法:通过生活实例和数学故事,引发学生的兴趣,激发学生的学习欲望。

2.探究式教学法:引导学生观察、操作、猜想、验证,培养学生的自主学习能力。

3.合作学习法:学生进行小组讨论和合作交流,提高学生的团队协作能力。

六. 教学准备1.教学课件:制作课件,展示图形旋转的实例和性质。

2.教学素材:准备一些图形,如正方形、三角形等,用于讲解和练习。

3.计算器:为学生提供计算器,便于进行旋转的计算练习。

七. 教学过程1.导入(5分钟)教师通过一个有趣的数学故事引入本节课的内容,引发学生的兴趣。

2.呈现(10分钟)教师通过课件展示一些图形旋转的实例,如地球的自转、钟表的指针等,引导学生观察和思考。

《图形的旋转(第一课时)》(优质视频实录+配套课件+配套教案+配套练习、反思、导学稿、素材)

《图形的旋转(第一课时)》(优质视频实录+配套课件+配套教案+配套练习、反思、导学稿、素材)

新世纪教育网版权所有单位租用个人充值QQ:448966300
图形的旋转(第1课时)教学反思
本节课是九年级上册第二十三章“23.1图形旋转”的第一课时,是一节概念课.在此之前,学生已经学习了轴对称、平移两种图形变换,对图形变换有一定的认识,通过本节课的学习,学生对图形的变换的认识更完整.
美国数学教育家波利亚指出:“学习任何东西,最好的途径是自己去发现”,为了有效地学习,学生应在教师设计的实验情境中,尽量多地去发现学习的知识、方法.所以,本节课的教学以观察、分析现实生活中的实例为切入点,以探究活动为主线,设计了四个数学活动.让学生通过具体实例认识旋转,通过动手进行数学实验探索旋转的基本性质,通过解决实际问题、数学问题掌握旋转变换中对应点到旋转中心的距离相等、对应点与旋转中心连线所成的角彼此相等的性质.值得注意的事,数学实验与数学问题在数学的起始课中应是相辅相成的、缺一不可的.如果课堂中一味地侧重动手实验而忽视了必要的问题解决,那课堂会显得浮躁、缺乏数学内涵.反之,一节课中如果充斥着各类的习题,那课堂会显得沉闷、缺乏数学的灵巧与生动.
通过本节课的教学实践,我再次体会到:课堂上的真正主人应该是学生。

教师只是一名引导者,是一名参与者。

一堂好课,师生一定会有共同的、积极的情感体验。

本节课教学中,各知识点均是学生通过探索发现的,学生充分经历了探索与发现的过程,这正是新课程标准所倡导的教学方法。

教学中没有将重点盯在大量的练习上,而是定位在知识形成的过程的探索,这是更加注重学生学习能力的培养的体现,实践证明这种做法是成功的。

新世纪教育网版权所有单位租用个人充值QQ:448966300。

人教版九年级数学上册第二十三章旋转《23.1图形的旋转》第1课时教学设计

人教版九年级数学上册第二十三章旋转《23.1图形的旋转》第1课时教学设计

人教版九年级数学上册第二十三章旋转《23.1图形的旋转》第1课时教学设计一. 教材分析人教版九年级数学上册第二十三章旋转《23.1图形的旋转》第1课时主要介绍了图形的旋转性质和旋转的表示方法。

本节课的内容是学生在学习了图形的平移和翻转的基础上进行的,是进一步研究图形变换的重要内容。

通过本节课的学习,学生能够理解图形旋转的性质,掌握旋转的表示方法,并能够运用旋转性质解决一些实际问题。

二. 学情分析九年级的学生已经掌握了图形的平移和翻转的知识,具备了一定的图形变换的基础。

但是,对于图形的旋转性质和旋转的表示方法可能还比较陌生,需要通过本节课的学习来掌握。

同时,学生对于实际问题中图形的旋转可能还缺乏一定的理解和应用能力,需要通过实例分析和练习来提高。

三. 教学目标1.了解图形旋转的性质,能够用语言和符号表示图形的旋转。

2.能够运用图形旋转的性质解决一些实际问题。

3.培养学生的空间想象能力和逻辑思维能力。

四. 教学重难点1.图形旋转的性质的理解和运用。

2.旋转的表示方法的掌握。

五. 教学方法采用问题驱动法和案例教学法进行教学。

通过提出问题,引导学生思考和探索,通过分析实例,使学生理解和掌握图形旋转的性质和表示方法。

六. 教学准备1.多媒体教学设备。

2.图形旋转的实例和练习题。

七. 教学过程1.导入(5分钟)通过一个生活中的实例,如旋转门的开关,引出图形的旋转的概念,激发学生的兴趣。

2.呈现(10分钟)通过PPT或者黑板,呈现图形旋转的性质和表示方法,引导学生观察和思考,让学生用自己的语言表达对图形旋转的理解。

3.操练(10分钟)让学生分组合作,通过实际操作,如剪切和拼接纸片,来验证图形旋转的性质,并能够用语言和符号表示图形的旋转。

4.巩固(10分钟)让学生独立完成一些图形旋转的练习题,巩固所学知识,并能够运用旋转性质解决一些实际问题。

5.拓展(5分钟)通过一些拓展问题,如旋转后的图形与原图形的大小和形状是否发生变化,来进一步深化学生对图形旋转性质的理解。

初中数学人教版九年级上册《图形的旋转》教案

初中数学人教版九年级上册《图形的旋转》教案

人教版数学九年级上23.1图形的旋转教学设计12一、探究新知活动1:小组讨论现实生活中,旋转现象随处可见,都有哪些物体的运动属于旋转呢?你能举出见到的实例吗?教师请学生看屏幕,演示生活中常见的旋转。

并提出问题:如果把钟表时针、电扇的叶片看成一个平面图形,那么这些图形的运动有什么特点?你能描述一下什么是旋转吗?教师根据旋转的定义旋转三角形,通过具体问题介绍旋转的有关概念,同时指出旋转的三要素:旋转中心,旋转方向,旋转角。

活动2:自主练习在认识了图形的旋转之后,做几道练习巩固深化一下“旋转”的有关概念。

1.请你举出一些现实生活、生产中旋转的实例,并指出旋转中心和旋转角。

2.如图,杠杆绕支点转动撬起重物,杠杆的旋转中心在哪里?旋转角是哪个角?3. 如图,将三角板△ACB绕点C逆时针方向旋转到△DCE 的位置.(1)旋转中心是________.(2)点A和点B的对应点是______和______.(3)线段AC和线段BC旋转后到达_________和_________的位置.若AC=5cm,则DC=___cm.连接AD,则△ACD是______三角形.(4)∠A和∠B旋转后到_____和_____的位置.若∠A=45°,则∠D=____°.旋转角为______和_______.连接AD,若∠ACD=60°,则△ACD为______三角形。

三、学以致用例1 如图,E是正方形ABCD边CD上任意一点,以A为中心,把△ADE顺时针旋转90°,画出旋转后的图形.巩固练习:如图是一个直角三角形的苗圃,由正方形花坛和两块直角三角形草皮组成,如果直角三角形的两条斜边长分别为3米和6米,你能求出草皮的总面积吗?2.旋转角不变,改变旋转中心画出以下图,四边形ABCD分别为O、O为中心,旋转角都为30 °的旋转图形.从以上的画图中,我们可以得到:旋转中心不变,改变旋转角与旋转角不变,改变旋转中心会产生不同的效果。

人教版九年级数学上册导学案:23.1 图形的旋转(第一课时)

人教版九年级数学上册导学案:23.1 图形的旋转(第一课时)

九级数学 课题23.1图形的旋转(第一课时) 学习目标:1、掌握旋转的定义以及相关概念2、理解旋转的基本性质3、利用性质解决相关问题。

学习重点:旋转相关概念以及性质学习难点:利用性质解决相关问题。

学习过程:一、课前展示:二、自主学习-------旋转的定义(一).自学教材P56并填空:1、把一个平面图形___着平面内某一点O _____一个角度,就叫做图形的旋转,点O 叫做_________,转动的角叫做________。

因此,旋转的决定因素....是_________和_________。

(二).自学检测:1.钟表的分针匀速旋转一周需要60分.(1)指出它的旋转中心;(2)经过20分,分针旋转了_________度.2.如图,如果把钟表的指针看做三角形OAB ,它绕O 点按顺时针方向旋转得到△OEF ,在这个旋转过程中:(1)旋转中心是______旋转角是__________(2)经过旋转,点A 、B 分别移动______________3.如图:∆ABC 是等边三角形,D 是BC 上一点,∆ABD 经过旋转后到达∆ACE 的位置。

(1)旋转中心是_______(2)旋转了_______度.(3)如果M 是AB 的中点,那么经过上述旋转后,点M 转到了________________.三、合作交流-----旋转的性质同组学生讨论探究,总结归纳旋转地性质。

①_______________________________________________________②__________________________________________________________③_______________________________________________________ E D C B A M四、应用提高1、已知△ABC 是直角三角形,∠ACB=90°,AB=5㎝,BC=3厘米,△ABC 绕点C 逆时针方向旋转90°后得到△DEC ,则∠D=______,∠B=______,DE=_______㎝,EC=______㎝,AE=_______㎝,DE 与AB 的位置关系为_________________.2、正方形ABCD 中有一点P ,把△ABP 绕点点B 旋转到△CQB,连结PQ ,则△PBQ 的形状是____1 等边三角形至少旋转__________度才能与自身重合。

人教版-数学-九年级上册23.1 图形的旋转(第1课时) 导学案

人教版-数学-九年级上册23.1 图形的旋转(第1课时) 导学案

一、基础知识(一)旋转的概念:把一个图形绕着平面内某一点O转动一个角度,就叫作图形的旋转,点O叫做旋转中心,转动的角叫做旋转角旋转的三要素:旋转中心、旋转方向、旋转角度(二)旋转的性质:1.对应点到旋转中心的距离相等2.对应点与旋转中心所连线段的夹角等于旋转角3.旋转前、后的图形全等二、重难点分析本课教学重点:旋转的性质①对应点到旋转中心的距离相等②对应点与旋转中心所连线段的夹角等于旋转角③旋转前、后的图形全等旋转角的确定--------每一对对应点与旋转中心的连线之间的夹角都是这个旋转的旋转角,一个旋转中有多个旋转角。

本课教学难点:对图形进行旋转变换。

和实际相联系的图形变换。

通过设置数学实验让学生进行独立的探究学习,促使学生主动参与数学知识的“再发现”,培养学生动手实践能力,观察、分析、比较、抽象、概括的思维能力。

三、典例精析:例1:如图,将Rt△ABC(其中∠B=35°,∠C=90°)绕点A按顺时针方向旋转到△AB1C1的位置,使得点C、A、B1在同一条直线上,那么旋转角等于()A.55°B.70°C.125°D.145°【答案】C【考点】旋转的性质。

例2.如图1,点A是线段BC上一点,△ABD和△ACE都是等边三角形.(1)连结BE,CD,求证:BE=CD;(2)如图2,将△ABD绕点A顺时针旋转得到△AB′D′.①当旋转角为度时,边AD′落在AE上;②在①的条件下,延长DD’交CE于点P,连接BD′,CD′.当线段AB、AC满足什么数量关系时,△BDD′与△CPD′全等?并给予证明.=30°,从而得到∠ABD′=∠DBD′=∠BD′D=∠ACD′=∠PD′C=30°,然后利用“角边角”证明△BDD′与△CPD′全等.四、感悟中考1、(2013年衡阳)如图,在Rt△OAB中,∠AOB=30°,将△OAB绕点O逆时针旋转100°得到△OA1B1,则∠A1OB= °。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

前言:
该导学案(导学单)由多位一线国家特级教师根据最新课程标准的要求和教学对象的特点结合教材实际精心编辑而成。

实用性强。

高质量的导学案(导学单)是高效课堂的前提和保障。

(最新精品导学案)
第二十三章旋转
23.1图形的旋转
第1课时旋转的概念及性质
1.了解旋转及旋转中心和旋转角的概念.
2.了解旋转对应点的概念及应用它们解决一些实际问题.
3.通过观察具体实例认识旋转,探索它的基本性质.
4.了解图形旋转的特征,并能根据这些特征绘制旋转后的几何图形.
知识准备
(学生活动)请同学们完成下面各题.
1.将如图所示的四边形ABCD平移,使点B的对应点为点D,作出平移后的图形.
2.如图,已知△ABC和直线l,请你画出△ABC关于l的对称图形△A′B′C′.
3.圆是轴对称图形吗?等腰三角形呢?你还能指出其他的吗?
(是;是;等腰梯形、长方形、正多边形等.)
(1)平移的有关概念及性质;(2)如何画一个图形关于一条直线(对
称轴)的对称图形并口述它有哪些性质;
(3)什么叫轴对称图形.
自学指导
阅读教材第59页内容,思考和完成教材上的练习.
观察:让学生看转动的钟表和风车等.
(1)上面情境中的转动现象,有什么共同的特征?(指针、风车叶片分别绕中间轴旋转)
(2)钟表的指针、秋千在转动过程中,其形状、大小、位置是否发生变化呢?(形状、大小不变,位置发生变化)
问题:
(1)从3时到5时,时针转动了多少度?(60°)
(2)风车每片叶轮转到与下一片原来的位置重合时,风车旋转了多少度?(60°)
(3)以上现象有什么共同特点?(物体绕固定点旋转)
思考:在数学中如何定义旋转?
知识探究
1.把一个图形绕着某一点O转动一个角度的图形变换叫做旋转,点O叫做旋转中心,转动的角叫做旋转角.
2.如果图形上的点P经过旋转变为点P′,那么这两个点叫做这个旋转的对应点.
自学反馈
1.下列物体的运动不是旋转的是( )
A.坐在摩天轮里的小朋友
B.正在走动的时针
C.骑自行车的人
D.正在转动的风车叶片
2.下列现象中,属于旋转的有________个.
①地下水位逐年下降;②传送带的移动;③方向盘的转动;④水龙头的转动;
⑤钟摆的运动;⑥荡秋千运动.。

相关文档
最新文档