电磁场与电磁波(第三版)课后答案第3章
电磁场与电磁波:第三章作业答案

3.1 长度为L 的细导线带有均匀电荷,其电荷线密度为0l ρ。
(1)计算线电荷平分面上任意点的电位ϕ;(2)利用直接积分法计算线电荷平分面上任意点的电场E ,并用ϕ=-∇E 核对。
解 (1)建立如题3.1图所示坐标系。
根据电位的积分表达式,线电荷平分面上任意点P 的电位为2(,0,0)L L ϕρ-==⎰2ln(4L l L z ρπε-'+=04l ρπε=02l ρπε (2)根据对称性,可得两个对称线电荷元z l 'd 0ρ在点P 的电场为d d E ρρρθ'===Ee e 022320d 2()l z z ρρρπερ''+e故长为L 的线电荷在点P 的电场为2022320d d 2()L l z z ρρρπερ'==='+⎰⎰E E e20002L l ρρπερ'=e ρe 由ϕ=-∇E 求E ,有002l ρϕπε⎡⎢=-∇=-∇=⎢⎥⎣⎦E(00d ln 2ln 2d l L ρρρπερ⎡⎤-+-=⎢⎥⎣⎦e0012l ρρπερ⎧⎫⎪--=⎬⎪⎭e ρe可见得到的结果相同。
3.3 电场中有一半径为a 的圆柱体,已知柱内外的电位函数分别为2()0()()cos a a A aϕρρϕρρφρρ=≤⎧⎪⎨=-≥⎪⎩(1)求圆柱内、外的电场强度;L L -ρρ题3.1图(2)这个圆柱是什么材料制成的?表面有电荷分布吗?试求之。
解 (1)由ϕ=-∇E ,可得到a ρ<时, 0ϕ=-∇=Ea ρ>时, ϕ=-∇=E 22[()cos ][()cos ]a a A A ρφρφρφρρρφρ∂∂----=∂∂e e 2222(1)cos (1)sin a a A A ρφφφρρ-++-e e(2)该圆柱体为等位体,所以是由导体制成的,其表面有电荷分布,电荷面密度为0002cos S n a a A ρρρρεεεφ=====-e E e E3.4 已知0>y的空间中没有电荷,下列几个函数中哪些是可能的电位的解? (1)cosh y e x -; (2)x e y cos -;(3)cos sin e x x (4)z y x sin sin sin 。
《电磁场与电磁波》课后习题解答(全)

(3)
【习题3.4】
解:(1)在区域中,传导电流密度为0,即J=0
将 表示为复数形式,有
由复数形式的麦克斯韦方程,可得电场的复数形式
所以,电场的瞬时值形式为
(2) 处的表面电流密度
(3) 处的表面电荷密度
(4) 处的位移电流密度
【习题3.5】
解:传导电流密度 (A/ )
位移电流密度
【习题3.6】
(2)内导体表面的电流密度
(3)
所以,在 中的位移电流
【习题2.13】
解:(1)将 表示为复数形式:
则由时谐形式的麦克斯韦方程可得:
而磁场的瞬时表达式为
(2)z=0处导体表面的电流密度为
z=d处导体表面的电流密度为
【习题2.14】
已知正弦电磁场的电场瞬时值为
式中
试求:(1)电场的复矢量;
(2)磁场的复矢量和瞬时值。
由安培环路定律: ,按照上图所示线路积分有
等式左边
等号右边为闭合回路穿过的总电流
所以
写成矢量式为
将 代入得
【习题3.18】
解:当 时, ,
当 时, ,
这表明 和 是理想导电壁得表面,不存在电场的切向分量 和磁场的法向分量 。
在 表面,法线
所以
在 表面,法线
所以
【习题3.19】
证明:考虑极化后的麦克斯韦第一方程
(1)
和 (2)
若采用库仑规范,即 (3)
对(1)式两边取散度,有
将(2)、(3)式代入,得
故电流连续性也是满足的。
【习题4.3】解:
【习题4.4】
证明:因为 即
故 满足连续性方程。
另外, 满足洛仑兹条件。
电磁场与电磁波课后习题答案第3章(杨儒贵编着)

第三章 静电场3-1 已知在直角坐标系中四个点电荷分布如习题图3-1所示,试求电位为零的平面。
解 已知点电荷q 的电位为rq 4πεϕ=,令)0,1,0(1q q -=,)0,1,3(2q q +=,)0,0,1(3q q -=,)0,0,0(4q q +=,那么,图中4个点电荷共同产生的电位应为∑=414ii r q πεϕ令0=ϕ,得 0 4 4 4 44321=+-+-r qr q r q r q πεπεπεπε 由4个点电荷的分布位置可见,对于x =1.5cm 的平面上任一点,4321 ,r r r r ==,因此合成电位为零。
同理,对于x =0.5cm 的平面上任一点,3241 ,r r r r ==,因此合成电位也为零。
所以,x =1.5cm 及x =0.5cm 两个平面的电位为零。
3-2 试证当点电荷q 位于无限大的导体平面附近时,导体表面上总感应电荷等于)(q -。
证明 建立圆柱坐标,令导体表面位于xy 平面,点电荷距离导体表面的高度为h ,如图3-2所示。
那么,根据镜像法,上半空间的电场强度为32023101 4 4r q r q πεπεr r E -=X 习题图3-1(r , z )习题图3-2电通密度为)(43223110r r q r r E D -==πε 式中 232231])([h z r r -+=; 232232])([h z r r ++=那么,⎥⎥⎥⎦⎤⎪⎪⎪⎭⎫ ⎝⎛+++-++-+⎢⎢⎢⎣⎡⎪⎪⎪⎭⎫ ⎝⎛++--+=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧++++--+-+=z z zh z r hz h z r h z h z r r h z r r q h z r h z r h z r h z r q e e e e e e D r r r 232223222322232223222322])([])([ ])([])([4 ])([)(])([)(4ππ 已知导体表面上电荷的面密度n s D =ρ,所以导体表面的感应电荷为2322232223220)(2][][4h r qh h r h h r h q D z zs +-=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧++-+-===ππρ 则总的感应电荷为q h r r r qh r r S q s ss -=+-===⎰⎰⎰∞∞2322)(d d 2d 'πρρ3-3 根据镜像法,说明为什么只有当劈形导体的夹角为π的整数分之一时,镜像法才是有效的?当点电荷位于两块无限大平行导体板之间时,是否也可采用镜像法求解。
电磁场与电磁波课后习题及答案三章习题解答

三章习题解答3.1 真空中半径为a 的一个球面,球的两极点处分别设置点电荷q 和q -,试计算球赤道平面上电通密度的通量Φ(如题3.1图所示)。
解 由点电荷q 和q -共同产生的电通密度为33[]4q R R π+-+-=-=R R D 22322232()(){}4[()][()]r z r z r z a r z a q r z a r z a π+-++-+-++e e e e 则球赤道平面上电通密度的通量d d zz SSS Φ====⎰⎰D S D e22322232()[]2d 4()()aq a ar r r a r a ππ--=++⎰ 22121)0.293()aqaq q r a =-=-+ 3.2 1911年卢瑟福在实验中使用的是半径为a r 的球体原子模型,其球体内均匀分布有总电荷量为Ze -的电子云,在球心有一正电荷Ze (Z 是原子序数,e 是质子电荷量),通过实验得到球体内的电通量密度表达式为02314ra Ze r r r π⎛⎫=- ⎪⎝⎭D e ,试证明之。
解 位于球心的正电荷Ze 球体内产生的电通量密度为 124rZer π=D e 原子内电子云的电荷体密度为 333434a a Ze Zer r ρππ=-=- 电子云在原子内产生的电通量密度则为 32234344r ra r Ze rr r ρπππ==-D ee 题3.1 图题3. 3图()a故原子内总的电通量密度为 122314ra Ze r r r π⎛⎫=+=- ⎪⎝⎭D D D e 3.3 电荷均匀分布于两圆柱面间的区域中,体密度为30C m ρ, 两圆柱面半径分别为a 和b ,轴线相距为c )(a b c -<,如题3.3图()a 所示。
求空间各部分的电场。
解 由于两圆柱面间的电荷不是轴对称分布,不能直接用高斯定律求解。
但可把半径为a 的小圆柱面内看作同时具有体密度分别为0ρ±的两种电荷分布,这样在半径为b 的整个圆柱体内具有体密度为0ρ的均匀电荷分布,而在半径为a 的整个圆柱体内则具有体密度为0ρ-的均匀电荷分布,如题3.3图()b 所示。
谢处方电磁场与电磁波第三版答案

谢处方电磁场与电磁波(第三版)答案第一章习题解答1.1 三个矢量A 、B 和C 如下: 23xyz=+-A e e e4yz=-+B e e 52x z=-C e e求:(1)A a ;(2)-A B ;(3)A B ;(4)ABθ;(5)A 在B 上的分量;(6)⨯A C ; (7)()⨯A B C 和()⨯A B C ;(8)()⨯⨯A B C 和()⨯⨯A B C 。
解 (1)23A x y z +-===+-e e e A a e e e A (2)-=A B (23)(4)xyzyz+---+=e e e ee 64xyz+-=e e e (3)=A B (23)xyz+-e e e (4)yz-+=e e -11(4)由cos AB θ=14==⨯A B A B,得 1cos AB θ-=(135.5=(5)A 在B 上的分量 B A =A cos AB θ=17=-A B B(6)⨯=A C 123502x yz-=-e e e 41310x y z ---e e e (7)由于⨯=B C 041502x y z-=-e e e 8520x y z ++e e e ⨯=A B 123041xyz-=-e e e 1014x y z ---e e e 所以 ()⨯=A B C (23)x y z +-e e e (8520)42x y z ++=-e e e()⨯=A B C (1014)x y z ---e e e (52)42x z -=-e e(8)()⨯⨯=A B C 1014502x yz---=-e e e 2405x y z -+e e e()⨯⨯=A B C 1238520xy z -=e e e 554411x y z --e e e1.2 三角形的三个顶点为1(0,1,2)P -、2(4,1,3)P -和3(6,2,5)P 。
(1)判断123PP P ∆是否为一直角三角形; (2)求三角形的面积。
电磁学第三章课后习题答案

电磁学第三章课后习题答案电磁学第三章课后习题答案电磁学是物理学中的重要分支,研究电荷和电流之间相互作用的规律。
在电磁学的学习过程中,习题是巩固知识和提高能力的重要途径。
本文将为大家提供电磁学第三章的课后习题答案,希望能对大家的学习有所帮助。
1. 一个导线的长度为l,电流为I,如图所示。
求导线两端的电势差。
答案:根据欧姆定律,电势差等于电流乘以电阻。
而导线的电阻可以通过电阻率乘以长度除以横截面积来计算。
所以,导线两端的电势差为V = I × (ρl/A)。
2. 一个导线的电阻为R,电流为I,如图所示。
求导线两端的电势差。
答案:根据欧姆定律,电势差等于电流乘以电阻。
所以,导线两端的电势差为V = I × R。
3. 一个导线的电阻为R,电流为I,导线的长度为l,电阻率为ρ,横截面积为A。
求导线两端的电势差。
答案:根据欧姆定律,电势差等于电流乘以电阻。
而导线的电阻可以通过电阻率乘以长度除以横截面积来计算。
所以,导线两端的电势差为V = I × R = I × (ρl/A)。
4. 在一个电路中,有一个电阻为R1的电阻器和一个电阻为R2的电阻器连接在一起,电流为I。
求两个电阻器上的电势差。
答案:根据欧姆定律,电势差等于电流乘以电阻。
所以,第一个电阻器上的电势差为V1 = I × R1,第二个电阻器上的电势差为V2 = I × R2。
5. 在一个电路中,有一个电阻为R1的电阻器和一个电阻为R2的电阻器连接在一起,电阻器之间的电势差为V。
求电流的大小。
答案:根据欧姆定律,电势差等于电流乘以电阻。
所以,V = I × (R1 + R2)。
解方程可得电流的大小为I = V / (R1 + R2)。
6. 一个电路中有两个电阻器,电阻分别为R1和R2,电流为I。
求电路中的总电阻。
答案:电路中的总电阻可以通过电阻器的并联和串联来计算。
如果电阻器是串联的,总电阻等于各个电阻器的电阻之和,即R = R1 + R2。
电磁场与电磁波第三版课后答案

电磁场与电磁波第三版课后答案本文是对《电磁场与电磁波》第三版的课后习题答案的整理与解答。
本书是电磁场与电磁波领域的经典教材,其中的习题对于巩固和加深对电磁场与电磁波知识的理解非常重要。
以下是本文对第三版的习题答案的详细解析。
第一章电磁场基本概念1.1 电磁场基本概念习题答案:1.电磁场的基本概念是指在空间中存在着电场和磁场,它们相互作用产生相互关联的现象;它们是由带电粒子的运动而产生的,是物理学的基本概念之一。
2.宏观电荷位移是指电荷在物体内部的移动;它的存在使得物体表面或其周围的电场产生变化,从而产生an内部电磁场。
3.电磁场的基本方程是麦克斯韦方程组,由四个方程组成:高斯定律、法拉第电磁感应定律、法拉第电磁感应定律的积分形式和安培环路定律。
1.2 矢量分析习题答案:1.根据题目所给的向量,求两个向量的点乘积:$\\vec{A}\\cdot\\vec{B}=A_{x}B_{x}+A_{y}B_{y}+A_{z}B_{ z}$2.根据题目所给的向量,求两个向量的叉乘积:$\\vec{A}\\times\\vec{B}=(A_{y}B_{z}-A_{z}B_{y})\\hat{i}+(A_{z}B_{x}-A_{x}B_{z})\\hat{j}+(A_{x}B_{y}-A_{y}B_{x})\\hat{k}$3.定义标量和矢量场,然后利用高斯定理得出结论。
1.3 电场与静电场习题答案:1.静电场是指电场的源是静止电荷,不会随时间变化,不产生磁场。
2.在静电场中,高斯定律表示为:$\ abla \\cdot\\vec{E} = \\frac{1}{\\varepsilon_0}\\rho$,其中$\ abla\\cdot \\vec{E}$表示电场的散度,$\\varepsilon_0$表示真空介电常数,$\\rho$表示电荷密度。
3.电场的位移矢量$\\vec{D}$定义为$\\vec{D} =\\varepsilon_0 \\vec{E} + \\vec{P}$,其中$\\varepsilon_0$表示真空介电常数,$\\vec{E}$表示电场强度,$\\vec{P}$表示极化强度。
电磁场与电磁波第三版-郭辉萍-第三章习题答案

电磁场与电磁波第三版-郭辉萍-第三章习题答案第一题题目一个半径为R的均匀带电球壳的电荷面密度为σ,以电荷面密度为0的球心C为球心作半径为R的球面S,球面上一点P的电场强度E的大小与距离R的关系。
### 答案由于球壳上各点带电量的方向相反,由球壳对球内外各一点的电场叠加,所以无论球面内或球面外,点P的电场强度大小与距离R 无关。
即E不随R的变化而变化。
第二题题目电势能缺少的条件是什么? ### 答案电势能缺少的条件有两个:第一是电势为零点的规定,第二是确定电势差。
电势能只能说是一个与地球或其他准零电位的参考体系有关的概念,它取决于选取零点时电势与参考体系的差,而不是取决于问题中的具体点或场点的电势。
题目在有限导体平面上有一面密度为质量面密度σ的均匀带电薄片,试推导在它所在面的垂直平分线上的电势。
### 答案在面上任选此点坐标为(x,0),显然它距离面上各点的距离和面在此点的电势分别为:r = (x^2 + y^2) ^ (1/2),V = kq / r。
这里面的q = σdx。
由于对称性可知任一垂直平分线上的电势是相等的,所以我们可以通过积分的方法求出垂直平分线上的电势。
电势V为此线两边同号。
所以,由于σdx$$ V=\\int_0^{+\\infty}\\frac{k\\sigma dx}{x^2}+\\int_0^{-\\infty}\\frac{k\\sigma dx}{x^2} =+\\infty $$两项分别收敛。
所以原版电势。
题目试推导导体表面任意点上电场强度的切线与导体表面的夹角θ与电势的关系。
### 答案任意一个点r(k)在导体表面上,电场E的方向就垂直于导体表面,从而与该点处的法向量n垂直。
另一方面,根据高斯定理得出E.EA=Φ/ε,导体表面n方向上在2S表面积内的电荷为,即σ*2S,而2S又等于dA。
从而得到该方向上场强为E的切向分量EEE=2EE其中,E=dΦ/dA=-dΦ2S/εdA这样就有了场强与导体表面的法线方向上单位面积上电荷量与电势的关系题目试设内半径为a,外半径为b,中心位于轴线上的两同心导体球壳A、B,A球壳带正电+q,B球壳不带电,试详细分析以下两种情况:(1)球壳之间无绝缘介质;(2)球壳之间有绝缘介质。