数学史简答题
数学史简答题[大全]
![数学史简答题[大全]](https://img.taocdn.com/s3/m/ccb9d8eac9d376eeaeaad1f34693daef5ef713f2.png)
1.简述阿基米德的生活时代、代表著作以及在数学上的主要成就。
答:阿基米德生活在古希腊亚历山大前期,代表著作有:《论球与圆柱》,《圆的度量》,《劈锥曲面与回转椭圆体》,《论螺线》,《平面图形》,《数沙器》,《抛物线图形求积法》等,阿基米德的主要成就有:用力学方法求出球体积,抛物或弓形的面积,托球体、抛物或旋转体截体和球缺体积;用穷竭法求出圆面积和一系列曲边形面积与体积;得到的近似值为22/7。
2.朱世杰(什么朝代、什么地方的人、代表著作和数学创造)。
答:朱世杰是13 世纪至14 世纪元代数学家,燕山人。
代表著作是《四元玉鉴》,其主要数学成就是求解方程的四元术、高阶等差数列研究及其在内插法上的应用。
3.简述《九章算术》的主要内容及在中国数学史上的意义。
答:《九章算术》是我国古代的一本传世数学名著,一直作为我国传统数学的代表作。
《九章算术》是以应用问题集的形式表述的,一共收入246 个问题,分为九章,分别为方田,粟米,衰分,少广,商功,均输,盈不足,方程,勾股。
标志着中国传统数学的知识体系已初步形成,对中国数学的发展的历史作用如同《几何原本》对西方数学影响一样。
4.简述笛卡尔的生活年代、所在国家、代表著作以及在数学上的主要成就。
答:笛卡尔(1596-1650)出生于法国的拉哈耶。
主要著作有《方法论》其中包括:《折光学》、《大气现象》和《几何学》。
主要成就有:开创性地用代数方法研究几何问题,把代数方程和曲线、曲面联系起来;引出了变量和函数的概念。
5.简述运筹学的建立和发展过程。
答:运筹学是运用数学方法解决生产、国防、商业和其他领域中的安排、筹划、控制、管理等有关问题的音乐数学的分支。
最早产生于二战中的英国,用以解决空防雷达信息系统与战斗机系统的协同配合问题。
不久美军也开始了类似的研究,并在战争中建有奇功。
目前运筹学已包括有数学规划论、博弈论、排队论、决策分析、图论等。
6.花拉子米(什么时代、什么地方的数学家、代表著作和重要贡献)。
数学史试题(1)

数学史试题(1)数学史试题一、简答题1 写出“孙子问题”及出处。
答:“孙子歌”:同行七十稀,五树梅花廿一枝,七子团圆正半月,除百零五便得知。
2 写出《算经十书》。
答:《周髀算经》、《九章算术》、《海岛算经》、《孙子算经》、《张邱健算经》、《五曹算经》、《五经算术》、《夏侯阳算经》、《缀术》、《缉古算经》3 简介“星期制”的由来。
正星期制,是现代公历中一种与年、月配合使用的特殊记日的方法。
公元前两千年左右的古巴比伦人为了适应农业生产的需要,祈祷上天风调雨顺,建筑了祭祀星神的七星坛。
七星坛有七层,从上到下依次为日、月、火、水、木、金、土,规定每日祭祀一神,七日为一个周期。
这样就把一个月分为四周。
每一星神主管一天,太阳神主管星期4 《几何原本》对数学以及整个科学的发展有什么重要意义?其最重要的成就有哪些?《几何原本》是古希腊数学家欧几里得的一部不朽之作,是当时整个希腊数学成果、方法、思想和精神的结晶,其内容和形式对几何学本身和数学逻辑的发展有着巨大的影响。
自它问世之日起,在长达二千多年的时间里一直盛行不衰。
它历经多次翻译和修订,自1482年第一个印刷本出版后,至今已有一千多种不同的版本。
欧几里得在前人工作的基础之上,对希腊丰富的数学成果进行了收集、整理,用命题的形式重新表述,对一些结论作了严格的证明。
他最大的贡献就是选择了一系列具有重大意义的、最原始的定义和公理,并将它们严格地按逻辑的顺序进行排列,然后在此基础上进行演绎和证明,形成了具有公理化结构的,具有严密逻辑体系的《几何原本》。
5《九章算术》的主要内容是什么?其具有世界意义的数学成就又有哪些?《九章算术》的内容十分丰富,全书采用问题集的形式,收有246个与生产、生活实践有联系的应用问题,、它们的主要内容分别是:第一章“方田”:主要讲述了平面几何图形面积的计算方法。
第二章“粟米”:谷物粮食的按比例折换;提出比例算法,称为今有术;衰分章提出比例分配法则,称为衰分术;第三章“衰分”:比例分配问题;介绍了开平方、开立方的方法,其程序与现今程序基本一致。
数学史答案——精选推荐

数学史答案四、简答题1、阿基⽶德在数学上的主要贡献:(1)研究⼤数:《沙粒计算》填满宇宙的沙粒数相当于,他还曾⽤过相当于的⼤数。
(2)⼏何学⽅⾯:发现⼤量⽴体体积公式。
(3)数学⽅法论⽅⾯:他曾⽤“原⼦法”和“穷竭法”计算⾯积和体积;他⾸创⽤“平衡法”证明数学问题(如证明球体积公式);他还⽤“积分”求和法求⾯积和体积;他通过引⼊特征三⾓形找到求曲线的⼀般⽅法;他把求极值问题归结为求切线问题;他还采⽤类似现在的“插值法”计算螺线长度。
他的这些思想⽅法使他成为微积分的先躯。
后来微积分开创者的许多思想都源于阿基⽶德。
阿基⽶德数学研究的主要特点:①注重联系实际,将数学与⼒学、物理学等实际问题结合;②注重⽅法论,其⽅法中体现了数学思想的深度;③注重论述的精确性、严谨性,成为他那个时代的典范。
2、刘徽的主要数学贡献:(1)算术⽅⾯:①⾸次使⽤⼗进⼩数;②完善齐同术;③其它:刘徽明确提出分数的基本性质:“法实俱长,意亦等也”;他对求最⼤公约数的⽅法进⾏了理论说明;对化带分数为假分数的⽅法进⼀步明确;他还研究了各种⽐例算法。
(2)代数⽅⾯:①⾸次给出正负数定义、记法及性质;②改进解线性⽅程组的“直除法”;③提出解⽅程组的新⽅法;④研究等差数列,并给出求和公式。
(3)⼏何⽅⾯:①提出“割圆术”;②开始⼏何定理的证明;③研究了球体体积;(4)极限思想;(5)创⽴重差术。
3、⽂艺复兴时期欧洲数学的主要进展1.代数⽅程论的发展;2. 符号代数的产⽣;3.三⾓学的确⽴;4.⼏何学的新突破;5. 计算技术的重⼤进步(1)⼗进⼩数的发明(2)对数的发明(3)计算⼯具的产⽣4、举例说明《九章算术》中解线性⽅程组的“直除法”《九章算术》中的“⽅程”,实际是线性⽅程组.例如卷⼋第⼀题:“今有上⽲三秉,中⽲⼆秉,下⽲⼀秉,实三⼗九⽃;上⽲⼆秉,中⽲三秉,下⽲⼀秉,实三⼗四⽃;上⽲⼀秉,中⽲⼆秉,下⽲三秉,实⼆⼗六⽃.问上中下⽲实⼀秉各⼏何?”(⽲即庄稼,秉即捆,实即粮⾷.)依术列筹式如图4.11,它相当于三元⼀次⽅程组其中x,y,z分别为上中下三等⽲每捆打粮⾷的⽃数.按《九章算术》解法,⽤(1)式x的系数3去乘(2)的各项,得6x+9y+3z=102.(4)⽤(4)减(1)⼆次,得5y+z=24.(5)再⽤(3)×3,得3x+6y+9z=78.(6)(6)减(1),得4y+8z=39.(7)中把这种⽅法叫“直除法”,即连续相减法.它的原理与现在加减消元法⼀致,只是⽐较烦琐.6.简述卡⽡列⾥不可分量⽅法的基本思想。
大学数学史题库及答案

大学数学史题库及答案一、单选题1、以下哪个数学家不是古希腊人?A.毕达哥拉斯B.阿基米德C.欧几里得D.希波克拉底答案:D.希波克拉底2、以下哪个数学符号不是由阿拉伯人发明的?A.零符号B.代数符号C.函数符号D.等号答案:D.等号3、以下哪个数学定理不是由法国数学家费马提出的?A.费马大定理B.费马小定理C.费马多边形定理D.费马圆周率公式答案:C.费马多边形定理二、多选题1、以下哪些数学家是文艺复兴时期的代表人物?A.达芬奇B.伽利略C.开普勒D.牛顿答案:A,B,C2、以下哪些数学符号是印度人发明的?A.十进位记数法B.三角函数表C.圆周率近似值D.虚数单位“i”答案:A,C3、以下哪些数学定理是欧几里得提出的?A.欧几里得定理B.勾股定理C.平行公理D.微积分基本定理答案:A,B,C三、判断题1、阿基米德发现了微积分。
()答案:错误。
微积分是由牛顿和莱布尼茨发现的。
2、π是由印度数学家阿叶彼海特发明的。
()答案:错误。
π是由古希腊数学家海伦发明的。
大学数学史题库附答案数学,作为一门历史悠久且广泛应用的基础学科,以其独特的魅力在大学教育中占据了重要的地位。
今天,我将为大家分享一份精选的大学数学史题库及其答案,希望能够帮助大家更好地理解数学的历史和发展。
一、选择题1、以下哪个选项不是数学史上的重要人物?A.毕达哥拉斯B.阿基米德C.牛顿D.莎士比亚答案:D.莎士比亚解释:莎士比亚是文学巨匠,而非数学家。
2、以下哪个发明与数学无关?A.钟表B.算盘C.电脑D.日晷答案:C.电脑解释:电脑虽然与计算有关,但其主要功能是信息处理和存储,而非数学计算工具。
3、在中世纪,哪个国家对数学的发展做出了重要贡献?A.罗马帝国B.中国C.阿拉伯帝国D.古希腊答案:C.阿拉伯帝国解释:阿拉伯帝国在数学领域有着显著的成就,如代数学的发展以及阿拉伯数字的传播等。
二、简答题1、请简述数学在文艺复兴时期的发展以及主要成就。
数学史快速问答题题目

数学史快速问答题填空部分1.自然数按能否被2整除分,可分为奇数和偶数。
2.按因数个数分,可分为质数、合数、1和0。
3.有了有理数,初等代数能解决的问题就大大的扩充了,但是,有些方程在有理数范围内仍然没有解。
于是,数的概念在一次扩充到了实数,进而又进一步扩充到了复数。
4.算术是数学中最古老、最基础和最初等的部分。
它研究数的性质及其运算。
5.在中国古代,算是一种竹制的计算器具,算术是指操作这种计算器具的技术,也泛指当时一切与计算有关的数学知识。
算术一词正式出现于《九章算术》中。
6.1953年,中国数学会成立数学名词审查委员会,确立起“算术”现在的意义,而算学与数学仍并存使用。
7.把数和数的性质、数和数之间的四则运算在应用过程中的经验累积起来,并加以整理,就形成了最古老的一门数学——算术。
8.几何作图三大问题①化圆为方,求作一正方形,使其面积等于一已知圆②三等分任意角; ③倍立方,求作一立方体,使其体积是一已知立方体的两倍。
这些问题的难处,是作图只许用直尺【没有刻度,只能作直线的尺】和圆规。
9.毕达哥拉斯定理又称为勾股定理。
10.代数中的三种数为有理数、无理数、复数。
11.代数的三种式是整式、分式、根式。
12.代数的中心内容是方程,这些方程可分为整式方程、分式方程、根式方程和方程组。
13.代数运算的五条基本运算律是加法交换律、加法结合律、乘法交换律、乘法结合律、分配律。
14.初等代数的中心内容是解方程。
15.直到近代,才在三角学中引进现在使用的三角符号,并将三角法作为解析学的一部分,这是从欧拉开始的。
16.15世纪,德国的雷格蒙塔努斯(J〃Regiomontanus,1436—1476)的《论三角》一书的出版,才标志古代三角学正式成为独立的学科。
17.早期三角学不是一门独立的学科,而是依附于天文学,是天文观测结果推算的一种方法,因而最先发展起来的是球面三角学.(研究平面三角形和球面三角形边角关系的数)。
数学史

数学史研究数学概念、数学方法和数学思想的起源与发展,及其与社会政治、经济和一般文化的联系。
3.什么是数学数学是量的科学。
(希腊哲学家亚里士多德,BC 4世纪)数学是研究现实世界的空间形式与数量关系的科学。
(恩格斯,19世纪)数学这个领域已被称为模式的科学,其目的是要揭示人们从自然界和数学本身的抽象世界中所观察到的结构和对称性。
(数学的新定义)数学史的分期---------简答题(必背)Ⅰ数学的起源与早期发展(公元前6世纪前)Ⅱ初等数学时期(公元前6世纪~16世纪)①古代希腊数学(公元前6世纪~6世纪)②中世纪东方数学(3世纪~15世纪)③欧洲文艺复兴时期(15世纪~16世纪)Ⅲ近代数学时期(17世纪~18世纪)Ⅳ现代数学时期(1820 ’~现在)①现代数学酝酿时期(1820 ’~1870)②现代数学形成时期(1870 ~1940 ’)③现代数学繁荣时期(1950 ~现在)埃及与美索不达米亚数学美索不达米亚(巴比伦)数学的主要贡献是:60进制记数系统;三项二次,三次代数方程;初等代数变换思想;几何学。
古埃及数学形成在公元前3100年~公元前332年之间,其主要的贡献是:十进制的概念;加法运算;单位分数;几何学的萌芽;代数学的萌芽第二章古代数学古希腊数学横跨公元前600年至公元600年。
古希腊数学分两个阶段:古典时期(早期)的希腊数学(公元前600年至公元300年);亚历山大时期及后期的希腊数学(公元300年至公元600年)。
古希腊数学的代表人物有:⑴最早的希腊数学家---泰勒斯(公元前625年至公元前547年)泰勒斯是历史上有记载的第一位数学家和论证几何学的鼻祖主要贡献:圆的直径将圆分为两个相等的部分、等腰三角形两底角相等、两相交直线形成的对顶角相等。
泰勒斯定理:半圆上的圆周角是直角。
⑵毕达哥拉斯(公元前580年至公元前500年)主要贡献:成立了著名的毕达哥拉斯学派,致力于哲学和数学的研究;发现和证明了毕达哥拉斯定理(勾股定理);⑶柏拉图(公元前427年至公元前347年)主要贡献:柏拉图的具体数学成就不多,但对数学方法的研究贡献很大。
数学史试题答案(简答论述)

数学史试题答案(简答论述)在数学史试题答案(简答论述)中,我们将简要探讨数学史中的一些重要问题,并给出相应的答案。
数学史作为一门学科,涵盖了数学的起源、发展和应用等方面的内容,是了解数学发展历程以及数学思想演变的重要途径。
下面,我们将就数学史中的几个关键问题进行解答。
一、早期数学的起源是什么?早期数学的起源可以追溯到古代文明的发展。
在人类历史的早期阶段,人们开始观察周围的自然现象,并试图用数字和符号来描述和解释。
早期数学主要集中在实际问题的计算以及土地测量、贸易和农业等领域的应用。
古代文明如古代埃及、巴比伦、印度和中国等,都在早期数学的发展中起到了重要的作用。
二、古希腊数学的特点是什么?古希腊数学以几何学为主要特点。
古希腊的数学家将几何学作为研究对象,并尝试用严谨的证明来建立几何学上的定理和问题。
其中最著名的数学家是欧几里德,他的《几何原本》成为了后来数学教育的典范。
古希腊数学的其他重要特点还包括:重视形式化证明、注重逻辑推理和使用严谨的推理方法等。
三、古代中国数学的贡献有哪些?古代中国数学的贡献主要体现在算术和代数方面。
中国古代数学家在古代科学技术的发展中起到了重要作用。
中国古代数学家创造了很多数学概念和方法,如无理数、负数概念以及高次方程的解法等。
古代中国在商业贸易、地理测量以及天文学方面的发展也离不开数学的应用。
四、中世纪数学的发展情况如何?中世纪数学的发展主要受到宗教和哲学思想的影响。
在这一时期,欧洲的学问主要受到天主教教会的影响,数学被视为一种法学,被广泛用于天文学和天主教历法的计算。
然而,这一时期的数学发展相对较为缓慢,主要是基于继承古希腊和古罗马的数学知识。
直到文艺复兴时期,数学的发展才开始重新蓬勃起来。
五、现代数学的特点有哪些?现代数学具有抽象、严谨和应用广泛的特点。
在18世纪以后,数学逐渐脱离了实际应用的限制,开始探索抽象的数学理论和方法。
19世纪是现代数学发展的关键时期,包括微积分、数论和几何学等方面的重要突破。
小学数学史试题及答案

小学数学史试题及答案一、选择题(每题2分,共20分)1. 世界上最早的数学著作是:A. 《几何原本》B. 《九章算术》C. 《算经十书》D. 《数学原理》答案:B2. 被称为“数学之神”的古希腊数学家是:A. 毕达哥拉斯B. 欧几里得C. 阿基米德D. 牛顿答案:C3. 阿拉伯数字的起源是:A. 古印度B. 古埃及C. 古希腊D. 古罗马答案:A4. 圆周率π的计算最早可以追溯到:A. 中国的祖冲之B. 印度的阿耶波多C. 阿拉伯的花拉子密D. 欧洲的牛顿答案:A5. 以下哪位数学家不是法国人:A. 笛卡尔B. 帕斯卡C. 高斯D. 拉格朗日答案:C二、填空题(每题2分,共20分)1. 公元前3世纪,中国的数学家______编写了《九章算术》,对后世数学的发展产生了深远影响。
答案:刘徽2. 欧几里得的《几何原本》是世界上最早的______数学著作。
答案:系统3. 阿拉伯数字是由______人发明,后经阿拉伯人传入欧洲。
答案:印度4. 公元前5世纪,古希腊数学家毕达哥拉斯证明了著名的______定理。
答案:毕达哥拉斯5. 17世纪,法国数学家笛卡尔创立了______坐标系,为解析几何的发展奠定了基础。
答案:直角三、简答题(每题10分,共30分)1. 请简述中国古代数学家祖冲之对圆周率π的贡献。
答案:祖冲之是中国古代著名的数学家,他在公元5世纪时计算出圆周率π的值在3.1415926和3.1415927之间,是世界上第一个将圆周率精确到小数点后7位的人。
2. 描述一下阿基米德对数学的主要贡献。
答案:阿基米德是古希腊的数学家、物理学家和工程师,他的主要贡献包括发现浮力原理、发明螺旋泵、提出阿基米德原理,以及在几何学上对圆周率和球面几何的研究。
3. 请简述牛顿在数学领域的主要成就。
答案:艾萨克·牛顿是英国的数学家、物理学家和天文学家,他在数学领域的主要成就包括发明微积分、发展牛顿-莱布尼茨公式、以及对二项式定理的研究和应用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.简述阿基米德的生活时代、代表著作以及在数学上的主要成就。
答:阿基米德生活在古希腊亚历山大前期,代表著作有:《论球与圆柱》,《圆的度量》,《劈锥曲面与回转椭圆体》,《论螺线》,《平面图形》,《数沙器》,《抛物线图形求积法》等,阿基米德的主要成就有:用力学方法求出球体积,抛物或弓形的面积,托球体、抛物或旋转体截体和球缺体积;用穷竭法求出圆面积和一系列曲边形面积与体积;得到的近似值为22/7。
2.朱世杰(什么朝代、什么地方的人、代表著作和数学创造)。
答:朱世杰是13 世纪至14 世纪元代数学家,燕山人。
代表著作是《四元玉鉴》,其主要数学成就是求解方程的四元术、高阶等差数列研究及其在内插法上的应用。
3.简述《九章算术》的主要内容及在中国数学史上的意义。
答:《九章算术》是我国古代的一本传世数学名著,一直作为我国传统数学的代表作。
《九章算术》是以应用问题集的形式表述的,一共收入246 个问题,分为九章,分别为方田,粟米,衰分,少广,商功,均输,盈不足,方程,勾股。
标志着中国传统数学的知识体系已初步形成,对中国数学的发展的历史作用如同《几何原本》对西方数学影响一样。
4.简述笛卡尔的生活年代、所在国家、代表著作以及在数学上的主要成就。
答:笛卡尔(1596-1650)出生于法国的拉哈耶。
主要著作有《方法论》其中包括:《折光学》、《大气现象》和《几何学》。
主要成就有:开创性地用代数方法研究几何问题,把代数方程和曲线、曲面联系起来;引出了变量和函数的概念。
5.简述运筹学的建立和发展过程。
答:运筹学是运用数学方法解决生产、国防、商业和其他领域中的安排、筹划、控制、管理等有关问题的音乐数学的分支。
最早产生于二战中的英国,用以解决空防雷达信息系统与战斗机系统的协同配合问题。
不久美军也开始了类似的研究,并在战争中建有奇功。
目前运筹学已包括有数学规划论、博弈论、排队论、决策分析、图论等。
6.花拉子米(什么时代、什么地方的数学家、代表著作和重要贡献)。
答:花拉子米是九世纪阿拉伯数学家,代表著作有:《代数学》和《印度的计算术》;主要贡献有:提出“还原”与“对消”的解方程的基本变形法则;给出了一次和二次方程的一般解法,用几何方法给出证明;给出了四则运算的定义和法则。
均没有正整数解n ,方程n n n z y x
7.简述费马大定理的内容、发现过程以及证明的状况。
答:费马的大定理:对每个正整数3 z y x , , 。
该定理是费马于1637 年在读古希腊数学家丢番图的《算术》一书时,给出的猜想。
1995 年 5 月,英国数学家怀尔斯综合运用了数论、代数与几何方面近年来德重要成果和方法,在《数学年刊》发表论文“模曲线和费马最后定理” 标志着该定理证明的最后完成。
8.简述莱布尼茨生活在哪个世纪、所在国家及在数学上的主要成就。
答:莱布尼茨于1646 年出生在德国的莱比锡,其主要数学成就有:从数列的阶差入手发明了微积分;论述了积分与微分的互逆关系;引入积分符号;首次引进“函数”一词;发明了二进位制,开始构造符号语言,在历史上最早提出了数理逻辑的思想。
9.写出数学基础探讨过程中所出现的“三大学派”的名称、代表人物、主要观点。
答:一,逻辑主义学派,代表人物是罗素和怀特黑德,主要观点是:数学仅仅是逻辑的一部分,全部数学可以由逻辑推导出来。
二,形式主义学派,代表人物是希尔伯特,主要观点是:将数学看成是形式系统的科学,它处理的对象不必赋予具体意义的符号。
三,直觉主义学派,代表人物是布劳维尔,主要观点是:数学不同于数学语言,数学是一种思维中的非语言的活动,在这种活动中更重要的是内省式构造,而不是公理和命题。
10.简述刘徽所生活的朝代、代表著作以及在数学上的主要成就。
答:刘徽生活在三国时代;代表著作有《九章算术注》;主要成就:算术上给出了系统的分数算法、各种比例算法、求最大公约数的方法,代数上有方程术、正负数加减法则的建立和开平方或开立方方法;在几何上有割圆术及徽率。
13.罗巴切夫斯基的非欧几何。
答:罗巴切夫斯基于1825 年完成专著《平行线理论和几何原理概论及证明》标志着非欧几何的诞生,该理论是对几何原理中第五公设的研究提出命题“过直线外一点与已知直线平行的直线至少有两条”,并进行严格逻辑推理,得出的几何理论。
14.简述控制论的建立和发展过程。
答:控制论是解决通信中的“滤波问题”和战争中“预报问题”而发展起来的应用数学。
二战中美国数学家维纳受命设计高射炮控制系统,他发现滤波和预报这两类问题可以用统计的观点给出统一处理,并与生理学家、电工学家、逻辑学家探讨,逐步形成了系统的控制理论。
1948 年,他发表了《控制论》宣告了经典控制论的诞生。
20 世纪60 年代以后,逐渐形成了研究系统调节与控制的现代控制论。
二、问答题:
1、“一个违反万物皆数的理论,葬身了一双发现的眼睛;一次对真理苦苦的追寻,造就了基础数学中最重要的课程;一回回不断地完善理论系统,奠定了数学的基石。
” 指的是数学史上的哪三次重大事件?
答.第一次数学危机─—无理数的发现(第一次数学危机表明,几何学的某些真理与算术无关,几何量不能完全由整数及其比来表示。
反之,数却可以由几何量表示出来。
整数的尊祟地位受到挑战,古希腊的数学观点受到极大的冲击。
于是,几何学开始在希腊数学中占有非凡地位。
同时也反映出,直觉和经验不一定靠得住,而推理证实才是可靠的。
从此希腊人开始从“自明的”公理出发,经过演绎推理,并由此建立几何学体系。
)第二次数学危机——无穷小是零吗(直到19世纪,柯西具体而有系统地发展了极限理论。
柯西认为把无穷小量作为确定的量,即使是零,都说不过去,它会与极限的定义发生矛盾。
无穷小量应该是要怎样小就怎样小的量,因此本质上它是变量,而且是以零为极限的量,至此柯西澄清了前人的无穷小的概念,另外Weistrass创立了极限理论,加上实数理论,集合论的建立,从而把无穷小量从形而上学的束缚中解放出来,第二次数学危机基本解决,第二次数学危机的解决使微积分更完善。
)
第三次数学危机——罗素悖论的产生(引发了关于数学逻辑基础可靠性的问题,导致无矛盾的集合论公理系统(即所谓ZF公理系统)的产生。
在这场危机中集合论得到较快的发展,数学基础的进步更快,数理逻辑也更加成熟。
)
2.(15分)叙述费马大定理,并简要说明该定理的证实过程。
答.费马大定理:不存在正整数x、y、z,使得;n为大于2的正整数。
1:1676年,数学家根据费马的少量提示用无穷递降法证实n=4。
2:1770年,欧拉证实了n=3的情形3:1825年,狄利克雷和勒让德证实了n=5的情形,用的是欧拉所用方法的延伸。
4:1839年,法国数学家拉梅证实了n=7的情形,他的证实使用了跟7本身结合的很紧密的巧秒工具,只是难以推广到n=11的情形;于是,他又在1847年提出了“分圆整数”法来证实,但没有成功。
5:库默尔在1844年提出了“理想数”概念,他证实了:对于所有小于100的素指数n,费马大定理成立,此一研究告一阶段。
6:1983年,德国数学家法尔廷斯证实了一条重要的猜想——莫德尔猜想这样的方程至多有有限个正整数解,他由于这一贡献,获得了菲尔兹奖。
7:1955年,日本数学家谷山丰首先猜测椭圆曲线于另一类数学家们了解更多的曲线——模曲线之间存在着某种联系;谷山的猜测后经韦依和志村五郎进一步精确化而形成了所谓“谷山——志村猜想”,这个猜想说明了:有理数域上的椭圆曲线都是模曲线。
这个很抽象的猜想使一些学者搞不明白,但它又使“费马大定理”的证实向前迈进了一步。
8:1985年,德国数学家弗雷指出了“谷山——志村猜想”和“费马大定理”之间的关系9:1986年,美国数学家里贝特证实了弗雷命题,于是希望便集中于“谷山——志村猜想”。
10:1993年6月,英国数学家维尔斯证实了:对有理数域上的一
大类椭圆曲线,“谷山——志村猜想”成立。
由于他在报告中表明了弗雷曲线恰好属于他所说的这一大类椭圆曲线,也就表明了他最终证实了“费马大定理”;但专家对他的证实审察发现有漏洞,于是,维尔斯又经过了一年多的拼搏,于1994年9月彻底圆满证实了“费马大定理”3.(15分)简述学习数学史的意义。
答.1、数学史揭示出数学知识的现实来源和应用,从而可以从中感受到数学在文化史和科学进步史上的地位与影响,熟悉到数学是一种生动的、基本的人类文化活动,以及数学在当代社会发展中的作用,并且关注数学与其他学科之间的关系。
2、数学史不仅可以给出一种确定的数学知识,还可以给出相应知识的创造过程。
对这种创造过程的了解,可以使学生体会到一种活的、真正的数学思维过程。
这既可以激发对数学的爱好,培养探索精神。
3、通过阅读许多数学家在成长过程中遭遇过挫折,了解一些大数学家是如何遭遇挫折和犯错误的,不仅可以使我们在数学方法上从反面获得全新的体会,而且知道大数学家也同样会犯错误、遭遇挫折,对正确看待学习过程中碰到的困难、树立学习数学的自信心会产生重要的作用。