简单的线性规划(1)
简单的线性规划9.20

7.4简单的线性规划(第一课时)二元一次不等式表示平面区域教学目的:1.理解二元一次不等式表示平面区域;2.掌握确定二元一次不等式表示的平面区域的方法;3.会画出二元一次不等式(组)表示的平面区域,并掌握步骤;教学重点:二元一次不等式表示平面区域.教学难点:如何确定二元一次不等式表示的平面区域。
教学过程:【创设问题情境】问题1:在平面直角坐标系中,二元一次方程x+y-1=0表示什么图形?请学生画出来.问题2:写出以二元一次方程x+y-1=0的解为坐标的点的集合(引出点集{(x,y) x+y-1=0})问题3:点集{(x,y) x+y-1≠0}在平面直角坐标系中表示什么图形?点集{(x,y) x+y-1>0}与点集{(x,y) x+y-1>0}又表示什么图形呢?【讲授新课】研究问题:在平面直角坐标系中,以二元一次不等式x+y-1>0的解为坐标的点的集合{(x,y) x+y-1>0}是什么图形?一、归纳猜想我们可以看到:在平面直角坐标系中,所有的点被直线x +y -1=0分成三类:即在直线x +y -1=0在直线x +y -1=0的左下方的平面区域内; 在直线x +y -1=0的右上方的平面区域内。
问题1:请同学们在平面直角坐标系中,作出A (2,0),B(0,2),C(1,1),D(2,2)四点,并说明它们分别在上面叙述的哪个区域内?问题2:请把A 、B 、C 、D 四点的坐标代入x +y -1中,发现所得的值的符号有什么规律? (看几何画板) 由此引导学生归纳猜想:对直线l 的右上方的点(x ,y ),x +y -1>0都成立; 对直线l 左下方的点(x ,y ), x +y -1<0成立. 二、证明猜想如图,在直线x +y -1=0上任取一点P (x 过点P 作垂直于y 轴的直线y = y 0,在此直 线上点P 右侧的任意一点(x ,y ),都有x > x 0, y = y 0,所以, x +y > x 0+ y 0=0, 所以, x +y -1> x 0+ y 0 -1=0,1=0即x+y-1>0,因为点P(x0,y0)是直线x+y-1=0上的任意点,所以,对于直线x+y-1=0右上方的任意点(x,y), x+y-1>0都成立.同理, 对直线l: x+y-1=0左下方的点(x,y),x+y-1<0成立所以,在平面直角坐标系中, 以二元一次不等式x+y-1>0的解为坐标的点的集合{(x,y) x+y-1>0}是在直线x+y-1=0右上方的平面区域,类似地,在平面直角坐标系中, 以二元一次不等式x+y-1<0的解为坐标的点的集合{(x,y) x+y-1<0}是在直线x+y-1=0左下方的平面区域.提出:直线-x+y-1=0的两侧的点的坐标代入-x+y-1中,得到的数值的符号,仍然会“同侧同号,异侧异号”吗?通过分析引导学生得出一般二元一次不等式表示平面区域的有关结论.三、一般二元一次不等式表示平面区域结论:在平面直角坐标系中,•(1)二元一次不等式Ax+By+C>0表示直线Ax+By+C=0某一侧所•有点组成的平面区域,Ax+By+C<0则表示直线另一侧所有点组成•的平面区域;(同侧同号,异侧异号)(2)有等则实,无等则虚;(3)试点定域,原点优先.四、例题:例1:画出不等式x -y +5>0表示的平面区域;分析:先作出直线x -y +5=0为边界(画成实线),再取原点验证不等式x -y +5>0所表示的平面区域.解:先画直线x -y +5=0为边界(画成实线),再取原点(0,0)代入x -y +5中,因为0-0+5>0,所以原点在不等式x -y +5>0所表示的平面区域内,不等式表示的区域如图所示. (看幻灯片) 反思归纳:(1)画线定界(注意实、虚线); (2)试点定域. 【随堂练习】(1)画出不等式x +y >0表示的平面区域; (2)画出不等式x ≤3表示的平面区域. (让学生完成)例2:画出不等式组⎪⎩⎪⎨⎧≤≥+≥+-3,0,05x y x y x 表示的平面区域. 分析:不等式组表示的平面区域是各个不等式所表示的平面点集的交集,因而是各个不等式所表示的平面区域的公共部分。
高中数学 3.3.3 简单的线性规划问题(第1课时)教案 必修5

3.3.3 简单的线性规划问题第1课时简单的线性规划问题(教师用书独具)●三维目标1.知识与技能(1)从实际情境中抽象出一些简单的二元线性规划问题,并能加以解决;(2)了解线性规划的意义以及线性约束条件、线性目标函数、可行解、可行域、最优解等概念,会根据条件建立线性目标函数;(3)了解线性规划的图解法,并会用图解法求线性目标函数的最大(小)值;(4)培养学生观察、联想以及作图的能力,渗透集合、化归、数形结合、等价转化的数学思想.2.过程与方法(1)本节课是以二元一次不等式(组)表示的平面区域的知识为基础,将实际生活问题通过数学中的线性规划问题来解决;(2)考虑到学生的知识水平和消化能力,教师可通过激励学生探究入手,讲练结合,真正体现数学的工具性,同时,借助计算机的直观演示可使教学更富趣味性和生动性.3.情感、态度与价值观(1)结合教学内容,培养学生学习数学的兴趣和“用数学”的意识,激励学生创新;(2)渗透集合、数形结合、化归的数学思想,培养学生“数形结合”的应用数学的意识,激发学生的学习兴趣.●重点、难点重点:线性规划问题的图解法,寻求线性规划问题的最优解.难点:利用图解法求最优解.为突出重点,本节教学应指导学生紧紧抓住化归、数形结合的数学思想方法,将实际问题数学化,代数问题几何化.解决难点的方法是精确作图,利用数形结合的思想将代数问题几何化.(教师用书独具)●教学建议从内容上看,简单的线性规划问题是在学习了不等式、直线方程的基础上展开的,它是对二元一次不等式的深化和再认识、再理解.它是用数学知识解决实际问题,属于数学建模,是初等数学中较抽象的,对学生要求较高,又是必须予以掌握的内容.考虑到学生的认知水平和理解能力,建议教师可以通过激励学生探究入手,讲练结合,培养学生对本节内容的学习兴趣,培养学生数形结合的意识,让学生体味数学的工具性作用.另外,教师还可借助计算机直观演示利用图解法求最优解的过程,增强教学的趣味性和生动性.●教学流程创设问题情境,引导学生了解线性约束条件、线性目标函数、可行域、线性规划问题等概念.⇒结合教材让学生掌握线性规划问题的图解法.⇒通过例1及其变式训练使学生巩固掌握利用图解法求最优解的步骤.⇒通过例2及其变式训练使学生掌握利用线性规划研究字母参数的方法.⇒通过例3及其变式训练使学生掌握求非线性目标函数的最值的方法.⇒归纳整理,进行课堂小结,整体认识本节课所学知识.⇒完成当堂双达达标,巩固所学知识,并进行反馈矫正.(对应学生用书第56页)课标解读1.了解目标函数、约束条件、可行域、最优解等基本概念.2.掌握线性规划问题的求解过程,特别是确定最优解的方法.(重点、难点)可行域约束条件所表示的平面区域,称为可行域.线性规划求线性目标函数在线性约束条件下的最大值或最小值问题,通常称为线性规划问题,上述只含两个变量的简单线性规划问题可用图解法解决.(对应学生用书第56页)线性规划问题设z =3x +5y ,式中变量x 、y 满足条件⎩⎪⎨⎪⎧x +2y ≥3,7x +10y ≥17,x ≥0,y ≥0.求z的最小值.【思路探究】【自主解答】 画出约束条件表示的点(x ,y )的可行域, 如图所示的阴影部分(包括边界直线).把z =3x +5y 变形为y =-35x +z 5,得到斜率为-35,在y 轴上的截距为z5,随z 变化的一族平行直线.作直线l :3x +5y =0,把直线向右上方平行移至l 1的位置时,直线经过可行域上的点M ,此时l 1:3x +5y -z =0的纵截距最小,同时z =3x +5y 取最小值.解方程组⎩⎪⎨⎪⎧x +2y =3,7x +10y =17,得M (1,1).故当x =1,y =1时,z min =8.1.由本例可以看出,解线性规划问题时,一定要注意最优解的对应点是最大值点,还是最小值点.对于目标函数z =ax +by ,当b >0时,直线截距最大时,z 有最大值,截距最小时,z 有最小值;当b <0时,则相反.2.图解法是解决线性规划问题的有效方法,其关键是利用z 的几何意义求解.平移直线ax +by =0时,看它经过哪个点(哪些点)时最先接触可行域和最后离开可行域,则这样的点即为最优解,最优解一般是在可行域的边界取得.设变量x ,y 满足约束条件⎩⎪⎨⎪⎧x -y +2≥0,x -5y +10≤0,x +y -8≤0,则目标函数z =3x -4y 的最大值和最小值分别为多少.【解】 作可行域如图所示,解⎩⎪⎨⎪⎧x -y +2=0,x +y -8=0得⎩⎪⎨⎪⎧x =3,y =5,∴A (3,5).解⎩⎪⎨⎪⎧x +y -8=0,x -5y +10=0得⎩⎪⎨⎪⎧x =5,y =3,∴B (5,3).平移直线3x -4y =z 可知,直线过A 点时,z 取最小值,过B 点时,z 取最大值. ∴z min =3×3-4×5=-11,z max =3×5-4×3=3.利用线性规划求字母参数的值(或范围)已知x ,y 满足⎩⎪⎨⎪⎧x -4y +3≤0,3x +5y ≤25,x ≥1,设z =ax +y (a >0),若当z 取最大值时,对应的点有无数多个,求a 的值.【思路探究】【自主解答】 作出可行域如图所示.由⎩⎪⎨⎪⎧3x +5y =25,x -4y +3=0,得⎩⎪⎨⎪⎧x =5,y =2,∴点A 的坐标为(5,2).由⎩⎪⎨⎪⎧x =1,3x +5y =25,得⎩⎪⎨⎪⎧x =1,y =4.4,∴点C 的坐标为C (1,4.4).当直线z =ax +y (a >0)平行于直线AC ,且直线经过线段AC 上任意一点时,z 均取得最大值,此时有无数多点使z 取得最大值,而k AC =-35,∴-a =-35,即a =35.1.本题中,z 取最值时对应的点有无数多个,故这无数多个对应点构成平面区域的一段边界.2.解线性规划问题时一般要结合图形(平面区域)及目标函数的几何意义解题.若x ,y 满足约束条件⎩⎪⎨⎪⎧x +y ≥1,x -y ≥-1,2x -y ≤2,目标函数z =ax +2y 仅在点(1,0)处取得最小值,则a 的取值范围是________.【解析】 作出可行域,让目标函数所表示的直线过定点,观察斜率的范围,构建不等式求参数范围.如图所示,约束条件所表示的平面区域为三角形,目标函数z =ax +2y ,即y =-a 2x +z 2仅在点(1,0)处取得最小值,故其斜率应满足-1<-a 2<2,即-4<a <2.故填(-4,2).【答案】 (-4,2)求非线性目标函数的最值已知x ,y 满足条件⎩⎪⎨⎪⎧7x -5y -23≤0,x +7y -11≤0,4x +y +10≥0.(1)求u =x 2+y 2的最大值和最小值; (2)求z =yx +5的最大值和最小值. 【思路探究】【自主解答】 画出不等式组所表示的平面区域,如图所示.(1)∵u =x 2+y 2,∴u 为点(x ,y )到原点(0,0)的距离,结合不等式组所表示的平面区域可知,点B 到原点的距离最大,而当(x ,y )在原点时,距离为0.由⎩⎪⎨⎪⎧7x -5y -23=0,4x +y +10=0得点B 的坐标为(-1,-6),∴(x 2+y 2)max =(-1)2+(-6)2=37,(x 2+y 2)min =0. (2)z =yx +5=y -0x --5,所以求z 的最大值和最小值,即是求可行域内的点(x ,y )与点(-5,0)连线斜率的最大值和最小值.设点M 的坐标为(-5,0),由⎩⎪⎨⎪⎧x +7y -11=0,4x +y +10=0得点C 的坐标为(-3,2),由(1)知点B 的坐标为(-1,-6),∴k max =k MC =2-0-3--5=1,k min =k MB =-6-0-1--5=-32,∴yx +5的最大值是1,最小值是-32. 1.本题中,(1)x 2+y 2是平面区域内的点(x ,y )到原点的距离的平方;(2)y x +5=y -0x --5可看成平面区域内的点(x ,y )与点(-5,0)连线的斜率.2.解决此类问题,应先准确作出线性约束条件表示的平面区域,然后弄清非线性目标函数的几何意义.已知x ,y 满足⎩⎪⎨⎪⎧x -y +2≥0,x +y -4≥0,2x -y -5≤0.(1)求z =x 2+y 2+2x -2y +2的最小值; (2)求z =|x +2y -4|的最大值. 【解】 (1)作出可行域,如图所示, ∵z =(x +12+y -12)2,∴z 可看作是可行域内任意一点(x ,y )到点M (-1,1)的距离的平方. 由图可知z min 等于原点到直线x +y -4=0的距离的平方, ∴z min =(|-4|2)2=8.(2)∵z =|x +2y -4|=5·|x +2y -4|5, ∴z 可看作是可行域内任意一点(x ,y )到直线x +2y -4=0的距离的5倍. 由图可知点C 到直线x +2y -4=0的距离最大.由⎩⎪⎨⎪⎧x -y +2=0,2x -y -5=0得点C (7,9),∴z max =|7+2×9-4|5×5=21.(对应学生用书第58页) 直线的倾斜程度判断不准致误已知⎩⎪⎨⎪⎧11x +4y ≤44,7x +5y ≤35,6x +7y ≤42,x ≥0,y ≥0,求z =x +y 的最大值.【错解】 作出可行域,如图所示.作出直线l 0:x +y =0,将它移至点B ,则点B 的坐标是可行域中的最优解,它使z 达到最大值.解方程组⎩⎪⎨⎪⎧11x +4y =44,7x +5y =35,得点B 的坐标为(8027,7727).所以z max =8027+7727=15727.【错因分析】 将直线l 0向上移动时,最后离开可行域的点不是点B 而是点A ,这是由于直线倾斜程度不准确引起的,由于三条边界直线的斜率依次是-67,-75,-114,而目标函数z =x +y 的斜率为-1,它夹在-67与-75之间,故经过点B 时,直线x +y =z 必在点A 的下方,即点B 不是向上平移直线时最后离开可行域的点,而是点A .【防范措施】 解决线性规划问题时,可行域一定要准确,关键点的位置不能画错,若数据比较大,不易画图,也可用斜率分析法确定关键点或取得最值点.【正解】 作出二元一次不等式组所表示的平面区域如上图.作出直线l ′0:x +y =0,将它向上平移,当它经过点A 时,z 取得最大值.解方程组⎩⎪⎨⎪⎧7x +5y =35,6x +7y =42,得⎩⎪⎨⎪⎧x =3519,y =8419,故z max =3519+8419=119191.基础知识: (1)可行域; (2)线性规划. 2.基本技能: (1)解线性规划问题;(2)利用线性规划求字母参数的值(或范围); (3)求非线性目标函数的最值. 3.思想方法: (1)数形结合思想; (2)函数思想; (3)转化思想.(对应学生用书第58页)1.已知实数x ,y 满足⎩⎪⎨⎪⎧x -y +5≥0,x ≤3,x +y ≥0,则目标函数z =x +2y 的最小值为________.【解析】 画出不等式组表示的平面区域,由图可知目标函数在点(3,-3)处取得最小值-3.【答案】 -3图3-3-72.给出平面区域(包含边界)如图3-3-7所示,若使目标函数z =ax +y (a >0)取得最大值的最优解有无数多个,则a 的值为________.【解析】 由题意知-a =k AC =-35,∴a =35.【答案】 353.已知变量x ,y 满足约束条件⎩⎪⎨⎪⎧x -y +2<0,x >1,x +y -7<0,则yx的取值范围是________.【解析】 目标函数y x 是可行域上的动点(x ,y )与原点连线的斜率,最小值是k OC =95,最大值是k AO =6,又可行域边界取不到,∴95<yx<6.【答案】 (95,6)4.已知x 、y 满足条件⎩⎪⎨⎪⎧7x -5y -23≤0,x +7y -11≤0,4x +y +10≥0,求z =4x -3y 的最值.【解】 原不等式组表示的平面区域如图所示: 其中A (4,1)、B (-1,-6)、C (-3,2). 作与4x -3y =0平行的直线l :4x -3y =t , 即y =43x -t3,则当l 过C 点时,t 最小; 当l 过B 点时,t 最大.∴z max =4×(-1)-3×(-6)=14,z min =4×(-3)-3×2=-18.(对应学生用书第97页)一、填空题1.(2013·微山高二检测)设x ,y 满足约束条件⎩⎪⎨⎪⎧x +y ≤1,y ≤x ,y ≥-2,则z =3x +y 的最大值为________.【解析】 不等式组表示的平面区域如图所示:把z =3x +y 变形为y =-3x +z 得到斜率为-3,在y 轴截距为z 的一族平行直线,由图当直线l :y =-3x +z 过可行域内一点M 时,在y 轴截距最大,z 也最大.由⎩⎪⎨⎪⎧x +y =1,y =-2,∴⎩⎪⎨⎪⎧x =3,y =-2,即M (3,-2).∴当x =3,y =-2时,z max =3×3+(-2)=7. 【答案】 72.(2013·苏州高二检测)变量x ,y 满足⎩⎪⎨⎪⎧2x +y ≥12,2x +9y ≥36,2x +3y ≥24,x ≥0,y ≥0,则使得z =3x +2y 的值最小的(x ,y )是________.【解析】 不等式组表示的平面区域如图所示:把z =3x +2y 变形为y =-32x +z 2,作与直线l 0:y =-32x 平行的直线l ,显然当l 经过可行域内点M 时在y 轴上截距最小,z 也最小.由⎩⎪⎨⎪⎧2x +y =12,2x +3y =24,∴⎩⎪⎨⎪⎧x =3,y =6,即M (3,6)时,z =3x +2y 的值最小. 【答案】 (3,6)3.设z =2y -2x +4,式中的x ,y 满足条件⎩⎪⎨⎪⎧0≤x ≤1,0≤y ≤2,2y -x ≥1,则z 的取值范围是________.【解析】 作出满足不等式组⎩⎪⎨⎪⎧0≤x ≤1,0≤y ≤2,2y -x ≥1的可行域(如图所示),作直线2y -2x =0,并将其平移,由图象可知当直线经过点A (0,2)时,z max =2×2-2×0+4=8; 当直线经过点B (1,1)时,z min =2×1-2×1+4=4.所以z 的取值范围是[4,8]. 【答案】 [4,8]4.(2013·连云港检测)设实数x ,y 满足⎩⎪⎨⎪⎧x -y -2≤0,x +2y -4≥0,2y -3≤0,则yx的最大值是________.【解析】 不等式组表示的平面区域如图所示: 又y x =y -0x -0表示过平面区域内一点(x ,y )与原点(0,0)的直线的斜率,由图知(x ,y )在平面区域内A 点处时直线斜率最大.由⎩⎪⎨⎪⎧x +2y -4=0,2y -3=0得⎩⎪⎨⎪⎧x =1,y =32,∴A (1,32),∴y x 的最大值为32.【答案】 325.(2013·无锡检测)二元一次方程组⎩⎪⎨⎪⎧x <0,y <0,x +y +4>0表示的平面区域内,使得x +2y 取得最小值的整点坐标为________.【解析】 不等式组表示的平面区域如图所示: ∵平面区域不包括边界,∴平面区域内的整点共有(-1,-1),(-1,-2),(-2,-1)三个. 代入检验知,整点为(-1,-2)时x +2y 取得最小值. 【答案】 (-1,-2)6.已知⎩⎪⎨⎪⎧x +y -1≤0,x -y +1≥0,y ≥-1,且u =x 2+y 2-4x -4y +8,则u 的最小值为________.【解析】 不等式组表示的平面区域如图所示,由已知得(x -2)2+(y -2)2=(u )2,则(u )min =|2+2-1|1+1=32,u min =92.【答案】 927.已知变量x ,y 满足约束条件1≤x +y ≤4,-2≤x -y ≤2.若目标函数z =ax +y (其中a >0)仅在点(3,1)处取得最大值,则a 的取值范围为________.【解析】 由题设知可行域为如图所示的矩形,要使目标函数z =ax +y 在点(3,1)处取得最大值,结合图形可知a >1.【答案】 (1,+∞)8.如果点P 在平面区域⎩⎪⎨⎪⎧2x -y +2≥0,x -2y +1≤0,x +y -2≤0内,点Q 在曲线x 2+(y +2)2=1上,那么|PQ |的最小值为________.【解析】 首先作出不等式组表示的平面区域和曲线x 2+(y +2)2=1,如图所示,从而可知点P 到Q 的距离最小值是可行域上的点到(0,-2)的最小值减去圆的半径1,由图可知|PQ |min =12+-22-1=5-1。
3.3.3简单的线性规划问题(1)

我的记录空间:
3.3.3简单的线性规划问题(1)
一、学习目标
1.理解线性规划的基本思想;
2.掌握根据约束条件求目标函数的最值。
教学重点、难点:根据约束条件求目标函数的最值
二、课前自学
1. 在生活、生产中,经常会遇到资源利用、人力调配、生产安排的等问题,本节课就学习此方面的应用。
2.问题:在约束条件410432000
x y x y x y +≤⎧⎪+≤⎪⎨≥⎪⎪≥⎩下,如何求目标函数2P x y =+的最大值?
分析:(1)作出约束条件所表示的平面区域-----可行域
(2)分析目标函数2P x y =+的几何意义。
(3)求出目标函数2P x y =+的最大值-----线性规划问题
三、问题探究
例1.设,x y 满足约束条件41043200
x y x y x y +≤⎧⎪+≤⎪⎨≥⎪⎪≥⎩
(1)求当,x y 分别为多少时,目标函数2z x y =-取得最值,并求出最值;
(2)求22z x y =+的最大值。
我的记录空间: 归纳:求z ax by =+22(0)a b +≠的最值方法。
例2.已知变量,x y 满足约束条件1422
x y x y ≤+≤⎧⎨-≤-≤⎩。
若目标函数
(0)z ax y a =+>仅在点(3,1)处取得最大值,求a 的取值范围;
变题:若目标函数(0)z ax y a =+>取得最大值的点有无数个,求a 的取值
范围;
四、反馈小结
反馈:必修五P83 练习1,2,3
小结:。
3.3.2简单的线性规划1

今需要A、 、 三种规格的成品分别为 三种规格的成品分别为15、 、 今需要 、B、C三种规格的成品分别为 、18、27 块,用数学关系式和图形表示上述要求,如何使所 用数学关系式和图形表示上述要求, 用钢板张数最少? 用钢板张数最少?
例6:一个化肥厂生产甲、乙两种混合肥料,生产 车皮甲种 :一个化肥厂生产甲、乙两种混合肥料,生产1车皮甲种 肥料的主要原料是磷酸盐4t、硝酸盐18t;生产1车皮乙种肥 肥料的主要原料是磷酸盐 、硝酸盐 ;生产 车皮乙种肥 料需要的主要原料是磷酸盐1t、硝酸盐15t。 料需要的主要原料是磷酸盐 、硝酸盐 。现库存磷酸盐 10t、硝酸盐 ,在此基础上生产这两种混合肥料。列出满 、硝酸盐66t,在此基础上生产这两种混合肥料。 足生产条件的数学关系式,并画出相应的平面区域。 足生产条件的数学关系式,并画出相应的平面区域。若生产 一车皮甲种肥料,产生的利润为10000元;生产一车皮乙肥 一车皮甲种肥料,产生的利润为 元 产生的利润为5000元,那么非别生产甲乙肥料各多好车 料,产生的利润为 元 能够产生最大利润? 皮,能够产生最大利润?
分析: 分析:将已知数据列成表格
食物/kg 碳水化合物/kg 蛋白质/kg 脂肪/kg
A B
0.105 0.105
0.07 0.14
0.14 0.07
三种规格, 例5: 要将两种大小不同的钢板截成 、B、C三种规格, : 要将两种大小不同的钢板截成A、 、 三种规格 每张钢板可同时截得三种规格的小钢板的块数如下表示: 每张钢板可同时截得三种规格的小钢板的块数如下表示: 规格 钢型 第一种钢板 第二种钢板 A规格 规格 2 1 B规格 规格 1 2 C规格 规格 1 3
• 通过不等式(组)的平面区域,我们可以 知道不等式的可能取值范围。那么在不等 式平面区域中,那个值是最有意义的取值 呢,比如对于资源的利用,人力调配,生 产安排等等,都需要我们有一个最优的处 理办法
简单的线性规划问题(第1课时)课件2

x+2y 8
x 2 y 8
4 4y x
16 12
x y
4 3
x 0
x
0
y 0
y 0
将上述不等式组表示成平面上的区域,图中的阴影部 分中的整点(坐标为整数)就代表所有可能的日生产安排。
若生产一件甲产品获利2万元,生产一件乙产品获 利3万元,采用那种生产安排利润最大?
0.06 0.06
174xx174
y y
6 6
x 0
x 0
y 0
y 0
目标函数为:z=28x+21y
作出二元一次不等式组所表示的平面区域,即可行域
把目标函数z=28x+21y 变形为 y 4 x z
它表示斜率为 4
3 28
3
随z变化的一组平行直
线系
6/7 y
z 28 是直线在y轴上 5/7 M
为它是关于变量x、y的一次解析式,又称线性目标函数。
在线性约束条件下求线性目标函数的最大值或最小值
问题,统称为线性规划问题。y
满足线性约可束行的域解 4 3
最优解
(x,y)叫做可行解。
由所有可可行行解解组成
的集合叫做可行域。
o
4
8x
使目标函数取得最大值或最小值的可行解叫
做这个问题的最优解。
三、例题
设工厂获得的利润为z,则z=2x+3y
把z=2x+3y变形为
y
y 2 x z
4
3
3
3
它表示斜率为
2 3
的
M
直线系,z与这条直线
的截距有关。
o
4
8x
如图可见,当直线经过可行域上的点M时,截距
最大,即z最大。
3.3.2简单线性规划(1_2)--上课用

y-x=0
5
4、 根据0=2x+y平移到 区域的最后一个点时有 最大(小)值
3、根据b的正负值判断向上向下 平移时Z的增减性, 1 O
1 A(2,-1)
5
x
y+1=0
B(-1,-1)
-1
x+y-1=0
x - y 0 1 、 画出x y - 1 0区域 y y 1 0
使 式中,的x、y满足约束条件:
3 z z y x , 为直线3x 5 y z 0 5 5 5 的纵截距
5 x 3 y 15 y x 1 x 5 y 3
5x+3y=15 y y=x+1
5
B(3/2,5/2)
1
X-5y=3 x
O
-1
1
5
A(-2,-1)
B.z=5x+3y D.z=3x+5y
答案:A
第31页
高考题练习:
x y≥2, 1.(2009 浙江)若实数x, y满足不等式组 2 x y≤4, x y≥0, 则2x 3y的最小值是 ________ .
答案:4
第32页
解析:作出可行域如下图. 作直线l:2x+3y=0,平移l,当l过点A(2,0)时,2x+3y有最小值4.
D.5
z=5×1+0=5.
答案:D
第34页
则z x 2y的最大值为
A.4 答案:B B.3 C.2
y≤1, 3.(2010 全国Ⅰ若变量 ) x、y满足约束条件 x y≥0, x y 2≤0,
简单的线性规划(一)

课题:简单的线性规划(一)教学目标:了解二元一次不等式的几何意义,能用平面区域表示二元一次不等式组;从实际情境中抽象出一些简单的二元线性规划问题,并能加以解决.2010年考试说明要求A 级。
知识点回顾:1. 二元一次不等式表示的平面区域:在平面直角坐标系中,设有直线0=++C By Ax (B 不为0)及点),(00y x P ,则(1)若B>0,000>++C By Ax ,则点P 在直线的_____,此时不等式0>++C By Ax 表示直线0=++C By Ax 的______的区域;(2)若B>0,000<++C By Ax ,则点P 在直线的______,此时不等式0<++C By Ax 表示直线0=++C By Ax 的_____的区域;(3) 若B<0, 我们都把Ax +By +C >0(或<0)中y 项的系数B 化为正值.2. 目标函数可转化为y 轴上截距的z=ax+by 最值问题。
课前训练:1. 设变量x ,y 满足约束条件3123x y x y x y +≥⎧⎪-≥-⎨⎪-≤⎩,则目标函数z=2x+3y 的最小值为2. 在平面直角坐标系中,若不等式组101010x y x ax y +-≥⎧⎪-≤⎨⎪-+≥⎩(α为常数)所表示的平面区域内的面积等于2,则a 的值为3. 已知点(,3)P a 在不等式组352504301x y x y x +-≤⎧⎪-+≤⎨⎪≥⎩所表区域内;则a 的范围是4.已知点(3,1)和(-4,6)在直线023=+-a y x 的两侧,则a 的取值范围是5.若⎪⎩⎪⎨⎧≥-≤+-≥035,4,1y x y x y 表示的平面区域的面积6.图中阴影部分表示的平面区域可用二元一次不等式组来表示为 .典型例题:若A 为不等式组0,0,2x y y x ≤⎧⎪≥⎨⎪-≤⎩表示的平面区域,则当实数a 从-2连续变化到1时,动直线x y a += 扫过A 中区域的面积为设x ,y 满足约束条件⎪⎩⎪⎨⎧≥≥≥+-≤--0,002063y x y x y x ,若目标函数z=ax+by (a>0,b>0)的最大值为12,则23a b+的最小值为课堂检测:1.已知点()2286,3424x y x y Q x y x y ⎧⎫⎧+<+⎪⎪∈⎨⎨⎬+>⎩⎪⎪⎩⎭,如果直线:20l ax y ++=经过点Q ,那么实数a 的取值范围是 .2. 已知在平面直角坐标系xOy 中,O(0,0), A(1,-2), B(1,1), C(2.-1),动点M(x,y) 满足条件⎩⎪⎨⎪⎧-2≤−→OM ·−→OA ≤21≤−→OM ·−→OB ≤2,则−→OM ·−→OC 的最大值为 。
3.3.2简单的线性规划问题(1).ppt1

y
o
x
1.课题导入
在现实生产、生活中,经常会遇到资源利用、人力调配、 生产安排等问题。 1、下面我们就来看有关与生产安排的一个问题:
某工厂用A、B两种配件生产甲、乙两种产品,每 生产一件甲产品使用4个A配件耗时1h,每生产一件乙 产品使用4个B配件耗时2h,该厂每天最多可从配件厂 获得16个A配件和12个B配件,按每天工作8h计算,该 厂所有可能的日生产安排是什么? 按甲、乙两种产品分别生产x、y件,由 已知条件可得二元一次不等式组
5 x+3 y 1 5 1 y x+ x-5 y 3
1.解:作出平面区域
y
A
o x C
y x x+y 1 y - 1
z=2x+y
B
作出直线y=-2x+z的 图像,可知z要求最大值, 即直线经过C点时。 求得C点坐标为(2,-1), 则Zmax=2x+y=3
把z=2x+3y变形为
由上图可以看出,当实现直线x=4与直线x+2y-8=0的交点M z 14 (4,2)时,截距的值最大 ,最大值为 , 3 3
这时 2x+3y=14. 所以,每天生产甲产品 4 件,乙产品 2 件时, 工厂可获得最大利润14万元。
二、基本概念
Hale Waihona Puke 一组关于变量x、y的一次不等式,称为线性约束 条件。 把求最大值或求最小值的的函数称为目标函数,因 为它是关于变量x、y的一次解析式,又称线性目标函数。 在线性约束条件下求线性目标函数的最大值或最小值 y 问题,统称为线性规划问题。 4 可行域 最优解 满足线性约束的解
3
(x,y)叫做可行解。 由所有可行解组成 可行解 的集合叫做可行域。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3.5.2简单的线性规划(1)
一.知识点
1.二元一次不等式组表示的平面区域:
2. 线性规划中的基本概念: (1)约束条件: (2)线性约束条件: (3)目标函数: (4)线性目标函数: (5)可行解: (6)可行域: (7)最优解:
(8)线性规划问题:
3. 图解法求线性目标函数的最大值、最小值.
二.典例分析
例1
若x 、y 满足条件⎪⎩
⎪
⎨⎧≤+-≥+-≤-+.0104010230122y x y x y x ,,求y x z 2+=的最大值和最小值.
变式1:求2
2y x +的最大值和最小值
变式2:求()2
2
3)2(-++y x 的最大值和最小值
变式3:求25102
2+-+y y x 的最大值和最小值
变式3:求x y
的范围
变式4:求31
++x y 的范围
变式5:求2
2
-+x y 的范围
变式6:求
4
33
2++y x 的范围
例2 设y x z 57+=式中的变量x 、y 满足下列条件⎪⎩
⎪
⎨⎧∈∈≤--≤-+.**,,023,02034N y N x y x y x 求z 的最大值.
例3 已知()的取值范围。
试求且如果)1,2(,1)1,1(1-,21,11,),(f f f by ax b a f ≤-≤≤≤+=
三.课后练习
1. 已知变量y x ,满足条件⎪⎩
⎪
⎨⎧≥≥+-≤-005302x y x y x ,则
求(1)442
2
++-=y x x z 的最大值 (2)1
21
++=
x y z 的取值范围 (3)z=2x+y 的范围
2. 在直角坐标系xOy 中,已知△AOB 的三边所在直线的方程分别为x =0,y =0,2x +3y =30,
则△AOB 内部和边上整点(即坐标均为整数的点)的总数为( )
3. 已知实数x ,y 满足⎩⎪⎨⎪
⎧
x -y +6≥0x +y ≥0
x ≤3
,若z =ax +y 的最大值为3a +9,最小值为3a -3,
则实数a 的取值范围为( ) A .a ≥1
B .a ≤-1
C .-1≤a ≤1
D .a ≥1或a ≤-1
4. 已知变量x ,y 满足约束条件⎩⎪⎨⎪
⎧
x +4y -13≥02y -x +1≥0
x +y -4≤0
,且有无穷多个点(x ,y )使目标函数z =x
+my 取得最小值,则m =( )。