简单的线性规划word版
简单的线性规划

高考调研 ·高三总复习·数学(理)
(3)一般情况下,当 z 取得最大值时,直线所经过的点都是唯 一的,但若直线平行于边界直线,即直线 z=ax+y 平行于直线 3x+5y=30 时,线段 BC 上的任意一点均使 z 取得最大值,此时 满足条件的点即最优解有无数个.
又 kBC=-35,∴-a=-35,∴a=35.
第6页
高考调研 ·高三总复习·数学(理)
(4)线性目标函数取得最值的点一定在可行域的顶点或边界 上.
(5)目标函数 z=ax+by(b≠0)中,z 的几何意义是直线 ax+by -z=0 在 y 轴上的截距.
第7页
高考调研 ·高三总复习·数学(理)
答案 (1)× (2)√ (3)√ (4)× (5)× 解析 (1)错误,举例 x-y>0 在下方. (2)正确,x2-y2<0,即(x-y)(x+y)<0 画图即可. (3)正确,当线性目标函数与边界平行时,有无数个最值. (4)错误,最优整数解有时在可行域内部. (5)错误,由于 ax+by-z=0 可变形为 y=-bax+bz还需要 b 的符号来确定.
a的值为( )
A.-5
B.1
C.2
D.)
【解析】 由题意知不等式组所表示的平面区域为一个三 角形区域,设为△ABC,则A(1,0),B(0,1),C(1,1+a)且a> -1.∵S△ABC=2,∴12(1+a)×1=2,解得a=3.
【答案】 D
第29页
高考调研 ·高三总复习·数学(理)
第34页
高考调研 ·高三总复习·数学(理)
(4) z=yx++55=yx--((--55)),可看作区域内的点(x,y)与点 D(- 5,-5)连线的斜率.
简单的线性规划

4x-3y-12=0
X-2y+7=0
x+2y-3=0
P(-3,-1)
X-2y+7=0
4x-3y-12=0
P(-3,-1)
x+2y-3=0
tmax kPA
X-2y+7=0
Q(x,y)
t
y 1 x3
资源
A种配件 B种配件 所需时间 4 0 1 ≤16 ≤12
≤8
设甲、乙两种产品分别生产x、y件.
设甲、乙两种产品分别生产x、y件,由己知 条件可得二元一次不等式组:
x 2 y 8, 4 x 16, 4 y 12, x 0, y 0.
y
4
例3、要将两种大小不同规格的钢板截成A、 B、C三种规格,每张钢板可同时截得三种 规格的小钢板的块数如下表所示 :
钢板类型 规格类型
A规格
B规格
C规格
第一种钢板 第二种钢板
2 1
1 2
1 3
今需要A,B,C三种规格的成品分别为15,18, 27块,问各截这两种钢板多少张可得所需三 种规格成品,且使所用钢
1
(2,-1) A
变式演练
x-y≥0 设x,y满足约束条件:x+y-1 ≤ 0 y ≥ -1
求z=-x-y最大值与最小值 。
y x+y=1 1 0
C
①作可行域(如图) 解:
y=-x
x-y=0 x
②由z=-x-y得y=-x-z,因此平行移动 直线y=-x,若直线截距-z取得最大值, 则z取得最小值;截距-z取得最小值, 则z取得最大值. y=-1 ③因此z在B(-1,-1)处截距-z取 得最小值,z取得最大值即Zmax=2; 在边界AC处取得截距-z最大值, z取得最小值即Zmin=-2-(-1)=-1。
简单的线性规划.(一)doc

简单的线性规划(一)知识点1 线性规划在线性约束条件下,求线性目标函数的最大值或最小值问题,称为线性规划问题。
(1)目标函数:要求再一定条件下求极大值或极小值问题的函数叫做目标函数,目标函数式变量的一次解析式,又叫做线性目标函数。
(2)约束条件:在规划中,变量必须满足的条件叫做约束条件,关于变量时一次不等式(等式)表示的条件叫线性约束条件。
(3)可行解:在线性规划中,满足线性约束条件的解叫做可行解;(4)可行域:在线性规划中,有所有的线性可行解组成的的集合叫可行域;(5)最优解:可行解中使目标函数取得最大值或最小值得解叫做最优解。
【例题1】⎪⎪⎩⎪⎪⎨⎧≥≥≥+≥++=001710732,53y x y x y x y x y x z 满足约束条件的最小值,使求【变式2】的最大值和最小值。
求满足条件式中变量设z x y x y x y x y x z ,1255334,,2⎪⎩⎪⎨⎧≥≤+-≥-+=知识点2 解答线性规划问题的两个误区解答线性规划问题容易有以下两个类型的错误:(1)平移直线时失误;(2)扩大可行域。
由于作图的误差使我们很难确定哪个点最先和目标函数相交,所以需要检验,常用的以下方法检验:(1)顶点检验法:(2)斜率检验法:【例题3】的最大值。
求已知y x z y x y x y x y x +=⎪⎪⎩⎪⎪⎨⎧≥≥≤+≤+≤+,0,04276355744411【变式3】⎪⎪⎩⎪⎪⎨⎧≤+≤+≥≥+=.6325400,98y x y x y x y x y x z 满足约束条件的最大值,式中求【例题4】的取值范围。
求且设)2(,4)1(2,2)1(1,)(22-≤≤≤-≤-+=f f f b ax f x x【变式4】的取值范围。
,求,满足已知函数)3(5)2(11)1(4)(2f f f c a x f x ≤≤--≤≤--=。
简单的线性规划

简单的线性规划简单的线性规划一.创设情境,提出问题用一组图片点燃学生的求知欲,以景激情,以情激思,引领学生进入学习情境.然后设置了一个具体的问题情境,既2006世界杯冠军意大利足球队营养师布拉加经常遇到的这样一类营养调配问题.例1.甲、乙、丙三种食物的维生素A、B的含量及成本如下表:甲乙丙维生素A(单位/克)400600400维生素B(单位/克)800200400成本(元/千克)765营养师想购这三种食物共10千克,使之所含维生素A不少于4400单位,维生素B不少于4800单位,问三种食物各购多少时成本最低,最低成本是多少?同学们,你能为布拉加解决这个棘手的问题吗?如何将此实际问题转化为数学问题呢?请学生完成这一过程如下:解:设所购甲、乙两种食物分别为千克,则丙食物为千克.又设成本为元.由题意可知应满足条件:即①.问题转化为:当满足①求成本的最小值问题.二.分析问题,形成概念那么如何解决这个求最值的问题呢?这是本次课的难点.让学生先自主探究,在分组讨论交流,在学生遇到困难时,运用化归和数形结合的思想引导学生转化问题,突破难点:1.学生基于上一课时的学习,讨论后一般都能意识到要将不等式组①表示成平面区域(教师动画演示画不等式组①表示的平面区域)于是问题转化为当点(x,y)在此平面区域运动时,如何求z=2x+y+50的最小值.(第一次转化)2.引导学生:由于已将x,y所满足的条件几何化了,你能否也给式子z=2x+y+50作某种几何解释呢?学生很自然地想到要将等式z=2x+y+50视为x,y的一次方程,它在几何上表示直线,当z取不同的值时可得到一族平行直线,于是问题又转化为当这族直线与不等式组①所表示的平面区域有公共点时,求z的最小值.(第二次转化)3.继续引导学生:如何更好地把握直线y+2x+50=z的几何特征呢?学生讨论交流后得出要将其改写成斜截式y=-2x+z-50,至此,学生明白原来z-50就是直线在y轴上的截距,当截距z-50最小时z也最小,于是问题又转化为当直线y=-2x+z-50与平面区域有公共点时,在区域内找一个点P,使直线经过P时在y轴上的截距最小.(第三次转化)(让学生动手实践,用作图法找到点P(3,2),求出z的最小值为58,即最低成本为58元)就此给出相关概念:不等式组①是一组对变量x、y的约束条件,这组约束条件都是关于x、y的一次不等式,所以又称为线性约束条件.z=2x+y+50是欲达到最大值或最小值所涉及的变量x、y 的解析式,叫做目标函数.由于z=2x+y+50又是x、y的一次解析式,所以又叫做线性目标函数.一般的,求线性目标函数在线性约束条件下的最大值或最小值的问题,统称为线性规划问题.满足线性约束条件的解(x,y)叫做可行解,由所有可行解组成的集合叫做可行域.其中使目标函数取得最大值或最小值的可行解它们都叫做这个问题的最优解.(再回到图形当中去指出上面给出的概念的位置)三.反思过程,提炼方法引导学生归纳、提炼求解步骤:(1)画可行域---画出线性约束条件所确定的平面区域;(2)过原点作目标函数直线的平行直线;(3)平移直线,观察确定可行域内最优解的位置;(4)求最值---解有关方程组求出最优解,将最优解代入目标函数求最值.简记为画作移求四步.四.变式演练,深入探究为了让学生更好地理解图解法求线性规划问题的内在规律,例题2.设,变量满足,求的最大值和最小值.变量满足变式1:设z=ax+y,若目标函数z仅在点(5,2)处取到最大值,求a的取值范围.变式2:设z=ax+y,若使目标函数z取得最大值的最优解有无数个,求a的值.(以上例题2和两个变式均让学生完成,然后根据学生完成情况加以点评.)五.运用新知,解决问题“学数学而不练,犹如入宝山而空返”练习1:教材P64练习第1题练习2:设,式中变量满足下列条件,求的最大值和最小值.(学生独立完成巩固性练习,老师投影有代表性的学生解答过程,给予积极性的评价,并强调注意点)六.归纳总结,巩固提高(一)归纳总结1.这节课学习了哪些知识?2.图解法求解线性规划应用问题的基本步骤:(1)建立数学模型(设变量,建立线性约束条件及线性目标函数);(2)图形工具(作出可行域及作目标函数过原点的直线);(3)平移求解(确定的平移方向,依据可行域找出取得最优解的点);(4)确定最值(解相关方程组,求出最优解,代入目标函数求最值).(学生回答)(二)巩固提高课后作业:1.课本P65习题7.4第2题2.思考题:设,式中变量、满足下列条件且变量、为整数,求的最大值和最小。
简单的线性规划

诚西郊市崇武区沿街学校简单的线性规划〔1〕一.课题:二.教学目的:1.理解二元一次不等式表示平面区域,会用(0,0),(1,0)或者者(0,1)检验不等式0Ax By c ++>〔0<〕表示的平面区域;2.会画出二元一次不等式〔组〕表示的平面区域.三.教学重、难点:怎样用二元一次不等式〔组〕表示平面区域;怎样确定不等式0Ax By c ++>〔0<〕表示直线0Ax By c ++=的哪一侧区域. 四.教学过程:〔一〕引入:点集{(,)|10}x y x y +-=是以二元一次方程10x y +-=的解为坐标的集合,它是一条直线,经过(1,0)和(0,1),那么点集{(,)|10}x y x y +->在平面直角坐标系中表示什么图形呢? 〔二〕新课讲解:1.尝试、猜想、证明在平面直角坐标系中,所有的点被直线10x y +-=分成三类: 一类是在直线10x y +-=上; 二类是在直线10x y +-=的右上方的平面区域内; 三类是在直线10x y +-=的左下方的平面区域内.对于任意一个点(,)x y ,把它的坐标代入1x y +-,可得到一个实数,或者者等于0,或者者大于0,或者者小于0,此时,可引导学生尝试在什么情况下,点(,)x y 在直线上、在直线右上方、在直线左下方?猜想结论:对直线10x y +-=右上方的点(,)x y ,10x y +->;对直线10x y +-=左下方的点(,)x y ,10x y +-<.证明结论:如图,在直线10x y +-=上任取一点00(,)P x y , 过P 作平行于x 轴的直线0y y =,在此直线上点P 右侧的任 意一点(,)x y ,都有0xx >,0y y =, 所以,00x y x y +>+,00110x y x y +->+-=,因为点00(,)P x y 为直线10x y +-=上任意一点, 所以,对于直线10x y +-=右上方任意点(,)x y ,都有10x y +->, 同理对于直线10x y +-=左下方任意点(,)x y ,都有10x y +-<, 所以,结论得证.2.得出结论一般地,二元一次不等式0Ax By C ++>在平面直角坐标系中表示0Ax By C ++=某一侧所有点组成的平面区域。
(教参):第三章4.2简单线性规划Word版含解析

4.2简单线性规划必备知识·自主学习导思1.什么是二元线性规划问题?2.如何确定二元线性规划问题的最值?1.基本概念名称意义约束条件变量x,y满足的二元一次不等式组目标函数欲求关于x,y的一个线性函数的最大值或最小值的函数可行解满足约束条件的解(x,y)可行域所有可行解组成的集合最优解使目标函数取得最大值或最小值的可行解二元线性规划问题在约束条件下,求关于两个变量的目标函数的最大值或最小值问题二元线性规划问题中约束条件是关于x,y的几次不等式或方程的限制条件?提示:二元线性规划问题中约束条件是关于x,y的一次不等式或方程的限制条件.2.最值问题(1)最值位置:目标函数的最大值与最小值总是在可行域的边界交点或顶点处取得.(2)实际应用:求解实际应用问题时,只需要求出区域边界的交点,再比较目标函数在交点处的函数值大小,根据问题需求选择所需结论.目标函数z=2x-y,将其看成直线方程时,z的意义是什么?提示:z=2x-y可变形为y=2x-z,所以z的几何意义是该直线在y轴上截距的相反数.1.思维辨析(对的打“√”,错的打“×”)(1)线性目标函数z=ax+by表示经过可行域的一组平行线. ( )(2)求线性目标函数z=ax+by取得最值的最优解都是唯一的. ( )(3)线性目标函数取得最值的点一定在可行域的顶点上. ( )提示:(1)√.因为线性目标函数z=ax+by即y=-x+,斜率k=-为常数,截距是变量,所以二元一次方程z=ax+by表示经过可行域的一组平行线.(2)×.如果线性目标函数z=ax+by表示的直线与可行域的某一条边界直线平行,则线性目标函数z=ax+by取得最值的最优解不是唯一的.(3)×.线性目标函数取得最值的点可能在可行域的边界上,不一定非在顶点上.2.若x≥0,y≥0,且x+y≤1,则z=x-y的最大值为( )A.-1B.1C.2D.-2【解析】选B.直线x+y=1与坐标轴的交点坐标为A(1,0),B(0,1).则z=x-y即y=x-z,表示经过可行域的平行线组,-z是直线在y轴上的截距,当直线z=x-y经过点A(1,0)时,-z最小,z最大,最大值为z=x-y=1. 3.(教材二次开发:例题改编)已知实数x,y满足约束条件,则z=2x+y的最大值为( )A.-1B.2C.7D.8【解析】选C.画出实数x,y满足约束条件,表示的平面区域如图:目标函数变形为-2x+z=y,则z表示直线在y轴上截距,截距越大,z越大,作出目标函数对应的直线L:y=-2x,由可得A(2,3).目标函数z=2x+y过A(2,3)时,直线的截距最大,z取得最大值为z=7.关键能力·合作学习类型一求线性目标函数的最值(直观想象)1.(2020·三明高一检测)已知实数x,y满足,则z=x+2y的最大值为( )A.2B.C.1D.02.(2020·西安高一检测)已知实数x,y满足,则关于目标函数z=3x-y的描述正确的是 ( )A.无最大值也无最小值B.最小值为-2C.最大值为2D.最大值为33.(2020·南昌高一检测)设x,y满足,则z=x+y的取值范围是( )A.[-5,3]B.[2,3]C.[2,+∞)D.(-∞,3]【解析】1.选B.作出实数x,y满足约束条件,对应的平面区域,由z=x+2y,得y=-x+z,平移直线y=-x+z,由图象可知,当直线y=-x+z经过点A时直线y=-x+z的截距最大,此时z最大. 由,得A,此时z的最大值为z=+2×=.2.选B.作出不等式组对应的平面区域如图,由z=3x-y,得y=3x-z,平移直线y=3x-z,由图象可知当直线y=3x-z,经过点A时,直线y=3x-z 的截距最大,此时z最小.联立,解得A(0,2),故z min=3×0-2=-2.无最大值.3.选C.先根据约束条件画出可行域,z=x+y,则y=-x+z,由可得A(2,0),当直线y=-x+z经过点A(2,0)时,z最小,最小值为:2+0=2.没有最大值,故z=x+y的取值范围为[2,+∞).求目标函数z=ax+by最值的思路(1)化:把目标函数z=ax+by化为斜截式y=-x+.(2)定:z=ax+by中表示直线y=-x+在y轴上的截距.(3)找:把线性目标函数看成直线系,把目标函数表示的直线y=-x+平行移动,越向上平移越大,若b>0,则对应z越大,若b<0,则对应z越小. 特别提醒:当目标函数所在的直线与边界平行时最优解有无数个.【补偿训练】设x,y满足约束条件则z=2x+3y-5的最小值为.【解析】作出不等式组表示的平面区域,如图中阴影部分所示,由图知当z=2x+3y-5经过点A(-1,-1)时,z取得最小值,z min=2×(-1)+3×(-1)-5=-10.答案:-10类型二求非线性目标函数的最值(数学抽象、直观想象)角度1 可化为斜率最值的问题【典例】已知实数x,y满足不等式组(1)求不等式组表示的平面区域的面积;(2)试确定的取值范围.【思路导引】(1)依据线性约束条件,作出可行域,然后求出面积. (2)因为是分式形式,所以可联想其几何意义,求斜率的取值范围即可.【解析】(1)由实数x,y满足不等式组作出可行域,可知不等式组表示的平面区域是△ABC及其内部,如图,解方程组得A(1,1),同理,得B(3,3),C(2,6),记a==(2,2),b==(1,5),则S△ABC=|a||b|sin∠BAC=|a||b|=|a||b|===4(面积单位).(2)由(1)可知,1≤x≤3.令=k,则y=k(x+1)表示斜率为k且过点D(-1,0)与可行域有公共点的相交线族,由于k=tan α,α∈是增函数,其中α是相交线族的倾斜角,结合可行域知,k AD=,k CD=2,从而k∈,故∈.(2020·泉州高一检测)已知实数x,y满足约束条件,则的最大值为 ( )A.2B.C.1D.【解析】选D.令z=,由实数x,y满足约束条件,作出可行域如图,联立,解得A,z=的几何意义为可行域内的动点与定点O(0,0)连线的斜率,当过A时,斜率最大,即z==,所以z=的最大值为.角度2 可化为距离最值的问题【典例】已知实数x,y满足则x2+y2的取值范围是.【思路导引】先画出可行域,再依据x2+y2的几何意义,求出最值即可得取值范围.【解析】不等式组所表示的平面区域是以点(0,2),(1,0),(2,3)为顶点的三角形及其内部,如图所示.因为原点到直线2x+y-2=0的距离为,所以(x2+y2)min=,又当(x,y)取点(2,3)时,x2+y2取得最大值13,故x2+y2的取值范围是.答案:[,13]线性规划求目标函数的常见类型(1)整式是截距:形如ax+by型的线性目标函数,设为z=ax+by,表示平行线族,通过平行线扫描可行域,求线性目标函数的最值或取值范围.(2)分式是斜率:形如(ac≠0)型的非线性目标函数,设为k==·(ac≠0),将问题转化为过定点P以及可行域内的动点Q(x,y)的相交线族的斜率,通过相交线扫描可行域,求斜率的最值或取值范围.(3)根式是距离:形如型的非线性目标函数,将问题转化为d=,几何意义为连接定点A(a,b)与可行域内的动点Q(x,y)的距离,再求距离的最值或取值范围.(4)平方和是距离的平方:形如x2+y2-2ax-2by+a2+b2型的非线性目标函数,将问题转化为d2=()2,几何意义为连接定点A(a,b)与可行域内的动点Q(x,y)的距离的平方,求两点间的距离的最值或取值范围,再求平方即可.1.(2020·成都高一检测)设x,y满足约束条件则的最大值是( )A.-B.C.D.【解析】选C.设z=,画出满足条件的平面区域,如图,由z=的几何意义是可行域内的点与D(-2,0)连线的斜率,由图形可知AD的斜率取得最大值,代入A(3,4),即可得到z最大值,所以z的最大值是.2.(2020·邯郸高一检测)设变量x,y满足约束条件则z=(x-3)2+y2的最小值为( )A.2B.C.4D.【解析】选D.画出变量x,y满足约束条件的可行域,可发现z=(x-3)2+y2的最小值是(3,0)到2x-y-2=0距离的平方.取得最小值:=.3.实系数一元二次方程x2+ax+2b=0有两个根,一个根在区间(0,1)内,另一个根在区间(1,2)内,求:(1)点(a,b)对应的区域的面积;(2)的取值范围;(3)(a-1)2+(b-2)2的值域.【解析】方程x2+ax+2b=0的两根在区间(0,1)和(1,2)上的几何意义分别是:函数y=f(x)=x2+ax+2b与x轴的两个交点的横坐标分别在区间(0,1)和(1,2)内,由此可得不等式组⇔由解得A(-3,1); 由解得B(-2,0);由解得C(-1,0).所以在如图所示的坐标平面aOb内,满足约束条件的点(a,b)对应的平面区域为△ABC(不包括边界).(1)△ABC的面积为S△ABC=×|BC|×h=(h为A到Oa轴的距离).(2)的几何意义是点(a,b)和点D(1,2)连线的斜率.k AD==,k CD==1.由图可知,k AD<<k CD.所以<<1,即∈.(3)因为(a-1)2+(b-2)2表示区域内的点(a,b)与定点(1,2)之间距离的平方,所以(a-1)2+(b-2)2∈(8,17).类型三已知目标函数的最值求参数的取值范围(逻辑推理、数学运算)【典例】已知a>0,x,y满足约束条件若z=2x+y的最小值为1,则a等于( )A. B. C.1 D.2【思路导引】先由前2个条件确定部分区域,再由z=2x+y的最小值为1,即可确定一个平面区域,再结合y≥a(x-3)的几何意义即可求出a的值.【解析】选B.作出不等式组表示的可行域,如图阴影部分(含边界)所示.易知直线z=2x+y过交点B时,z取最小值,由得因为z min=2-2a=1,解得a=.由目标函数的最值求参数的解题思路已知目标函数的最值,求线性约束条件的参数问题,可以先画出线性约束条件中的已知部分,由于最值一般在可行域的顶点或边界处取得,常常利用数形结合的方法求解.设不等式组表示的平面区域为D,若指数函数y=a x的图像上存在区域D上的点,则a的取值范围是 ( )A.(1,3]B.[2,3]C.(1,2]D.[3,+∞)【解析】选A.由线性约束条件画出平面区域D,图中阴影部分,观察图形可知当指数函数y=a x为增函数时,可能过区域D,又当底数越大,在第一象限它的图像越靠近y轴,所以当y=a x过x+y-11=0与3x-y+3=0的交点A(2,9)时,底数最大.即9=a2,所以a=3,因此1<a≤3.课堂检测·素养达标1.(2019·浙江高考)若实数x,y满足约束条件则z=3x+2y的最大值是( )A.-1B.1C.10D.12【解析】选C.由线性约束条件可得可行域为图中阴影部分所示:由解得所以A(2,2),所以z max=3×2+2×2=10.2.(2020·德阳高一检测)已知实数x,y满足,则关于目标函数z=3x-y的描述正确的是( )A.最小值为-2B.最大值为3C.最大值为2D.无最大值也无最小值【解析】选A.由实数x,y满足,作出可行域,如图.目标函数z=3x-y可以化为y=3x-z.则z表示直线y=3x-z在y轴上的截距的相反数.由图可知,当直线y=3x-z过点B时,直线y=3x-z在y轴上的截距最大,无最小值.所以z有最小值-2,无最大值.3.(教材二次开发:习题改编)(2019·天津高考)设变量x,y满足约束条件则目标函数z=-4x+y的最大值为( )A.2B.3C.5D.6【解析】选C.已知不等式组表示的平面区域如图中的阴影部分.目标函数的几何意义是直线y=4x+z在y轴上的截距,故目标函数在点A处取得最大值.由得A(-1,1),所以z max=-4×(-1)+1=5.4.(2020·洛阳高一检测)若x,y满足约束条件则z=的最大值为 ( )A. B. C. D.3【解析】选C.由题意知,目标函数z=表示经过点A和可行域内的点(x,y)的直线的斜率,作出不等式组表示的可行域如图所示,根据目标函数z的几何意义,由图可知,当直线过A,C两点时,目标函数z=有最大值,联立方程解得所以点C,代入目标函数可得,z=的最大值为.5.若变量x,y满足则x2+y2的最大值是. 【解析】作出不等式组表示的平面区域,x2+y2表示平面区域内点到原点距离的平方,由得A(3,-1),易得(x2+y2)max=|OA|2=32+(-1)2=10.答案:10。
332简单的线性规划

线性规划问题
定义 由变量x,y组成的不等式组 由变量x,y组成的一次不等式组
关于x,y的函数解析式 关于x,y的一次函数解析式 满足线性约束条件的解(x,y)
所有可行解组成的集合
使目标函数取得最大值或最小值的可行解 在线性约束条件下求线性目标函数的最大值或最小值 问题统称线性规划问题
探究点2 简单线性规划问题的图解方法
例 1.设 x, y 满足约束条件 x 3, y 4, 4x 3y 12, 4x 3y 36.
求目标函数 z 2x 3y 的最小值与最大值.
【解析】作出可行域(如图阴影部 y
分).
4
l :2x 3y 0
A
2
o
y 4 B
4x 3y 12
经过直线x 4与x 2 y 8
的交点M(4, 2)时,截距的值最大,最大值为 8.
即 z的最大值为 z 34 2 2 16.
所以,每天生产甲产品4件,乙产品2件时,工 厂获得最大利润16万元.
【规律总结】
在确定约束条件和线性目标函数的前提下,用 图解法求最优解的步骤为:
(1)在平面直角坐标系内画出可行域;
解方程组
4x 3y 12, 4x 3y 36.
可以求得顶点 D 的坐标为 3,8 .
y D4 x 3 y 12
4
l :2x 3y 0
A
2
o
y 4 B
x
C
4x 3y 36
x 3
此时,顶点B 3, 4 和顶点 D 3,8 为最优解.
所以
zmin 2 (3) 3 (4) 18, zmax 2 3 3 8 30.
则m-n=3-(-3)=6,
故选B.
简单的线性规划

7.4 简单的线性规划●知识梳理1.二元一次不等式表示平面区域在平面直角坐标系中,已知直线Ax +By +C =0,坐标平面内的点P (x 0,y 0).B >0时,①Ax 0+By 0+C >0,则点P (x 0,y 0)在直线的上方;②Ax 0+By 0+C <0,则点P (x 0,y 0)在直线的下方.对于任意的二元一次不等式Ax +By +C >0(或<0),无论B 为正值还是负值,我们都可以把y 项的系数变形为正数.当B >0时,①Ax +By +C >0表示直线Ax +By +C =0上方的区域;②Ax +By +C <0表示直线Ax +By +C =0下方的区域. 2.线性规划求线性目标函数在线性约束条件下的最大值或最小值的问题,统称为线性规划问题. 满足线性约束条件的解(x ,y )叫做可行解,由所有可行解组成的集合叫做可行域(类似函数的定义域);使目标函数取得最大值或最小值的可行解叫做最优解.生产实际中有许多问题都可以归结为线性规划问题.线性规划问题一般用图解法,其步骤如下:(1)根据题意,设出变量x 、y ; (2)找出线性约束条件;(3)确定线性目标函数z =f (x ,y );(4)画出可行域(即各约束条件所示区域的公共区域);(5)利用线性目标函数作平行直线系f (x ,y )=t (t 为参数);(6)观察图形,找到直线f (x ,y )=t 在可行域上使t 取得欲求最值的位置,以确定最优解,给出答案.●点击双基1.下列命题中正确的是A.点(0,0)在区域x +y ≥0内B.点(0,0)在区域x +y +1<0内C.点(1,0)在区域y >2x 内D.点(0,1)在区域x -y +1>0内 解析:将(0,0)代入x +y ≥0,成立. 答案:A2.(2005年海淀区期末练习题)设动点坐标(x ,y )满足 (x -y +1)(x +y -4)≥0,x ≥3, A.5 B.10 C.217 D.10解析:数形结合可知当x =3,y =1时,x 2+y 2的最小值为10. 答案:D2x -y +1≥0,x -2y -1≤0, x +y ≤1则x 2+y 2的最小值为3.不等式组 表示的平面区域为A.正三角形及其内部B.等腰三角形及其内部C.在第一象限内的一个无界区域D.不包含第一象限内的点的一个有界区域解析:将(0,0)代入不等式组适合C ,不对;将(21,21)代入不等式组适合D ,不对;又知2x -y +1=0与x -2y -1=0关于y =x 对称且所夹顶角α满足t an α=|2121||212|⋅+-=43.∴α≠3π.答案:B4.点(-2,t )在直线2x -3y +6=0的上方,则t 的取值范围是________________. 解析:(-2,t )在2x -3y +6=0的上方,则2×(-2)-3t +6<0,解得t >32.答案:t >325.不等式组⎪⎩⎪⎨⎧<+>>1234,0,0y x y x 表示的平面区域内的整点(横坐标和纵坐标都是整数的点)共有____________个.解析:(1,1),(1,2),(2,1),共3个.答案:3 ●典例剖析【例1】 求不等式|x -1|+|y -1|≤2表示的平面区域的面积. 剖析:依据条件画出所表达的区域,再根据区域的特点求其面积. 解:|x -1|+|y -1|≤2可化为x ≥1, x ≥1, x ≤1, x ≤1, y ≥1, y ≤1, y ≥1, y ≤1, x +y ≤4 x -y ≤2 y -x ≤2 x +y ≥0. 其平面区域如图.∴面积S =21×4×4=8.评述:画平面区域时作图要尽量准确,要注意边界.或 或 或深化拓展若再求:①12-+x y ;②22)2()1(++-y x 的值域,你会做吗?答案: ①(-∞,-23]∪[23,+∞);②[1,5].【例2】 某人上午7时,乘摩托艇以匀速v n mi l e/h (4≤v ≤20)从A 港出发到距50 nmi l e 的B 港去,然后乘汽车以匀速w km/h (30≤w ≤100)自B 港向距300 km 的C 市驶去.应该在同一天下午4至9点到达C 市.设乘汽车、摩托艇去所需要的时间分别是x h 、y h.(1)作图表示满足上述条件的x 、y 范围; (2)如果已知所需的经费p =100+3×(5-x )+2×(8-y )(元),那么v 、w 分别是多少时走得最经济?此时需花费多少元?剖析:由p =100+3×(5-x )+2×(8-y )可知影响花费的是3x +2y 的取值范围. 解:(1)依题意得v =y50,w =x300,4≤v ≤20,30≤w ≤100.∴3≤x ≤10,25≤y ≤225. ①由于乘汽车、摩托艇所需的时间和x +y 应在9至14个小时之间,即9≤x +y ≤14.② 因此,满足①②的点(x ,y )的存在范围是图中阴影部分(包括边界).xy O1492.53910142+3=38y x (2)∵p =100+3·(5-x )+2·(8-y ),∴3x +2y =131-p .设131-p =k ,那么当k 最大时,p 最小.在通过图中的阴影部分区域(包括边界)且斜率为-23的直线3x +2y =k 中,使k 值最大的直线必通过点(10,4),即当x =10,y =4时,p 最小. 此时,v =12.5,w =30,p 的最小值为93元.评述:线性规划问题首先要根据实际问题列出表达约束条件的不等式.然后分析要求量的几何意义.【例3】 某矿山车队有4辆载重量为10 t 的甲型卡车和7辆载重量为6 t 的乙型卡车,有9名驾驶员.此车队每天至少要运360 t 矿石至冶炼厂.已知甲型卡车每辆每天可往返6次,乙型卡车每辆每天可往返8次.甲型卡车每辆每天的成本费为252元,乙型卡车每辆每天的成本费为160元.问每天派出甲型车与乙型车各多少辆,车队所花成本费最低?剖析:弄清题意,明确与运输成本有关的变量的各型车的辆数,找出它们的约束条件,列出目标函数,用图解法求其整数最优解.解:设每天派出甲型车x 辆、乙型车y 辆,车队所花成本费为z 元,那么 x +y ≤9,10×6x +6×8x ≥360, 0≤x ≤4, 0≤y ≤7.z=252x+160y,其中x、y∈N.作出不等式组所表示的平面区域,即可行域,如图.作出直线l0:252x+160y=0,把直线l向右上方平移,使其经过可行域上的整点,且使在y轴上的截距最小.观察图形,可见当直线252x+160y=t经过点(2,5)时,满足上述要求.此时,z=252x+160y取得最小值,即x=2,y=5时,z min=252×2+160×5=1304.答:每天派出甲型车2辆,乙型车5辆,车队所用成本费最低.评述:用图解法解线性规划题时,求整数最优解是个难点,对作图精度要求较高,平行直线系f(x,y)=t的斜率要画准,可行域内的整点要找准,最好使用“网点法”先作出可行域中的各整点.●闯关训练夯实基础1.(x-1)2+(y-1)2=1是|x-1|+|y-1|≤1的__________条件.A.充分而不必要B.必要而不充分C.充分且必要D.既不充分也不必要解析:数形结合.答案:B2.(x+2y+1)(x-y+4)≤0表示的平面区域为A BC D解析:可转化为x+2y+1≥0,x+2y+1≤0,或x-y+4≤0 x-y+4≥0.答案:B3.(2004年全国卷Ⅱ,14)设x、y满足约束条件x≥0,x≥y,2x-y≤1,则z=3x+2y的最大值是____________.解析:如图,当x =y =1时,z max =5.答案:5x -4y +3≤0, 3x +5y -25≤0, x ≥1,_________.解析:作出可行域,如图.当把z 看作常数时,它表示直线y =zx 的斜率,因此,当直线y =zx 过点A 时,z 最大;当直线y =zx 过点B 时,z 最小.x =1, 3x +5y -25=0,得A (1,522).x -4y +3=0, 3x +5y -25=0,∴z max =1522=522,z min =52.答案:525225.画出以A (3,-1)、B (-1,1)、C (1,3)为顶点的△ABC 的区域(包括各边),写出该区域所表示的二元一次不等式组,并求以该区域为可行域的目标函数z =3x -2y 的最大值和最小值.分析:本例含三个问题:①画指定区域;②写所画区域的代数表达式——不等式组; ③求以所写不等式组为约束条件的给定目标函数的最值.解:如图,连结点A 、B 、C ,则直线AB 、BC 、CA 所围成的区域为所求△ABC 区域.直线AB 的方程为x +2y -1=0,BC 及CA 的直线方程分别为x -y +2=0,2x +y -5=0.在△ABC 内取一点P (1,1),分别代入x +2y -1,x -y +2,2x +y -5得x +2y -1>0,x -y +2>0,2x +y -5<0.由 得B (5,2).4.变量x 、y 满足条件设z =xy ,则z 的最小值为_______,最大值为由因此所求区域的不等式组为x +2y -1≥0, x -y +2≥0, 2x +y -5≤0.作平行于直线3x -2y =0的直线系3x -2y =t (t 为参数),即平移直线y =23x ,观察图形可知:当直线y =23x -21t 过A (3,-1)时,纵截距-21t 最小.此时t 最大,t max =3×3-2× (-1)=11;当直线y =23x -21t 经过点B (-1,1)时,纵截距-21t 最大,此时t 有最小值为t min =3×(-1)-2×1=-5.因此,函数z =3x -2y 在约束条件 x +2y -1≥0,x -y +2≥0, 2x +y -5≤06.某校伙食长期以面粉和大米为主食,面食每100 g 含蛋白质6个单位,含淀粉4个单位,售价0.5元,米食每100 g 含蛋白质3个单位,含淀粉7个单位,售价0.4元,学校要求给学生配制盒饭,每盒盒饭至少有8个单位的蛋白质和10个单位的淀粉,问应如何配制盒饭,才既科学又费用最少?解:设每盒盒饭需要面食x (百克),米食y (百克),4所需费用为S =0.5x +0.4y ,且x 、y 满足 6x +3y ≥8, 4x +7y ≥10, x ≥0, y ≥0,由图可知,直线y =-45x +25S 过A (1513,1514)时,纵截距25S 最小,即S 最小.故每盒盒饭为面食1513百克,米食1514百克时既科学又费用最少.培养能力7.配制A 、B 两种药剂,需要甲、乙两种原料,已知配一剂A 种药需甲料3 mg ,乙料5 mg ;配一剂B 种药需甲料5 mg ,乙料4 mg.今有甲料20 mg ,乙料25 mg ,若A 、B 两种药至少各配一剂,问共有多少种配制方法?解:设A 、B 两种药分别配x 、y 剂(x 、y ∈N ),则 x ≥1, y ≥1,3x +5y ≤20, 5x +4y ≤25.下的最大值为11,最小值为-5.上述不等式组的解集是以直线x =1,y =1,3x +5y =20及5x +4y =25为边界所围成的区域,这个区域内的整点为(1,1)、(1,2)、(1,3)、(2,1)、(2,2)、(3,1)、(3,2)、(4,1).所以,在至少各配一剂的情况下,共有8种不同的配制方法.8.某公司计划在今年内同时出售变频空调机和智能洗衣机,由于这两种产品的市场需求量非常大,有多少就能销售多少,因此该公司要根据实际情况(如资金、劳动力)确定产品的月供应量,以使得总利润达到最大.已知对这两种产品有直接限制的因素是资金和劳动力,通过调查,得到关于这两种产品的有关数据如下表:解:设空调机、洗衣机的月供应量分别是x 、y 台,总利润是P ,则P =6x +8y ,由题意有30x +20y ≤300, 5x +10y ≤110, x ≥0, y ≥0,x 、y 均为整数. 由图知直线y =-43x +81P 过M (4,9)时,纵截距最大.这时P 也取最大值P max =6×4+8×9=96(百元).故当月供应量为空调机4台,洗衣机9台时,可获得最大利润9600元. 探究创新9.实系数方程f (x )=x 2+ax +2b =0的一个根在(0,1)内,另一个根在(1,2)内,求: (1)12--a b 的值域;(2)(a -1)2+(b -2)2的值域; (3)a +b -3的值域.f (0)>0f (1)<0 f (2)>0b >0, a +b +1<0, a +b +2>0.如图所示. A (-3,1)、B (-2,0)、C (-1,0).解:由题意知 ⇒又由所要求的量的几何意义知,值域分别为(1)(41,1);(2)(8,17);(3)(-5,-4).●思悟小结简单的线性规划在实际生产生活中应用非常广泛,主要解决的问题是:在资源的限制下,如何使用资源来完成最多的生产任务;或是给定一项任务,如何合理安排和规划,能以最少的资源来完成.如常见的任务安排问题、配料问题、下料问题、布局问题、库存问题,通常解法是将实际问题转化为数学模型,归结为线性规划,使用图解法解决.图解法解决线性规划问题时,根据约束条件画出可行域是关键的一步.一般地,可行域可以是封闭的多边形,也可以是一侧开放的非封闭平面区域.第二是画好线性目标函数对应的平行直线系,特别是其斜率与可行域边界直线斜率的大小关系要判断准确.通常最优解在可行域的顶点(即边界线的交点)处取得,但最优整数解不一定是顶点坐标的近似值.它应是目标函数所对应的直线平移进入可行域最先或最后经过的那一整点的坐标.●教师下载中心 教学点睛线性规划是新增添的教学内容,应予以足够重视.线性规划问题中的可行域,实际上是二元一次不等式(组)表示的平面区域,是解决线性规划问题的基础,因为在直线Ax +By +C =0同一侧的所有点(x ,y )实数Ax +By +C 的符号相同,所以只需在此直线的某一侧任取一点(x 0,y 0)〔若原点不在直线上,则取原点(0,0)最简便〕,把它的坐标代入Ax +By +C =0,由其值的符号即可判断二元一次不等式Ax +By +C >0(或<0)表示直线的哪一侧.这是教材介绍的方法.在求线性目标函数z =ax +by 的最大值或最小值时,设ax +by =t ,则此直线往右(或左)平移时,t 值随之增大(或减小),要会在可行域中确定最优解. 解线性规划应用题步骤:(1)设出决策变量,找出线性约束条件和线性目标函数; (2)利用图象在线性约束条件下找出决策变量,使线性目标函数达到最大(或最小).拓展题例【例1】 已知f (x )=px 2-q 且-4≤f (1)≤-1,-1≤f (2)≤5,求f (3)的范围.解:∵-4≤f (1)≤-1,-1≤f (2)≤5, p -q ≤-1,p -q ≥-4, 4p -q ≤5,4p -q ≥-1. 求z =9p -q 的最值.∴p =0, q =1,z min =-1, p =3,q =7, ∴-1≤f (3)≤20.【例2】 某汽车公司有两家装配厂,生产甲、乙两种不同型号的汽车,若A 厂每小时可完成1辆甲型车和2辆乙型车;B 厂每小时可完成3辆甲型车和1辆乙型车.今欲制造40辆甲型车和20辆乙型车,问这两家工厂各工作几小时,才能使所费的总工作时数最少?解:设A 厂工作x h ,B 厂工作y h ,总工作时数为t h ,则t =x +y ,且x +3y ≥40,2x +y ≥20,x ≥0,y ≥0,可行解区域如图.而符合问题的解为此区域内的格子点(纵、横坐标都是整数的点称为格子点),于是问题变为要在此可行解区域内,找出格子点(x ,y ),使t =x +y 的值为最小.x y +3由图知当直线l :y =-x +t 过Q 点时,纵、横截距t 最小,但由于符合题意的解必须是格子点,我们还必须看Q 点是否是格子点.x +3y =40,2x +y =20,得Q (4,12)为格子点.故A 厂工作4 h ,B 厂工作12 h ,可使所费的总工作时数最少.如图,∵z max =20,解方程组。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
如对你有帮助,请购买下载打赏,谢谢!
7.3简单的线性规划
考点一二元一次不等式(组)表示的平面区域
1.(2013北京,14,5分)已知点A(1,-1),B(3,0),C(2,1).若平面区域D由所有满足
=λ+μ(1≤λ≤2,0≤μ≤1)的点P组成,则D的面积为.
答案 3
2.(2013山东,14,4分)在平面直角坐标系xOy中,M为不等式组所表示的区域上一动点,则|OM|的最小值是.
答案
3.(2013安徽,12,5分)若非负变量x,y满足约束条件则x+y的最大值为.
答案 4
考点二线性规划问题
4.(2013课标全国Ⅱ,3,5分)设x,y满足约束条件则z=2x-3y的最小值是( )
A.-7
B.-6
C.-5
D.-3
答案 B
5.(2013天津,2,5分)设变量x,y满足约束条件则目标函数z=y-2x的最小值为( )
A.-7
B.-4
C.1
D.2
答案 A
6.(2013福建,6,5分)若变量x,y满足约束条件则z=2x+y的最大值和最小值分别为( )
A.4和3
B.4和2
C.3和2
D.2和0
答案 B
7.(2013陕西,7,5分)若点(x,y)位于曲线y=|x|与y=2所围成的封闭区域,则2x-y的最小值是( )
A.-6
B.-2
C.0
D.2
答案 A
8.(2013四川,8,5分)若变量x,y满足约束条件且z=5y-x的最大值为a,最小值为b,则a-b的值是( )
A.48
B.30
C.24
D.16
答案 C
9.(2013湖北,9,5分)某旅行社租用A、B两种型号的客车安排900名客人旅行,A、B两种车辆的载客量分别为36人和60人,租金分别为1 600元/辆和2 400元/辆,旅行社要求租车总数不超过21辆,且B型车不多于A型车7辆.则租金最少为( )
A.31 200元
B.36 000元
C.36 800元
D.38 400元
答案 C
10.(2013课标全国Ⅰ,14,5分)设x,y满足约束条件则z=2x-y的最大值为.
答案 3
11.(2013湖南,13,5分)若变量x,y满足约束条件则x+y的最大值为.
答案 6
12.(2013北京,12,5分)设D为不等式组表示的平面区域.区域D上的点与点(1,0)之间的距离的最小值为.
答案
13.(2013广东,13,5分)已知变量x,y满足约束条件则z=x+y的最大值是.
答案 5
14.(2013浙江,15,4分)设z=kx+y,其中实数x,y满足若z的最大值为12,则实数k= .
答案 2。