最新人教版山东省高二数学上学期期中考试试题及答案-理

合集下载

【学霸满分】提升卷01 一年级人教版上学期数学期中考试卷(含答案)

【学霸满分】提升卷01 一年级人教版上学期数学期中考试卷(含答案)

【学霸满分】提升卷01 一年级人教版上学期数学期中考试考试分数:100分;考试时间:90分钟注意事项:1.答题前,填写好自己的姓名、班级、考号等信息,请写在答题卡规定的位置上。

2.选择题、判断题必须使用2B铅笔填涂答案,非选择、判断题必须使用黑色墨迹签字笔或钢笔答题,请将答案填写在答题卡规定的位置上。

3.所有题目必须在答题卡上作答,在试卷上作答无效。

4.考试结束后将试卷和答题卡一并交回。

5.考试范围:1-3单元一、选择题(每题2分,共12分)1.“5○5=0”,在○里应填的运算符号是()。

A.+B.-C.×2.2+2的计算结果是()。

A.3B.5C.43.小华和小组里的每一个同学都合照一次,一共照了7次,该小组一共有()个同学。

A.6B.7C.84.用物体()可能画出□。

A.B.C.5.冬冬送给大生3张邮票后,两人邮票的张数同样多。

原来冬冬的邮票比大生多几张?()A.2B.3C.66.同学们排队做操,小明前面有4人,后面有5人,这一队共有()人。

A.8B.9C.10二、填空题(每题2分,共20分)7.请你先数一数,再写数。

8.长方体和正方体不易( ),圆柱和球易( )。

9.我们是2和7之间的数字,我们是( )。

10.在回收纸箱时,她们一起将右边( )形状的纸箱拆开,压平,放入左边( )形的可回收垃圾桶中,费了好大一会儿工夫呢。

11.按顺序填数。

12.幼儿园的小朋友用各种立体图形搭了一辆坦克,数一数每种图形有几个?长方体有( )个,正方体有( )个,圆柱有( )个,球有( )个。

13.盒子里有( )个珠子。

14.我会数。

15.括号里最小能填几?3+( )>10-410-6+1<2+( )+216.你能算出这些图形分别代表的是数字几吗?8-△=5,△+○=7,□-○=2,△=( ),○=( ),□=( )。

三、判断题(每题1分,共6分)17.与6相邻的整数是5和7。

( )18.图形是由5个拼成的。

高中高二数学上学期开学试题(含解析)-人教版高二全册数学试题

高中高二数学上学期开学试题(含解析)-人教版高二全册数学试题

2015-2016学年某某省某某市扶沟高中高二(上)开学数学试卷一、选择题:(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合A={x|x>2},B={x|1<x<3},则A∩B=()A.{x|x>2} B.{x|x>1} C.{x|2<x<3} D.{x|1<x<3}2.已知角α的终边经过点(﹣4,3),则cosα=()A.B.C.﹣D.﹣3.某单位有职工750人,其中青年职工350人,中年职工250人,老年职工150人,为了了解该单位职工的健康情况,用分层抽样的方法从中抽取样本.若样本中的中年职工为5人,则样本容量为()A.7 B.15 C.25 D.354.下列函数在(0,+∞)上为减函数的是()A.y=﹣|x﹣1| B.y=e x C.y=ln(x+1)D.y=﹣x(x+2)5.设函数f(x),g(x)的定义域都为R,且f(x)是奇函数,g(x)是偶函数,则下列结论中正确的是()A.f(x)g(x)是偶函数 B.|f(x)|g(x)是奇函数C.f(x)|g(x)|是奇函数D.|f(x)g(x)|是奇函数6.设定义在R上的奇函数f(x)满足f(x)=x2﹣4(x>0),则f(x﹣2)>0的解集为()A.(﹣4,0)∪(2,+∞)B.(0,2)∪(4,+∞)C.(﹣∞,0)∪(4,+∞)D.(﹣4,4)7.将函数f(x)=sin(2x+φ)的图象向左平移个单位,所得到的函数图象关于y轴对称,则φ的一个可能取值为()A.B.C.0 D.8.给出下列关于互不相同的直线m、l、n和平面α、β的四个命题:①若m⊂α,l∩α=A,点A∉m,则l与m不共面;②若m、l是异面直线,l∥α,m∥α,且n⊥l,n⊥m,则n⊥α;③若l∥α,m∥β,α∥β,则l∥m;④若l⊂α,m⊂α,l∩m=A,l∥β,m∥β,则α∥β,其中为真命题的是()A.①③④B.②③④C.①②④D.①②③9.在区间[﹣,]上随机取一个数x,cosx的值介于0到之间的概率为()A.B.C.D.10.已知向量=(4,6),=(3,5),且⊥,∥,则向量等于()A.B.C.D.11.从五件正品,一件次品中随机取出两件,则取出的两件产品中恰好是一件正品,一件次品的概率是()A.1 B.C.D.12.已知f(x)是定义在R上的奇函数,当x≥0时,f(x)=x2﹣3x,则函数g(x)=f(x)﹣x+3的零点的集合为()A.{1,3} B.{﹣3,﹣1,1,3} C.{2﹣,1,3} D.{﹣2﹣,1,3}二、填空题:(本大题共4小题,每小题5分)13.求值cos600°=.14.阅读图所示的程序框图,运行相应地程序,输出的s值等于.15.在△ABC中,AB=2,AC=4.若P为△ABC的外心,则的值为.16.已知单位向量与的夹角为α,且cosα=,向量=3﹣2与=3﹣的夹角为β,则cosβ=.三、解答题:(解答应写出文字说明,证明过程或演算步骤)17.(10分)(2015春•某某期末)已知:tan(α+)=﹣,(<α<π).(1)求tanα的值;(2)求的值.18.(12分)(2014秋•隆化县校级期中)某校从高一年级期末考试的学生中抽出60名学生,其成绩(均为整数)的频率分布直方图如图所示:(1)依据频率分布直方图,估计这次考试的及格率(60分及以上为及格)和平均分;(2)已知在[90,100]段的学生的成绩都不相同,且都在94分以上,现用简单随机抽样方法,从95,96,97,98,99,100这6个数中任取2个数,求这2个数恰好是两个学生的成绩的概率.19.(12分)(2013•淄川区校级模拟)已知直线l过点P(1,1),并与直线l1:x﹣y+3=0和l2:2x+y﹣6=0分别交于点A、B,若线段AB被点P平分.求:(1)直线l的方程;(2)以O为圆心且被l截得的弦长为的圆的方程.20.(12分)(2015秋•某某月考)如图,四边形ABCD为矩形,DA⊥平面ABE,AE=EB=BC=2,BF⊥平面ACE于点F,且点F在CE上.(Ⅰ)求证:AE⊥BE;(Ⅱ)求三棱锥D﹣AEC的体积.21.(12分)(2013•某某一模)函数f(x)=Asin(ωx+φ)(A>0,ω>0,﹣<φ<)(x∈R)的部分图象如图所示.(1)求函数y=f(x)的解析式;(2)当x∈[﹣π,﹣]时,求f(x)的取值X围.22.(12分)(2015春•某某校级期末)已知函数f(x)=2cos2(x﹣)﹣sin2x+1 (Ⅰ)求f(x)的单调递增区间;(Ⅱ)当x∈(,)时,若f(x)≥log2t恒成立,求 t的取值X围.2015-2016学年某某省某某市扶沟高中高二(上)开学数学试卷参考答案与试题解析一、选择题:(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合A={x|x>2},B={x|1<x<3},则A∩B=()A.{x|x>2} B.{x|x>1} C.{x|2<x<3} D.{x|1<x<3}考点:交集及其运算.专题:集合.分析:直接利用交集运算求得答案.解答:解:∵A={x|x>2},B={x|1<x<3},∴A∩B={x|x>2}∩{x|1<x<3}={x|2<x<3}.故选:C.点评:本题考查交集及其运算,是基础的计算题.2.已知角α的终边经过点(﹣4,3),则cosα=()A.B.C.﹣D.﹣考点:任意角的三角函数的定义.专题:三角函数的求值.分析:由条件直接利用任意角的三角函数的定义求得cosα的值.解答:解:∵角α的终边经过点(﹣4,3),∴x=﹣4,y=3,r==5.∴cosα===﹣,故选:D.点评:本题主要考查任意角的三角函数的定义,两点间的距离公式的应用,属于基础题.3.某单位有职工750人,其中青年职工350人,中年职工250人,老年职工150人,为了了解该单位职工的健康情况,用分层抽样的方法从中抽取样本.若样本中的中年职工为5人,则样本容量为()A.7 B.15 C.25 D.35考点:分层抽样方法.专题:概率与统计.分析:利用分层抽样知识求解.解答:解:设样本容量为n,由题意知:,解得n=15.故选:B.点评:本题考查样本容量的求法,是基础题,解题时要注意分层抽样知识的合理运用.4.下列函数在(0,+∞)上为减函数的是()A.y=﹣|x﹣1| B.y=e x C.y=ln(x+1)D.y=﹣x(x+2)考点:函数单调性的判断与证明.专题:函数的性质及应用.分析:根据函数解析式判断各自函数的单调区间,即可判断答案.解答:解:①y=﹣|x﹣1|=∴(0,+∞)不是减函数,故A不正确.②y=e x,在(﹣∞,+∞)上为增函数,故B不正确.③y=ln(x+1)在(﹣1,+∞)上为增函数,故C不正确.④y=﹣x(x+2)在(﹣1,+∞)上为减函数,所以在(0,+∞)上为减函数故D正确.故选:D.点评:本题考查了简单函数的单调性,单调区间的求解,掌握好常见函数的解析式即可,属于容易题.5.设函数f(x),g(x)的定义域都为R,且f(x)是奇函数,g(x)是偶函数,则下列结论中正确的是()A.f(x)g(x)是偶函数 B.|f(x)|g(x)是奇函数C.f(x)|g(x)|是奇函数D.|f(x)g(x)|是奇函数考点:函数奇偶性的判断;函数的定义域及其求法.专题:函数的性质及应用.分析:由题意可得,|f(x)|为偶函数,|g(x)|为偶函数.再根据两个奇函数的积是偶函数、两个偶函数的积还是偶函数、一个奇函数与一个偶函数的积是奇函数,从而得出结论.解答:解:∵f(x)是奇函数,g(x)是偶函数,∴|f(x)|为偶函数,|g(x)|为偶函数.再根据两个奇函数的积是偶函数、两个偶函数的积还是偶函数、一个奇函数与一个偶函数的积是奇函数,可得 f(x)|g(x)|为奇函数,故选:C.点评:本题主要考查函数的奇偶性,注意利用函数的奇偶性规律,属于基础题.6.设定义在R上的奇函数f(x)满足f(x)=x2﹣4(x>0),则f(x﹣2)>0的解集为()A.(﹣4,0)∪(2,+∞)B.(0,2)∪(4,+∞)C.(﹣∞,0)∪(4,+∞)D.(﹣4,4)考点:函数奇偶性的性质.专题:函数的性质及应用.分析:根据已知中定义在R上的奇函数f(x)满足f(x)=x2﹣4(x>0),先求出f(x)>0的解集,进而求出f(x﹣2)>0的解集.解答:解:∵f(x)=x2﹣4(x>0),∴当x>0时,若f(x)>0,则x>2,又由函数f(x)是定义在R上的奇函数,当x<0时,﹣x>0,若f(x)>0,则f(﹣x)<0,则0<﹣x<2,即﹣2<x<0,故f(x)>0的解集为(﹣2,0)∪(2,+∞),故f(x﹣2)>0时,x﹣2∈(﹣2,0)∪(2,+∞),x∈(0,2)∪(4,+∞),即f(x﹣2)>0的解集为(0,2)∪(4,+∞).故选:B.点评:本题主要考查不等式的解法,利用函数的奇偶性求出当x<0时,f(x)>0的解集,是解决本题的关键.7.将函数f(x)=sin(2x+φ)的图象向左平移个单位,所得到的函数图象关于y轴对称,则φ的一个可能取值为()A.B.C.0 D.考点:函数y=Asin(ωx+φ)的图象变换.专题:三角函数的图像与性质.分析:由条件利用y=Asin(ωx+φ)的图象变换规律,余弦函数的图象的对称性,求得φ的一个可能取值.解答:解:将函数f(x)=sin(2x+φ)的图象向左平移个单位,可得到的函数y=sin[2(x+)+φ)]=sin(2x++φ)的图象,再根据所得图象关于y轴对称,可得+φ=kπ+,即φ=kπ+,k∈z,则φ的一个可能取值为,故选:B.点评:本题主要考查y=Asin(ωx+φ)的图象变换规律,正弦函数、余弦函数的图象的对称性,属于基础题.8.给出下列关于互不相同的直线m、l、n和平面α、β的四个命题:①若m⊂α,l∩α=A,点A∉m,则l与m不共面;②若m、l是异面直线,l∥α,m∥α,且n⊥l,n⊥m,则n⊥α;③若l∥α,m∥β,α∥β,则l∥m;④若l⊂α,m⊂α,l∩m=A,l∥β,m∥β,则α∥β,其中为真命题的是()A.①③④B.②③④C.①②④D.①②③考点:命题的真假判断与应用.专题:空间位置关系与距离;简易逻辑.分析:①利用异面直线的定义即可判断出正误;②利用线面垂直的判定定理即可判断出正误;③由已知可得l与m不一定平行,即可判断出正误;④利用面面平行的判定定理可得:α∥β,即可判断出正误.解答:解:①若m⊂α,l∩α=A,点A∉m,则l与m不共面,正确;②若m、l是异面直线,l∥α,m∥α,且n⊥l,n⊥m,利用线面垂直的判定定理即可判断出:n⊥α正确;③若l∥α,α∥β,α∥β,则l与m不一定平行,不正确;④若l⊂α,m⊂α,l∩m=A,l∥β,m∥β,利用面面平行的判定定理可得:α∥β,正确.其中为真命题的是①②④.故选:C.点评:本题考查了线面平行与垂直的判定定理、异面直线的定义,考查了推理能力,属于中档题.9.在区间[﹣,]上随机取一个数x,cosx的值介于0到之间的概率为()A.B.C.D.考点:几何概型.专题:概率与统计.分析:求出所有的基本事件构成的区间长度;通过解三角不等式求出事件“cos x的值介于0到”构成的区间长度,利用几何概型概率公式求出事件的概率.解答:解:所有的基本事件构成的区间长度为∵解得或∴“cos x的值介于0到”包含的基本事件构成的区间长度为由几何概型概率公式得cos x的值介于0到之间的概率为P=故选A.点评:本题考查结合三角函数的图象解三角不等式、考查几何概型的概率公式.易错题.10.已知向量=(4,6),=(3,5),且⊥,∥,则向量等于()A.B.C.D.考点:平面向量的坐标运算.专题:计算题.分析:根据向量平行垂直的坐标公式X1Y2﹣X2Y1=0和X1X2+Y1Y2=0运算即可.解答:解:设C(x,y),∵,,联立解得.故选D.点评:本题考查两个向量的位置关系①平行②垂直,此种题型是高考考查的方向.11.从五件正品,一件次品中随机取出两件,则取出的两件产品中恰好是一件正品,一件次品的概率是()A.1 B.C.D.考点:古典概型及其概率计算公式.专题:计算题.分析:根据已知中五件正品,一件次品,我们易得共有6件产品,由此我们先计算出从中任取出两件产品的事件个数,及满足条件“恰好是一件正品,一件次品”的基本事件个数,然后代入古典概型概率公式,可求出答案.解答:解:由于产品中共有5件正品,一件次品,故共有6件产品从中取出两件产品共有:C62==15种其中恰好是一件正品,一件次品的情况共有:C51=5种故出的两件产品中恰好是一件正品,一件次品的概率P==故选C点评:本题考查的知识点是古典概型及其概率计算公式,计算出满足条件的基本事件总数及其满足条件的基本事件个数是解答此类题型的关键.12.已知f(x)是定义在R上的奇函数,当x≥0时,f(x)=x2﹣3x,则函数g(x)=f(x)﹣x+3的零点的集合为()A.{1,3} B.{﹣3,﹣1,1,3} C.{2﹣,1,3} D.{﹣2﹣,1,3}考点:函数奇偶性的性质.专题:函数的性质及应用.分析:首先根据f(x)是定义在R上的奇函数,求出函数在R上的解析式,再求出g(x)的解析式,根据函数零点就是方程的解,问题得以解决.解答:解:∵f(x)是定义在R上的奇函数,当x≥0时,f(x)=x2﹣3x,令x<0,则﹣x>0,∴f(﹣x)=x2+3x=﹣f(x)∴f(x)=﹣x2﹣3x,∴∵g(x)=f(x)﹣x+3∴g(x)=令g(x)=0,当x≥0时,x2﹣4x+3=0,解得x=1,或x=3,当x<0时,﹣x2﹣4x+3=0,解得x=﹣2﹣,∴函数g(x)=f(x)﹣x+3的零点的集合为{﹣2﹣,1,3}故选:D.点评:本题考查函数的奇偶性及其应用,考查函数的零点,函数方程思想.二、填空题:(本大题共4小题,每小题5分)13.求值cos600°=﹣.考点:诱导公式的作用.专题:计算题.分析:由诱导公式知cos600°=cos240°,进一步简化为﹣cos60°,由此能求出结果.解答:解:cos600°=cos240°=﹣cos60°=﹣.故答案为:﹣.点评:本题考查诱导公式的性质和应用,是基础题.解题时要认真审题,仔细解答,注意合理地进行等价转化.14.阅读图所示的程序框图,运行相应地程序,输出的s值等于﹣3 .考点:循环结构.专题:计算题.分析:直接利用循环框图,计算循环的结果,当k=4时,退出循环,输出结果.解答:解:由题意可知第1次判断后,s=1,k=2,第2次判断循环,s=0,k=3,第3次判断循环,s=﹣3,k=4,不满足判断框的条件,退出循环,输出S.故答案为:﹣3.点评:本题考查循环结构的作用,注意判断框的条件以及循环后的结果,考查计算能力.15.在△ABC中,AB=2,AC=4.若P为△ABC的外心,则的值为 6 .考点:平面向量数量积的运算.专题:平面向量及应用.分析:作出边AB,AC的垂线,利用向量的运算将用和表示,利用向量的数量积的几何意义将向量的数量积表示成一个向量与另个向量的投影的乘积,即可求得的值.解答:解:若P为△ABC的外心,过P作PS⊥AB,PT⊥AC垂足分别为S,T,则S,T分别是AB,AC的中点,AS=1,AT=2.∴=•(﹣)=﹣=AT•AC﹣AS•AB=2×4﹣1×2=6,故答案为:6.点评:本题考查两个向量的运算法则及其几何意义、两个向量数量积的几何意义,属于中档题.16.已知单位向量与的夹角为α,且cosα=,向量=3﹣2与=3﹣的夹角为β,则cosβ=.考点:数量积表示两个向量的夹角.专题:平面向量及应用.分析:转化向量为平面直角坐标系中的向量,通过向量的数量积求出所求向量的夹角.解答:解:单位向量与的夹角为α,且cosα=,不妨=(1,0),=,=3﹣2=(),=3﹣=(),∴cosβ===.故答案为:.点评:本题考查向量的数量积,两个向量的夹角的求法,考查计算能力.三、解答题:(解答应写出文字说明,证明过程或演算步骤)17.(10分)(2015春•某某期末)已知:tan(α+)=﹣,(<α<π).(1)求tanα的值;(2)求的值.考点:同角三角函数基本关系的运用;两角和与差的正切函数.专题:计算题.分析:(1)利用两角和的正切公式,求出tanα的值.(2)利用二倍角公式展开,利用tanα求出cosα即可得到结果.解答:解:(1)由tan(α+)=﹣,得,解之得tanα=﹣3(5分)(2)==2cosα(9分)因为<α<π且tanα=﹣3,所以cosα=﹣(11分)∴原式=﹣(12分).点评:本题是基础题,考查两角和的正切函数公式的应用,同角三角函数的基本关系的应用,考查计算能力.18.(12分)(2014秋•隆化县校级期中)某校从高一年级期末考试的学生中抽出60名学生,其成绩(均为整数)的频率分布直方图如图所示:(1)依据频率分布直方图,估计这次考试的及格率(60分及以上为及格)和平均分;(2)已知在[90,100]段的学生的成绩都不相同,且都在94分以上,现用简单随机抽样方法,从95,96,97,98,99,100这6个数中任取2个数,求这2个数恰好是两个学生的成绩的概率.考点:频率分布直方图;古典概型及其概率计算公式.专题:计算题;概率与统计.分析:(1)求出频率,用频率估计概率;(2)列出所有的基本事件,求概率.解答:解:(1)由图知,60及以上的分数所在的第三、四、五、六组的频率和为(0.02+0.03+0.025+0.005)×10=0.80,所以,估计这次考试的及格率为80%;=45×0.05+55×0.15+65×0.2+75×0.3+8×0.25+95×0.05=72,则估计这次考试的平均分是72分.(2)从95,96,97,98,99,100这6个数中任取2个数共有=15个基本事件,而[90,100]的人数有3人,则共有基本事件C=3.则这2个数恰好是两个学生的成绩的概率P==.点评:本题考查了学生在频率分布直方图中读取数据的能力,同时考查了古典概型的概率求法,属于基础题.19.(12分)(2013•淄川区校级模拟)已知直线l过点P(1,1),并与直线l1:x﹣y+3=0和l2:2x+y﹣6=0分别交于点A、B,若线段AB被点P平分.求:(1)直线l的方程;(2)以O为圆心且被l截得的弦长为的圆的方程.考点:直线与圆相交的性质.专题:直线与圆.分析:(1)依题意可设A(m,n)、B(2﹣m,2﹣n),分别代入直线l1 和l2的方程,求出m=﹣1,n=2,用两点式求直线的方程.(2)先求出圆心(0,0)到直线l的距离d,设圆的半径为R,则由,求得R的值,即可求出圆的方程.解答:解:(1)依题意可设A(m,n)、B(2﹣m,2﹣n),则,即,解得m=﹣1,n=2.即A(﹣1,2),又l过点P(1,1),用两点式求得AB方程为=,即:x+2y﹣3=0.(2)圆心(0,0)到直线l的距离d==,设圆的半径为R,则由,求得R2=5,故所求圆的方程为x2+y2=5.点评:本题主要考查直线和圆相交的性质,点到直线的距离公式,弦长公式的应用,用两点式求直线的方程,属于中档题.20.(12分)(2015秋•某某月考)如图,四边形ABCD为矩形,DA⊥平面ABE,AE=EB=BC=2,BF⊥平面ACE于点F,且点F在CE上.(Ⅰ)求证:AE⊥BE;(Ⅱ)求三棱锥D﹣AEC的体积.考点:空间中直线与直线之间的位置关系;棱柱、棱锥、棱台的体积;直线与平面垂直的性质.专题:计算题.分析:(Ⅰ)由题意证明BC⊥平面ABE,得AE⊥BC,再结合条件证明AE⊥平面BCE,再证出AE⊥BE;(Ⅱ)利用题意得到平面ACD⊥平面ABE,作出交线的垂线,利用换低求三棱锥体积.解答:(Ⅰ)证明:由题意知,AD⊥平面ABE,且AD∥BC∴BC⊥平面ABE,∵AE⊂平面ABE∴AE⊥BC,∵BF⊥平面ACE,且AE⊂平面ABE∴BF⊥AE,又BC∩BF=B,∴AE⊥平面BCE,又∵BE⊂平面BCE,∴AE⊥BE.(Ⅱ)在△ABE中,过点E作EH⊥AB于点H,∵AD⊥平面ABE,且AD⊂平面ACD,∴平面ACD⊥平面ABE,∴EH⊥平面ACD.由已知及(Ⅰ)得EH=AB=,S△ADC=2.故V D﹣ABC=V E﹣ADC=×2×=.点评:本题主要考查垂直关系,利用线面垂直的定义和判定定理,进行线线垂直与线面垂直的转化;求三棱锥体积常用的方法:换底法.21.(12分)(2013•某某一模)函数f(x)=Asin(ωx+φ)(A>0,ω>0,﹣<φ<)(x∈R)的部分图象如图所示.(1)求函数y=f(x)的解析式;(2)当x∈[﹣π,﹣]时,求f(x)的取值X围.考点:由y=Asin(ωx+φ)的部分图象确定其解析式.专题:计算题;三角函数的图像与性质.分析:(1)由图象可求得A=1,由=可求得ω,f(x)过(,1)点可求得φ,从而可求得函数y=f(x)的解析式;(2)当x∈[﹣π,﹣]时,可求得x+的X围,利用正弦函数的单调性即可求得f(x)的取值X围.解答:解:(1)由图象得A=1,=﹣=,∴T=2π,则ω=1;将(,1)代入得1=sin(+φ),而﹣<φ<,所以φ=,因此函数f(x)=sin(x+);(6分)(2)由于x∈[﹣π,﹣],﹣≤x+≤,所以﹣1≤sin(x+)≤,所以f(x)的取值X围是[﹣1,].( 12分)点评:本小题主要考查三角函数解析式的求法与三角函数图象与性质的运用,以及三角函数的值域的有关知识,属于中档题.22.(12分)(2015春•某某校级期末)已知函数f(x)=2cos2(x﹣)﹣sin2x+1 (Ⅰ)求f(x)的单调递增区间;(Ⅱ)当x∈(,)时,若f(x)≥log2t恒成立,求 t的取值X围.考点:三角函数中的恒等变换应用;正弦函数的图象.专题:三角函数的图像与性质.分析:(Ⅰ)由三角函数中的恒等变换应用化简函数解析式可得f(x)=cos(2x+)+2,由2kπ﹣π≤2x+≤2kπ,k∈Z,即可解得f(x)的单调递增区间.(Ⅱ)由,可得,解得1≤cos(2x+)+2,求得f(x),f(x)min=1,由题意log2t≤1,从而解得t的取值X围.解答:解:(Ⅰ)∵f(x)=cos(2x﹣)﹣sin2x+2=cos2x﹣sin2x+2=cos(2x+)+2,…(3分)由2kπ﹣π≤2x+≤2kπ,k∈Z,得k≤x≤k,k∈Z,…(5分)∴f(x)的单调递增区间为[k,k],k∈Z,.…(6分)(或者:f(x)=﹣+2=cos2x﹣+2=﹣+2,…(3分)令+2kπ≤≤+2kπ,k∈Z.则+kπ≤x≤+kπ,k∈Z.…(5分)∴f(x)的单调递增区间为:[+kπ,+kπ],k∈Z.…6分)(Ⅱ)∵,∴,…(7分)∴﹣1≤cos()≤﹣,1≤cos(2x+)+2,…(8分)(或者:∵,∴…(7分)∴≤≤1∴1≤﹣+2≤…8分)∴f(x),f(x)min=1.…(9分)若f(x)≥log2t恒成立,∴则log2t≤1,∴0<t≤2,…(11分)即t的取值X围为(0,2].…(12分)点评:本题主要考查了三角函数中的恒等变换应用,正弦函数的图象和性质,属于基本知识的考查.。

2023-2024学年浙江省金华市一中高二上学期期中数学试题及答案

2023-2024学年浙江省金华市一中高二上学期期中数学试题及答案

金华一中2023学年第一学期期中考试高二数学一、单项选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1. 过点()0,2-且与直线230x y +-=垂直的直线方程为( )A. 220x y -+=B. 220x y ++=C. 220x y --= D. 220x y +-=2. 已知数列{}n a ,21a =,*12,n n a a n n ++=∈N ,则13a a +的值为 A. 4B. 5C. 6D. 83. 若椭圆短轴的两个端点与一个焦点构成一个正三角形,则该椭圆的离心率为( )A.12B.C.D.4. “点()()1,2,5,6A B -到直线:10l ax y ++=的距离相等”是“2a =-”的( )A. 充分不必要条件 B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件5. 若圆224x y +=上恰有三个点到直线:l y x a =+的距离等于1,则a 的值为( )A. 2±B.C. ±D. 6. 已知数列{}n a 是公差不为0的无穷等差数列,n S 是其前n 项和,若n S 存在最大值,则( )A. 在3202321,,,,232023S S S S ⋅⋅⋅中最大的数是1S B. 在3202321,,,,232023SS S S ⋅⋅⋅中最大数是20232023S C. 在1232023,,,,S S S S ⋅⋅⋅中最大的数是1S D. 在1232023,,,,S S S S ⋅⋅⋅中最大的数是2023S 7. 设双曲线22221x y a b-=(a>0,b>0)的右焦点为F ,右顶点为A,过F 作AF 的垂线与双曲线交于B,C 两点,过B,C 分别作AC ,AB 的垂线交于点D.若D 到直线BC的距离小于a 近线斜率的取值范围是 ( )的A. (1,0)(0,1)-B. (,1)(1,)-∞-+∞C. (⋃D(,)-∞+∞ 8. 在棱长为1的正方体1111ABCD A B C D -中,E 为线段1B C 的中点,F 是棱11C D 上的动点,若点P 为线段1BD 上的动点,则PE PF +的最小值为( )A.B.C.D.二、多项选择题(本题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.)9. 已知双曲线22:13x C y -=,则下列结论正确的是( )A. 双曲线CB. 双曲线C 的焦距为4C. 双曲线C 的虚轴长为1D. 双曲线C的渐近线方程为x =10. 已知直线:10l ax y ++=,则下列说法正确的是( )A. 直线l 过定点()0,1-B. 直线l 与直线10x ay --=不可能垂直C. 若点()0,1A 与点(),0Bb 关于直线l 对称,则实数a的值为D. 直线l 被圆22280x y y +--=11. 已知抛物线()2:20C y px p =>上存在一点()2,E t 到其焦点的距离为3,点P 为直线2x =-上一.点,过点P 作抛物线C 的两条切线,切点分别为,,A B O 为坐标原点.则( )A. 抛物线的方程为24y x = B. 直线AB 一定过抛物线的焦点C. 线段AB 长最小值为 D. OP AB⊥12. 在正方体1111ABCD A B C D -中,点P 满足1BP BC BB λμ=+,其中[]0,1λ∈,[]0,1μ∈,则下列说法正确的是( )A 当λμ=时,1A P ∥平面1ACD B. 当1μ=时,三棱锥1P A BC -的体积为定值C. 当1λ=时,△PBD 的面积为定值D. 当1λμ+=时,直线1A D 与1D P 所成角的取值范围为,32ππ⎡⎤⎢⎥⎣⎦三、填空题(本大题共4小题,每小题5分,共20分.)13. 已知等差数列{}n a 满足25815a a a ++=,则5a =______.14. 已知12,F F 是椭圆22142x y +=的两个焦点,点P 在该椭圆上,若122PF PF -=,则12PF F △的面积是______.15. 已知球O 是直三棱柱111ABC A B C -的内切球(点O 到直三棱柱111ABC A B C -各面的距离都相等),若球O 的表面积为16π,ABC 的周长为4,则三棱锥1A ABC -的体积为______.16. 设经过抛物线28y x =焦点F 且斜率为1的直线l ,与抛物线交于,A B 两点,抛物线准线与x 轴交于C 点,则cos ACB ∠=______.四、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17. 已知动圆C :()()()22220x m y m m m -+-=>.(1)当2m =时,求经过原点且与圆C 相切的直线l 的方程;(2)若圆C 与圆E :()22316x y -+=内切,求实数m 的值.18. 如图,ABCD 为平行四边形,BCEF 是边长为1的正方形,,,23BF BA DAB AB AD π⊥∠==.的.(1)求证:BD FC ⊥;(2)求直线DE 与平面DFC 所成角的正弦值.19. 如图,已知抛物线21y x =-与x 轴相交于点,A B 两点,P 是该抛物线上位于第一象限内的点.(1)记直线,PA PB 的斜率分别为12,k k ,求证:21k k -为定值;(2)过点A 作AD PB ⊥,垂足为D ,若AB 平分PAD ∠,求PAD 的面积.20. 正项数列{}n a 中,11a =,对任意*n ∈N 都有()22112n n n n a a a a ++-=+.(1)求数列{}n a 的通项公式及前n 项和n S ;(2)设nn n a b a t=+,试问是否存在正整数,t m ,使得()12,,3m b b b m ≥成等差数列?若存在,求出所有满足要求的,t m ;若不存在,请说明理由.21. 在四棱锥P ABCD -中,PA ⊥平面ABCD ,底面ABCD 为直角梯形,90CDA BAD ∠=∠=︒,2AB AD DC ===E 、F 分别为PD 、PB 的中点.(1)求证://CF 平面PAD ;(2)若直线PA 与平面CEF 交点为G ,且1PG =,求截面CEF 与底面ABCD所成锐二面角的大的小.22. 已知点(),P x y 与定点()1,0M -的距离和它到定直线4x =-的距离的比是12.(1)求点P 的轨迹E 的标准方程;(2)设点()1,0N ,若点,A C 是曲线E 上两点,且在x 轴上方,满足//AM NC ,求四边形AMNC 面积的最大值.金华一中2023学年第一学期期中考试高二数学一、单项选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1. 过点()0,2-且与直线230x y +-=垂直的直线方程为( )A. 220x y -+=B. 220x y ++=C. 220x y --=D. 220x y +-=【答案】C 【解析】【分析】设出该直线的方程,由点()0,2-在该直线上,即可得出该直线方程.【详解】设该直线方程为20x y m -+=由点()0,2-在该直线上,则2020m ⨯++=,即2m =-即该直线方程为220x y --=故选:C【点睛】本题主要考查了由两直线垂直求直线方程,属于中档题.2. 已知数列{}n a ,21a =,*12,n n a a n n ++=∈N ,则13a a +的值为 A. 4 B. 5 C. 6 D. 8【答案】A 【解析】【分析】将n=1和n=2代入递推关系式,求解即可.【详解】数列{a n },a 2=1,*12,n n a a n n N ++=∈,可得a 1+a 2=2,a 2+a 3=4,解得a 1=1,a 3=3,a 1+a 3=4.故选A .【点睛】本题考查数列递推关系式的应用,考查转化思想以及计算能力.3. 若椭圆短轴的两个端点与一个焦点构成一个正三角形,则该椭圆的离心率为( )A.12B.C.D.【答案】D 【解析】【分析】根据等边三角形边长相等的性质,建立a b 、的关系,从而求出离心率.【详解】如图,若椭圆短轴的两个端点与一个焦点构成一个正三角形,则2a b =,所以椭圆的离心率为e ====.故选:D.4. “点()()1,2,5,6A B -到直线:10l ax y ++=距离相等”是“2a =-”的( )A. 充分不必要条件 B. 必要不充分条件C. 充要条件 D. 既不充分也不必要条件【答案】B 【解析】【分析】利用点到直线的距离公式,并结合充分条件、必要条件的定义即可解答.【详解】若点()()1,2,5,6A B -到直线:10l ax y ++=的距离相等,则2a =-或1a =-.∴点()()1,2,5,6A B -到直线:10l ax y ++=的距离相等”是“2a =-”的必要不充分条件.故选:B.5. 若圆224x y +=上恰有三个点到直线:l y x a =+的距离等于1,则a 的值为( )A. 2±B.C. ±D. 【答案】B 【解析】【分析】根据圆的性质,结合点到直线的距离公式进行求解即可.的【详解】圆224x y +=的圆心为()00,,半径2r =,若圆224x y +=上恰有三个点到直线:l y x a =+的距离等于1,则圆心为()00,到直线:l y x a =+的距离等于1,1=,解得a =故选:B.6. 已知数列{}n a 是公差不为0无穷等差数列,n S 是其前n 项和,若n S 存在最大值,则( )A. 在3202321,,,,232023S S S S ⋅⋅⋅中最大的数是1S B. 在3202321,,,,232023SS S S ⋅⋅⋅中最大的数是20232023S C. 在1232023,,,,S S S S ⋅⋅⋅中最大的数是1S D. 在1232023,,,,S S S S ⋅⋅⋅中最大的数是2023S 【答案】A 【解析】【分析】根据题意,由条件可得0d <,由n S n ⎧⎫⎨⎬⎩⎭是以1S 为首项,2d 为公差的等差数列,即可判断AB ,由0d <可得在1232023,,,,S S S S ⋅⋅⋅中最大的数是不确定的,即可判断CD .【详解】设等差数列{}n a 的公差为d ,则0d ≠,由n S 存在最大值可知,0d <,因为()2111222n n n d d d S na n a n -⎛⎫=+=+- ⎪⎝⎭,则122n d d n a n S ⎛⎫=+- ⎪⎝⎭,所以数列n S n ⎧⎫⎨⎬⎩⎭是以1S 为首项,2d 为公差等差数列,且0d <,则n S n ⎧⎫⎨⎬⎩⎭是递减数列,所以在3202321,,,,232023S S S S ⋅⋅⋅中最大的数是1S ,故A 正确,B 错误;在1232023,,,,S S S S ⋅⋅⋅中最大的数是不确定的,比如92n a n =-+,由100n n a a +≥⎧⎨≤⎩,可得7922n ≤≤,所以4n =,即4S 为最大值,故CD 错误;故选:A的的7. 设双曲线22221x y a b-=(a>0,b>0)的右焦点为F ,右顶点为A,过F 作AF 的垂线与双曲线交于B,C 两点,过B,C 分别作AC ,AB 的垂线交于点D.若D 到直线BC 的距离小于a 近线斜率的取值范围是 ( )A. (1,0)(0,1)- B. (,1)(1,)-∞-+∞C. (⋃D. (,)-∞+∞ 【答案】A 【解析】【详解】由题意,根据双曲线的对称性知D 在x 轴上,设,0)Dx (,则由BD AB ⊥得:,因为D 到直线BC 的距离小于a +,所以,即01b a<<,所以双曲线渐近线斜率1,0)(0,1)bk a =±∈-⋃(,故选A .8. 在棱长为1的正方体1111ABCD A B C D -中,E 为线段1B C 的中点,F 是棱11C D 上的动点,若点P 为线段1BD 上的动点,则PE PF +的最小值为( )A.B.C.D.【答案】A 【解析】【分析】连接1BC ,得出点,,P E F 在平面11BC D 中,问题转化为在平面内直线1BD 上取一点P ,求点P 到定点E 的距离与到定直线的距离的和的最小值问题,建立平面直角坐标系,问题转化为点E 关于直线1BD 到直线11C D 的距离,从而可得结果.【详解】如上图示,连接1BC 则11BC B C E = ,点,,P E F 在平面11BC D 中,且111BC C D ⊥,111C D =,1BC =,在Rt △11BC D 中,以11C D 为x 轴,1C B 为y 轴,建立平面直角坐标系,如下图示,则1(1,0)D ,B ,E ,设点E 关于直线1BD 的对称点为E ',而直线1BD为1x =①,所以EE k '=,故直线EE '为y x =+②,联立①②,解得13x y ⎧=⎪⎪⎨⎪=⎪⎩EE '与1BD的交点1(3,所以对称点2(3E ',则PE PF PE PF E F ''+=+≥,最小值为E '到直线11C D故选:A.【点睛】关键点点睛:将立体几何问题转化为平面问题,结合将军饮马模型,求点到直线上动点距离最小.二、多项选择题(本题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.)9. 已知双曲线22:13x C y -=,则下列结论正确的是( )A. 双曲线CB. 双曲线C 的焦距为4C. 双曲线C 的虚轴长为1D. 双曲线C的渐近线方程为x =【答案】BD 【解析】【分析】根据双曲线方程可确定,,a b c 的值,即可求得双曲线离心率、焦距、虚轴长以及渐近线方程,即得答案.【详解】由题意知双曲线22:13x C y -=,设双曲线实半轴长为a ,虚半轴长为b ,焦距为2c,则1,2a b c ====,故双曲线C的离心率为c a ==,A 错误;双曲线焦距为24c =,B 正确;双曲线的虚轴长为 22b =,C 错误;双曲线C的渐近线方程为b y x a =±=,即x =,D 正确,故选:BD10. 已知直线:10l ax y ++=,则下列说法正确的是( )A. 直线l 过定点()0,1-B. 直线l 与直线10x ay --=不可能垂直C. 若点()0,1A 与点(),0Bb 关于直线l 对称,则实数a的值为D. 直线l 被圆22280x y y +--=【答案】AC 【解析】【分析】对于A ,当0x =时,1y =,对于B ,当0a =时,结合直线的平行条件,即可判断,对于C ,求出点()0,1A 与点(),0Bb 的直线方程,根据对称,即可求出,对于D ,直线l 被圆22280x y y +--=截得的最短弦长,根据几何关系和勾股定理,即可求出【详解】解:对于A ,当0x =时,1y =,故A 正确,对于B ,当0a =时,直线l 与直线10x ay --=互相垂直,故B 错误,对于C ,由题意知直线AB 与直线l 垂直,且线段AB 的中点在直线l 上,所以11022b a ⨯++=,且()11a b ⎛⎫-⨯-=- ⎪⎝⎭,解得a =,故C 正确,对于D ,圆22280x y y +--=的圆心为()0,1,半径为3,当圆心到直线l 的距离最大时,直线l 被圆22280x y y +--=截得的弦长最短,此时圆心()0,1到直线l的距离2d ,解得0a =,所以直线l 被圆22280x y y +--=截得的最短弦长为=,故D 错误.故选:AC11. 已知抛物线()2:20C y px p =>上存在一点()2,E t 到其焦点的距离为3,点P 为直线2x =-上一点,过点P 作抛物线C 的两条切线,切点分别为,,A B O 为坐标原点.则( )A. 抛物线的方程为24y x = B. 直线AB 一定过抛物线的焦点C. 线段AB长的最小值为 D. OP AB⊥【答案】ACD 【解析】【分析】根据抛物线的定义,求得抛物线的方程,可判定A 正确;设(2,)P m -,得出PA 和PB 的方程,联立方程组,结合Δ0=,得到12,k k 是方程2210k km +-=的两个不等式的实数根,再由韦达定理和1AB OP k k ⋅=-,可判定D 正确;由2AB k m=,得出直线AB ,结合直线的点斜式的形式,可判定B 不正确,再由圆锥曲线的弦长公式,结合二次函数的性质,可判定C 正确.【详解】由抛物线2:2C y px =,可得焦点坐标(,0)2p F ,准线方程为2p x =-,因为抛物线C 上存在一点()2,E t 到其焦点的距离为3,由抛物线的定义可得232p+=,可得2p =,所以抛物线的方程为24y x =,所以A 正确;设(2,)P m -,显然直线PA 的斜率存在且不为0,设斜率为1k ,可得PA 的方程为1(2)y m k x -=+,联立方程组12(2)4y m k x y x-=+⎧⎨=⎩,整理得2114840k y y k m -++=,因为PA 是抛物线的切线,所以()211(4)4840k k m ∆=--+=,即211210k k m +-=,且点A 的纵坐标为11422k k --=,代入抛物线方程,可得A 横坐标为211k ,即21112(,A k k ,设直线PB 的斜率存在且不为0,设斜率为2k ,同理可得:222210k k m +-=,且22212(,)B k k ,所以12,k k 是方程2210k km +-=的两个不等式的实数根,所以12121,22m k k k k +=-=-,因为2112122221221222()()(1112222AB OPk k k k m m m k k m k k k k --⨯⋅=⋅-=⋅-=⋅-=-+--,所以OP AB ⊥,所以D 正确;由OP AB ⊥,且2OP m k =-,可得2AB k m =,则直线AB 的方程为211221(y x k m k -=-,即22111222mk y mk k x -=-,又由211210k k m +-=,可得21112k m k =-,所以3221111(2)2(12)22k k y k k x ---=-,即211(12)2(2)k y k x -=-,所以直线AB 一定过定点(2,0),该点不是抛物线的焦点,所以B 不正确.由直线AB 的斜率不为0,设直线AB 的方程为2x my =+,且1122(,),(,)A x y B x y ,联立方程组224x my y x=+⎧⎨=⎩,整理得2480y my --=,所以12124,8y y m y y +==-,则2AB y =-====≥0m =时,等号成立,即AB的最小值为,所以C 正确.故选:ACD.【点睛】方法点睛:解决直线与抛物线有关问题的方法与策略:1、涉及抛物线的定义问题:抛物线的定义是解决抛物线问题的基础,它能将两种距离(抛物线上的点到焦点的距离、抛物线上的点到准线的距离)进行等量转化.如果问题中涉及抛物线的焦点和准线,又能与距离联系起来,那么用抛物线定义就能解决问题.因此,涉及抛物线的焦半径、焦点弦问题,可以优先考虑利用抛物线的定义转化为点到准线的距离,这样就可以使问题简单化.2、涉及直线与抛物线综合问题:通常设出直线方程,与抛物线方程联立方程组,结合根与系数的关系,合理进行转化运算求解,同时注意向量、基本不等式、函数及导数在解答中的应用.的12. 在正方体1111ABCD A B C D -中,点P 满足1BP BC BB λμ=+,其中[]0,1λ∈,[]0,1μ∈,则下列说法正确的是( )A. 当λμ=时,1A P ∥平面1ACD B. 当1μ=时,三棱锥1P A BC -的体积为定值C. 当1λ=时,△PBD 的面积为定值D. 当1λμ+=时,直线1A D 与1D P 所成角的取值范围为,32ππ⎡⎤⎢⎥⎣⎦【答案】ABD 【解析】【分析】对于A 选项,确定P 点在面对角线1BC 上,通过证明面面平行,得线面平行;对于B 选项,确定P 点在棱11B C 上,由等体积法,说明三棱锥1P A BC -的体积为定值;对于C 选项,确定P 点在棱1CC 上,PBD △的底BD 不变,高PE 随点P 的变化而变化;对于D 选项,通过平移直线1A D ,找到异面直线1A D 与1D P 所成的角,在正11D B C △中,确定其范围.【详解】对于A 选项,如下图,当λμ=时,P 点在面对角线1BC 上运动,又P ∈平面11A C B ,所以1A P ⊂平面11A C B ,在正方体1111ABCD A B C D -中,11//AB C D 且11AB C D =,则四边形11ABC D 为平行四边形,所以,11//AD BC ,1AD ⊄ 平面11A BC ,1BC ⊂平面11A BC ,1//AD ∴平面11A BC ,同理可证//AC 平面11A BC ,1AD AC A = ,所以,平面11//A C B 平面1ACD ,1A P ⊂ 平面11A BC ,所以,1//A P 平面1ACD ,A 正确;对于B 选项,当1μ=时,如下图,P 点在棱11B C 上运动,三棱锥1P A BC -的体积111113P A BC A BC P PBC V V S B A --==⋅⋅为定值,B 正确;对于C 选项,当1λ=时,如图,P 点在棱1CC 上运动,过P 作PE BD ⊥于E 点,则12PBD S BD PE =⋅△,其大小随着PE 的变化而变化,C 错误;对于D 选项,如图所示,当1λμ+=时,P ,C ,1B 三点共线,因为11//A B CD 且11A B CD =,所以四边形11A B CD 为平行四边形,所以11//A D B C ,所以11D PB ∠或其补角是直线1A D 与1D P 所成角,在正11D B C △中,11D PB ∠取值范围为,32ππ⎡⎤⎢⎥⎣⎦,D 正确.故选:ABD.三、填空题(本大题共4小题,每小题5分,共20分.)13. 已知等差数列{}n a 满足25815a a a ++=,则5a =______.的【答案】5【解析】【分析】根据等差数列下标和性质计算可得.【详解】因为25815a a a ++=,且2852a a a +=,所以5315a =,解得55a =.故答案为:514. 已知12,F F 是椭圆22142x y +=的两个焦点,点P 在该椭圆上,若122PF PF -=,则12PF F △的面积是______.【解析】【分析】利用椭圆定义结合题设求得12,PF PF ,可判断212PF F F ⊥,即可求得12PF F △的面积.【详解】由题意知12,F F 是椭圆22142x y +=的两个焦点,则2,a b c ====不妨取12(F F ,则12||F F =又1224PF PF a +==,结合122PF PF -=可得123,1PF PF ==,则2221212||PF PF F F =+,即212PF F F ⊥,故12212||11||122PF F S PF F F =⨯⨯⋅==△,15. 已知球O 是直三棱柱111ABC A B C -的内切球(点O 到直三棱柱111ABC A B C -各面的距离都相等),若球O 的表面积为16π,ABC 的周长为4,则三棱锥1A ABC -的体积为______.【答案】163##153【解析】【分析】由题意求出直棱柱内切球半径,即可求得棱柱的高,将直棱柱分割为5个小棱锥,根据等体积法求得棱柱的底面积,再根据棱锥的体积公式即可求得答案.【详解】设直三棱柱111ABC A B C -的高为h ,设,,AB c BC a AC b ===,内切球的半径设为r ,则2h r =,球O 的表面积为16π,则216π4πr =,则2,4r h ==;又ABC 的周长为4,即4a b c ++=,连接111,,,,,OA OB OC OA OB OC ,则直三棱柱111ABC A B C -被分割为5个小棱锥,即以内切球球心为顶点,以三棱锥的两个底面和三个侧面为底面的5个棱锥,根据体积相等可得111123333ABC ABC r S h ahr bhr chr S =+++⨯⋅⋅ ,即()44383ABC ABC S a b c S =+++ ,即得4ABC S = ,故三棱锥1A ABC -的体积为111644333ABC V S h ==⨯=⋅⨯ ,故答案为:16316. 设经过抛物线28y x =焦点F 且斜率为1的直线l ,与抛物线交于,A B 两点,抛物线准线与x 轴交于C 点,则cos ACB ∠=______.【答案】13【解析】【分析】得到直线l 的方程为2y x =-,联立抛物线方程,求出,A B 的坐标,得到,,AC BC AB ,利用余弦定理求出答案.【详解】由题意得()2,0F ,()2,0C -,直线l 的方程为2y x =-,联立28y x =得,21240x x -+=,设()()1122,,,A x y B x y ,不妨设A 在第一象限,解得1266x x =+=-故1244y y =+=-,故((64,64A B ++--,故AC ==,BC ==12416AB x x =++=,由余弦定理得2221cos 23AC BC ABACB AC BC+-∠===⋅.故答案为:13四、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17. 已知动圆C :()()()22220x m y m m m -+-=>.(1)当2m =时,求经过原点且与圆C 相切的直线l 的方程;(2)若圆C 与圆E :()22316x y -+=内切,求实数m 的值.【答案】(1)0x =或34y x =(2)m =【解析】【分析】(1)2m =时圆心为()2,4,半径为2.当过原点的直线斜率不存在时恰好与此圆相切,此时切线方程为0x =;当过原点的直线斜率存在时设直线方程为y kx =,当直线与圆相切时圆心()2,4到直线y kx =的距离等于半径2,可求得k 的值,从而可得切线方程.(2)圆C 的圆心(),2C m m ,半径为m ;圆E 的圆心()3,0E ,半径为4.当两圆内切时两圆心距等于两半径的差的绝对值,从而可得m 的值.【详解】(1)22:(2)(4)4C x y -+-=当直线l 的斜率不存在时,l 方程为0x =,当直线l 的斜率存在时,设l 方程为y kx =,由题意得32,4d k ∴=所以l 方程为34y x =.(2)(,2),(3,0)C m m E ,由题意得4m CE -==两边平方解得m =.18. 如图,ABCD 为平行四边形,BCEF 是边长为1的正方形,,,23BF BA DAB AB AD π⊥∠==.(1)求证:BD FC ⊥;(2)求直线DE 与平面DFC 所成角的正弦值.【答案】(1)证明见解析(2【解析】【分析】(1)要证BD FC ⊥,转化只需证明BD ⊥平面BCEF ,只需证明BD BC ⊥、BD BF ⊥即可;(2)建立空间直角坐标系,求出平面DFC 的一个法向量和向量DE 的坐标,转化为利用向量DE和法向量所成的角,即可求解直线DE 与平面DFC 所成角的正弦值.【小问1详解】因为60,2DAB AB AD ∠=︒=,由余弦定理得BD =,从而222BD AD AB +=,∴BD AD ⊥,又//AD BC ,故BD BC ⊥.又,BF BA BF BC ⊥⊥,,,BA BC B BA BC =⊂ 平面ABCD ,所以BF ⊥底面ABCD ,而BD ⊂底面ABCD ,可得BD BF ⊥,因为,,BF BC B BF BC ⋂=⊂平面BCEF ,∴BD ⊥平面BCEF ,FC⊂平面BCEF ,故BD FC ⊥.如图建立空间直角坐标系B xyz -,则(1,0,0),(0,0,1),(1,0,1)C D F E,()()()1,,,,01,01,DF FC DE =-=-=,设平面DFC 的法向量为(,,)n x y z =,则n DF z n FC x z ⎧⋅=+=⎪⎨⋅=-=⎪⎩,可取n = , 设直线DE 与平面DFC 所成的角为θ.故|sin |cos |||,||DE n DE nn DE θ⋅====⨯.19. 如图,已知抛物线21y x =-与x 轴相交于点,A B 两点,P 是该抛物线上位于第一象限内的点.(1)记直线,PA PB 的斜率分别为12,k k ,求证:21k k -为定值;(2)过点A 作AD PB ⊥,垂足为D ,若AB 平分PAD ∠,求PAD 的面积.【答案】(1)证明见解析 (2)1+【解析】【分析】(1)设点P 的坐标为()2,1P t t -,再利用两点间的斜率公式即可证明.(2)由AB 平分PAD ∠,可知1AD k k =-,再由AD PB ⊥求出P ,再利用AD PB 、相交求出D ,即可求出PAD 的面积.由题意得点,A B 的坐标分别为()()1,0,1,0A B -.设点P 的坐标为()2,1P t t -,且1t >,则2212111,111t t k t k t t t --==-==++-,所以212k k -=为定值.【小问2详解】由直线,PA AD 的位置关系知:11AD k k t =-=-.因为AD PB ⊥,所以()()2111AD k k t t ⋅=-+=-,解得t =,因为P是第一象限内的点,所以t =,则)P.联立直线PB 与AD的方程(()(()1111y x y x ⎧=+-⎪⎨=-+⎪⎩,解得D .所以PAD的面积112P D S AB y y =⋅⋅-=20. 正项数列{}n a 中,11a =,对任意*n ∈N 都有()22112n n n n a a a a ++-=+.(1)求数列{}n a 的通项公式及前n 项和n S ;(2)设nn n a b a t=+,试问是否存在正整数,t m ,使得()12,,3m b b b m ≥成等差数列?若存在,求出所有满足要求的,t m ;若不存在,请说明理由.【答案】(1)21n a n =-,2n S n =(2)存在,27t m =⎧⎨=⎩或35t m =⎧⎨=⎩或54t m =⎧⎨=⎩【解析】【分析】(1)利用平方差公式得到12n n a a +-=,从而判断得{}n a 是等差数列,从而利用公式法即可得解;(2)假设存在,利用中等中项公式即可得解.因为()22112n n n n a a a a ++-=+,所以()()()1112n n n n n n a a a a a a ++++-=+,因为0n a >,所以12n n a a +-=,又11a =,数列{}n a 是以1为首项,2为公差的等差数列.所以{}n a 的通项公式为21n a n =-,前n 项和()21212n n n S n +-==.【小问2详解】存在正整数,t m ,使得()12,,3m b b b m ≥成等差数列,由(1)得2121n n b n t-=-+,假设存在正整数,t m ,传得()12,,3m b b b m ≥成等差数列,则122m b b b +=,即12161213m t m t t -+=+-++,当1t =0=,显然不成立,所以1t ≠,得314311t m t t +==+--,*4,,1t m t ∈∴-N 为整数,10t ->,故11,2,4t -=,即2,3,5t =,对应的7,5,4m =,所以存在满足要求的,t m ,27t m =⎧⎨=⎩或35t m =⎧⎨=⎩或54t m =⎧⎨=⎩.21. 在四棱锥P ABCD -中,PA ⊥平面ABCD ,底面ABCD 为直角梯形,90CDA BAD ∠=∠=︒,2AB AD DC ===E 、F 分别为PD 、PB 的中点.(1)求证://CF 平面PAD ;(2)若直线PA 与平面CEF 的交点为G ,且1PG =,求截面CEF 与底面ABCD 所成锐二面角的大小.【答案】(1)证明见解析;(2)45︒.【解析】【分析】(1)先利用中位线判定四边形QFCD 是平行四边形,得到线线平行//FC QD ,再利用线面平行的判定定理即证结果;(2)先找到点G ,利用线面平行的性质定理//EG DQ ,再建立空间直角坐标系写点坐标,计算两个平面的法向量,计算夹角余弦即得结果.【详解】解:(1)取PA 的中点Q ,连接QF 、QD ,∵F 是PB 的中点,∴//QF AB 且12QF AB =,∵底面ABCD 为直角梯形,90CDA BAD ∠=∠=︒,2AB AD DC ===//CD AB ,且12CD AB =,∴//QF CD 且QF CD =,∴四边形QFCD 是平行四边形,∴//FC QD ,又⊄FC平面PAD ,QD ⊂平面PAD ,∴//FC 平面PAD .(2)方法一:取PC 的中点M ,连接AC 、EM 、FM 、QM ,QM EF N ⋂=,连接CN 并延长交PA 于G ,已知1PG =.∵//FC 平面PAD ,且平面CEGF ⋂平面APD =EG ,∴//CF EG ,又//CF DQ ,∴//EG DQ ,建立如图所示直角坐标系,()0,0,0A,()0,B,()C,()D,)2E,()2F ,则平面ABCD 的法向量为()10,0,1n =,()2CE =,()2CF =- ,设平面CEF 的法向量为()2,,n x y z =,则有2200CE n CF n ⎧⋅=⎪⎨⋅=⎪⎩,即2020z z ⎧+=⎪⎨-+=⎪⎩,即z =,则1x =,1y =,即(2n =.∴设两个法向量1n u r 、2n u u r 的夹角为θ,则1212cos n n n n θ⋅===⋅ ,即两个法向量的夹角为45︒.∴截面CEF 与底面ABCD 所成锐二面角的大小为45︒.【点睛】本题考查了空间中线面平行的判定和二面角的向量求法,属于中档题.22. 已知点(),P x y 与定点()1,0M -的距离和它到定直线4x =-的距离的比是12.(1)求点P 的轨迹E 的标准方程;(2)设点()1,0N ,若点,A C 是曲线E 上两点,且在x 轴上方,满足//AM NC ,求四边形AMNC 面积的最大值.【答案】(1)22143x y +=(2)3【解析】【分析】(1)根据题意设 ,然后根据题中的几何条件得出方程,从而求解出轨迹方程;(2)根据题意设出直线,求出直线与椭圆相交弦长,并结合点到直线距离知识从而求解.【小问1详解】12=,整理化简得,223412x y +=,所以:点P 的轨迹E 的方程为:22143x y +=.【小问2详解】设O 为坐标原点,连接CO ,延长交椭圆E 于点B ,连接,,BM AN CM ,由椭圆对称性可知:OC OB =,又OM ON =,所以CMBN 为为平行四边形,所以://,CN BM CN BM =,则:BOM CON S S = ,且,,A M B 三点共线,所以:四边形AMNC 的面积ACM COM CON ACM COM BCM ABC S S S S S S S S =++=++= ,设直线()()()11221:1,,,,0AB x my A x y B x y y =->,由221431x y x my ⎧+=⎪⎨⎪=-⎩,得:()221212226934690,,3434m m y my y y y y m m +--=∴+==-++,所以:()2212134m AB m +===+,又//AM NC ,所以:点C 到直线AB 的距离即为点N 到直线AB的距离,因为:点N 到直线AB 的距离d =,所以12S AB d =⋅==设:234m t +=,则:24,43t m t -=≥,所以:S ====又因为:114t≤,所以当114t =时,即0m =时,四边形AMNC 面积取得最大值,最大值为3.椭圆联立求出弦长,然后再结合基本不等式求解出最值.。

广东省东莞市四校2023-2024学年高二上学期期中联考数学试题及答案

广东省东莞市四校2023-2024学年高二上学期期中联考数学试题及答案

2023-2024学年上学期期中考试四校联考高二数学试题(考试时间:120分钟 满分:150分)一、单选题:本大题共8小题,每小题5分,共40分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.设有四边形ABCD ,O 为空间任意一点,且AO OB DO OC +=+,则四边形ABCD 是( )A.空间四边形B.平行四边形C.等腰梯形D.矩形2.已知向量()4,2,3a =− ,()1,5,b x = ,满足a b ⊥,则x 的值为( )A.2B.2−C.143D.143−3.40y −−=的倾斜角是( ) A.30°B.60°C.120°D.150°4.已知椭圆22127x y k +=+的一个焦点坐标为()0,2,则k 的值为( )A.1B.3C.9D.815.已知直线1l :2210x y +−=,2l :430x ny ++=,3l ::610mx y +−=,若12l l ∥且13l l ⊥,则m n +的值为( ) A.10−B.10C.2−D.26.已知圆1C :221x y +=和2C :22650x y x +−+=,则两圆的位置关系是( ) A.内切B.外切C.相交D.外离7.若圆C 经过点()2,5A ,()4,3B ,且圆心在直线l :330x y −−=上,则圆C 的方程为( ) A.()()22234x y −+−= B.()()22238x y −+−= C.()()22362x y −+−=D.()()223610x y −+−=8.如图,在棱长为1的正方体1111ABCD A B C D −中,P ,Q 分别是线段1CC ,BD 上的点,R 是直线AD 上的点,满足PQ ∥平面11ABC D ,PQ RQ ⊥且P 、Q 不是正方体的顶点,则PR 的最小值是( )二、多项选择题:每小题5分,共20分。

在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,有选错的得0分,部分选对的得2分。

山东省青岛第二中学2022-2023学年高二上学期期中考试物理试题及答案

山东省青岛第二中学2022-2023学年高二上学期期中考试物理试题及答案
9.如图,一根绝缘细杆固定在磁感应强度为B的水平匀强磁场中,杆和磁场垂直,与水平方向成 角。杆上套一个质量为m、电量为+q的小球。小球与杆之间的动摩擦因数为 ,从A点开始由静止释放小球,使小球沿杆向下运动。设磁场区域很大,杆足够长。已知重力加速度为g。则下列叙述中正确的是( )
A.小球运动的速度先增大后不变
A. B. C. D.
2.实现粒子间的高速碰撞是研究粒子的基本实验手段。北京正负电子对撞机的储存环可视作近似圆形轨道,当环中运行的电子数目为 个,环中电子以光速的 运动时形成10mA的电流。由此可知:此存储环的周长为( )(已知光速 ,电子的电荷量 )
A.100米B.120米C.240米D.480米
(1)供电电流I是从C端,还是从D端流入;
(2)求重物质量与电流的关系。
18.东方超环,俗称“人造小太阳”,是中国科学院自主研制的磁约束核聚变实验装置。该装置需要将加速到较高速度的离子束变成中性粒子束,没有被中性化的高速带电离子需要利用“偏转系统”将带电离子从粒子束剥离出来。假设“偏转系统”的原理如图所示,混合粒子束先通过加有电压的两极板再进入偏转磁场中,中性粒子继续沿原方向运动,被接收器接收;未被中性化的带电离子一部分打到下极板,剩下的进入磁场发生偏转被吞噬板吞噬。已知离子带正电、电荷量为q,质量为m,两极板间电压为U,间距为d,极板长度为2d,吞噬板长度为2d,离子和中性粒子的重力可忽略不计,不考虑混合粒子间的相互作用。
B.小球运动 加速度先增大到 ,然后减小到零
C.小球的速度达到最大速度一半时加速度一定是
D.小球的速度达到最大速度一半时加速度可能是
10. 、 两个离子同时从匀强磁场的直边界的 、 点分别以 和 (与边界的夹角)射入磁场,又同时分别从 、 点穿出,如图所示.设边界上方的磁场范围足够大,下列说法中正确的是()

2024学年江苏省泰州市联盟五高二上学期期中考数学试题及答案

2024学年江苏省泰州市联盟五高二上学期期中考数学试题及答案

联盟五校2023年秋学期期中考试高二数学试题出卷人: 审核人:(考试时间:120分钟 总分:150分)一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.抛物线24y x =的准线方程是( )A .1x =-B .2x =-C .1y =-D .2y =-2. 已知12:310,:30l kx ky l x ky -+=+=,若12l l ⊥,则实数k =()A .0或1 B .19- C .1 D .0或19-3.设m 为实数,若方程22121x y m m +=--表示焦点在x 轴上的椭圆,则实数m 的取值范围是( )A .322m << B .32m > C .12m << D . 32m <<1 4. 设等差数列{a n }的前n 项和为S n ,若S 3=6,S 4=12,则S 7=( )A .30B .36C .42D .485.已知圆2260x y x +-=,过点(1,2)的直线被该圆所截得的弦的长度的最小值为( )A .1 B .2 C .3 D .46.设等差数列{}n a ,{}n b 的前n 项和分别为,n n S T ,n N *∈,都有2343n n S n T n +=-,则214313a a b b ++的值为()A .3765 B .1119 C .919 D .19297. 已知椭圆1C 与双曲线2C 共焦点,双曲线2C 实轴的两顶点将椭圆1C 的长轴三等分,两曲线的交点与两焦点共圆,则双曲线2C 的离心率为( )ABCD .8 .在平面直角坐标系中,点A(0,3) ,直线:24=-l y x ,设圆C 的半径为1,圆心C 在直线l 上,若圆C 上存在点M ,使得MA 2MO =,则圆心C 的横坐标a 的取值范围是( )A .[]0,1 B .1215⎡⎤⎢⎥⎣⎦, C .1205⎡⎤⎢⎥⎣⎦, D .1205⎛⎫ ⎪⎝⎭,二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求,全部选对的得5分,部分选对的得2分,有选错的得0分.9. 已知双曲线C :22136y x -=,则( )A . 双曲线CB . 双曲线CC . 双曲线C 的焦点坐标为()3,0±D . 双曲线C的渐近线方程为y =10.已知直线10l y -+=,则A .直线l 的倾斜角为3πB.点)到直线l 的距离为2 C .直线lD .直线l 关于y10y +-=11.已知S n 是等差数列{a n }的前n 项和,且5678S S S S <=>,则下列命题正确的是( )A .该数列公差d <0B . 59S S <C . a 7=0D . S 12>012.已知圆M :22(2)1x y +-= ,以下四个命题表述正确的是(A .圆22230x y x ++-=与圆M 的公共弦所在直线为230x y +-=B .若圆228100x y x y m +--+=与圆M 恰有一条公切线,则8m =-C .直线(21)20m x y m ++--=与圆M 恒有两个公共点D .点P 为x 轴上一个动点,过点P 作圆M 的两条切线,切点分别为A ,B ,直线AB 与MP交于点C ,若Q ,则CQ 的最大值为94三、填空题:本题共4小题,每小题5分,共20分.13. 过点(2,3)A ,且平行于直线410x y --=的直线方程为 .14. 已知数列{}n a 的前n 项和为n S ,且2 S 31n n n =++,则数列{}n a 的通项公式为 .的15. 设m ,n 为实数,已知经过点⎪⎪⎭⎫ ⎝⎛324,310P 的椭圆11022=+m y x 与双曲线121122=-++n y n x 有相同的焦距,则=n .16. 若曲线1C :2220x y x +-=与曲线2C :()0y y mx m --=有四个不同的交点,则实数m 的取值范围是 .四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.(本小题满分10分)已知椭圆的焦点为126,06,0F F -(),(),且该椭圆过点P (5,2).(1)求椭圆的标准方程;(2)若椭圆上的点M (x 0,y 0)满足12MF MF ⊥,求y 0的值.18. (本小题满分12分)设n S 是等差数列{}n a 的前n 项和,n n S b n=(1)证明:数列{}n b 是等差数列;(2)当74a = ,155b = 时,求数列{}n b 的前n 项和n T .19.(本小题满分12分)已知两直线042:1=+-y x l ,0534:2=++y x l (1)求直线1l 和2l 的交点P 的坐标;(2)若过点P 作圆()1222+=+-m y m x 的切线有两条,求m 的取值范围;(3)若直线062=-+y ax 与1l ,2l 不能构成三角形,求实数a 的值.20.(本小题满分12分)已知圆C 的圆心在直线220x y --=上,且圆C 过点(3,1),(6,4).(1)求圆C 的标准方程;(2)过点(1,1)P 的直线l 与圆C 相交于A ,B 两点,当AB =l 的方程.21.(本小题满分12分)在平面直角坐标系xOy 中,圆C 的方程()1222=-+y x ,设直线l 的方程为kx y =(1)若过点A(1,4)的直线与圆C 相切,求切线的方程;(2)已知直线l 与圆C 相交于A ,B 两点.若A 是OB 的中点,求直线l 的方程;(3)当21=k 时,点P 在直线l 上,过P 作圆C 的切线PM ,切点为M ,问经过C M P ,,的圆是否过定点?如果过定点,求出所有定点的坐标.22.(本小题满分12分)在平面直角坐标系xOy 中,已知动点M 到点(2,0)F 的距离是到直线32x =.(1)求点M 的轨迹方程;(2)设(1,0)P ,直线()3x t t =≠与M 的轨迹方程相交于,A B 两点,若直线BP 与M 的轨迹方程交于另一个点C ,证明:直线AC 过定点.2023年秋学期期中考试高二数学参考答案一、选择题:1.A2. C3. D4. C5. B6. B7. D8. C9. ,A C 10. ,,A B D 11. ,,A C D 12. ,,A C D13.450x y --= 14 .5,122,2n n a n n =⎧=⎨+≥⎩ 15.2± 16.⎛⎫⎛ ⎪ ⎪ ⎝⎭⎝ 17.18.解:(1)设等差数列的公差为d1(1)2n n n S na d -=+1122n n S d d b a d n a n ===+-12n n d b b +-=为常数所以数列{}n b 是等差数列………………6分(2)71464a a d =⇒+=151575b a d =⇒+=12,1a d ∴=-=52n n b -∴=294n n n T -∴=………………12分19.(1)联立方程组240243501x y x x y y -+==-⎧⎧⇒⎨⎨++==⎩⎩()P -2,1\………………3分(2)点P 在圆外,()222211m m ∴--+>+m>-1\………………6分(3) 若直线062=-+y ax 与1l ,2l 不能构成三角形31323l l l l l P或或过点8a 1a a 23=-==-或或 ………………12分(每个答案2分)20.解(1)设圆的标准方程为()()222x a y b r -+-=()()2222222203(3)(1)4364a b a a b r b r a b r ⎧--==⎧⎪⎪⎪-+-=⇒=⎨⎨⎪⎪=⎩-+-=⎪⎩圆的标准方程为()()22349x y -+-= ………………6分(2)当直线l 的斜率不存在时,直线方程为1x =,符合题设………………8分当直线l 斜率存在时,设为1(1)10y k x kx y k -=---+=即d 2=Q 512k ∴=:51270l x y -+= ………………11分综上,符合条件的直线有2条,分别为1x =或512+70x y -=.………………12分21. (1) 当直线l 斜率不存在时,直线方程为1x =,符合题设;当直线l 斜率存在时,设为4(1)40y k x kx y k -=---+=即d 1=Q k-2\=3k L :3x-4y 1304\=\+=综上,符合条件的直线有2条,分别为1x =或34+130x y -=.………………4分(2)设00(,)A x y 则00(2,2)B x y ()()22002200(2)12221x y x y ⎧+-=⎪⎨+-=⎪⎩解得0098x y ⎧=⎪⎪⎨⎪=⎪⎩:l y x =………………8分(3)设m P (2,m )过P,M,C 的圆方程:()()()220x x m y m y -+--=()222220x y y m x y +--+-=2220220x y y x y ⎧+-=⎨+-=⎩解得405225x x y y ⎧=⎪=⎧⎪⎨⎨=⎩⎪=⎪⎩或恒过定点()0,2,4255⎛⎫⎪⎝⎭,………………12分22.解:(1)设点(,)M xy 32=2213x M y ∴-=点的轨迹方程 ………………4分(2)由题意;直线BP 的斜率不为零,设直线BP 的方程为1x my =+,11(,)B x y ,()22,C x y ,()11,A x y -,联立22131x y x my ⎧-=⎪⎨⎪=+⎩消去x 整理得()223220m y my -+-=,2300m -≠∆>且,12122222,33m y y y y m m +=-=---………………8分直线AC 的方程为211121()y y y y x x x x ++=--,令0y =()122121112211212121(1)1()3my y my y x x y x y x y x x y y y y y y +++-+=+===+++直线AC 过定点(3,0) ………………12分。

人教版高一数学上学期期中考试试题及详细答案解析全文

人教版高一数学上学期期中考试试题及详细答案解析全文

人教版高一数学上学期期中考试数学试题(满分150分时间120分钟)一、单选题(12小题,每题5分)。

1.已知集合(){}{}0222>==-==x ,y x B ,x x lg y x A x,是实数集,则()A.B.C.D.以上都不对2.下列函数中,是偶函数且在上为减函数的是()A.2xy = B.xy -=2C.2-=x y D.3xy -=3.下列各组函数中,表示同一函数的是()A.2xy =和()2x y =B.()12-=x lg y 和()()11-++=x lg x lg y C.2x log y a =和xlog y a 2= D.x y =和xa alog y =4.已知3110220230...c ,b ,.log a ===,则c ,b ,a 的大小关系是()A.cb a << B.b ac << C.bc a << D.ac b <<5.在同一直角坐标系中,函数()()()x log x g ,x x x f a a=≥=0的图像可能是()A. B. C. D.6.若132=log x ,则x x 93+的值为()A.3B.C.6D.7.函数()x x x f 31+-=的单调递增区间是()A.B.C.D.8.某同学求函数()62-+=x x ln x f 零点时,用计算器算得部分函数值如下表所示:则方程062=-+x x ln 的近似解(精确度0.1)可取为()A.2.52B.2.625C.2.66D.2.759.函数()xx lg x f 1-=的零点所在的区间是()A.(0,1)B.(1,10)C.(10,100)D.(100,+∞)10.已知函数()2211xxx f -+=,则有()A.()x f 是奇函数,且()x f x f -=⎪⎭⎫⎝⎛1 B.()x f 是奇函数,且()x f x f =⎪⎭⎫⎝⎛1C.()x f 是偶函数,且()x f x f -=⎪⎭⎫⎝⎛1 D.()x f 是偶函数,且()x f x f =⎪⎭⎫⎝⎛111.如图,向放在水槽底部的烧杯注水(流量一定),注满烧杯后,继续注水,直至注满水槽,水槽中水面上升高度h 与注水时间t 之间的函数关系,大致是()A. B. C. D.12.已知函数()⎪⎩⎪⎨⎧>+-≤<=0621100x ,x x x ,x lg x f ,若a ,b ,c 均不相等,且()()()c f b f a f ==,则abc的取值范围是A.(1,10)B.(5,6)C.(10,12)D.(20,24)二、填空题(4小题,每题5分)13.若对数函数()x f 与幂函数()x g 的图象相交于一点(2,4),则()()=+44g f ________.14.对于函数f (x )的定义域中任意的x 1,x 2(x 1≠x 2),有如下结论:①f (x 1+x 2)=f (x 1)f (x 2);②f (x 1x 2)=f (x 1)+f (x 2);③()()02121>--x x x f x f .当f (x )=e x 时,上述结论中正确结论的序号是______.15.已知3102==b,lg a ,用a,b 表示=306log _____________.16.设全集{}654321,,,,,U =,用U 的子集可表示由10,组成的6位字符串,如:{}42表示的是第2个字符为1,第4个字符为1,其余均为0的6位字符串010100,并规定空集表示的字符串为000000.(1)若,则M C U 表示6位字符串为_____________.(2)若,集合表示的字符串为101001,则满足条件的集合的个数为____个.三、解答题。

人教版高二上学期期中考试数学试题与答案解析(共两套)

人教版高二上学期期中考试数学试题与答案解析(共两套)

人教版高二上学期期中考试数学试题(一) (本卷满分150分,考试时间120分钟)测试范围:选择性必修第一册:第一章、第二章、第三章一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一个选项是符合题目要求的.1.已知两个非零向量)(111z y x a ,,=,)(222z y x b ,,=,则这两个向量在一条直线上的充要条件是( )。

A 、||||b b a a ::= B 、212121z z y y x x == C 、0212121=++z z y y x x D 、存在非零实数k ,使b k a =2.已知焦点在x 轴上的双曲线的焦距为32,焦点到渐近线的距离为2,则双曲线的方程为( )。

A 、1222=-y xB 、1222=-y xC 、1222=-x y D 、1222=-x y3.若直线m my x +=+2与圆012222=+--+y x y x 相交,则实数m 的取值范围为( )。

A 、)(∞+-∞, B 、)0(,-∞ C 、)0(∞+, D 、)0()0(∞+-∞,, 4.点)24(-,P 与圆422=+y x 上任一点连线的中点的轨迹方程是( )。

A 、1)1()2(22=++-y x B 、4)1()2(22=++-y x C 、1)1()2(22=-++y x D 、4)2()4(22=-++y x5.若P 、Q 分别为直线01243=-+y x 与0586=++y x 上任意一点,则||PQ 的最小值为( )。

A 、59 B 、1029 C 、518 D 、5296.已知椭圆C :12222=+b y a x (0>>b a )的左焦点1F ,过点1F 作倾斜角为 30的直线与圆222b y x =+相交的弦长为b 3,则椭圆的离心率为( )。

A 、21 B 、22 C 、43 D 、237.已知点1F 是抛物线C :py x 22=的焦点,点2F 为抛物线C 的对称轴与其准线的交点,过2F 作抛物线C 的切线,切点为A ,若点A 恰好在以1F 、2F 为焦点的双曲线上,则双曲线的离心率为( )。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2017学年度第一学期高二数学(理科)试题
第I 卷(选择题,共60分)
一、选择题:本大题12个小题,每小题5分,共60分。

1
1
1的等比中项是
A .1
B .1-
C .1±
D .
12
2.设,x y 满足约束条件12x y y x y +≤⎧⎪
≤⎨⎪≥-⎩
,则3z x y =+的最大值为( )
A . 5 B. 3 C. 7 D. -8
3.在ABC ∆
中,4
a b B π
===
,则A 等于
A .6π
B .3π
C .6π或56π
D .3
π或23π
4.对于任意实数,,,a b c d ,命题①若,0a b c >≠,则ac bc >;②若a b >,则22
ac bc >;
③若22
ac bc >,则a b >;④若,a b >则
11
a b
<;⑤若0,a b c d >>>,则ac bd > 其中真命题的个数是
A .1
B .2
C .3
D .4
5.如果不等式2
(1)210m x mx m ++++>对任意实数x 都成立,则实数m 的取值范围是 A .1m >- B .112
m -<<- C .12m >-
D .1m <-或12
m >- 6.已知等比数列{}n a 的公比为正数,且2
39522,1a a a a ⋅==,则1a 等于
A .
12 B
.2 7.已知A 船在灯塔C 北偏东85︒
且A 到C 的距离为2km ,B 船在灯塔C 西偏北25︒
且B 到C
,则,A B 两船的距离为
A

..
8.已知{}n a 为等差数列,135246105,99a a a a a a ++=++=,则20a 等于 A .1 B .1- C .3 D .7
9.ABC ∆中,2,3
BC B π
==
,当ABC ∆
的面积等于
2
时,sin C 等于 A
.12 C
D
10.已知0,0m n >>
,则
11
m n
++ A .5 B .4 C .
.2
11.已知ABC ∆中,sin sin sin (cos cos ),A B C A B +=+则ABC ∆的形状是
A .锐角三角形
B .钝角三角形
C .等腰三角形
D .直角三角形
12.某企业生产甲、乙两种产品,已知生产每吨甲产品要用A 原料3吨、B 原料2吨;生产每吨乙产品要用A 原料1吨、B 原料3吨,销售每吨甲产品可获得利润5万元、每吨乙产品可获得利润3万元,若该企业在一个生产周期内消耗A 原料不超过13吨、B 原料不超过18吨,那么该企业可获得最大利润是
A .27万元
B .25万元
C .20万元
D .12万元
第II 卷(非选择题 共90分)
二、填空题:本大题共4小题,每小题5分,共20分,把答案填在横线上。

13.设变量x 、y 满足约束条件⎪⎩
⎪⎨
⎧≥+-≥-≤-1
12
2y x y x y x ,则13
++=x y z 的最大值为
14.若关于,x y 的方程组2
5x y xy k
+=⎧⎨
=⎩有实数解,则k 的取值范围是______________。

15.两等差数列}{n a 和}{n b ,前n 项和分别为n n T S ,,且,3
27++=n n T S n n 则15
7202b b a a ++等于 。

16.在一次珠宝展览会上,某商家展出一套珠宝首饰,第一件首饰是1颗珠宝,第二件首饰是由6颗珠宝构成如图1所示的正六边形,第三件首饰是由15颗珠宝构成如图2所示的正六边形,第四件首饰是由28颗珠宝构成如图3所示的正六边形,第五件首饰是由45颗珠宝构成如图4所示的正六边形,以后每件首饰都在前一件上,按照这种规律增加一定数量的珠宝,使它构成更大的正六边形,依此推断第6件首饰上应有珠宝的颗数为___________。

三、解答题:本大题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤。

17.(10分若不等式0252>-+x ax 的解集是⎭
⎬⎫
⎩⎨⎧<<221x x ,
(1) 求a 的值;(2) 求不等式01522>-+-a x ax 的解集.
18.(本小题满分12分) 已知函数9
()(3)3
f x x x x =+
>- (I )求函数()f x 的最小值; (II )若不等式()71
t
f x t ≥++恒成立,求实数t 的取值范围。

19.(本小题满分12分)
在ABC ∆中,,,a b c 分别是,,A B C ∠∠∠A = (I )若222
a c
b mb
c -=-,求实数m 的值;
(II )若a =ABC ∆面积的最大值。

20.(本小题满分12分)
已知数列{}n a 的前n 项和为n S ,点(,)n n S 在函数()21x f x =-的图象上,数列{}n b 满足
2log 12()n n b a n N *=-∈。

(I )求数列{}n a 的通项公式;
(II )当数列{}n b 的前n 项和最小时,求n 的值;
(III )设数列{}n b 的前n 项和为n T ,求不等式n n T b <的解集。

21.(本小题满分12分)
如图所示,一辆汽车从O 点出发,沿海岸线一条直线公路以100千米/小时的速度向东匀速行驶,汽车开动时,在距O 点500千米,且与海岸线距离400千米的海面上M 点处有一艘快艇与汽车同时出发,要把一件重要物品送给这辆汽车司机。

该快艇至少以多大的速度行驶,才能将物品送到汽车司机手中?并求出快艇所行驶的距离。

22.(本小题满分12分) 已知数列{}n a 是等差数列,256,18a a ==;数列{}n b 的前n 项和是n T ,且1
12
n n T b +=。

(I )求证:数列{}n b 是等比数列;
(II )记n n n c a b =⋅,设{}n c 的前n 项和n S ,求证:4n S <。

相关文档
最新文档