2019-2020年浙教版七年级数学上册期末复习测试卷 (572)
浙教版2019-2020学年七年级(上)期末数学综合复习试题(解析版)

浙教版2019-2020学年七年级(上)期末数学综合复习试题一、选择题(本大题共10小题,每小题3分,共30分)1.下面几何图形中,是棱柱的是()A.B.C.D.2.某同学集合在假期每天做6道数学题,超过的题数记为正数,不足的题数记为负数,十天中做题记录如下:﹣3,5,﹣4,2,﹣1,1,0,﹣3,8,7,那么他十天共做了数学题()A.70道B.71道C.72道D.73题3.我国倡导的“一带一路”建设将促进我国与世界一些国家的互利合作,根据规划“一带一路”地区覆盖总人口为4 400 000 000人,这个数用科学记数法表示为()A.44×108B.4.4×108C.4.4×109D.4.4×10104.如图,共有线段()A.3条B.4条C.5条D.6条5.把方程﹣去分母,正确的是()A.3x﹣(x﹣1)=1B.3x﹣x﹣1=1C.3x﹣x﹣1=6D.3x﹣(x﹣1)=6 6.如图是一块手表,早上8时的时针、分针的位置如图所示,那么分针与时针所成的角的度数是()A.60°B.80°C.120°D.150°7.已知x=3是关于x的方程:4x﹣a=3+ax的解,那么a的值是()A.2B.C.3D.8.下列生活或生产现象中,可用公理“两点之间,线段最短”来解释的现象有()A.用两个钉子就可以把木条固定在墙上B.把弯曲的公路改直,就能缩短路程C.植树时,只要定出两棵树的位置,就能确定同一行树所在的直线D.以上说法都不能用此公理解释9.已知等式3a=2b+5,则下列等式中不一定成立的是()A.3a﹣5=2b B.3a+1=2b+6C.3ac=2bc+5D.a=10.已知整数a1,a2,a3,a4,…满足下列条件:a1=0,a2=﹣|a1+1|,a3=﹣|a2+2|,a4=﹣|a3+3|,……以此类推,则a2018的值为()A.﹣1007B.﹣1008C.﹣1009D.﹣2018二、填空题(本大题共6小题,每小题4分,共24分)11.计算:﹣3÷×2=.12.已知2a﹣3b=7,则8+6b﹣4a=.13.如图,OC为∠AOB内部的一条射线,若∠AOB=100°,∠1=26°48′,则∠2=.14.如图,已知线段AB=16cm,点M在AB上,AM:BM=1:3,P,Q分别为AM,AB 的中点,则PQ的长为.15.当x=1时,多项式ax2+bx+1=3,则多项式3(2a﹣b)﹣(5a﹣4b)的值为.16.商店为了促销某种商品,将定价为3元的商品以下列方式优惠销售:若购买不超过5件,按原价付款;若一次性购买5件以上,超过部分打八折.小华买了n件该商品共付了27元,则n的值是.三、解答题(本大题共8小题,满分66分)17.(8分)计算:(1)(﹣7)÷×(﹣)×;(2)1﹣2x+(﹣x)﹣(1﹣)18.(8分)解下列方程:(1)x﹣3=x+1 (2)2x﹣(x+3)=﹣x+319.(8分)先化简,再求值:﹣5ab+2[3ab﹣(4ab2+ab)]﹣5ab2,其中a=﹣2,b=.20.(8分)甲、乙两站相距480公里,一列慢车从甲站开出,每小时行90公里,一列快车从乙站开出,每小时行140公里.两车同时开出同向而行,快车在慢车的后面,多少小时后快车追上慢车?21.(8分)一个检修小组从A地出发,在东西方向的马路上检修线路,如果规定向东行驶为正,向西行驶为负,某天行车里程(单位:千米)依先后次序记录如下:﹣4,+7,﹣9,+8,+6,﹣5,﹣2.(1)请问收工时检修小组离A地多远?在A地的什么方向?(2)若每千米耗油0.1升,请问这天共耗油多少升?22.(9分)小明解方程时,由于粗心大意,在去分母时,方程左边的1没有乘以10,由此求得的解为x=4,试求a的值,并正确地求出方程的解.23.(10分)如图,直线AB与CD相交于点O,OF,OD分别是∠AOE,∠BOE的平分线.(1)写出∠DOE的补角;(2)若∠BOE=62°,求∠AOD和∠EOF的度数;(3)试求∠DOF的度数.24.(10分)先观察下列各式的规律,然后解答后面的问题:第1个式子:=1﹣;第2个式子:=﹣;第3个式子:=﹣;……(1)由上面的规律可得出结论:=﹣.(2)已知|ab﹣2|+|a﹣1|=0,求:++…+的值.浙教版2019-2020学年七年级(上)期末数学综合复习试题参考答案及试题解析一、选择题(本大题共10小题,每小题3分,共30分)1.下面几何图形中,是棱柱的是()A.B.C.D.【解答】解:棱柱的侧面应是四边形,符合这个条件的只有选项B.故选:B.2.某同学集合在假期每天做6道数学题,超过的题数记为正数,不足的题数记为负数,十天中做题记录如下:﹣3,5,﹣4,2,﹣1,1,0,﹣3,8,7,那么他十天共做了数学题()A.70道B.71道C.72道D.73题【解答】解:10×6+(﹣3+5﹣4+2﹣1+1+0﹣3+8+7)=60+12=72.故选:C.3.我国倡导的“一带一路”建设将促进我国与世界一些国家的互利合作,根据规划“一带一路”地区覆盖总人口为4 400 000 000人,这个数用科学记数法表示为()A.44×108B.4.4×108C.4.4×109D.4.4×1010【解答】解:将4400000000用科学记数法表示为:4.4×109.故选:C.4.如图,共有线段()A.3条B.4条C.5条D.6条【解答】解:线段AB、AC、AD、BC、BD、CD共六条,也可以根据公式计算,=6,故选D.5.把方程﹣去分母,正确的是()A.3x﹣(x﹣1)=1B.3x﹣x﹣1=1C.3x﹣x﹣1=6D.3x﹣(x﹣1)=6【解答】解:方程两边同时乘以6得:3x﹣(x﹣1)=6.故选:D.6.如图是一块手表,早上8时的时针、分针的位置如图所示,那么分针与时针所成的角的度数是()A.60°B.80°C.120°D.150°【解答】解:根据图形,8点整分针与时针的夹角正好是(12﹣8)×30°=120度.故选:C.7.已知x=3是关于x的方程:4x﹣a=3+ax的解,那么a的值是()A.2B.C.3D.【解答】解:把x=3代入方程得12﹣a=3+3a,移项,得﹣a﹣3a=3﹣12,合并同类项得﹣4a=﹣9,系数化成1得a=.故选:B.8.下列生活或生产现象中,可用公理“两点之间,线段最短”来解释的现象有()A.用两个钉子就可以把木条固定在墙上B.把弯曲的公路改直,就能缩短路程C.植树时,只要定出两棵树的位置,就能确定同一行树所在的直线D.以上说法都不能用此公理解释【解答】解:A、用两个钉子就可以把木条固定在墙上是利用了“两点确定一条直线”,故本选项错误;B、把弯曲的公路改直,就能缩短路程是利用了“两点之间线段最短”,故本选项正确;C、植树时,只要定出两棵树的位置,就能确定同一行树所在的直线是利用了“两点确定一条直线”,故本选项错误;D、因为B选项可以解释,故本选项错误.故选:B.9.已知等式3a=2b+5,则下列等式中不一定成立的是()A.3a﹣5=2b B.3a+1=2b+6C.3ac=2bc+5D.a=【解答】解:A、根据等式的性质1可知:等式的两边同时减去5,得3a﹣5=2b;B、根据等式性质1,等式的两边同时加上1,得3a+1=2b+6;D、根据等式的性质2:等式的两边同时除以3,得a=;C、当c=0时,3ac=2bc+5不成立,故C错.故选:C.10.已知整数a1,a2,a3,a4,…满足下列条件:a1=0,a2=﹣|a1+1|,a3=﹣|a2+2|,a4=﹣|a3+3|,……以此类推,则a2018的值为()A.﹣1007B.﹣1008C.﹣1009D.﹣2018【解答】解:a1=0,a2=﹣|a1+1|=﹣|0+1|=﹣1,a3=﹣|a2+2|=﹣|﹣1+2|=﹣1,a4=﹣|a3+3|=﹣|﹣1+3|=﹣2,a5=﹣|a4+4|=﹣|﹣2+4|=﹣2,a6=﹣|a5+5|=﹣|﹣2+5|=﹣3,a7=﹣|a6+6|=﹣|﹣3+6|=﹣3,…以此类推,经过前几个数字比较后发现:从第二个数字开始,如果顺序数为偶数,最后的数值是其顺序数的一半的相反数,即a2n=﹣n,则a2018=﹣=﹣1009,故选:C.二、填空题(本大题共6小题,每小题4分,共24分)11.计算:﹣3÷×2=﹣12.【解答】解:﹣3÷×2=﹣3×2×2=﹣12.故答案为:﹣12.12.已知2a﹣3b=7,则8+6b﹣4a=﹣6.【解答】解:∵2a﹣3b=7,∴8+6b﹣4a=8﹣2(2a﹣3b)=8﹣2×7=﹣6,故答案为:﹣6.13.如图,OC为∠AOB内部的一条射线,若∠AOB=100°,∠1=26°48′,则∠2=73°12′.【解答】解:∵∠AOB=100°,∠1=26°48′,∴∠2=100°﹣26°48′=73°12′.故答案为:73°12′14.如图,已知线段AB=16cm,点M在AB上,AM:BM=1:3,P,Q分别为AM,AB 的中点,则PQ的长为6cm.【解答】解:∵AB=16cm,AM:BM=1:3,∴AM=4cm.BM=12cm,∵P,Q分别为AM,AB的中点,∴AP=AM=2cm,AQ=AB=8cm,∴PQ=AQ﹣AP=6cm;故答案为:6cm.15.当x=1时,多项式ax2+bx+1=3,则多项式3(2a﹣b)﹣(5a﹣4b)的值为2.【解答】解:∵当x=1时,多项式ax2+bx+1=a+b+1=3,∴a+b=2,3(2a﹣b)﹣(5a﹣4b)=6a﹣3b﹣5a+4b=a+b=2.故答案为:2.16.商店为了促销某种商品,将定价为3元的商品以下列方式优惠销售:若购买不超过5件,按原价付款;若一次性购买5件以上,超过部分打八折.小华买了n件该商品共付了27元,则n的值是10.【解答】解:∵27>5×3,∴27元可购买的商品一定超过了5件,设买了n件.5×3+(n﹣5)×3×0.8=27,2.4n=24,n=10,故答案是:10.三、解答题(本大题共8小题,满分66分)17.(8分)计算:(1)(﹣7)÷×(﹣)×;(2)1﹣2x+(﹣x)﹣(1﹣)【解答】解:(1)(﹣7)÷×(﹣)×;=(﹣7)×3×(﹣)×=10;(2)1﹣2x+(﹣x)﹣(1﹣)=1﹣2x﹣x﹣1+=﹣x.18.(8分)解下列方程:(1)x﹣3=x+1(2)2x﹣(x+3)=﹣x+3【解答】解:(1)去分母得:2x﹣6=3x+2,移项合并得:﹣x=8,解得:x=﹣8;(2)去分母得:6x﹣2x﹣6=﹣3x+9,移项合并得:7x=15,解得:x=.19.(8分)先化简,再求值:﹣5ab+2[3ab﹣(4ab2+ab)]﹣5ab2,其中a=﹣2,b=.【解答】解:﹣5ab+2[3ab﹣(4ab2+ab)]﹣5ab2=﹣5ab+6ab﹣8ab2+ab﹣5ab2=﹣13ab2,当a=﹣2,b=时,原式=.20.(9分)甲、乙两站相距480公里,一列慢车从甲站开出,每小时行90公里,一列快车从乙站开出,每小时行140公里.两车同时开出同向而行,快车在慢车的后面,多少小时后快车追上慢车?【解答】解:设x小时后快车追上慢车,由题意得:140x﹣90x=480,解得:x=9.6,答:9.6小时后快车追上慢车.21.(9分)一个检修小组从A地出发,在东西方向的马路上检修线路,如果规定向东行驶为正,向西行驶为负,某天行车里程(单位:千米)依先后次序记录如下:﹣4,+7,﹣9,+8,+6,﹣5,﹣2.(1)请问收工时检修小组离A地多远?在A地的什么方向?(2)若每千米耗油0.1升,请问这天共耗油多少升?【解答】解:(1)根据正负数的运算法则,把一天行驶记录相加即可得到收工时检修小组离A地的距离,在A地的哪个方向,即﹣4+7﹣9+8+6﹣5﹣2=1,故收工时检修小组离A地1千米,在A地的东方.(2)每次记录的绝对值的和×0.2就是这天中的耗油量,即|﹣4|+|7|+|﹣9|+|8|+|6|+|﹣5|+|﹣2|=41千米,41×0.1=4.1升.故这辆汽车共耗油4.1升.22.(9分)小明解方程时,由于粗心大意,在去分母时,方程左边的1没有乘以10,由此求得的解为x=4,试求a的值,并正确地求出方程的解.【解答】解:∵去分母时,只有方程左边的1没有乘以10,∴2(2x﹣1)+1=5(x+a),把x=4代入上式,解得a=﹣1.原方程可化为:,去分母,得2(2x﹣1)+10=5(x﹣1)去括号,得4x﹣2+10=5x﹣5移项、合并同类项,得﹣x=﹣13系数化为1,得x=13故a=﹣1,x=13.23.(9分)如图,直线AB与CD相交于点O,OF,OD分别是∠AOE,∠BOE的平分线.(1)写出∠DOE的补角;(2)若∠BOE=62°,求∠AOD和∠EOF的度数;(3)试求∠DOF的度数.【解答】解:(1)∠DOE的补角为∠COE,∠AOD,∠BOC;(2)因为OD是∠BOE平分线,且∠BOE=62°,所以=31°,所以∠AOD=180°﹣∠BOD=149°.因为∠AOE=180°﹣∠BOE=118°,OF是∠AOE的平分线,所以=59°;(3)因为OF,OD分别是∠AOE,∠BOE的平分线,所以∠DOF=∠DOE+∠EOF===×180°=90°.24.(9分)先观察下列各式的规律,然后解答后面的问题:第1个式子:=1﹣;第2个式子:=﹣;第3个式子:=﹣;……(1)由上面的规律可得出结论:=﹣.(2)已知|ab﹣2|+|a﹣1|=0,求:++…+的值.【解答】解:(1)由上面的规律可得:=﹣故答案为:﹣;(2)∵|ab﹣2|+|a﹣1|=0∴ab﹣2=0,a﹣1=0∴a=1,b=2∴++…+=++…+=1﹣+﹣+…+﹣=1﹣=。
2019-2020学年度第一学期浙教版七年级数学期末考试题(附答案)

2019-2020学年度第一学期浙教版七年级数学期末考试题(附答案)姓名:__________ 班级:__________考号:__________一、单选题(共10题;共30分)1.下列几种说法正确的是()A. 一定是负数B. 一个有理数的绝对值一定是正数C. 倒数是本身的数为1D. 0的相反数是02.根据全国第六次人口普查统计,湖州市常住人口约为2890000人,近似数2890000用科学记数法可表示为()A. 2.89×104B. 2.89×105C. 2.89×106D. 2.89×1073.25的算术平方根是()A. 5B. ﹣5C. ±5D.4.“x的与y的和”用代数式可以表示为A. B. C. D.5.化简的结果是()A. B. C. D.6.已知x=3y+5,且x2-7xy+9y2=24,则x2y-3xy2的值为( )A. 0B. 1C. 5D. 127.如图,AB∥CD,AG平分∠BAC,∠ECF=70°,则∠FAG的度数是( )A. 145°B. 155°C. 110°D. 35°8.下列判断错误的是()A. 若,则B. 若,则C. 若,则D. 若,则9.如图,已知线段EF=3,线段MN=4,线段AB=11,用圆规在线段AB上截取AC=EF,BD=MN,P是线段CD 的中点,则AP的长度为()A. 4B. 5C. 5.5D. 610.圆柱形水杯和杯中水面的高度如图8-1,放入3个同样的小玻璃球后水面高度如图8-2.若使水杯中有水溢出,则至少需放入小球( )A. 9个B. 10个C. 12个D. 16个二、填空题(共6题;共24分)11.如图,数轴上点A、B、C分别表示有理数a、b、c,若a、b、c三个数的乘积为正数,这三个数的和与其中一个数相等,则b________0.12.大于且小于的所有整数是__.13.单项式-2x2y的系数是________。
浙教版七年级(上)期末数学试卷(含解析)1

浙教版七年级(上)期末数学试卷一、选择题:本大题有10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一个选项是符合题目要求的.1.(3分)﹣的绝对值是()A.B.﹣C.7D.﹣72.(3分)下列各数中,属于无理数的是()A.3.14159B.C.D.2π3.(3分)已知某冰箱冷藏室的温度为5℃,冷冻室的温度比冷藏室的温度要低15℃,则冷冻室的温度为()A.10℃B.﹣10℃C.20℃D.﹣20℃4.(3分)用四舍五入法把106.49精确到个位的近似数是()A.107B.107.0C.106D.106.55.(3分)下列各组数比较大小,判断正确的是()A.﹣6>﹣4B.﹣3>+1C.﹣9>0D.6.(3分)下列计算正确的是()A.5a﹣2a=3B.2a+3b=5abC.3a+2a=5a2D.﹣3ab+ba=﹣2ab7.(3分)估计的大小应在()A.3.5与4之间B.4与4.5之间C.4.5与5之间D.5与5.5之间8.(3分)今年父亲的年龄是儿子年龄的3倍,5年前父亲的年龄比儿子年龄的4倍还大1岁,设今年儿子x岁,则可列方程为()A.4x+1+5=3(x+5)B.3x﹣5=4(x﹣5)+1C.3x+5=4(x+5)+1D.4x﹣5=3(x﹣5)+19.(3分)点A,B,C,D在数轴上的位置如图所示,点A,D表示的数是互为相反数,若点B所表示的数为a,AB=2,则点D所表示的数为()A.2﹣a B.2+a C.a﹣2D.﹣a﹣210.(3分)已知有理数a≠1,我们把称为a的差倒数,如:2的差倒数是=﹣1,﹣2的差倒数是,如果a1=﹣4,a2是a1的差倒数,a3是a2的差倒数,a4是a3的差倒数,…以此类推,则a1+a2+a3+a4+…+a61的值是()A.﹣55B.55C.﹣65D.65二、填空题:本题有6个小题,每小题4分,共24分.11.(4分)单项式﹣2ab2的系数是,次数是.12.(4分)太阳中心的温度可达15500000℃,数据15500000用科学记数法表示为.13.(4分)计算:=,=.14.(4分)若∠α=25°42′,则它余角的度数是.15.(4分)如图,有一个盛有水的正方体玻璃容器,从内部量得它的棱长为30cm,容器内的水深为8cm,现把一块长,宽,高分别为15cm,10cm,10cm的长方体实心铁块平放进玻璃容器中,容器内的水将升高cm.16.(4分)已知点A,B,C都在直线l上,点P是线段AC的中点.设AB=a,PB=b,则线段BC的长为(用含a,b的代数式表示).三、解答题:本大题有7个小题,共66分.解答应写出文字说明、证明过程或演算步骤.17.(6分)计算:(1)﹣5+7﹣8(2)18.(8分)解方程:(1)2﹣x=3x+8(2)19.(8分)如图,已知点A,B,C,D,请按要求画出图形.(1)画直线AB和射线CB;(2)连结AC,并在直线AB上用尺规作线段AE,使AE=2AC;(要求保留作图痕迹)(3)在直线AB上确定一点P,使PC+PD的和最短,并写出画图的依据.20.(10分)(1)先化简.再求值:3(a2﹣ab)﹣2(a2﹣3ab),其中a=﹣2,b=3;(2)设A=2x2﹣x﹣3,B=﹣x2+x﹣25,其中x是9的平方根,求2A+B的值.21.(10分)学校组织植树活动,已知在甲处植树的有220人,在乙处植树的有96人.(1)若要使甲处植树的人数是乙处植树人数的3倍,应从乙处调多少人去甲处?(2)为了尽快完成植树任务,现调m人去两处支援,其中90<m<100,若要使甲处植树的人数仍然是乙处植树人数的3倍,则应调往甲,乙两处各多少人?22.(12分)自2016年1月1日起,某市居民生活用水实施年度阶梯水价,具体水价标准见下表:类别水费价格(元/立方米)污水处理费(元/立方米)综合水价(元/立方米)第一阶梯≤120(含)立方米 3.5 1.55第二阶梯120~180(含)立方米5.25 1.56.75第三阶梯>180立方米10.5 1.512例如,某户家庭年用水124立方米,应缴纳水费:120x5+(124﹣120)x6.75=627(元).(1)小华家2017年共用水150立方米,则应缴纳水费多少元?(2)小红家2017年共用水m立方米(m>200),请用含m的代数式表示应缴纳的水费.(3)小刚家2017年,2018年两年共用水360立方米,已知2018年的年用水量少于2017年的年用水量,两年共缴纳水费2115元,求小刚家这两年的年用水量分别是多少?23.(12分)直线AB与直线CD相交于点O,OE平分∠BOD.(1)如图①,若∠BOC=130°,求∠AOE的度数;(2)如图②,射线OF在∠AOD内部.①若OF⊥OE,判断OF是否为∠AOD的平分线,并说明理由;②若OF平分∠AOE,∠AOF =∠DOF,求∠BOD的度数.2019-2020学年浙江省杭州市余杭区七年级(上)期末数学试卷参考答案与试题解析一、选择题:本大题有10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一个选项是符合题目要求的.1.(3分)﹣的绝对值是()A.B.﹣C.7D.﹣7【分析】绝对值的性质:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.【解答】解:根据负数的绝对值等于它的相反数,得|﹣|=.故选:A.2.(3分)下列各数中,属于无理数的是()A.3.14159B.C.D.2π【分析】直接利用有理数和有理数的定义分析得出答案.【解答】解:A、3.14159是有理数,不合题意;B、=0.3是有理数,不合题意;C、是有理数,不合题意;D、2π是无理数,符合题意;故选:D.3.(3分)已知某冰箱冷藏室的温度为5℃,冷冻室的温度比冷藏室的温度要低15℃,则冷冻室的温度为()A.10℃B.﹣10℃C.20℃D.﹣20℃【分析】用某冰箱冷藏室的温度减去冷冻室的温度比冷藏室的温度要低的温度,求出冷冻室的温度为多少即可.【解答】解:5﹣15=﹣10(℃)答:冷冻室的温度为﹣10℃.故选:B.4.(3分)用四舍五入法把106.49精确到个位的近似数是()A.107B.107.0C.106D.106.5【分析】根据近似数的精确度求解.【解答】解:用四舍五入法把106.49精确到个位的近似数是106,故选:C.5.(3分)下列各组数比较大小,判断正确的是()A.﹣6>﹣4B.﹣3>+1C.﹣9>0D.【分析】有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小,据此判断即可.【解答】解:∵﹣6<﹣4,∴选项A不符合题意;∵﹣3<+1,∴选项B不符合题意;∵﹣9<0,∴选项C不符合题意;∵﹣>﹣,∴选项D符合题意.故选:D.6.(3分)下列计算正确的是()A.5a﹣2a=3B.2a+3b=5abC.3a+2a=5a2D.﹣3ab+ba=﹣2ab【分析】根据合并同类项的法则把系数相加即可.【解答】解:A、5a﹣2a=3a,故A不符合题意;B、2a与3b不是同类项不能合并,故B不符合题意;C、3a+2a=5a,故C不符合题意;D、﹣3ab+ba=﹣2ab,故D符合题意;故选:D.7.(3分)估计的大小应在()A.3.5与4之间B.4与4.5之间C.4.5与5之间D.5与5.5之间【分析】直接利用估算无理数的方法分析得出答案.【解答】解:∵4.52=20.25,∴的大小应在4.5与5之间.故选:C.8.(3分)今年父亲的年龄是儿子年龄的3倍,5年前父亲的年龄比儿子年龄的4倍还大1岁,设今年儿子x岁,则可列方程为()A.4x+1+5=3(x+5)B.3x﹣5=4(x﹣5)+1C.3x+5=4(x+5)+1D.4x﹣5=3(x﹣5)+1【分析】设今年儿子x岁,根据五年前父亲的年龄不变,即可得出关于x的一元一次方程,此题得解.【解答】解:设今年儿子x岁,依题意,得:3x﹣5=4(x﹣5)+1.故选:B.9.(3分)点A,B,C,D在数轴上的位置如图所示,点A,D表示的数是互为相反数,若点B所表示的数为a,AB=2,则点D所表示的数为()A.2﹣a B.2+a C.a﹣2D.﹣a﹣2【分析】根据两点间的距离公式求得点A表示的数为a﹣2,由相反数的定义得到点D所表示的数.【解答】解:由题意知,点A表示的数为a﹣2,因为点A,D表示的数是互为相反数,所以点D所表示的数为2﹣a.故选:A.10.(3分)已知有理数a≠1,我们把称为a的差倒数,如:2的差倒数是=﹣1,﹣2的差倒数是,如果a1=﹣4,a2是a1的差倒数,a3是a2的差倒数,a4是a3的差倒数,…以此类推,则a1+a2+a3+a4+…+a61的值是()A.﹣55B.55C.﹣65D.65【分析】根据题意可以写出前几项,然后即可发现数字的变化规律,然后即可求得所求式子的值,本题得以解决.【解答】解:由题意可得,a1=﹣4,a2=,a3=,a4=﹣4,a5=,a6=,…,∵﹣4+==﹣,61÷3=20…1,∴a1+a2+a3+a4+…+a61=20×(﹣)+(﹣4)=﹣51+(﹣4)=﹣55,故选:A.二、填空题:本题有6个小题,每小题4分,共24分.11.(4分)单项式﹣2ab2的系数是﹣2,次数是3.【分析】单项式的次数是所含所有字母指数的和,系数就前面的数字,由此即可求解.【解答】解:单项式﹣2ab2的系数是﹣2,次数是3.故答案为:﹣2,3.12.(4分)太阳中心的温度可达15500000℃,数据15500000用科学记数法表示为 1.55×107.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将15500000用科学记数法表示为1.55×107.故答案为:1.55×107.13.(4分)计算:=5,=﹣3.【分析】根据立方根及算术平方根的定义即可得出答案.【解答】解:①由(±5)2=25得:25的算术平方根为=5,②由(﹣3)3=﹣27,所以=﹣3.故答案为:5,﹣3.14.(4分)若∠α=25°42′,则它余角的度数是64°18′.【分析】两角互为余角和为90°,据此可解此题.【解答】解:根据余角的定义得,25°42′的余角度数是90°﹣25°42′=64°18′.故答案为:64°18′.15.(4分)如图,有一个盛有水的正方体玻璃容器,从内部量得它的棱长为30cm,容器内的水深为8cm,现把一块长,宽,高分别为15cm,10cm,10cm的长方体实心铁块平放进玻璃容器中,容器内的水将升高cm.【分析】利用实心铁块浸在水中的体积等于容器中水位增加后的体积解答即可.【解答】解:铁块的体积为:15×10×10=1500(cm3),容器内的水将升高的高度为:1500÷(30×30)=(cm).故答案为:16.(4分)已知点A,B,C都在直线l上,点P是线段AC的中点.设AB=a,PB=b,则线段BC的长为a+2b 或a﹣2b或﹣a+2b.(用含a,b的代数式表示).【分析】根据点A,B,C都在直线l上,点P是线段AC的中点.设AB=a,PB=b,分三种情况即可求线段BC的长.【解答】解:∵点A,B,C都在直线l上,点P是线段AC的中点.设AB=a,PB=b,①如图BC=a+2b;②如图,BC=a﹣2b;③如图,BC=a﹣(2a﹣2b)=﹣a+2b.则线段BC的长为:a+2b或a﹣2b或﹣a+2b.故答案为:a+2b或a﹣2b或﹣a+2b.三、解答题:本大题有7个小题,共66分.解答应写出文字说明、证明过程或演算步骤.17.(6分)计算:(1)﹣5+7﹣8(2)【分析】(1)根据有理数的加减混合运算顺序和运算法则计算可得;(2)先计算乘方和括号内的减法,再计算乘除,最后计算加减可得.【解答】解:(1)原式=2﹣8=﹣6;(2)原式=36×(﹣)+×(﹣)=﹣42﹣2=﹣44.18.(8分)解方程:(1)2﹣x=3x+8(2)【分析】(1)按照解一元一次方程的步骤:移项、合并同类项、系数化为1,进行解答便可;(2)按照解一元一次方程的一般步骤进行解答便可.【解答】解:(1)﹣x﹣3x=8﹣2﹣4x=6x=﹣1.5;(2)12x﹣3(3x﹣1)=2x12x﹣9x+3=2x12x﹣9x﹣2x=﹣3x=﹣3.19.(8分)如图,已知点A,B,C,D,请按要求画出图形.(1)画直线AB和射线CB;(2)连结AC,并在直线AB上用尺规作线段AE,使AE=2AC;(要求保留作图痕迹)(3)在直线AB上确定一点P,使PC+PD的和最短,并写出画图的依据.【分析】(1)画直线AB和射线CB即可;(2)连结AC,并在直线AB上用尺规作线段AE,使AE=2AC即可;(3)在直线AB上确定一点P,使PC+PD的和最短.【解答】解:如图所示,(1)直线AB和射线CB即为所求作的图形;(2)连结AC,并在直线AB上用尺规作线段AE,使AE=2AC;(3)在直线AB上确定一点P,使PC+PD的和最短.20.(10分)(1)先化简.再求值:3(a2﹣ab)﹣2(a2﹣3ab),其中a=﹣2,b=3;(2)设A=2x2﹣x﹣3,B=﹣x2+x﹣25,其中x是9的平方根,求2A+B的值.【分析】(1)原式去括号合并得到最简结果,把a与b的值代入计算即可求出值;(2)把A与B代入2A+B中,去括号合并得到最简结果,求出x的值,代入计算即可求出值.【解答】解:(1)原式=3a2﹣3ab﹣a2+6ab=2a2+3ab,当a=﹣2,b=3时,原式=8﹣18=﹣10;(2)∵A=2x2﹣x﹣3,B=﹣x2+x﹣25,∴2A+B=2(2x2﹣x﹣3)+(﹣x2+x﹣25)=4x2﹣2x﹣6﹣x2+x﹣25=3x2﹣x﹣31,由x是9的平方根,得到x=3或﹣3,当x=3时,原式=27﹣3﹣31=﹣7;当x=﹣3时,原式=27+3﹣31=﹣1.21.(10分)学校组织植树活动,已知在甲处植树的有220人,在乙处植树的有96人.(1)若要使甲处植树的人数是乙处植树人数的3倍,应从乙处调多少人去甲处?(2)为了尽快完成植树任务,现调m人去两处支援,其中90<m<100,若要使甲处植树的人数仍然是乙处植树人数的3倍,则应调往甲,乙两处各多少人?【分析】(1)设应从乙处调x人去甲处,根据等量关系甲处植树的人数=3×乙处植树人数列出方程,再解即可;(2)设调往乙处y人,则调往甲处(m﹣y)人,由题意得等量关系:在甲处植树的人数=3×在乙处植树的人数,根据等量关系列出方程,再解即可.【解答】解:(1)设应从乙处调x人去甲处,则3(96﹣x)=220+x解得x=17;答:应从乙处调17人去甲处;(2)设调往乙处y人,则调往甲处(m﹣y)人,则3(96+y)=220+y+my=17+0.25m因为y是正整数,且90<m<100,所以m=92或m=96.当m=92时,调往甲处96人,调往乙处6人.当m=96时,调往甲处89人,调往乙处7人.22.(12分)自2016年1月1日起,某市居民生活用水实施年度阶梯水价,具体水价标准见下表:类别水费价格污水处理费综合水价(元/立方米)(元/立方米)(元/立方米)第一阶梯≤120(含)立方米 3.5 1.555.25 1.56.75第二阶梯120~180(含)立方米第三阶梯>180立方米10.5 1.512例如,某户家庭年用水124立方米,应缴纳水费:120x5+(124﹣120)x6.75=627(元).(1)小华家2017年共用水150立方米,则应缴纳水费多少元?(2)小红家2017年共用水m立方米(m>200),请用含m的代数式表示应缴纳的水费.(3)小刚家2017年,2018年两年共用水360立方米,已知2018年的年用水量少于2017年的年用水量,两年共缴纳水费2115元,求小刚家这两年的年用水量分别是多少?【分析】(1)根据表格中规定的分段计算方法列式计算可得;(2)利用总价=单价×数量,结合阶梯水价,即可得出结论;(3)设2017年用水x立方米,则2018年用水(360﹣x)立方米.根据两年共缴纳水费2115元即可得出关于x 的一元一次方程,解之即可得出结论【解答】解:(1)小华家2017年应缴纳水费为120×5+(150﹣120)×6.75=802.5(元).答:小华家2017年应缴纳水费802.5元;(2)小红家2017年共用水m立方米(m>200),则应缴纳的水费为:120×5+(180﹣120)×6.75+12(m﹣180)=(12m﹣1155)元.答:小红家2017年应缴纳的水费是(12m﹣1155)元.(3)设2017年用水x立方米,则2018年用水(360﹣x)立方米.根据两年共缴纳水费2115元可得:120×5+(180﹣120)×6.75+12(x﹣180)+120×5+(360﹣x﹣120)×6.75=2115.解得:x=200.2018年用水量:360﹣200=160(立方米).答:小刚家2017年用水200立方米,2018年用水160立方米.23.(12分)直线AB与直线CD相交于点O,OE平分∠BOD.(1)如图①,若∠BOC=130°,求∠AOE的度数;(2)如图②,射线OF在∠AOD内部.①若OF⊥OE,判断OF是否为∠AOD的平分线,并说明理由;②若OF平分∠AOE,∠AOF =∠DOF,求∠BOD的度数.【分析】(1)根据∠BOC=130°,OE平分∠BOD即可求∠AOE的度数;(2)①根据OF⊥OE,OE平分∠BOD,即可判断OF是∠AOD的平分线;②根据OF平分∠AOE,∠AOF=∠DOF,即可求∠BOD的度数.【解答】解:(1)∵∠BOC=130°,∴∠AOD=∠BOC=150°,∠BOD=180°﹣∠BOC=50°∵OE平分∠BOD,∴∠DOE=25°∴∠AOE=∠AOD+∠DOE=155°.答:∠AOE的度数为155°(2)①OF是∠AOD的平分线,理由如下:∵OF⊥OE,∴∠EOF=90°∴∠BOE+∠AOF=90°∵OE平分∠BOD,∴∠BOE=∠DOE∴∠DOE+∠AOF=90°∠DOE+∠DOF=90°∴∠AOF=∠DOF∴OF是∠AOD的平分线;②∵∠AOF=∠DOF,设∠DOF=3x,则∠AOF=∠5x,∵OF平分∠AOE,∴∠AOF=∠EOF=5x∴∠DOE=2x∵OE平分∠BOD,∴∠BOD=4x5x+3x+4x=180°∴x=15°.∴∠BOD=4x=60°.答:∠BOD的度数为60°.。
浙教版七年级数学上学期期末检测卷(含答案)

七年级数学上学期期末检测卷一.选择题(每题3分,满分30分)1.一个数的相反数是﹣2019,则这个数是()A.2019B.﹣2019C.D.﹣2.在下列气温的变化中,能够反映温度上升5℃的是()A.气温由﹣3℃到2℃B.气温由﹣1℃到﹣6℃C.气温由﹣1℃到5℃D.气温由4℃到﹣1℃3.下列实数中,有理数是()A.B.C.D.3.4.下列各组单项式:①ab2与a2b;②2a与a2;③2x2y与﹣3yx2;④3mx与x,其中是同类项的有()组.A.0B.1C.2D.35.下列实数中,最大的数是()A.﹣|﹣4|B.0C.1D.﹣(﹣3)6.对实数a、b,定义“★”运算规则如下:a★b=,则★(★)=()A.1B.2C.﹣1D.﹣27.钟表上8时45分,时针与分针所夹的角度是()A.30°B.22.5°C.15°D.7.5°8.若,则实数a在数轴上对应的点是()A.点E B.点F C.点G D.点H9.某商品原价为a元,因销量下滑,经营者连续两次降价,每次降价10%,后因供不应求,又一次提高20%,问现在这种商品的价格是()A.1.08a元B.0.88a元C.0.972a元D.0.968 a元10.某商品打九折后价格为a元,则原价为()元.A.a B.10%a C.D.二.填空题(满分24分,每小题4分)11.计算:|﹣2019|=,(﹣1)2019=.12.将473000用科学记数法表示为.13.计算:48°39′+67°31′﹣21°17'=.14.已知a2+bc=6,b2﹣2bc=﹣7,则5a2+4b2﹣3bc的值为.15.以∠AOB的顶点O为端点引射线OC,使∠AOC:∠BOC=5:4,若∠AOB=27°,则∠AOC=.16.如果一个零件的实际长度为a,测量结果是b,则称|b﹣a|为绝对误差,为相对误差.现有一零件实际长度为 5.0cm,测量结果是 4.8cm,则本次测量的相对误差是.三.解答题(共8小题,满分66分)17.(12分)计算(1)|﹣1|+﹣(2)(﹣30)×(﹣+)(3)﹣﹣|﹣2|(4)﹣22+(﹣2)2++(﹣1)201718.(6分)先化简,再求值:2(x2y+3xy)﹣3(x2y﹣1)﹣2xy﹣2,其中x=﹣2,y=2.19.(8分)解方程20.(8分)如图,已知∠AOB=180°,射线ON.(1)画出∠BON的平分线OC;①如果∠AON=50°,射线OA、OB分别表示从点O出发东、西两个方向,那么射线ON表示方向,射线OC表示方向;②当∠AON=60°时,在图中找出所有与∠AON互补的角,这些角是.(2)如果∠BON比∠AON的还多47°,那么∠AON=度.21.(8分)在“元旦”期间,某超市推出如下购物优惠方案:①一次性购物在100元(不含100元)以内时不享受优惠;②一次性购物在100元(含100元)以上,300元(不含300元)时,一律享受9折优惠;③一次性购物在300元(含300元)以上时,一律享受8折优惠.小杨在本超市购物分别付款80元,261元,如果小杨改在本超市一次性购买与上两次相同的商品,应付款多少元?22.(6分)已知:如图,直线AB、CD相交于点O,OE⊥OC,OF平分∠AOE (1)若∠BOC=60°,则∠AOF的度数为.(2)若∠COF=x°,求∠BOC的度数.23.(8分)已知数轴上三点M,O,N对应的数分别为﹣1,0,3,点P为数轴上任意点,其对应的数为x.(1)MN的长为;(2)如果点P到点M、点N的距离相等,那么x的值是:;(3)如果点P以每分钟2个单位长度的速度从点O向左运动,同时点M和点N分别以每分钟2个单位长度和每分钟3个单位长度的速度也向左运动.设t分钟时点P到点M、点N的距离相等,求t的值.24.(10分)学校体育室有两个球筐,已知甲筐内的球比乙筐内球的个数的2倍还多4只.现进行如下操作:第一次,从甲筐中取一只球放入乙筐;第二次,又从甲筐取出若干球放入乙筐,这次取出的球的个数是第一次移动后乙筐内球的个数的两倍.若设乙球筐内原来有a只球(1)请你填写下表(用含a的代数式表示)甲球筐内球的个数乙球筐内球的个数原来:a第一次后:第二次后:(2)根据以上表格,化简后可知甲球筐内最后还剩下个球.(3)若最后乙球筐内有球18只,请求a的值.参考答案一.选择题1.解:∵一个数的相反数是﹣2019,∴这个数是:2019.故选:A.2.解:A.气温由﹣3℃到2℃,上升了2﹣(﹣3)=5(℃),符合题意;B.气温由﹣1℃到﹣6℃,上升了﹣6﹣(﹣1)=﹣5(℃),不符合题意;C.气温由﹣1℃到5℃,上升了5﹣(﹣1)=6(℃),不符合题意;D.气温由4℃到﹣1℃,上升了﹣1﹣4=﹣5(℃),不符合题意;故选:A.3.解:A、,是无理数,不合题意;B、,是无理数,不合题意;C、是无理数,不合题意;D、3.,是有理数,符合题意.故选:D.4.解:①ab2与a2b,相同字母的次数不同,不是同类项;②2a与a2,相同字母的次数不同,不是同类项;③2x2y与﹣3yx2,所含字母相同,相同字母的次数相同,是同类项;④3mx与x,所含字母不相同,不是同类项;故选:B.5.解:﹣|﹣4|=﹣4,﹣(﹣3)=3,3>1>0>﹣4,故选:D.6.解:∵<,∴★=,则原式=★====2,故选:B.7.解:8时45分,时针与分针的夹角是30°﹣45×0.5°=7.5°,故选:D.8.解:∵4<<5,∴可得其在点4与5之间,并且靠近4;分析数轴可得H符合.故选:D.9.解:根据题意,得a(1﹣10%)2(1+20%)=0.972a故选:C.10.解:a÷0.9=a,故选:C.二.填空题(共6小题,满分24分,每小题4分)11.解:|﹣2019|=2019,(﹣1)2019=﹣1,故答案为:2019,﹣1.12.解:将473000用科学记数法表示为4.73×105.故答案为:4.73×105.13.解:48°39′+67°31′﹣21°17'=94°53',故答案为:94°53'14.解:∵a2+bc=6 ①,b2﹣2bc=﹣7 ②,∴①×5+②×4得:5a2+4b2﹣3bc=30﹣28=2.故答案为:2.15.解:分两种情况:①如图1,当射线OC在∠AOB的内部时,设∠AOC=5x,∠BOC =4x,∵∠AOB=∠AOC+∠BOC=27°,∴5x+4x=27,解得:x=3,∴∠AOC=15°;②如图2,当射线OC在∠AOB的外部时,设∠AOC=5x,∠BOC=4x,∵∠AOC=∠AOB+∠BOC,又∠AOB=27°,∴5x=27+4x,解得:x=27∴∠AOC=135°,故答案为:15°或135°.16.解:若实际长度为5.0cm,测量结果是4.8cm,则本次测量的相对误差为=0.04,故答案为:0.04.三.解答题(共8小题,满分56分)17.解:(1)原式=1+﹣2=﹣1=;(2)原式=﹣15+20﹣24=20﹣39=﹣19;(3)原式=2﹣﹣(2﹣)=0;(4)原式=﹣4+4+﹣1=﹣.18.解:原式=2x2y+6xy﹣3x2y+3﹣2xy﹣2=﹣x2y+4xy+1,当x=﹣2、y=2时,原式=﹣(﹣2)2×2+4×(﹣2)×2+1=﹣4×2﹣16+1=﹣8﹣16+1=﹣23.19.解:去分母得:4(2x+4)﹣6(4x﹣3)=3,去括号得:8x+16﹣24x+18=3,移项合并得:﹣16x=﹣31,解得:x=.20.解:(1)如图所示,OC即为∠BON的平分线;①过点O作OE⊥AB,∵∠AON=50°,∴∠EON=90°﹣50°=40°,∴ON是北偏东40°,∵OC平分∠BON,∴∠CON=(180°﹣50°)=65°,∴∠COE=∠CON﹣∠EON=65°﹣40°=25°,∴OC是北偏西25°;②∵∠AON=60°,OC平分∠BON,∴∠CON=(180°﹣60°)=60°,∴∠AOC=∠CON+∠AON=60°+60°=120°,∴∠AOC+∠AON=180°,又∠BON与∠AON是邻补角,∴与∠AON互补的角有∠AOC,∠BON;(2)由图可知,∠BON+∠AON=180°,所以,∠AON+47°+∠AON=180°,解得∠AON=76°.故答案为:(1)①北偏东40°,北偏西25°;②∠AOC,∠BON;(2)76.21.解:设小杨改在本超市一次性购买与上两次相同的商品,应付款x元.根据题意,得①∵80+261/90%=370,370>300,∴x=(80+290)×80%=296②∵80+261÷0.8=406.25∴x=(80+362.25)×0.8=325答:小杨改在本超市一次性购买与上两次相同的商品,应付款296元或325元.22.解:∵∠AOD=∠BOC=60°,∵OE⊥OC于点O,∴∠DOE=90°,∴∠AOE=30°,∵OF平分∠AOE,∴∠AOF=∠AOE=15°,故答案为:15°;(2)∵OE⊥OC于点O,∴∠COE=∠DOE=90°,∵∠COF=x°,∴∠EOF=x°﹣90°,∵OF平分∠AOE,∴∠AOE=2∠EOF=2x°﹣180°,∴∠AOD=90°﹣∠AOE=270°﹣2x°,∴∠BOC=∠AOD=270°﹣2x°.23.解:(1)MN的长为3﹣(﹣1)=4.(2)x=(3﹣1)÷2=1;(3)①点P是点M和点N的中点.根据题意得:(3﹣2)t=3﹣1,解得:t=2.②点M和点N相遇.根据题意得:(3﹣2)t=3+1,解得:t=4.故t的值为2或4.故答案为:4;1.24.解:(1)由题意可得,甲筐原来有:(2a+4)个球,乙筐原来有a个球,第一次移动后,甲筐有:2a+4﹣1=(2a+3)个球,乙筐有:(a+1)个球,第二次移动后,甲筐有:2a+3﹣2(a+1)=1个球,乙筐有:(a+1)+2(a+1)=(3a+3)个球,故答案为:2a+4,2a+3,a+1,1,3a+3;(2)由表格可知,化简后甲筐内最后还剩下1个球,故答案为:1;(3)由题意可得,3a+3=18,解得,a=5,即a的值是5.1、三人行,必有我师。
浙教版2019-2020学年度七年级上册期末考试数学试卷(含解析)

浙教版2019-2020学年度七年级上册期末考试数学试卷(含解析)一.选择题(共10小题,满分30分,每小题3分)1.(3分)下列说法正确的是()A.0没有绝对值B.绝对值为3的数是﹣3C.﹣2的绝对值是2D.正数的绝对值是它的相反数2.(3分)据报告,70周年国庆正式受阅人数约12000人,这个数据用科学记数表示()A.12×104人B.1.2×104人C.1.2×103人D.12×103人3.(3分)的平方根是()A.B.C.D.4.(3分)某超市一商品的进价为m元,将其价格提高50%作为零售价,半年后又以6折的价格促销,则此时这一商品的价格为()A.m元B.0.9m元C.0.92m元D.1.04m元5.(3分)若|a+3|+(b﹣4)2=0,则a+b的值是()A.﹣1B.7C.﹣7D.16.(3分)若代数式2x2+3x+7的值为8,则代数式2x2+3x﹣9的值()A.﹣7B.﹣8C.2D.﹣27.(3分)如图,已知∠AOB=120°,∠COD在∠AOB内部且∠COD=60°,则∠AOD与∠COB 一定满足的关系为()A.∠AOD=∠COB B.∠AOD+∠COB=180°C.∠AOD=∠COB D.∠AOD+∠COB=120°8.(3分)设x、y、c是有理数,则下列判断错误的是()A.若x=y,则x+2c=y+2c B.若x=y,则a﹣cx=a﹣cyC.若x=y,则D.若,则3x=2y9.(3分)已知线段AB=8cm,在直线AB上画线BC,使它等于3cm,则线段AC等于()A.11cm B.5cm C.11cm或5cm D.8cm或11cm10.(3分)如图所示,两人沿着边长为90m的正方形,按A→B→C→D→A…的方向行走,甲从A 点以65m/min的速度、乙从B点以75m/min的速度行走,当乙第一次追上甲时,将在正方形的()边上.A.BC B.DC C.AD D.AB二.填空题(共6小题,满分24分,每小题4分)11.(4分)数轴上点A表示的数为5,则距离A点4个单位长度的点表示的数为.12.(4分)若a,b为连续整数,且a<+1<b,则a+b=13.(4分)单项式的系数为.14.(4分)已知关于x的方程2x+a=x﹣1的解和方程2x+4=x+1的解相同,则a=.15.(4分)如图,以图中的A、B、C、D为端点的线段共有条.16.(4分)已知A、B两地相距1000米,甲、乙两人分别从A、B两地同时出发,沿着同一条直线公路相向而行.若甲以7米/秒的速度骑自行车前进,乙以3米/秒的速度步行,则经过秒两人相距100米.三.解答题(共8小题,满分66分)17.(6分)计算|﹣2|﹣(1﹣0.5)×18.(6分)计算:19.(8分)先化简,再求值:3(2x2y﹣4xy2)﹣(﹣3xy2+x2y),其中x=﹣,y=1.20.(8分)已知∠AOB=80°,过点O引条射线OC,使得∠AOC的度数是∠BOC度数的2倍小10度,求∠BOC的度数.21.(8分)足球训练中,为了训练球员快速抢断转身,教练在东西方向的足球场上画了一条直线,要求球员在这条直线上进行折返跑训练.如果约定向西为正,向东为负,将某球员的一组折返跑练习记录如下(单位:米):+40,﹣30,+50,﹣25,+25,﹣30,+15,﹣28,+16,﹣18(1)球员最后到达的地方在出发点的哪个方向?距出发点多远?(2)球员训练过程中,最远处离出发点米?(3)球员在这一组练习过程中,共跑了多少米?22.(10分)为全力推进农村公路快速发展,解决农村“出行难”问题,现将A、B、C三村连通的公路进行硬化改造(如图所示),铺设成水泥路面.已知B村在A村的北偏东65°方向上,∠ABC =100°.(1)C村在B村的什么方向上?(2)甲、乙两个施工队分别从A村、C村向B村施工,两队的施工进度相同,A村到B村的距离比C到B村的距离多600米,甲队用了9天完成铺设任务,乙队用了6天完成铺设任务,求两段公路的总长.23.(10分)今年元旦期间,小华的爸爸去买新家具,家具店促销活动规定:①一次性购物不超过3000元,不享受优惠;②一次性购物超过3000元但不超过5000元,一律九折;③一次性购物超过5000元,一律八折;元旦期间小华的爸爸先后两次到该家具店买家具分别付款2600元和3906元.(1)第一次购买了标价多少元的家具?(直接写出结果)(2)如果小华爸爸一次性购买这些家具,应付多少元?(3)在(2)的条件下,能比原来节约几分之几?24.(10分)如图,点C在线段AB上,点M、N分别是AC、BC的中点.(1)若AC=9cm,CB=6cm,求线段MN的长;(2)若C为线段AB上任一点,满足AC+CB=acm,其它条件不变,你能猜想MN的长度吗?并说明理由.你能用一句简洁的话描述你发现的结论吗?(3)若C在线段AB的延长线上,且满足AC﹣BC=bcm,M、N分别为AC、BC的中点,你能猜想MN的长度吗?请画出图形,写出你的结论,并说明理由.浙教版2019-2020学年度七年级上册期末考试数学试卷参考答案与试题解析一.选择题(共10小题,满分30分,每小题3分)1.(3分)下列说法正确的是()A.0没有绝对值B.绝对值为3的数是﹣3C.﹣2的绝对值是2D.正数的绝对值是它的相反数解:A、0的绝对值是0,故选项错误;B、绝对值为3的数是3或﹣3,故选项错误;C、﹣2的绝对值是2,故选项正确;D、正数的绝对值是它本身,故选项错误.故选:C.2.(3分)据报告,70周年国庆正式受阅人数约12000人,这个数据用科学记数表示()A.12×104人B.1.2×104人C.1.2×103人D.12×103人解:12000用科学记数法表示为1.2×104.故选:B.3.(3分)的平方根是()A.B.C.D.解:∵(±)2=,∴的平方根是±,故选:C.4.(3分)某超市一商品的进价为m元,将其价格提高50%作为零售价,半年后又以6折的价格促销,则此时这一商品的价格为()A.m元B.0.9m元C.0.92m元D.1.04m元解:由题意可得,这一商品的价格为:m(1+50%)×0.6=0.9m(元),故选:B.5.(3分)若|a+3|+(b﹣4)2=0,则a+b的值是()A.﹣1B.7C.﹣7D.1解:根据题意得:a+3=0,b﹣4=0,解得:a=﹣3,b=4,则a+b=﹣3+4=1.故选:D.6.(3分)若代数式2x2+3x+7的值为8,则代数式2x2+3x﹣9的值()A.﹣7B.﹣8C.2D.﹣2解:∵2x2+3x+7=8,∴2x2+3x=1,∴2x2+3x﹣9=1﹣9=﹣8.故选:B.7.(3分)如图,已知∠AOB=120°,∠COD在∠AOB内部且∠COD=60°,则∠AOD与∠COB 一定满足的关系为()A.∠AOD=∠COB B.∠AOD+∠COB=180°C.∠AOD=∠COB D.∠AOD+∠COB=120°解:∵∠AOD=∠AOC+∠COD,∠COB=∠COD+∠DOB,∴∠AOD+∠COB=∠AOC+∠COD+∠COD+∠DOB,=∠AOC+∠COD+∠DOB+∠COD=∠AOB+∠COD∵∠AOB=120°,∠COD=60°,∴∠AOD+∠COB=120°+60°=180°.故选:B.8.(3分)设x、y、c是有理数,则下列判断错误的是()A.若x=y,则x+2c=y+2c B.若x=y,则a﹣cx=a﹣cyC.若x=y,则D.若,则3x=2y解:A、根据等式的性质1可得出,若x=y,则x+2c=y+2c,故A选项不符合题意;B、根据等式的性质1和2得出,若x=y,则a﹣cx=a﹣cy,故B选项不符合题意;C、根据等式的性质2得出,c=0,不成立,故C选项符合题意;D、根据等式的性质2可得出,若=,则3x=2y,故D选项不符合题意;故选:C.9.(3分)已知线段AB=8cm,在直线AB上画线BC,使它等于3cm,则线段AC等于()A.11cm B.5cm C.11cm或5cm D.8cm或11cm解:由于C点的位置不确定,故要分两种情况讨论:(1)当C点在B点右侧时,如图所示:AC=AB+BC=8+3=11cm;(2)当C点在B点左侧时,如图所示:AC=AB﹣BC=8﹣3=5cm;所以线段AC等于5cm或11cm,故选C.10.(3分)如图所示,两人沿着边长为90m的正方形,按A→B→C→D→A…的方向行走,甲从A 点以65m/min的速度、乙从B点以75m/min的速度行走,当乙第一次追上甲时,将在正方形的()边上.A.BC B.DC C.AD D.AB解:设乙行走tmin后第一次追上甲,根据题意,可得:甲的行走路程为65tm,乙的行走路程75tm,当乙第一次追上甲时,270+65t=75t,∴t=27min,此时乙所在位置为:75×27=2025m,2025÷(90×4)=5…225,∴乙在距离B点225m处,即在AD上,故选:C.二.填空题(共6小题,满分24分,每小题4分)11.(4分)数轴上点A表示的数为5,则距离A点4个单位长度的点表示的数为9或1.解:由题意得:5+4=9或5﹣4=1,则距离A点4个单位长度的点表示的数为9或1;故答案为:9或1.12.(4分)若a,b为连续整数,且a<+1<b,则a+b=7解:∵,∴3<<4,∴a=3,b=4,∴a+b=7.故答案为:713.(4分)单项式的系数为﹣.解:单项式的系数为:﹣.故答案为:﹣.14.(4分)已知关于x的方程2x+a=x﹣1的解和方程2x+4=x+1的解相同,则a=10.解:2x+4=x+1,2x﹣x=1﹣4,x=﹣3,把x=﹣3代入2x+a=x﹣1中得:﹣6+a=﹣3﹣1,解得:a=10,故答案为:10.15.(4分)如图,以图中的A、B、C、D为端点的线段共有6条.解:图中的线段有:线段AB,线段AC,线段AD,线段BC,线段BD,线段CD,共6条.故答案为:6.16.(4分)已知A、B两地相距1000米,甲、乙两人分别从A、B两地同时出发,沿着同一条直线公路相向而行.若甲以7米/秒的速度骑自行车前进,乙以3米/秒的速度步行,则经过90或110秒两人相距100米.解:设经过x秒两人相距100米,当两人未相遇前,7x+3x+100=1000,解得:x=90;当两人相遇后,7x+3x﹣100=1000,解得:x=110.故答案为:90或110.三.解答题(共8小题,满分66分)17.(6分)计算|﹣2|﹣(1﹣0.5)×解:原式=2﹣××(﹣3)=2+=2.18.(6分)计算:解:=﹣1+4﹣3+2=219.(8分)先化简,再求值:3(2x2y﹣4xy2)﹣(﹣3xy2+x2y),其中x=﹣,y=1.解:原式=6x2y﹣12xy2+3xy2﹣x2y=5x2y﹣9xy2,当x=﹣,y=1时,原式=+=.20.(8分)已知∠AOB=80°,过点O引条射线OC,使得∠AOC的度数是∠BOC度数的2倍小10度,求∠BOC的度数.解:如图1,设∠BOC=α,∴∠AOC=2α﹣10°,∵∠AOB=80°,∴∠AOC+∠BOC=2α﹣10°+α=80°,∴α=30°,∴∠BOC=30°;如图2,设∠BOC=α,∴∠AOC=2α﹣10°,∵∠AOB=80°,21.(8分)足球训练中,为了训练球员快速抢断转身,教练在东西方向的足球场上画了一条直线,要求球员在这条直线上进行折返跑训练.如果约定向西为正,向东为负,将某球员的一组折返跑练习记录如下(单位:米):+40,﹣30,+50,﹣25,+25,﹣30,+15,﹣28,+16,﹣18(1)球员最后到达的地方在出发点的哪个方向?距出发点多远?(2)球员训练过程中,最远处离出发点60米?(3)球员在这一组练习过程中,共跑了多少米?解:(1)+40﹣30+50﹣25+25﹣30+15﹣28+16﹣18=15(米)∴球员最后到达的地方在出发点的东方,距出发点15米远;(2)+40﹣30+50=60(米)故答案为:60;(3)|+40|+|﹣30|+|+50|+|﹣25|+|+25|+|﹣30|+|+15|+|﹣28|+|+16|+|﹣18|=40+30+50+25+25+30+15+28+16+18=277(米)∴球员在这一组练习过程中,共跑了277米.22.(10分)为全力推进农村公路快速发展,解决农村“出行难”问题,现将A、B、C三村连通的公路进行硬化改造(如图所示),铺设成水泥路面.已知B村在A村的北偏东65°方向上,∠ABC =100°.(1)C村在B村的什么方向上?(2)甲、乙两个施工队分别从A村、C村向B村施工,两队的施工进度相同,A村到B村的距离比C到B村的距离多600米,甲队用了9天完成铺设任务,乙队用了6天完成铺设任务,求两段公路的总长.解:(1)由题意,得∠P AB=65°,∵表示同一方向的射线是平行的,即AP∥BQ,∴∠P AB+∠QBA=180°,∴∠QBA=180°﹣∠P AB=180°﹣65°=115°,∵∠ABC=100°,∴∠CBQ=∠QBA﹣∠ABC=115°﹣100°=15°,∴C村在B村的北偏西15°方向上;(2)设每个施工队每天铺设x米,由题意,得9x﹣6x=600,解得x=200,∴9x+6x=9×200+6×200=3000,答:两段公路的总长3000米.23.(10分)今年元旦期间,小华的爸爸去买新家具,家具店促销活动规定:①一次性购物不超过3000元,不享受优惠;②一次性购物超过3000元但不超过5000元,一律九折;③一次性购物超过5000元,一律八折;元旦期间小华的爸爸先后两次到该家具店买家具分别付款2600元和3906元.(1)第一次购买了标价多少元的家具?(直接写出结果)(2)如果小华爸爸一次性购买这些家具,应付多少元?(3)在(2)的条件下,能比原来节约几分之几?解:(1)由于3000×0.9=2700>2600所以,应该是按照活动①付款.即按照标价2600元付款.答:第一次购买了标价2600元的家具;(2)因为5000×0.8=4000,3906<4000所以,不可能打八折.设付款39602元的家具的标价是x元,由题意,得0.9x=3906解得x=4340则(4340+2600)×0.8=5552(元)答:如果小华爸爸一次性购买这些家具,应付5552元;(3)2600+3906=6506(元),则能比原来节约:=.24.(10分)如图,点C在线段AB上,点M、N分别是AC、BC的中点.(1)若AC=9cm,CB=6cm,求线段MN的长;(2)若C为线段AB上任一点,满足AC+CB=acm,其它条件不变,你能猜想MN的长度吗?并说明理由.你能用一句简洁的话描述你发现的结论吗?(3)若C在线段AB的延长线上,且满足AC﹣BC=bcm,M、N分别为AC、BC的中点,你能猜想MN的长度吗?请画出图形,写出你的结论,并说明理由.(2)MN=a,当C为线段AB上一点,且M,N分别是AC,BC的中点,则存在MN=a,(3)当点C在线段AB的延长线时,如图:则AC>BC,∵M是AC的中点,∴CM=AC,∵点N是BC的中点,∴CN=BC,∴MN=CM﹣CN=(AC﹣BC)=b.。
2019-2020浙教版七年级数学上册期末复习试卷含答案

浙教版七年级数学期末复习试卷一.仔细选一选,将你认为正确的选项填入下表对应栏(每小题3分,共计30分) 1.下列各组数中,互为相反数的是( )A .2和-2B .-2和21C .-2和-21D .21和22.下列说法正确的是( )A .a 是正数B .32012是有理数 C .22是有理数 D .1的平方根是13.下面四个数中,最大的是( )A .5B .-4C .πD .04.据新华社12月1日报道,我国2012年粮食实现“九连增”,总产量达到58900万吨,用科学记数法表示为( )A .5.89×104吨B .58900×104吨C .5.89×106吨D .5.89×108吨 5.有四包真空小包装火腿,每包以标准克数(450克)为基数,超过的克数记作正数,不足的克数记作负数,以下数据是记录结果,其中表示实际克数最接近标准克数的是( ) A .+2 B .-3 C .+3 D .+4 6.通过估算,估计231 的大小应在( )A .1~2之间B .2~3之间C .3~4之间D .4~5之间 7.下列运算正确的是( )A .3a- a=3B .2a +2b = 4abC .3a 2-2a 2 = a 2D .-2(a -1) =-2a-2 8.若5x -5的值与2x -9的值互为相反数,则x 等于( ) A .1 B .2 C .3 D .49.A 种饮料比B 种饮料单价少1元,小峰买了2瓶A 种饮料和3瓶B 种饮料,一共花了13元,如果设B 种饮料单价为x 元/瓶,那么下面所列方程正确的是( ) A .2(x-1)+3x=13 B .2(x+1)+3x=13 C .2x+3(x+1)=13 D .2x+3(x-1)=13 10.下面四个结论,不正确的是( )A .两点之间线段最短B .直线外一点与直线上各点的连线中,垂线段最短C .经过两点有且只有一条直线D .三条直线两两相交,有三个交点 二.耐心填一填(本题共10小题,每小题3分,共计30分) 11.计算:(-1)+2= . 12.已知|-x |=2,则x = .13.写出一个比-4大的负无理数: . 14.“x 与y 的差”用代数式可以表示为 .15.按下面程序计算:输入x=3,则输出的答案是 .16.多项式与m 2+m -2的和是m 2-2m .17.若==-++⎪⎭⎫ ⎝⎛2013,022y x yx 则若 .18.关于x 的方程4x -3m =2的解是x =2,则m 的值是 . 19.已知∠A =40°15′,则∠A 的补角等于 .20.在锐角∠AOB 内部以O 为端点画5条不同的射线,可得 个不同的锐角. 三.认真解一解(本题共7小题,第21~25题各8分,第26、27题各10分,共计60分)21.计算:(1)21514503--⨯÷+⎪⎭⎫ ⎝⎛. (2)41083-+22.在下面两个集合中各有一些实数,请你分别从中选出2个有理数和2个无理数,再用“+-×÷”中的3种运算符号将选出的4个数进行3次运算,使得运算结果是一个正整数.23.先化简,再求值:(2x 3 - x 2)- 2(x 2 +x 3 -4),其中x = -2.答案-x 立方输入x24.解方程:(1)2(x-1) +1= 0. (2)16110x 312=+-+x .25.如图,线段AB =a .(1)画图:延长线段AB 至C ,使BC =21AB ,取线段AC 的中点D ;(2)CD 的长为 (用含a 的代数式表示);(3)若BD =2,求a 的值.26.剃须刀由刀片和刀架组成.某时期,甲、乙两厂家分别生产老式剃须刀(刀片不可更换)和新式剃须刀(刀片可更换),有关销售策略和价格信息如下表所示: 某段时间内,甲厂家销售了8400把剃须刀,乙厂家销售的刀片是刀架数量的50倍,乙厂家获得的利润是甲厂家的2倍,问这段时间乙厂家销售了多少把刀架?多少片刀片?27.供电公司分时电价执行时段分为峰、谷两个时段,峰段为8:00~22:00,谷段为22:00~次日8:00,峰段用电价格在原来电价基础上每千瓦时上浮0.03元,谷段电价在原来电价基础B A上每千瓦时下浮0.25元,小明家12月份实用峰段电量40千瓦时,谷段电量60千瓦时,按分时电价付费42.2元.(1) 问小明家该月支付的峰段,谷段电价每千瓦时各为多少元? (2) 如不使用分时电价结算,12月份小明家将多支付电费多少元?答案一.选择题) ABCDA CCBAD 二.填空题11.1 12.±2 13.如-π,5-,3-,… 14.x -y 15.12 16.-3m +2 17.-1 18.2 19.139°45′ 20.21 三.解答题 21.(1)原式=02125321512253=--=--⨯+⎪⎭⎫ ⎝⎛; (2)原式=232102=--. 22.例举:533432=⨯+--⎪⎭⎫ ⎝⎛ππ. 23.原式=-3x 2+8,当x =-2时,原式=-3×(-2)2+8=-4. 24.(1)21=x ; (2)65-=x .25.(1)如右图(2)a 43;(3)DB=AB-AD=2,即24143==-a a a ,a =8. 26.设这段时间乙厂家销售了x 把刀架,根据题意得:(1-5)x +(0.55-0.05)×50x =2×0.5×8400,解得x =400,50x =20000,答:这段时间乙厂家销售了400把刀架,20000片刀片 27.(1)设原销售电价为每千瓦时x 元,根据题意得,40(x +0.03)+60(x -0.25)=42.2,解得x =0.56,x +0.03=0.59,x -0.25=0.31.答:小明家该月支付的峰段电价为每千瓦时0.59元,谷段电价每千瓦时0.31元 (2)100×0.56-42.2=13.8(元),答:如不使用分时电价结算,12月份小明家将多支付电费13.8元.D B A C。
2019-2020学年浙教版七年级数学上学期期末考试试卷附解析

2019-2020学年浙教版七年级数学上学期期末考试试卷一、选择题(本大题共10小题,共30.0分)1.的相反数是A. B. 2 C. D.【答案】B【解析】解:的相反数是2.故选:B.根据只有符号不同的两个数叫做互为相反数解答.本题考查了相反数的定义,是基础题,熟记概念是解题的关键.2.宁波市江北区慈城的年糕闻名遐迩若每包标准质量定为300g,实际质量与标准质量相比,超出部分记作正数,不足部分记作负数则下面4个包装中,实际质量最接近标准质量的是A. B. C. D.【答案】D【解析】解:根据题意得:,则实际质量最接近标准质量的是,故选:D.求出各数绝对值,比较大小即可.此题考查了正数与负分数,正确理解正负数的意义是解题关键.3.下列运算正确的是A. B.C. D.【答案】C【解析】解:原式,故A错误;原式,故B错误;原式,故D错误;故选:C.根据合并同类项的定义即可求出答案.本题考查合并同类项,解题的关键是熟练运用合并同类项法则,本题属于基础题型.4.《语文课程标准》规定:年级学生,要求学会制订自己的阅读计划,广泛阅读各种类型的读物,课外阅读总量不少于260万字,每学年阅读两三部名著那么260万用科学记数法可表示为A. B. C. D.【答案】C【解析】解:260万用科学记数法可表示为.故选:C.科学记数法的表示形式为的形式,其中,n为整数确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同当原数绝对值时,n是正数;当原数的绝对值时,n是负数.此题考查科学记数法的表示方法科学记数法的表示形式为的形式,其中,n为整数,表示时关键要正确确定a的值以及n的值.5.如图,经过刨平的木板上的A,B两个点,能弹出一条笔直的墨线,而且只能弹出一条墨线,能解释这一实际应用的数学知识是A. 两点之间,线段最短B. 两点确定一条直线C. 垂线段最短D. 在同一平面内,过一点有且只有一条直线与已知直线垂直【答案】B【解析】解:经过两点有且只有一条直线,经过木板上的A、B两个点,只能弹出一条笔直的墨线.故选:B.根据“经过两点有且只有一条直线”即可得出结论.本题考查了直线的性质,牢记“经过两点有且只有一条直线”是解题的关键.6.下列一组数:,0,,,,,其中负数的个数有A. 2个B. 3个C. 4个D. 5个【答案】B【解析】解:因为,,,,所以负数有,,,故选:B.各式计算得到结果,利用负数定义判断即可.此题考查了有理数的乘方,算术平方根、正数与负数,相反数,以及绝对值,熟练掌握运算法则是解本题的关键.7.如图,已知线段,点N在AB上,,M是AB中点,那么线段MN的长为A. 6cmB. 5cmC. 4cmD. 3cm【答案】D【解析】解:,M是AB中点,,又,.故选:D.根据M是AB中点,先求出BM的长度,则.本题考查了线段的长短比较,根据点M是AB中点先求出BM的长度是解本题的关键.8.甲、乙两人从同一个地点出发,沿着同一条线路进行赛跑练习,甲每秒跑7米,乙每秒跑米,甲让乙先跑5米,设x秒后甲可以追上乙,则下面列出的方程不正确的是A. B. C. D.【答案】B【解析】解:设x秒后甲可以追上乙,根据题意得:,,.故选:B.设x秒后甲可以追上乙,由路程速度时间结合甲比乙多跑5米,即可得出关于x的一元一次方程,此题得解.本题考查了由实际问题抽象出一元一次方程,找准等量关系,正确列出一元一次方程是解题的关键.9.与50的算术平方根最接近的整数是A. 7B. 8C. 10D. 25【答案】A【解析】解:,,则与50的算术平方根最接近的整数是7,故选:A.利用算术平方根定义,以及估算的方法判断即可.此题考查了估算无理数的大小,弄清估算的方法是解本题的关键.10.长方形ABCD在数轴上的位置如图所示,点D和点A对应的数分别为0和1,,若长方形ABCD绕着顶点A顺时针方向在数轴上旋转,记作1次翻转翻转1次后,点B所对应的数为3,再按上述方法绕着顶点B翻转1次,点C所对应的数是4,按照上述方法连续翻转循序渐进下列对于A、B、C、D落点所对应数的描述中:点A所对应的数可能为73;点B所对应的数可能为123;点C所对应的数可能为520;点D所对应的数可能为其中正确的有A. 1个B. 2个C. 3个D. 4个【答案】C【解析】解:每4次翻转为一个循环组依次循环,且矩形周长为6,点D和点A对应的数分别为0和1,,点A所对应的数可能为73;故正确,,点D所对应的数可能为10086,故正确,翻转1次后,点B所对应的数为3,,点B所对应的数可能为123,故正确;再按上述方法绕着顶点B翻转1次,点C所对应的数是4,,点C所对应的数可能为520,故错误,故选:C.根据每4次翻转为一个循环组依次循环,且矩形周长为6,计算出下列,10086,,能不能被6整除,据此判断即可.本题考查了旋转的性质,实数与数轴,矩形的性质,找到题中的规律是解决本题的关键.二、填空题(本大题共8小题,共24.0分)11.计算______.【答案】5【解析】解:的立方等于125,的立方根等于5.故填5.直接根据立方根的定义求解即可.此题主要考查了立方根的定义,求一个数的立方根,应先找出所要求的这个数是哪一个数的立方由开立方和立方是互逆运算,用立方的方法求这个数的立方根注意一个数的立方根与原数的性质符号相同.12.单项式的系数是______,次数是______.【答案】3【解析】解:单项式的系数是,次数是3.利用单项式的系数与单项式的次数定义求解.本题主要考查了单项式,解题的关键是熟记单项式中的数字因数叫做单项式的系数,一个单项式中所有字母的指数的和叫做单项式的次数.13.若关于x的方程的解为,则______.【答案】7【解析】解:把代入方程,得:,解得:.故答案为:7.根据方程的解的意义,把代入原方程得关于a的方程,解方程即可.本题考查了一元一次方程的解,本题关键是理解方程解的意义:使方程左右两边相等的未知数的值.14.若,则______.【答案】【解析】解:,,,解得,,.故答案为:.先根据非负数的性质求出a、b的值,再代入求出的值即可.本题考查的是非负数的性质,熟知任意一个数的绝对值都是非负数,当几个数或式的绝对值相加和为0时,则其中的每一项都必须等于0是解答此题的关键.15.如图,两个正方形的边长分别为4,3,两阴影部分的面积分别为a,,则等于______.【答案】7【解析】解:设空白出图形的面积为x,根据题意得:,,则.故答案为:7.设空白出的面积为x,根据题意列出关系式,相减即可求出的值.此题考查了二元一次方程组,根据题意列出关系式是解本题的关键.16.在数轴上,若点A表示,则到点A距离等于2的点所表示的数为______.【答案】0或【解析】解:数轴上有一点A表示的数是,则在数轴上到点A距离为2的点所表示的数有两个:;.故答案为:0或.此题借助数轴用数形结合的方法求解,还要注意该点可以在数轴的左边或右边.此题综合考查了数轴、绝对值的有关内容用几何方法借助数轴来求解,非常直观,且不容易遗漏,体现了数形结合的优点注意此类题要考虑两种情况.17.如果,那么代数式的值是______.【答案】【解析】解:当时,原式,故答案为:.将代入原式计算可得.此题考查了代数式求值,利用了整体代入的思想,将所求式子适当的变形是解本题的关键.18.在两个形状、大小完全相同的大长方形内,分别互不重叠地放入四个如图的小长方形后得图和图,已知大长方形的长为a,两个大长方形未被覆盖部分,分别用阴影表示,则图阴影部分周长与图阴影部分周长的差是______用含a 的代数式表示【答案】【解析】解:设图中小长方形的长为x,宽为y,大长方形的宽为b,根据题意得:,,即,图中阴影部分的周长,图中阴影部分的周长为,则图阴影部分周长与图阴影部分周长之差为:,故答案为:设小长方形的长为x,宽为y,大长方形宽为b,表示出x、y、a、b之间的关系,然后求出阴影部分周长之差即可.此题考查了整式的加减,以及列代数式,熟练掌握运算法则是解本题的关键.三、计算题(本大题共4小题,共31.0分)19.计算:;【答案】解:原式;原式.【解析】将减法转化为加法,再计算加法可得;先计算乘方、减法转化为加法、计算算术平方根,再计算加减可得.本题主要考查实数的运算,解题的关键是熟练掌握实数的混合运算顺序和运算法则.20.先化简,再求值:,其中,.【答案】解:原式,当,时,原式,【解析】根据整式的运算即可求出答案.本题考查整式的运算,解题的关键是熟练运用整式的运算法则,本题属于基础题型.21.解方程:【答案】解:,,,;,,,,.【解析】依次去括号、移项、合并同类项、系数化为1求解可得;依次去分母、去括号、移项、合并同类项、系数化为1可得.本题主要考查解一元一次方程,解题的关键是掌握解一元一次方程的步骤:去分母、去括号、移项、合并同类项、系数化为1.22.某商场在黄金周促销期间规定:商场内所有商品按标价的打折出售;同时,当顾客在该商场消费打折后的金额满一定数额,还可按如下方案抵扣相应金额:说明:表示在范围~中,可以取到a,不能取到b.根据上述促销方法,顾客在该商场购物可以获得双重优惠:打折优惠与抵扣优惠.例如:购买标价为900元的商品,则打折后消费金额为450元,获得的抵扣金额为30元,总优惠额为:元,实际付款420元.购买商品得到的优惠率购买商品获得的总优惠额商品的标价请问:购买一件标价为500元的商品,顾客的实际付款是多少元?购买一件商品,实际付款375元,那么它的标价为多少元?请直接写出,当顾客购买标价为______元的商品,可以得到最高优惠率为______.【答案】400【解析】解:由题意可得:顾客的实际付款故购买一件标价为500元的商品,顾客的实际付款是230元.设商品标价为x元.与两种情况都成立,于是分类讨论抵扣金额为20元时,,则抵扣金额为30元时,,则故当实际付款375元,那么它的标价为790元或者810元.设商品标价为x元,抵扣金额为b元,则优惠率为了得到最高优惠率,则在每一范围内x均取最小值,可以得到当商品标价为400元时,享受到最高的优惠率故答案为400,可对照表格计算,500元的商品打折后为250元,再享受20元抵扣金额,即可得出实际付款;实际付款375元时,应考虑到与这两种情况的存在,所以分这两种情况讨论;根据优惠率的定义表示出四个范围的数据,进行比较即可得结果.本题考查的是日常生活中的打折销售问题,运用一元一次方程解决问题时要抓住未知量,明确等量关系列出方程是关键.四、解答题(本大题共2小题,共15.0分)23.“环保”是当今世界关注的重要议题通常,距离越近,噪音越大若一辆汽车P在笔直的公路上由点B驶向点C,A是位于公路BC一侧的学校,请完成:画直线BC,画射线AB,画线段AC;汽车P在直线BC上行驶到何处时,学校A受噪音影响最严重?请在图中标出适当标记,并从数学的角度说明理由作图工具不限,保留作图痕迹【答案】解:如图所示:如图所示,过点A作于D,则汽车P在直线BC上行驶到点D处时,学校A 受噪音影响最严重依据为:垂线段最短.【解析】依据直线,射线和线段的概念,即可画出图形;依据垂线段最短,过点A作于D即可.此题主要考查了应用与设计作图,以及垂线段的性质,关键是要理解题意,弄清问题中对所作图形的要求,结合对应几何图形的性质和基本作图的方法作图.24.如图,直线AB,CD相交于点平分,于点O.请直接写出图中所有与相等的角:______.若,求的度数.【答案】,【解析】解:直线AB,CD相交于点O,,平分,,,,,与相等的角有,;故答案为:,;,,,,平分,.根据邻补角的定义确定出和,再根据角平分线的定义可得,根据垂直的定义可得,然后根据等角的余角相等求出,从而最后得解;根据垂直的定义得到,根据角平分线的定义求出即可得到结论.本题考查了垂线,余角和补角,对顶角相等的性质,角平分线的定义.。
浙教版 2019-2020学年度初一数学上册期末测试题(含答案)

2019-2020学年度初一数学上册期末测试卷一、选择题(本大题共10小题,每小题3分,共30分.请选出各题中一个符合题意的正确选项,不选、多选、错选,均不给分)1.﹣2的绝对值是()A.﹣2 B.﹣C.2 D.2.单项式﹣xy2的系数是()A.1 B.﹣1 C.2 D.33.如图,这是由大小相同的长方体木块搭成的立体图形,则从正面看这个立体图形,得到的平面图形是()A.B.C.D.4.将一副三角板按如图方式摆放在一起,若∠2=30°10′,则∠1的度数等于()A.30°10′B.60°10′C.59°50′D.60°50′5.下列运算正确的是()A.5x2y﹣4x2y=x2y B.x﹣y=xyC.x2+3x3=4x5D.5x3﹣2x3=26.若关于x的方程ax=3x﹣2的解是x=1,则a的值是()A.﹣1 B.﹣5 C.5 D.17.如图,某轮船在O处,测得灯塔A在它北偏东40°的方向上,渔船B在它的东南方向上,则∠AOB 的度数是()A.85°B.90°C.95°D.100°8.若有理数m在数轴上对应的点为M,且满足m<1<﹣m,则下列数轴表示正确的是()A.B.C.D.9.用[x]表示不大于x的整数中最大的整数,如[2.4]=2,[﹣3.1]=﹣4,请计算[5.5]+[﹣4]=()A.﹣1 B.0 C.1 D.210.点O在直线AB上,点A1,A2,A3,…在射线OA上,点B1,B2,B3,…在射线OB上,图中的每一个实线段和虚线段的长均为1个单位长度.一个动点M从O点出发,以每秒1个单位长度的速度按如图所示的箭头方向沿着实线段和以点O为圆心的半圆匀速运动,即从OA1B1B2→A2…按此规律,则动点M到达A10点处所需时间为()秒.A.10+55πB.20+55πC.10+110πD.20+110π二、填空题(本题共10小题,每小题2分,共20分)11.写出一个在﹣1和1之间的整数.12.单项式﹣3x n y2是5次单项式,则n=.13.2015年,天猫双十一全球狂欢节销售实际成交值超过912亿,将91200000000用科学记数法表示为.14.如图,CD是线段AB上两点,若CB=4cm,DB=7cm,且D是AC中点,则AC的长等于.15.要把一根木条在墙上钉牢,至少需要枚钉子.其中的道理是.16.如图,∠1=20°,∠AOC=90°,点B,O,D在同一直线上,则∠2=°.17.若多项式x2+2x的值为5,则多项式2x2+4x+7的值为.18.有一个数值转换器,其工作原理如图所示,若输入的数据是3,则输出的结果是.19.从甲地到乙地,某人步行比乘公交车多用3.6小时,已知步行速度为每小时8千米,公交车的速度为每小时40千米,设甲乙两地相距x千米,则列方程为.20.如图,已知点A、点B是直线上的两点,AB=12厘米,点C在线段AB上,且BC=4厘米.点P、点Q是直线上的两个动点,点P的速度为1厘米/秒,点Q的速度为2厘米/秒.点P、Q分别从点C、点B同时出发在直线上运动,则经过秒时线段PQ的长为5厘米.三、解答题(本题共7小题,第21题8分,第22题6分,第23题8分,第24题6分,第25题6分,第26题6分,第27题10分,共50分)21.计算:(1)﹣10+5﹣3(2)﹣22÷(﹣4)﹣6×(+).22.先化简,再求值:4a2+2a﹣2(2a2﹣3a+4),其中a=2.23.解方程:(1)5x﹣3=4x+15(2).24.作图:(温馨提醒:确认后,在答题纸上用黑色水笔描黑)如图,已知平面上有四个点A,B,C,D.(1)作射线AD;(2)作直线BC与射线AD交于点E;(3)连接AC,再在AC的延长线上作线段CP=AC.(要求尺规作图,保留作图痕迹,不写作图步骤)(1)若本地通话100分钟,按方式一需交费多少元?按方式二需交费多少元?(2)对于某月本地通话,当通话多长时间时,按两种计费方式的收费一样多?26.把几个数用大括号括起来,相邻两个数之间用逗号隔开,如:{1,2},{1,4,7},…,我们称之为集合,其中的每一个数称为该集合的元素,如果一个所有元素均为有理数的集合满足:当有理数x是集合的一个元素时,2016﹣x也必是这个集合的元素,这样的集合我们又称为黄金集合.例如{0,2016}就是一个黄金集合,(1)集合{2016}黄金集合,集合{﹣1,2017}黄金集合;(两空均填“是”或“不是”)(2)若一个黄金集合中最大的一个元素为4016,则该集合是否存在最小的元素?如果存在,请直接写出答案,否则说明理由;(3)若一个黄金集合所有元素之和为整数M,且24190<M<24200,则该集合共有几个元素?说明你的理由.27.将一副直角三角板如图1摆放在直线AD上(直角三角板OBC和直角三角板MON,∠OBC=90°,∠BOC=45°,∠MON=90°,∠MNO=30°),保持三角板OBC不动,将三角板MON绕点O以每秒10°的速度顺时针旋转,旋转时间为t秒(1)当t=秒时,OM平分∠AOC?如图2,此时∠NOC﹣∠AOM=°;(2)继续旋转三角板MON,如图3,使得OM、ON同时在直线OC的右侧,猜想∠NOC与∠AOM 有怎样的数量关系?并说明理由;(3)若在三角板MON开始旋转的同时,另一个三角板OBC也绕点O以每秒5°的速度顺时针旋转,当OM旋转至射线OD上时同时停止,(自行画图分析)①当t=秒时,OM平分∠AOC?②请直接写出在旋转过程中,∠NOC与∠AOM的数量关系.参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分.请选出各题中一个符合题意的正确选项,不选、多选、错选,均不给分)1.﹣2的绝对值是()A.﹣2 B.﹣C.2 D.【考点】绝对值.【专题】计算题.【分析】根据负数的绝对值等于它的相反数求解.【解答】解:因为|﹣2|=2,故选C.【点评】绝对值规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.2.单项式﹣xy2的系数是()A.1 B.﹣1 C.2 D.3【考点】单项式.【分析】利用单项式系数的定义求解即可.【解答】解:单项式﹣xy2的系数是﹣1,故选:B.【点评】本题主要考查了单项式,解题的关键是熟记单项式系数的定义.3.如图,这是由大小相同的长方体木块搭成的立体图形,则从正面看这个立体图形,得到的平面图形是()A.B.C.D.【考点】简单组合体的三视图.【分析】根据从正面看得到的图形是主视图,可得答案.【解答】解:从正面看第一层是两个长方形,第二层右边一个长方形,故选:A.【点评】本题考查了简单组合体的三视图,从正面看得到的图形是主视图.4.将一副三角板按如图方式摆放在一起,若∠2=30°10′,则∠1的度数等于()A.30°10′B.60°10′C.59°50′D.60°50′【考点】余角和补角;度分秒的换算.【分析】根据邻补角得出∠1=180°﹣∠2﹣90°,代入求出即可.【解答】解:∵∠2=30°10′,∴∠1=180°﹣∠2﹣90°=180°﹣30°10′﹣90°=59°50′,故选C.【点评】本题考查了余角和补角,度、分、秒之间的换算的应用,能根据图形得出∠1=180°﹣∠2﹣90°是解此题的关键.5.下列运算正确的是()A.5x2y﹣4x2y=x2y B.x﹣y=xyC.x2+3x3=4x5D.5x3﹣2x3=2【考点】合并同类项.【分析】根据同类项和合并同类项的法则逐个判断即可.【解答】解:A、结果是x2y,故本选项正确;B、x和﹣y不能合并,故本选项错误;C、x2和3x3不能合并,故本选项错误;D、结果是3x3,故本选项错误;故选A.【点评】本题考查了合并同类项和同类项定义的应用,能熟记知识点是解此题的关键.6.若关于x的方程ax=3x﹣2的解是x=1,则a的值是()A.﹣1 B.﹣5 C.5 D.1【考点】一元一次方程的解.【分析】把x=1代入方程,即可得出一个关于a的一元一次方程,求出方程的解即可.【解答】解:把x=1代入方程ax=3x﹣2得:a=3﹣2,解得:a=1,故选D.【点评】本题考查了解一元一次方程,一元一次方程的解的应用,能得出关于a的一元一次方程是解此题的关键.7.如图,某轮船在O处,测得灯塔A在它北偏东40°的方向上,渔船B在它的东南方向上,则∠AOB 的度数是()A.85°B.90°C.95°D.100°【考点】方向角.【分析】根据方向角的定义以及角度的和差即可求解.【解答】解:∠AOB=180°﹣40°﹣45°=95°.故选C.【点评】本题考查了方向角的定义,正确理解方向角的定义是本题的关键.8.若有理数m在数轴上对应的点为M,且满足m<1<﹣m,则下列数轴表示正确的是()A.B.C.D.【考点】数轴.【专题】探究型.【分析】根据有理数m在数轴上对应的点为M,且满足m<1<﹣m,可以判断m的正负和m的绝对值与1的大小,从而可以选出正确选项.【解答】解:∵有理数m在数轴上对应的点为M,且满足m<1<﹣m,∴m<0且|m|>1.故选A.【点评】本题考查数轴,解题的关键是明确题意,可以判断m的正负和m的绝对值与1的大小.9.用[x]表示不大于x的整数中最大的整数,如[2.4]=2,[﹣3.1]=﹣4,请计算[5.5]+[﹣4]=()A.﹣1 B.0 C.1 D.2【考点】有理数大小比较.【专题】推理填空题;新定义.【分析】首先根据[x]表示不大于x的整数中最大的整数,分别求出[5.5]、[﹣4]的值各是多少;然后把它们相加,求出[5.5]+[﹣4]的值是多少即可.【解答】解:∵[x]表示不大于x的整数中最大的整数,∴[5.5]=5,[﹣4]=﹣5,∴[5.5]+[﹣4]=5+(﹣5)=0.故选:B.【点评】(1)此题主要考查了有理数大小比较的方法,要熟练掌握,解答此题的关键是要明确:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.(2)解答此题的关键是分别求出[5.5]、[﹣4]的值各是多少.10.点O在直线AB上,点A1,A2,A3,…在射线OA上,点B1,B2,B3,…在射线OB上,图中的每一个实线段和虚线段的长均为1个单位长度.一个动点M从O点出发,以每秒1个单位长度的速度按如图所示的箭头方向沿着实线段和以点O为圆心的半圆匀速运动,即从OA1B1B2→A2…按此规律,则动点M到达A10点处所需时间为()秒.A.10+55πB.20+55πC.10+110πD.20+110π【考点】规律型:图形的变化类.【分析】观察动点M从O点出发到A4点,得到点M在直线AB上运动了4个单位长度,在以O 为圆心的半圆运动了(π•1+π•2+π•3+π•4)单位长度,然后可得到动点M到达A10点处运动的单位长度=4×2.5+(π•1+π•2+…+π•10),然后除以速度即可得到动点M到达A10点处所需时间.【解答】解:动点M从O点出发到A4点,在直线AB上运动了4个单位长度,在以O为圆心的半圆运动了(π•1+π•2+π•3+π•4)单位长度,∵10=4×2.5,∴动点M到达A10点处运动的单位长度=4×2.5+(π•1+π•2+…+π•10)=10+55π;∴动点M到达A10点处运动所需时间=(10+55π)÷1=(10+55π)秒.故选:A.【点评】此题主要考查了图形的变化类:通过特殊图象找到图象变化,归纳总结出运动规律,再利用规律解决问题.也考查了圆的周长公式.二、填空题(本题共10小题,每小题2分,共20分)11.写出一个在﹣1和1之间的整数﹣1,0,1(选其一).【考点】有理数大小比较.【专题】开放型.【分析】根据整数的定义得出在﹣1和1之间的整数是﹣1,0,1即可.【解答】解:一个在﹣1和1之间的整数﹣1,0,1(选其一).故答案为:﹣1,0,1(选其一).【点评】本题考查了有理数的大小比较,根据整数的定义以及所给的范围进行求解是解题的关键.12.单项式﹣3x n y2是5次单项式,则n=3.【考点】单项式.【分析】根据单项式的次数的定义求解.【解答】解:∵单项式﹣3x n y2是5次单项式,∴n+2=5,∴n=3,故答案为:3.【点评】本题考查了单项式的概念,熟记单项式的次数的定义是解题的关键.13.2015年,天猫双十一全球狂欢节销售实际成交值超过912亿,将91200000000用科学记数法表示为9.12×1010.【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将91200000000用科学记数法表示为9.12×1010.故答案为:9.12×1010.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.14.如图,CD是线段AB上两点,若CB=4cm,DB=7cm,且D是AC中点,则AC的长等于6cm.【考点】两点间的距离.【分析】根据线段的和差,可得DC的长,根据线段中点的性质,可得答案.【解答】解:由线段的和差,得DC=DB﹣CB=7﹣4=3cm,由且D是AC中点,得AC=2DC=6cm,故答案为:6cm.【点评】本题考查了两点间的距离,利用线段的和差得出DC的长是解题关键.15.要把一根木条在墙上钉牢,至少需要两枚钉子.其中的道理是两点确定一条直线.【考点】直线的性质:两点确定一条直线.【分析】根据两点确定一条直线解答.【解答】解:把一根木条钉牢在墙上,至少需要两枚钉子,其中的道理是:两点确定一条直线.故答案为:两,两点确定一条直线.【点评】本题主要考查了直线的性质,熟记两点确定一条直线是解题的关键.16.如图,∠1=20°,∠AOC=90°,点B,O,D在同一直线上,则∠2=110°.【考点】垂线;对顶角、邻补角.【分析】首先根据余角定义可得∠BOC=90°﹣20°=70°,再根据邻补角互补可得答案.【解答】解:∵∠1=20°,∠AOC=90°,∴∠BOC=90°﹣20°=70°,∵∠2+∠COB=180°,∴∠2=110°,故答案为:110.【点评】此题主要考查了邻补角、余角,关键是掌握邻补角互补.17.若多项式x2+2x的值为5,则多项式2x2+4x+7的值为17.【考点】代数式求值.【专题】计算题;实数.【分析】原式前两项提取2变形后,将已知多项式的值代入计算即可求出值.【解答】解:∵x2+2x=5,∴原式=2(x2+2x)+7=10+7=17,故答案为:17【点评】此题考查了代数式求值,熟练掌握运算法则是解本题的关键.18.有一个数值转换器,其工作原理如图所示,若输入的数据是3,则输出的结果是0.【考点】有理数的混合运算.【专题】图表型.【分析】把x=3代入数值转化器中计算,判断得出结果即可.【解答】解:把x=3代入得:3×2=6<8,则输出结果为6﹣6=0.故答案为:0.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.19.从甲地到乙地,某人步行比乘公交车多用3.6小时,已知步行速度为每小时8千米,公交车的速度为每小时40千米,设甲乙两地相距x千米,则列方程为.【考点】由实际问题抽象出一元一次方程.【分析】本题中的相等关系是:步行从甲地到乙地所用时间﹣乘车从甲地到乙地的时间=3.6小时.即:,根据此等式列方程即可.【解答】解:设甲乙两地相距x千米,先利用路程公式分别求得步行和乘公交车所用的时间,再根据等量关系列方程得:.【点评】列方程解应用题的关键是找出题目中的相等关系.20.如图,已知点A、点B是直线上的两点,AB=12厘米,点C在线段AB上,且BC=4厘米.点P、点Q是直线上的两个动点,点P的速度为1厘米/秒,点Q的速度为2厘米/秒.点P、Q分别从点C、点B同时出发在直线上运动,则经过或1或3或9秒时线段PQ的长为5厘米.【考点】一元一次方程的应用;数轴.【专题】几何动点问题.【分析】由于BC=4厘米,点P、Q分别从点C、点B同时出发在直线上运动,当线段PQ的长为5厘米时,可分三种情况进行讨论:①点P向左、点Q向右运动;②点P、Q都向右运动;③点P、Q都向左运动;④点P向右、点Q向左运动;都可以根据线段PQ的长为5厘米列出方程,解方程即可.【解答】解:设运动时间为t秒.①如果点P向左、点Q向右运动,由题意,得:t+2t=5﹣4,解得t=;②点P、Q都向右运动,由题意,得:2t﹣t=5﹣4,解得t=1;③点P、Q都向左运动,由题意,得:2t﹣t=5+4,解得t=9.④点P向右、点Q向左运动,由题意,得:2t﹣4+t=5,解得t=3.综上所述,经过或1或3秒时线段PQ的长为5厘米.故答案为或1或3或9.【点评】此题考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.三、解答题(本题共7小题,第21题8分,第22题6分,第23题8分,第24题6分,第25题6分,第26题6分,第27题10分,共50分)21.计算:(1)﹣10+5﹣3(2)﹣22÷(﹣4)﹣6×(+).【考点】有理数的混合运算.【专题】计算题;实数.【分析】(1)原式结合后,相加即可得到结果;(2)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果.【解答】解:(1)原式=﹣10﹣3+5=﹣13+5=﹣8;(2)原式=﹣4÷(﹣4)﹣3﹣2=1﹣3﹣2=﹣4.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.22.先化简,再求值:4a2+2a﹣2(2a2﹣3a+4),其中a=2.【考点】整式的加减—化简求值.【专题】计算题;实数.【分析】原式去括号合并得到最简结果,把a的值代入计算即可求出值,【解答】解:原式=4a2+2a﹣4a2+6a﹣8=8a﹣8,把a=2代入,得:原式=8.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.23.解方程:(1)5x﹣3=4x+15(2).【考点】解一元一次方程.【专题】计算题;一次方程(组)及应用.【分析】(1)方程移项合并,把x系数化为1,即可求出解;(2)方程去分母,去括号,移项合并,把x系数化为1,即可求出解.【解答】解:(1)移项合并得:x=18;(2)去分母得:3(x﹣1)=30﹣2(2x﹣1),去括号得:3x﹣3=30﹣4x+2,移项得:3x+4x=30+2+3,合并得:7x=35,解得:x=5.【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.24.作图:(温馨提醒:确认后,在答题纸上用黑色水笔描黑)如图,已知平面上有四个点A,B,C,D.(1)作射线AD;(2)作直线BC与射线AD交于点E;(3)连接AC,再在AC的延长线上作线段CP=AC.(要求尺规作图,保留作图痕迹,不写作图步骤)【考点】直线、射线、线段.【专题】作图题.【分析】(1)作射线AD,点A为端点;(2)画直线BC,可以向两方无限延伸,画射线AD,以A为端点,两线交点为E;(3)画线段AC,再沿AC方向画延长线,以C为圆心,AC长为半径画弧交AC延长线于点P.【解答】解:如图所示:.【点评】此题主要考查了直线、射线和线段,关键是掌握三线的性质:直线没有端点,可以向两方无限延伸;射线有1个端点,可以向一方无限延伸;线段有2个端点,本身不能向两方无限延伸.(1)若本地通话100分钟,按方式一需交费多少元?按方式二需交费多少元?(2)对于某月本地通话,当通话多长时间时,按两种计费方式的收费一样多?【考点】一元一次方程的应用.【分析】(1)按照两种收费方式分别列式计算即可;(2)设出通话时间,表示出两种收费建立方程解答即可.【解答】解:(1)方式一:30+0.2×100=50(元)方式二:0.4×100=40(元)答:按方式一需交费50元,按方式二需交费40元.(2)设通话时间为x分钟,由题意得:30+0.2x=0.4x解得:x=150答:当通话时间为150分钟时,两种计费方式的收费一样多.【点评】此题考查一元一次方程的实际运用,理解两种方式的计算方法是解决问题的关键.26.把几个数用大括号括起来,相邻两个数之间用逗号隔开,如:{1,2},{1,4,7},…,我们称之为集合,其中的每一个数称为该集合的元素,如果一个所有元素均为有理数的集合满足:当有理数x是集合的一个元素时,2016﹣x也必是这个集合的元素,这样的集合我们又称为黄金集合.例如{0,2016}就是一个黄金集合,(1)集合{2016}不是黄金集合,集合{﹣1,2017}是黄金集合;(两空均填“是”或“不是”)(2)若一个黄金集合中最大的一个元素为4016,则该集合是否存在最小的元素?如果存在,请直接写出答案,否则说明理由;(3)若一个黄金集合所有元素之和为整数M,且24190<M<24200,则该集合共有几个元素?说明你的理由.【考点】有理数.【专题】新定义.【分析】(1)根据有理数a是集合的元素时,2016﹣a也必是这个集合的元素,这样的集合我们称为黄金集合,从而可以可解答本题;(2)根据2016﹣a,如果a的值越大,则2016﹣a的值越小,从而可以解答本题;(3)根据题意可知黄金集合都是成对出现的,并且这对对应元素的和为2016,然后通过估算即可解答本题.【解答】解:(1)根据题意可得,2016﹣2016=0,而集合{2016}中没有元素0,故{2016}不是黄金集合;∵2016﹣2017=﹣1,∴集合{﹣1,2016}是好的集合.故答案为:不是,是.(2)一个黄金集合中最大的一个元素为4016,则该集合存在最小的元素,该集合最小的元素是﹣2000.∵2016﹣a中a的值越大,则2016﹣a的值越小,∴一个黄金集合中最大的一个元素为4016,则最小的元素为:2016﹣4016=﹣2000.(3)该集合共有24个元素.理由:∵在黄金集合中,如果一个元素为a,则另一个元素为2016﹣a,∴黄金集合中的元素一定是偶数个.∵黄金集合中的每一对对应元素的和为:a+2016﹣a=2016,2016×12=24192,2016×13=26208,又∵一个黄金集合所有元素之和为整数M,且24190<M<24200,∴这个黄金集合中的元素个数为:12×2=24(个).【点评】本题考查了有理数以及探究性问题,关键是明确什么是黄金集合,集合中的各个数都是元素,明确黄金集合中的元素个数都是偶数个,在此还要应用到估算的知识.27.将一副直角三角板如图1摆放在直线AD上(直角三角板OBC和直角三角板MON,∠OBC=90°,∠BOC=45°,∠MON=90°,∠MNO=30°),保持三角板OBC不动,将三角板MON绕点O以每秒10°的速度顺时针旋转,旋转时间为t秒(1)当t= 2.25秒时,OM平分∠AOC?如图2,此时∠NOC﹣∠AOM=45°;(2)继续旋转三角板MON,如图3,使得OM、ON同时在直线OC的右侧,猜想∠NOC与∠AOM 有怎样的数量关系?并说明理由;(3)若在三角板MON开始旋转的同时,另一个三角板OBC也绕点O以每秒5°的速度顺时针旋转,当OM旋转至射线OD上时同时停止,(自行画图分析)①当t=3秒时,OM平分∠AOC?②请直接写出在旋转过程中,∠NOC与∠AOM的数量关系.【考点】角的计算;角平分线的定义.(1)根据角平分线的定义得到∠AOM==22.5°,于是得到t=2.25秒,由于∠MON=90°,【分析】∠MOC=22.5°,即可得到∠NOC﹣∠AOM=∠MON﹣∠MOC﹣∠AOM=45°;(2)根据题意得∠AON=90°+10t,求得∠NOC=90°+10t﹣45°=45°+10t,即可得到结论;(3)①根据题意得∠AOB=5t,∠AOM=10t,求得∠AOC=45°+5t,根据角平分线的定义得到∠AOM=AOC,列方程即可得到结论;②根据角的和差即可得到结论.【解答】解:(1)∵∠AOC=45°,OM平分∠AOC,∴∠AOM==22.5°,∴t=2.25秒,∵∠MON=90°,∠MOC=22.5°,∴∠NOC﹣∠AOM=∠MON﹣∠MOC﹣∠AOM=45°;故答案为:2.25,45;(2)∠NOC﹣∠AOM=45°,∵∠AON=90°+10t,∴∠NOC=90°+10t﹣45°=45°+10t,∵∠AOM=10t,∴∠NOC﹣∠AOM=45°;(3)①∵∠AOB=5t,∠AOM=10t,∴∠AOC=45°+5t,∵OM平分∠AOC,∴∠AOM=AOC,∴10t=45°+5t,∴t=3秒,故答案为:3.②∠NOC﹣∠AOM=45°.∵∠AOB=5t,∠AOM=10t,∠MON=90°,∠BOC=45°,∵∠AON=90°+∠AOM=90°+10t,∠AOC=∠AOB+∠BOC=45°+5t,∴∠NOC=∠AON﹣∠AOC=90°+10t﹣45°﹣5t=45°+5t,∴∠NOC﹣∠AOM=45°.【点评】此题考查了角的计算,关键是应该认真审题并仔细观察图形,找到各个量之间的关系求出角的度数是解题的关键.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
浙教版初中数学试卷
2019-2020年七年级数学上册期末复习测试卷
学校:__________
一、选择题
1.(2分)将方程
12x 3
123
x −+−=去分母,正确的结果是( ) A .3(1)2(23)1x x −−+= B .3(1)2(23)6x x −−+= C .31431x x −−+=
D .31436x x −−+=
2.(2分)数轴上表示-2.2的点在( ) A .-1与-2之间
B .-3与-2之间
C . 2与3之间
D .1 与2之间
3.(2分)已知26x y −+=,则4)2(3)2(22
+−−−y x y x 的值是( ) A .144
B .94
C .58
D .142
4.(2分)若∠AOB=50°,∠BOC=20°,则∠AOC 的度数是 ( ) A .30°
B .70°
C .30°或 70°
D .100°
5.(2分)杭州湾跨海大桥于5月1日23时58分开始试运行,大桥全长36千米,按规定桥上最低时速为60千米,最高时速为100千米,两辆汽车从桥的南北两端同时出发,正常行驶时到它们在途中交会所需时间可能为( )
A .36分钟
B .22分钟
C .15分钟
D .7分钟
6.(2分)小明自从学了有理数的运算法则后, 非常得意,编了一个计算程序, 当他输入任何一个有理数时, 显示屏上出现的结果总等于所输入的有理数的平方与1的差, 他第一次输入
2−,然后又将所得的结果再次输入,你猜此时显示屏上出现的结果为 ( )
A .6
B .4
C .19
D . 8
7.(2分) 某个体商贩在一次买卖中同时卖出两件上衣,售价都是 135 元,若按成本计算,其中一件盈利 25%,另一件亏损 25%,则在这次买卖中他( ) A . 赚 18 元
B .赚 36 元
C . 赔 18 元
D . 不赚不赔
8.(2分)某商场为促销将一种商品 A 按标价的九析出售,仍可获利润 10%. 若商品A 的标价是33元,那么该商品的进价为( ) A .31元
B .30.2元
C .29.7元
D .27元
评卷人 得分
二、填空题
9.(2分)已知小明家五月份总支出共计1200元,各项支出如图所示,那么其中用于教育上的支出是 元.
10.(2分)观察下面的等式,①111122⨯=−;②222233⨯=−;③33
3344⨯=−;④
44
4455
⨯
=−……第n 个等式可表示为 . 11.(2分)国庆期间,“新世纪百货”搞换季打折. 简爽同学以8折的优惠价购买了一件运动服节省16元,那么他购买这件衣服实际用了 元. 12.(2分)单项式b a 231π−的系数是 ,次数是 ,多项式21
232
m m −+−中常数项是 .
13.(2分)2
2
2(2)−+−= , -8÷2×
2
1
=______ ,425−= .
14.(2分)已知2x -3y =1,则10-2x +3y = .
15.(2分)把编号为 1、2、3、4、…的若干盆花按如图所示摆放,花盆中的花按红、黄、 蓝、紫的颜色依次循环排列,则第8行从左边数第 6盆花的颜色为 色.
16.(2分)计算结果用度表示:59°17′+18°28′= . 17.(2分)单项式25
3
a bc −的系数是 ,次数是 .
18.(2分)针对药品市场价格不规范的现象,药监部门对部分药品的价格进行了调整. 已知某药品原价为a 元,经过调整后,药价降低了60%,则该药品调整后的价格为 元. 19.(2分)若一个角的余角等于它的补角的1
5
,则这个角是 .
20.(2分)下午2时30分,钟面上的时针和分针的夹角是 . 21.(2分)如果代数式51a +与3(5)a −的值相等,那么a = .
22.(2分)下面方程的解法错在 (填解题步骤序号),正确钓结果是x = . 解方程
12x 1224
x
−+=−
.
解:去分母,得2(12x}2(1)x −=−+ . ① 去括号,得2421x x −=−− . ② 移项、合并同类项.得31x −=− ③ 解得1
3
x = . ④
三、解答题
23.(7分)某商场对今年端午节这天销售A 、B 、C 三种品牌粽子的情况进行了统计,绘制如图6和图7所示的统计图.根据图中信息解答下列问题:
(1)哪一种品牌粽子的销售量最大? (2)补全图6中的条形统计图.
(3)写出A 品牌粽子在图7中所对应的圆心角的度数.
(4)根据上述统计信息,明年端午节期间该商场对A 、B 、C 三种品牌的粽子如何进货? 请你提一条合理化的建议.
24.(7分)先化简,再求值:(
)(
)2
2
25235a a a a
−−−+,其中a =-1.
25.(7分) 解下列方程: (1)156178x x +=−
图 7
图 6
(2)2419 36
x x
x −+
=−
(3)
10.50.1
2 0.30.2
x x
−−
−=
26.(7分)如图,0 为直线AB上-点,OC⊥AB,∠DOE =90°,反向延长射线OE得直线EF,写出图中与∠AOF相等的一个角,并说明理由.
27.(7分)有长为l的篱笆,现要用这个篱笆和一面墙围成矩形的园子(如图),园子的宽为t.
(1)用含l、t的代数式表示园子的面积;
(2)当100
l=米,30
t=米时,求园子的面积.
28.(7分)海水受日月的引力而产生潮汐现象,早晨海水上涨叫做潮,黄昏海水上涨叫做汐,合称潮汐.潮汐与人类的生活有着密切的联系. 下面是某港口从0时到 12时的水深情况统计图.
(1)6时水深米,12时水深米;
(2)大约时港口的水最深,深度约是米;
(3)大约时港口的水最浅,深度约是米;
(4)根据该折线统计图,说一说这个港口从 0时到12时水深的变化情况.
29.(7分)(1)根据图6,试用方程的知识解释:有没有可能找回27.60元?
(2)请你根据图6中的信息算一算,两种笔记本各买了多少本?
30.(7分)2007年4月,国民体质监测中心等机构开展了青少年形体测评,专家组随机抽查了某市若干名初中学生的坐姿、站姿、走姿情况. 专家将测评数据做了适当处理(如果一个学生有一种以上不良姿势,以他最突出的一种作记载),并根据统计结果绘制了如下两幅不完整的统计图. 请你根据,图中所给信息解答下列问题:
(1)请将两幅统计图补充完整;
(2)在这次形体测评中,一共抽查了名学生,如果全市有 10万名初中生,那么全市初中生中,三姿良好的学生约有名;
(3)根据统计结果,请你简单谈谈自己的看法.
【参考答案】***试卷处理标记,请不要删除
一、选择题
1.B 2.B 3.B 4.C 5.C 6.D 7.C 8.D
二、填空题
9.216
10.11
n n
n n n n ⨯
=−
++ 11.64
12.13π−,3,-12
13.0,-2,2
5
−
14.9 15.黄 16.78.25° 17.5
3
−,4
18.0.4a
19.67.5° 20.105° 21.-8
22.①,5−
三、解答题
23.解: (1)C 品牌;(2)略(B 品牌的销售量是800个);(3)60°;(4)略 24.(
)(
)2
2
25235a a a a
−−−+=2
2256102a
a a a −−+− =1110a −+
当a =-1时,原式=11(1)1021−⨯−+= 25.(1)x=7 (2)x=3 (3)4723
x = 26.答案不唯一. 如:
∠BOE=∠AOF,理由是“对顶角相等”;∠COD=∠AOF,理由是“同角的余角相等 27.(1)园子的宽为t ,则长为2l t −,∴园子的面积为(2)t l t −;
(2)当100l =米,30t =米时,园子的面积为(2)30(100230)1200t l t −=−⨯=(平方米) 28.(1) 5,5; (2) 3,8; (3) 9,2;
(4)午夜,0时至3时海水上涨,从3时至9时海水连续下降(退潮),从9时至 12时海水又上涨
29.若能找回27.60元,设甲种笔记本买了x 本,则乙种笔记本买了(36x −)本. 根据题意,得1.80 2.60(36)27.60100x x +−+=,解得26.5x =,经检验,26.5x = 是方程的解,但因为所买笔记本的本数不可能是小数,∴不符合题意. ∴不可能找回27.60元.
(2)设甲种笔记本买了x 本,则乙种笔记本买了(36x −)本.
根据题意, 可列方程1.80 2.60(36)27.62100x x +−+−=,解得24x =, 乙种笔记本买了36362412x −=−=(本). 经检验,所得解是方程的解,且符合题意. 答:甲种笔记本买了 24本,乙种笔记本买了12 30.(1)扇形图中填:三姿良好12%. 条形统计图如图所示:
(2) 500, 12000;
(3)答案不唯一,如:中学生应该坚持锻炼身体,努力纠正坐、立、走中的不良习惯,促进身心健康发育。