abaqus扩展有限元(xfem)例子(裂缝发展) ()
ABAQUS版本XFEM扩展元例子的详细图解

A B A Q U S6.9版本X F E M(扩展有限元)例子的详细图解一、part模块中的操作:二、 1.生成一个新的part,取名为plate,本part选取3Ddeformablesolidextrusion类型(如图1)三、 2.通过Rectangle工具画出一长3,高6的矩形。
考虑使用工具栏add-dimension和editdimension来画出精确长度的模型。
强烈建议此矩形的左上角坐标为(0,3),右下角坐标为(3,-3)(如图2)四、 3.完成后拉伸此矩形,深度为1.(如图3)五、图1,图2,图3,4.生成一个新的part,取名为crack,本part选取3Ddeformableshellextrusion类型(如图4)5.生成一条线,此线的左端点坐标为(0,0.08),右端点坐标为(1.5,0.08)6.完成后拉伸此线,深度为1.(如图6)7.保存此模型为XFEMtutor(如图7),以后经常保存模型,不再累述。
8.在partPlate中分别创建4个集合,分别为:all,bottom,top和fixZ,各部分的内容如图8~11所示。
二、Material模块中的操作:1.创建材料elsa,其弹性参数为E=210GPa,泊松比为0.3(如图12)最大主应力失效准则作为损伤起始的判据,最大主应力为84.4MPa(如图13)损伤演化选取基于能量的、线性软化的、混合模式的指数损伤演化规律,有关参数为G1C=G2C=G3C=42200N/m, =1.(如图14)2.创建一个SolidHomogeneous的section,名为solid(如图15),此section与材料elsa相联(如图16),并将此section赋给platepart(也就是集合all)(如图17)3.赋予材料取向,分别如图18~21所示。
三、划分网格:网格控制为:Hex型structured(如图22),单元类型为C3D8R(如图23)设置plate各边的网格种子为8,26,36(如图24),各边种子的个数不能改变(如图25)四、装配模块:选中plate和crack两个part,分别生成2个实体(如图26),生成一个参考点,参考点的坐标为(1.5,-3,0)(如图27,28)。
ABAQUS平台的扩展有限元方法模拟裂纹实现

ABAQUS平台的扩展有限元方法模拟裂纹实现1.1 扩展有限元方法(XFEM)在ABAQUS上的实现ABAQUS中XFEM的实现,两个步骤最为关键:1、选择模型中可能出现的裂纹区域,将其单元设为具有扩展有限元性质的enrichment element.2、其次重要的是选择恰当的破坏准则,使单元在达到给定的条件破坏,裂纹扩展。
在ABAQUS中模拟裂纹扩展的操作中,需要注意的是:1、在Property模块,添加损伤演化参数、破坏法则、损伤稳定性参数2、在Interaction模块,主菜单Special中创建XFEM的enrichment element对于固定的裂纹模型,采用ABAQUS/STANDARD中使用奇异渐进函数。
针对移动的裂纹问题,在XFEM中,有一种方法基于traction-separation cohesive behavior,即使用虚拟节点连续片段法进行移动裂纹建模,ABAQUS/STANDAR D 中用于计算脆性或韧性材料的裂纹初始化和扩展过程的模拟。
另外一种cohesive segments method (粘性片段方法)可用于bulk material中的任意路径的裂纹初始化模拟扩展过程,由于裂纹扩展不依赖于单元边界,在XFEM中,裂纹每扩展一次需要通过一个完整单元,避免尖端应力奇异性。
除此之外,ABAQUS为拥护提供了自定义子程序,来满足不同建模的需要。
ABAQUS/STANDARD中的任意力学本构模型均可用来模拟扩展裂纹的力学特性。
由于XFEM采用的形函数在求解过程中,很容易造成逼近线性相关,极大的增加了收敛难度,到目前为止,能够实现扩展有限元的商业软件只有ABAQUS,但是ABAQUS为了减少求解难度,做了大量简化,因此用ABAQUS 扩展有限元模拟裂纹扩展时,有一些局限[16]:1.扩展单元内不能同时存在两条裂纹,所以ABAQUS不能模拟分叉裂纹;2.在裂纹扩展分析过程中,每一个增量步的裂纹转角不允许超过90度;3.自适应的网格是不被支持的;4.固定裂纹中,只有各向同性材料的裂纹尖端渐进场才被考虑。
扩展有限元的ABAQUS实现

扩展有限元的ABAQUS实现常规有限元方法(CEFM)和其他数值方法相比,具有一些无法比拟的优点,但仍存在一些缺陷。
比如在解决类似裂纹这样的强不连续问题,由于裂纹尖端处的应力奇异性,导致计算量巨大而且精度不高。
然而扩展有限元方法(extended finite element method,XFEM)的出现,和常规有限元方法相比具有显著的优势,使得我们可以在裂尖和应力、变形集中处划分高密度的网格,也可以方便的模拟裂纹的扩展,使计算量不那么巨大,保留了常规有限元法的所有优点。
因此,扩展有限元得到了快速发展和应用,而且在裂纹的扩展研究中要的意义。
本文开展对扩展有限元方法和裂纹问题的研究,并且基于限元ABAQUS平台,对扩展有限元方法针对裂纹扩展问题进行模拟实现。
关键词:扩展有限元方法,裂纹扩展,ABAQUS第一章绪论1.1 引言21世纪以来,计算机硬件和数值仿真的快速发展以及工业工程实践与科学研究中存在的大量运算需求,世界上涌现出一批大型科研运算及科学模拟软件,能够极大的简化运算问题以及计算机模拟实验,使我们能够更加方便地研究虚拟工程及相关科学问题。
有限元方法的出现为数值分析方法的研究带来了新的曙光,力学学科本来就是连接理工学科的桥梁,计算力学是目前力学发展的一个重要分支。
有限元软件则是我们到达工程科学领域彼岸的非常重要的工具和桥梁之一。
ABAQUS软件是世界上最强大的大型有限元计算分析软件之一,具有不同种类的单元类型、材料类型和不同的分析过程,拥有很好的计算功能和模拟性能。
ABAQUS软件不但可以进行一种部件和复杂物理场的分析,而且可以处理多系统的部件分析;不仅可以分析简单的线弹性问题,还可以处理复杂的非线性组合问题等,相比其它软件具有无可比拟的优势[1,2]。
固体力学中存在的两类不连续问题之一则是因为物体内部几何结构突变引起的强不连续问题,裂纹问题就是这类问题的代表。
由于几何界面处的位移不连续性和裂纹尖端的应力奇异性使得这类问题的处理变得比较复杂。
裂纹扩展的扩展有限元(xfem)模拟实例详解

基于ABAQUS 扩展有限元的裂纹模拟化工过程机械622080706010 李建1 引言1.1 ABAQUS 断裂力学问题模拟方法在abaqus中求解断裂问题有两种方法(途径):一种是基于经典断裂力学的模型;一种是基于损伤力学的模型。
断裂力学模型就是基于线弹性断裂力学及其基础上发展的弹塑性断裂力学等。
如果不考虑裂纹的扩展,abaqus可采用seam型裂纹来分析(也可以不建seam,如notch型裂纹),这就是基于断裂力学的方法。
这种方法可以计算裂纹的应力强度因子,J积分及T-应力等。
损伤力学模型是指基于损伤力学发展而来的方法,单元在达到失效的条件后,刚度不断折减,并可能达到完全失效,最后形成断裂带。
这两个模型是为解决不同的问题而提出来的,当然他们所处理的问题也有交叉的地方。
1.2 ABAQUS 裂纹扩展数值模拟方法考虑模拟裂纹扩展,目前abaqus有两种技术:一种是基于debond的技术(包括VCCT);一种是基于cohesive技术。
debond即节点松绑,或者称为节点释放,当满足一定得释放条件后(COD 等,目前abaqus提供了5种断裂准则),节点释放即裂纹扩展,采用这种方法时也可以计算出围线积分。
cohesive有人把它译为粘聚区模型,或带屈曲模型,多用于模拟film、裂纹扩展及复合材料层间开裂等。
cohesive模型属于损伤力学模型,最先由Barenblatt 引入,使用拉伸-张开法则(traction-separation law)来模拟原子晶格的减聚力。
这样就避免了裂纹尖端的奇异性。
Cohesive 模型与有限元方法结合首先被用于混凝土计算和模拟,后来也被引入金属及复合材料。
Cohesive界面单元要服从cohesive 分离法则,法则范围可包括粘塑性、粘弹性、破裂、纤维断裂、动力学失效及循环载荷失效等行为。
此外,从abaqus6.9版本开始还引入了扩展有限元法(XFEM),它既可以模拟静态裂纹,计算应力强度因子和J积分等参量,也可以模拟裂纹的开裂过程。
ABAQUS精选本FEM扩展元例子的详细图解

版本X F E M(扩展有限元)例子的详细图解一、part模块中的操作:二、 1.生成一个新的part,取名为plate,本part选取3Ddeformablesolidextrusion类型(如图1)三、 2.通过Rectangle工具画出一长3,高6的矩形。
考虑使用工具栏add-dimension和editdimension来画出精确长度的模型。
强烈建议此矩形的左上角坐标为(0,3),右下角坐标为(3,-3)(如图2)四、 3.完成后拉伸此矩形,深度为1.(如图3)五、图1,图2,图3,4.生成一个新的part,取名为crack,本part选取3Ddeformableshellextrusion类型(如图4)5.生成一条线,此线的左端点坐标为(0,),右端点坐标为(,)6.完成后拉伸此线,深度为1.(如图6)7.保存此模型为XFEMtutor(如图7),以后经常保存模型,不再累述。
8.在partPlate中分别创建4个集合,分别为:all,bottom,top和fixZ,各部分的内容如图8~11所示。
二、Material模块中的操作:1.创建材料elsa,其弹性参数为E=210GPa,泊松比为(如图12)最大主应力失效准则作为损伤起始的判据,最大主应力为(如图13)损伤演化选取基于能量的、线性软化的、混合模式的指数损伤演化规律,有关参数为G1C=G2C=G3C=42200N/m,=1.(如图14)2.创建一个SolidHomogeneous的section,名为solid(如图15),此section与材料elsa相联(如图16),并将此section赋给platepart(也就是集合all)(如图17)3.赋予材料取向,分别如图18~21所示。
三、划分网格:网格控制为:Hex型structured(如图22),单元类型为C3D8R(如图23)设置plate各边的网格种子为8,26,36(如图24),各边种子的个数不能改变(如图25)四、装配模块:选中plate和crack两个part,分别生成2个实体(如图26),生成一个参考点,参考点的坐标为(,-3,0)(如图27,28)。
裂纹扩展的扩展有限元(xfem)模拟实例详解

基于ABAQUS 扩展有限元的裂纹模拟化工过程机械622080706010 李建1 引言1.1 ABAQUS 断裂力学问题模拟方法在abaqus中求解断裂问题有两种方法(途径):一种是基于经典断裂力学的模型;一种是基于损伤力学的模型。
断裂力学模型就是基于线弹性断裂力学及其基础上发展的弹塑性断裂力学等。
如果不考虑裂纹的扩展,abaqus可采用seam型裂纹来分析(也可以不建seam,如notch型裂纹),这就是基于断裂力学的方法。
这种方法可以计算裂纹的应力强度因子,J积分及T-应力等。
损伤力学模型是指基于损伤力学发展而来的方法,单元在达到失效的条件后,刚度不断折减,并可能达到完全失效,最后形成断裂带。
这两个模型是为解决不同的问题而提出来的,当然他们所处理的问题也有交叉的地方。
1.2 ABAQUS 裂纹扩展数值模拟方法考虑模拟裂纹扩展,目前abaqus有两种技术:一种是基于debond的技术(包括VCCT);一种是基于cohesive技术。
debond即节点松绑,或者称为节点释放,当满足一定得释放条件后(COD 等,目前abaqus提供了5种断裂准则),节点释放即裂纹扩展,采用这种方法时也可以计算出围线积分。
cohesive有人把它译为粘聚区模型,或带屈曲模型,多用于模拟film、裂纹扩展及复合材料层间开裂等。
cohesive模型属于损伤力学模型,最先由Barenblatt 引入,使用拉伸-张开法则(traction-separation law)来模拟原子晶格的减聚力。
这样就避免了裂纹尖端的奇异性。
Cohesive 模型与有限元方法结合首先被用于混凝土计算和模拟,后来也被引入金属及复合材料。
Cohesive界面单元要服从cohesive 分离法则,法则范围可包括粘塑性、粘弹性、破裂、纤维断裂、动力学失效及循环载荷失效等行为。
此外,从abaqus6.9版本开始还引入了扩展有限元法(XFEM),它既可以模拟静态裂纹,计算应力强度因子和J积分等参量,也可以模拟裂纹的开裂过程。
Abaqus扩展有限元(XFEM)例子(裂缝发展)

Abaqus扩展有限元(XFEM)例子(裂缝发展)part模块中的操作:1. 生成一个新的part,取名为plate,本part选取3D deformable solid extrusion类型(如图1)2.通过Rectangle工具画出一长3,高6的矩形。
考虑使用工具栏add-dimension和edit dimension来画出精确长度的模型。
强烈建议此矩形的左上角坐标为(0,3),右下角坐标为(3,-3)(如图2)3. 完成后拉伸此矩形,深度为1.(如图3)4. 生成一个新的part,取名为crack,本part选取3D deformable shell extrusion类型(如图4)5.生成一条线,此线的左端点坐标为(0,0.08),右端点坐标为(1.5,0.08)6 . 完成后拉伸此线,深度为1.(如图6)7.保存此模型为XFEMtutor(如图7),以后经常保存模型,不再累述。
8. 在part Plate中分别创建4个集合,分别为:all,bottom,top和fixZ,各部分的内容如图8~11所示Material模块中的操作:1 创建材料elsa,其弹性参数为E=210GPa,泊松比为0.3(如图12)2 最大主应力失效准则作为损伤起始的判据,最大主应力为84.4MPa(如图13)3.损伤演化选取基于能量的、线性软化的、混合模式的指数损伤演化规律,有关参数为G1C= G2C= G3C=42200N/m,a=1.(如图14)4.创建一个Solid Homogeneous 的section,名为solid(如图15),此section与材料elsa相联(如图16),并将此s ection赋给plate part(也就是集合all)(如图17)3.赋予材料取向,分别如图18~21所示。
三、划分网格:网格控制为:Hex型structured(如图22),单元类型为C3D8R(如图23)设置plate各边的网格种子为8,26,36(如图24),各边种子的个数不能改变(如图25)四、装配模块:选中plate和crack两个part,分别生成2个实体(如图26),生成一个参考点,参考点的坐标为(1.5,-3,0)(如图27,28)。
abaqus疲劳裂纹扩展模拟方法

在Abaqus中进行疲劳裂纹扩展模拟通常需要使用ABAQUS/Standard或ABAQUS/Explicit这两个分析模块。
ABAQUS提供了丰富的工具和元素来模拟疲劳裂纹扩展,以下是一个基本的步骤:1. 建模:-使用ABAQUS/CAE(图形用户界面)或ABAQUS脚本语言(Python)创建模型。
确保模型包含准确的几何形状和边界条件。
2. 网格划分:-确保模型的网格划分足够细致,特别是在裂纹尖端区域。
使用ABAQUS 提供的适当类型的网格元素,如二维或三维等元素。
3. 材料定义:-定义材料的力学性质和断裂参数。
在疲劳分析中,通常需要使用合适的疲劳材料参数。
4. 加载和约束:-定义加载和约束条件。
对于疲劳裂纹扩展,通常使用周期性的加载。
加载可以是压力、力、位移等。
5. 疲劳裂纹增长:-使用ABAQUS的断裂力学(XFEM)方法来模拟裂纹的扩展。
你可以使用ABAQUS/Standard的XFEM方法来处理裂纹尖端的应力集中。
6. 结果输出:-设置合适的输出请求以获得关于裂纹扩展和结构响应的信息。
这可能包括应力、应变、位移、裂纹长度等。
7. 迭代分析:-如果需要模拟多个加载循环的疲劳裂纹扩展,你可能需要使用ABAQUS/Standard的循环加载功能,或者通过ABAQUS/Explicit进行显式动态疲劳分析。
8. 后处理:-使用ABAQUS/CAE或Python脚本进行后处理,绘制结果图形,分析裂纹扩展速率等。
请注意,这仅仅是一个基本的指南。
实际应用中,还需要考虑更多因素,如裂纹尖端应力场的准确建模、裂纹扩展准则的选择等。
确保在模拟前仔细阅读ABAQUS文档,并根据具体问题和标准进行模拟设置。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Abaqus扩展有限元(XFEM)例子(裂缝发展)
part模块中的操作:
1. 生成一个新的part,取名为plate,本part选取3D deformable solid extrusion类型(如图1)
2.通过Rectangle工具画出一长3,高6的矩形。
考虑使用工具栏add-dimension和edit dimension来画出精确长度的模型。
强烈建议此矩形的左上角坐标为(0,3),右下角坐标为(3,-3)(如图2)
3. 完成后拉伸此矩形,深度为1.(如图3)
4. 生成一个新的part,取名为crack,本part选取3D deformable shell extrusion类型(如图4)
5.生成一条线,此线的左端点坐标为(0,0.08),右端点坐标为(1.5,0.08)
6 . 完成后拉伸此线,深度为1.(如图6)
7.保存此模型为XFEMtutor(如图7),以后经常保存模型,不再累述。
8. 在part Plate中分别创建4个集合,分别为:all,bottom,top和fixZ,各部分的内容如图
8~11所示
Material模块中的操作:
1 创建材料elsa,其弹性参数为E=210GPa,泊松比为0.3(如图12)
2 最大主应力失效准则作为损伤起始的判据,最大主应力为84.4MPa(如图13)
3.损伤演化选取基于能量的、线性软化的、混合模式的指数损伤演化规律,有关参数为G1C= G2C= G3C=42200N/m,a=1.(如图14)
4.创建一个Solid Homogeneous 的section,名为solid(如图15),此section与材料elsa相
联(如图16),并将此s ection赋给plate part(也就是集合all)(如图17)
3.赋予材料取向,分别如图18~21所示。
三、划分网格:
网格控制为:Hex型structured(如图22),单元类型为C3D8R(如图23)设置plate各边的网格种子为8,26,36(如图24),各边种子的个数不能改变(如图25)
四、装配模块:选中plate和crack两个part,分别生成2个实体(如图26),生成一个参考点,参考点的坐标为(1.5,-3,0)(如图27,28)。
将参考点的名字改为db(如图29,30)。
生成集合bdisp,此集合包含db这个点。
五、Interaction模块中创建约束方程ce_bot,如图31所示
六.Step模块中的操作:
1.建立个static的分析步,如图32所示。
打开几何非线性开关,如图33所示。
设置增量步,如图34所示。
打开解控制,如图35和图36所示,并进行有关参数的设置,如图37和图38所示。
设置场输出变量,如图39所示。
请求一个新的历史输出变量,如图40所示。
七Load模块中的操作:
设置4个位移边界条件,位移值、边界条件的名称、类型、作用载荷步、作用区域等分别如图41~44所示。
八、设置XFEM型裂纹:返回Interaction模块,先生成一个硬接触属性contact,如图45所示。
再建立XFEM型裂纹,过程如图46~49所示。
九、通过关键词编辑器加入损伤稳定性控制,如图50,图51所示。
新版本的abaqus可以在定义材料属性的时候直接定义这个参量Damage Stabilization Cohesive---Viscositycoefficient,,不需要通过关键词编辑器加入损伤稳定性控制
生成job XFEMtutor,进行计算,结果如图52所示。