函数测试1

合集下载

高一年级数学第二章《函数》提高测试题(一)

高一年级数学第二章《函数》提高测试题(一)

提高测试(一)(一)选择题(每小题4分:共24分)1.已知函数f (x )的定义域为[a :b ]且b >-a >0:则函数F (x )=f ( x )+f (-x )的定义域是( ).(A )[a :-a ] (B )(-∞:-a ) [a :+∞)(C )[-a :a ] (D )(-∞:a ) [-a :+∞)【答案】(A ).【点评】本题考查函数定义域的概念:F (x ) 的定义域应满足a ≤x ≤b :且a ≤-x ≤b : 即⎩⎨⎧-≤≤-≤≤ax b b x a 解答本题应正确在数轴上画出所示区域:借肋图形得到答案. 2.已知函数f (x )=a x +b 的图象经过点(1:7)其反函数f -1(x )的图象经过点(4:0):则f (x )的表达式是( ).(A )f (x )=3 x +4 (B )f (x )=4 x +3(C )f (x )=2 x +5 (D )f (x )=5 x +2【答案】(B ).【点评】运用f (x )和f -1 (x )的关系:f -1 (x )的图象经过(4:0)点:可知原来的函数f (x )必过点(0:4).3.已知f (x )=2 | x |+3:g (x )=4 x -5:若f [p (x )]=g (x ):则p (3)的值为( ).(A )2 (B )±2 (C )-2 (D )不能确定【答案】(B ).【点评】本题考察函数概念的对应法则:由已知:2 | p (x )|+3=4 x -5:所以| p (x )|=2 x -4:∴ | p (3)|=2:故 p (3)=±2.4.设f (x )=ax 7+bx 3+c x -5其中a :b :c 为常数:如f (-7)=7:则f (7)等于( ).(A )-17 (B )-7 (C )14 (C )21【答案】(A ).【点评】本题考察函数奇偶性的灵活运用:f (x )是一个非奇非偶函数:注意到:f (x )=g (x )-5:而g (x )是一个奇函数:由f (-7)=g (-7)-5=7:得g (-7)=-12:故f (7)=g (7)-5=-12-5=-17.5.已知1< x <d :令a =(log d x ) 2:b =log d (x 2 ):c =log d (log d x ):则( ).(A )c <b <c (B )a <c <b(C )c <b <a (D )c <a <b【答案】(D ).【点评】比较大小采用的方法之一是“中间值”法:如本题中将a :b :c 先与0比较:知a >0:b >0:而c <0.利用“函数的单调性”或“比较法”等可解.6.下列命题中:正确的命题是( ).(A )y =2 lg x 与y =lg x 2是同一个函数(B )已知f (x )是定义在R 上的一偶函数:且在[a :b ]上递增:则在[-b :-a ]上也递增(C )f (x )=| log 2 x |是偶函数(D )f (x )=log a (x x ++21)的奇函数【答案】(D ).【提示】(A )中两个函数的定义域不同:前者x >0:后者x ≠0:(B )中:在[-b :-a ]上应递减:(C )中f (x )的定义域是x >0:所以f (x )既不是奇函数也不是偶函数.(二)填空题(每小题5分:共25分)1.若函数y =612-x :x ∈[-2:-1]:则其反函f -1 (x )=______. 【答案】f -1 (x )=-x x 16+(-21≤x ≤-51). 【点评】要切实掌握好求反函数的一般步骤:还需特别注意:反解x 时:x 的取值范围:如本题中:由x 2=y1+6:求x 时:开方应取“负”.另外:求反函数:必须证明反函数的定义域:可通过求原函数的值域完成.2.已知函数f (x )的定义域是[-1:2] 则函数f (x 2)的定义域是________.【答案】[-2:2].【提示】解不等式:-1≤ x 2≤2可得.∴ 0≤ | x |≤2:∴ -2≤ x ≤2.3.已知f (n )=⎩⎨⎧<+≥-)10()]5([)10(3n n f f n n n ∈N :则f (5)的值等于________. 【答案】8.【点评】考查对对应法则f 的理解.f (5)=f [ f (5+5)]=f [ f (10)]=f (10-3)=f (7) =f [ f (7+5)]=f (12-3)=f [ f (9+5)]=f (14-3)=f (11)=11-3=8.4.函数y =2 lg (x -2)-lg (x -3)的最小值为_________.【答案】x =4时:y m i n =lg 4.5.方程log 2(9 x -1+7)=2+log 2(3 x -1+1)的解为________.【答案】x =1或x =2.由9 x -1+7=4(3 x -1+1):得(3x -1) 2-4 · 3 x -1+3=0:故3 x -1=1或3可解.(三)解答题(共4个小题:满分51分)1.(本题满分12分)设函数y =f (x )是定义在(-1:1)上的奇函数:且在[0:1)上是减函数:若f (t -1)+f (2 t -1)>0:求t 的取值范围.【略解】由已知:f (2 t -1)>-f (t -1)=f (1-t )(*):又f (x )在[0:1)上是减函数且是奇函数:∴ f (x )在(-1:1)上是减函数:故(*)式等价于:⎪⎩⎪⎨⎧-<-<-<-<-<-t t t t 1121111121 ⇔0<t <32为所求. 【点评】本题考查函数的奇偶性和单调性的应用.在由函数值的大小关系:利用单调性得两个自变量值之间的关系时:一定要将两个自变量落在同一个单调区间内.2.(本题满分13分)已知f (x )=log a xx -+11(a >0:a ≠1). (1)求f (x )的定义域:(2)判断f (x )的单调性:并予以证明:(3)求使f (x )>0的x 取值范围.【略解】(1)∵ xx -+11>0:∴ f (x )定义域为(-1:1). (2)设-1<x 1<x 2<1:则f (x 1)-f (x 2)=log a 1111x x -+-log a 2211x x -+=log a )1)(1()1)(1(2121x x x x +--+ =log a)()1()()1(12211221x x x x x x x x -+---- ∵ -1<x 1<x 2<1:∴ x 2-x 1>0:∴ (1-x 1x 2)+(x 2-x 1)>(1-x 1x 2)-(x 2-x 1)即 )()1()()1(12211221x x x x x x x x -+----<1. ∴ 当a >1 时:f (x 1)<f (x 2):在(-1:1)上是增函数.当0<a <1时:f (x 1)>f (x 2):在(-1:1)上是减函数.(3)当a >0时:欲f (x )>0:则有xx -+11>1:解得0<x <1. 当0<a <1时:欲f (x )>0:则有0<x x -+11<1:解得-1<x <0. 【点评】本题综合考查了函数的定义域:用定义证明函数的单调性:对数的有关概念及解不等式的问题.3.(本题满分13分)已知a ∈N :关于x 的方程lg (4-2 x 2)=lg (a -x )+1有实根:求a 及方程的实根.【略解】 由⎩⎨⎧>->-00242x a x 解得-2<x <2且x <a :又 方程4-2 x 2=10(a -x ):整理得:x 2-5 x +5 a -2=0:∆=25-4(5 a -2)≥0:得a ≤2033:又 a ∈N :∴ a =1.此时方程化为:x 2-5 x +3=0:∴ x =2135±: 又 -2<x <1:∴ x =2135-. 4.(本题满分13分)已知函数f (x )的定义域为全体实数:且对任意x 1:x 2∈R 有f (x 1)+f (x 2)=2 f (221x x +)f (221x x -) 成立:又知f (a )=0(a ≠0:a 为常数):但f (x )不恒等于0:求证:(1)f (x )是周期函数:并求出它的一个周期:(2)f (x )是偶函数:(3)对任意x ∈R :有f (2 x )=2 f 2(x )-1成立.【略解】(1)令x 1=x +2 a :x 2=x :由已知可得:f (x +2 a )+f (x )=2 f (22x a x ++)f (22x a x -+)=2 f (x +a )·f (a )=0: ∴ f (x +2 a )=-f (x ):从而f (x +4 a )=-f (x +2 a )=f (x ).∴ 4 a 是f (x )的一个周期.(2)令x 1=x :x 2=-x :则f (x )+f (-x )=2 f (0)f (x )再令x 1=x 2=x :则f (x )+f (x )=2 f (x )f (0).∴ f (x )+f (-x )=f (x )+f (x ).即 f (-x )=f (x ).∴ f (x )是偶函数.(3)由2 f (x )=2 f (x )f (0)且f (x )≠0:知f (0)=1.令x 1=2 x :x 2=0:则有f (2 x )+f (0)=2 f (x )f (x ):即 f (2 x )=2 f 2(x )-1得证.【点评】若函数f (x )对定义域内任意x 满足f (x +T )=f (x )(T 是一个不为零的常数):则f (x )是以T 为周期的函数.有关周期函数的概念在本章教材中还没有涉及到.。

初中数学函数基础知识基础测试题(1)

初中数学函数基础知识基础测试题(1)

初中数学函数基础知识基础测试题(1)一、选择题1.下列各曲线中,表示y 是x 的函数的是( )A .B .C .D .【答案】B【解析】【分析】根据函数的意义即可求出答案.【详解】解:根据函数的意义可知:对于自变量x 的任何值,y 都有唯一的值与之相对应,所以B 正确.故选:B .【点睛】此题考查函数图象的概念.解题关键在于要能根据函数图象的性质和图象上的数据分析得出函数的类型和所需要的条件,结合实际意义得到正确的结论.函数的意义反映在图象上简单的判断方法是:做垂直x 轴的直线在左右平移的过程中与函数图象只会有一个交点.2.如图,在矩形ABCD 中,AB 4=,BC 6=,当直角三角板MPN 的直角顶点P 在BC 边上移动时,直角边MP 始终经过点A ,设直角三角板的另一直角边PN 与CD 相交于点Q.BP x =,CQ y =,那么y 与x 之间的函数图象大致是( )A .B .C .D .【答案】D【解析】试题解析:设BP =x ,CQ =y ,则AP 2=42+x 2,PQ 2=(6-x )2+y 2,AQ 2=(4-y )2+62; ∵△APQ 为直角三角形,∴AP 2+PQ 2=AQ 2,即42+x 2+(6-x )2+y 2=(4-y )2+62,化简得:y =−14x 2+32x 整理得:y=−14(x −3)2+94 根据函数关系式可看出D 中的函数图象与之对应.故选D .【点睛】本题考查的是动点变化时,两线段对应的变化关系,重点是找出等量关系,即直角三角形中的勾股定理.3.如图,在ABC ∆中,90C =o ∠,30B ∠=o ,10AB cm =,P Q 、两点同时从点A 分别出发,点P 以2/cm s 的速度,沿A B C →→运动,点Q 以1/cm s 的速度,沿A C B →→运动,相遇后停止,这一过程中,若P Q 、两点之间的距离PQ y =,则y 与时间t 的关系大致图像是( )A .B .C .D .【答案】A【解析】【分析】根据题意分当05t ≤≤、5t >时两种情况,分别表示出PQ 的长y 与t 的关系式,进而得出答案.【详解】解:在ABC ∆中,90C =o ∠,30B ∠=o ,AB=10,∴AC=5, 12AC AB =, I. 当05t ≤≤时,P 在AB 上,Q 在AC 上,由题意可得:2AP t =,AQ t =,依题意得:12AQ AP =, 又∵A A ∠=∠∴APQ ABC V :V , ∴90AQP C ∠=∠=︒则3PQ t =,II.当5t >,P 、Q 在BC 上,由题意可得:P 走过的路程是2t ,Q 走过的路程是t , ∴15533PQ t =+-,故选:A .【点睛】此题主要考查了动点问题的函数图象,正确理解PQ 长与时间是一次函数关系,并得出函数关系式是解题关键.4.已知圆锥的侧面积是8πcm 2,若圆锥底面半径为R (cm ),母线长为l (cm ),则R 关于l 的函数图象大致是( )A .B .C .D .【答案】A【解析】【分析】根据圆锥的侧面展开图是扇形、扇形面积公式列出关系式,根据反比例函数图象判断即可.【详解】 解:由题意得,12×2πR×l =8π, 则R =8lπ, 故选A .【点睛】 本题考查的是圆锥的计算、函数图象,掌握圆锥的圆锥的侧面积的计算公式是解题的关键.5.下列说法:①函数6y x =-x 的取值范围是6x >;②对角线相等的四边形是矩形;③正六边形的中心角为60︒;④对角线互相平分且相等的四边形是菱形;⑤计算92|-的结果为7:⑥相等的圆心角所对的弧相等;1227理数.其中正确的个数有( )A .1个B .2个C .3个D .4个【答案】B【解析】【分析】根据正多边形和圆,无理数的定义,二次根式的加减运算,菱形的判定,矩形的判定,函数自变量的取值范围解答即可.【详解】解:①函数6y x =-x 的取值范围是6x ≥;故错误;②对角线相等且互相平分的四边形是矩形;故错误;③正六边形的中心角为60°;故正确;④对角线互相平分且垂直的四边形是菱形;故错误;⑤计算9的结果为1;故错误;⑥同圆或等圆中,相等的圆心角所对的弧相等;故错误; 122723333==是无理数;故正确.故选:B .【点睛】本题考查了正多边形和圆,无理数的定义,二次根式的加减运算,菱形的判定,矩形的判定,函数自变量的取值范围,熟练掌握各知识点是解题的关键.6.如图所示,菱形ABCD 中,直线l ⊥边AB ,并从点A 出发向右平移,设直线l 在菱形ABCD 内部截得的线段EF 的长为y ,平移距离x =AF ,y 与x 之间的函数关系的图象如图2所示,则菱形ABCD 的面积为( )A .3B 3C .3D .3【答案】C【解析】【分析】 将图1和图2结合起来分析,分别得出直线l 过点D ,B 和C 时对应的x 值和y 值,从而得出菱形的边长和高,从而得其面积.【详解】解:由图2可知,当直线l 过点D 时,x =AF =a ,菱形ABCD 的高等于线段EF 的长,此时y =EF 3;直线l 向右平移直到点F 过点B 时,y 3;当直线l 过点C 时,x =a +2,y =0∴菱形的边长为a +2﹣a =2∴当点E 与点D 重合时,由勾股定理得a 2+23)=4∴a =1 3∴菱形的面积为3故选:C .【点睛】本题是动点函数图象问题,将图形的运动与函数图象结合起来分析,是解决此类问题的关键,7.如图,在ABC ∆中,AB AC =,MN 是边BC 上一条运动的线段(点M 不与点B 重合,点N 不与点C 重合),且12MN BC =,MD BC ⊥交AB 于点D ,NE BC ⊥交AC 于点E ,在MN 从左至右的运动过程中,设BM x =,BMD ∆的面积减去CNE ∆的面积为y ,则下列图象中,能表示y 与x 的函数关系的图象大致是( )A .B .C .D .【答案】A【解析】【分析】设a =12BC ,∠B =∠C =α,求出CN 、DM 、EN 的长度,利用y =S △BMD −S △CNE ,即可求解. 【详解】 解:设a =12BC ,∠B =∠C =α,则MN =a , ∴CN =BC−MN−BM =2a−a−x =a−x ,DM =BM·tanB =x·tanα,EN =CN•tanC =(a−x )·tanα, ∴y =S △BMD −S △CNE =12(BM·DM−CN·EN )=()()221tan tan 222x a x a tan x a ααα⋅⎡⎤⋅-⋅=⎣⎦--, ∵2a tan α⋅为常数, ∴上述函数图象为一次函数图象的一部分,故选:A .【点睛】本题考查了动点问题的函数图象、等腰三角形的性质、解直角三角形、图形面积等知识点.解题关键是深刻理解动点的函数图象,了解图象中关键点所代表的实际意义,理解动点的完整运动过程.8.小丽早上步行去车站然后坐车去学校,下列能近似的刻画她离学校的距离随时间变化的大致图象是()A.B.C.D.【答案】D【解析】【分析】根据上学,可得离学校的距离越来越小,根据开始步行,可得距离变化慢,后来坐车,可得距离变化快.【详解】解:A、距离越来越大,选项错误;B、距离越来越小,但前后变化快慢一样,选项错误;C、距离越来越大,选项错误;D、距离越来越小,且距离先变化慢,后变化快,选项正确;故选:D.【点睛】本题考查了函数图象,观察距离随时间的变化是解题关键.9.在同一条道路上,甲车从A地到B地,乙车从B地到A地,乙先出发,图中的折线段表示甲、乙两车之间的距离y(千米)与行驶时间x(小时)的函数关系的图象,下列说法错误的是()A.乙先出发的时间为0.5小时B.甲的速度是80千米/小时C.甲出发0.5小时后两车相遇D.甲到B地比乙到A地早112小时【答案】D【解析】试题分析:A.由图象横坐标可得,乙先出发的时间为0.5小时,正确,不合题意;B.∵乙先出发,0.5小时,两车相距(100﹣70)km,∴乙车的速度为:60km/h,故乙行驶全程所用时间为:=(小时),由最后时间为1.75小时,可得乙先到到达A地,故甲车整个过程所用时间为:1.75﹣0.5=1.25(小时),故甲车的速度为:100÷1.25 =80(km/h),故B选项正确,不合题意;C.由以上所求可得,甲出发0.5小时后行驶距离为:40km,乙车行驶的距离为:60km,40+60=100,故两车相遇,故C选项正确,不合题意;D.由以上所求可得,乙到A地比甲到B地早:1.75﹣=(小时),故此选项错误,符合题意.故选D.考点:函数的图象.10.父亲节当天,学校“文苑”栏登出了某同学回忆父亲的小诗:“同辞家门赴车站,别时叮咛语千万,学子满载信心去,老父怀抱希望还.”如果用纵轴y表示父亲和学子在行进中离家的距离,横轴t表示离家的时间,下面与上述诗意大致相吻合的图像是()A.B.C.D.【答案】B【解析】【分析】正确理解函数图象即可得出答案.【详解】解:同辞家门赴车站,父亲和学子的函数图象在一开始的时候应该一样,当学子离开车站出发,离家的距离越来越远,父亲离开车站回家,离家越来越近.故选B.【点睛】首先应理解函数图象的横轴和纵轴表示的量,再根据实际情况来判断函数图象.11.某工厂加工一批零件,为了提高工人工作积极性,工厂规定每名工人每天薪金如下:生产的零件不超过a件,则每件3元,超过a件,超过部分每件b元,如图是一名工人一天获得薪金y(元)与其生产的件数x(件)之间的函数关系式,则下列结论错误的()A.a=20B.b=4C.若工人甲一天获得薪金180元,则他共生产45件.D.人乙一天生产40(件),则他获得薪金140元【答案】C【解析】【分析】根据题意和函数图象可以求得a、b的值,从而可以判断选项A和B是否正确,根据C和D的数据可以分别计算出题目中对应的数据是否正确,从而可以解答本题.【详解】解:由题意和图象可得,a=60÷3=20,故选项A正确,b=(140−60)÷(40−20)=80÷20=4,故选项B正确,若工人甲一天获得薪金180元,则他共生产:20+180602030504-=+=(件),故选项C错误;由图象可知,工人乙一天生产40(件),他获得的薪金为:140元,故选项D正确,故选:C.【点睛】本题考查函数图象的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.12.如图甲,在四边形ABCD中,AD//BC,∠C=90°动点P从点C出发沿线段CD向点D运动.到达点D即停止,若E、F分别是AP、BP的中点,设CP=x,△PEF的面积为y,且y与x 之间的函数关系的图象如图乙所示,则线段AB长为()A.22B.23C.25D.26【答案】C【解析】【分析】根据三角形中位线定理,得到S△PEF=14S△ABP,由图像可以看出当x为最大值CD=4时,S△PEF=2,可求出AD=4,当x为0时,S△PEF=3,可求出BC=6;过点A作AG⊥BC于点G,根据勾股定理即可得解.【详解】解:∵E、F分别为AP、BP的中点,∴EF∥AB,EF=12 AB,∴S△PEF=14S△ABP,根据图像可以看出x的最大值为4,∴CD=4,∵当P在D点时,△PEF的面积为2,∴S△ABP=2×4=8,即S△ABD=8,∴AD=24ABDSV=284⨯=4,当点P在C点时,S△PEF=3,∴S△ABP=3×4=12,即S△ABC=12,∴BC=24ABCSV=2124⨯=6,过点A作AG⊥BC于点G,∴∠AGC=90°,∵AD∥BC,∴∠ADC+∠BCD=180°,∵∠BCD=90°,∴∠ADC=180°-90°=90°,∴四边形AGCD是矩形,∴CG=AD=4,AG=CD=4,∴BG=BC-CG=6-4=2,∴AB=2242=25.故选C.【点睛】本题主要考查了动点的函数问题,三角形中位线定理,勾股定理.13.一辆慢车从甲地匀速行驶至乙地,一辆快车同时从乙地出发匀速行驶至甲地,两车之间的距离y(千米)与行驶时间x(小时)的对应关系如图所示,下列叙述正确的是()A.甲乙两地相距1200千米B.快车的速度是80千米∕小时C.慢车的速度是60千米∕小时D.快车到达甲地时,慢车距离乙地100千米【答案】C【解析】【分析】(1)由图象容易得出甲乙两地相距600千米;(2)由题意得出慢车速度为60010=60(千米/小时);设快车速度为x千米/小时,由图象得出方程60×4+4x=600,解方程即可;(3)求出快车到达的时间和慢车行驶的路程,即可得出答案.【详解】解:(1)由图象得:甲乙两地相距600千米,故选项A错;(2)由题意得:慢车总用时10小时,∴慢车速度为:60010=60(千米/小时);设快车速度为x千米/小时,由图象得:60×4+4x=600,解得:x=90,∴快车速度为90千米/小时,慢车速度为60千米/小时;选项B错误,选项C正确;(3)快车到达甲地所用时间:60020903小时,慢车所走路程:60×203=400千米,此时慢车距离乙地距离:600-400=200千米,故选项D错误.故选C【点睛】本题考核知识点:函数图象. 解题关键点:从图象获取信息,由行程问题基本关系列出算式.14.如图,两块完全重合的正方形纸片,如果上面的一块绕正方形的中心O逆时针0°~90°的旋转,那么旋转时露出的△ABC的面积(S)随着旋转角度(n)的变化而变化,下面表示S与n关系的图象大致是()A.B.C.D.【答案】B【解析】【分析】注意分析y随x的变化而变化的趋势,而不一定要通过求解析式来解决.【详解】旋转时露出的△ABC的面积(S)随着旋转角度(n)的变化由小到大再变小.故选B.【点睛】考查动点问题的函数图象问题,关键要仔细观察.15.甲、乙两同学骑自行车从A地沿同一条路到B地,已知乙比甲先出发,他们离出发地的距离S(km)和骑行时间t(h)之间的函数关系如图所示,给出下列说法:①他们都骑行了20km;②乙在途中停留了0.5h;③甲、乙两人同时到达目的地;④相遇后,甲的速度小于乙的速度.根据图象信息,以上说法正确的有()A.1个B.2个C.3个D.4个【答案】B【解析】试题分析:根据图象上特殊点的坐标和实际意义即可作出判断.由图可获取的信息是:他们都骑行了20km;乙在途中停留了0.5h;相遇后,甲的速度>乙的速度,所以甲比乙早0.5小时到达目的地,所以(1)(2)正确.故选B.考点:本题考查的是学生从图象中读取信息的数形结合能力点评:同学们要注意分析其中的“关键点”,还要善于分析各图象的变化趋势.16.如图所示:边长分别为1和2的两个正方形,其一边在同一水平线上,小正方形沿该水平线自左向右匀速穿过大正方形,设穿过的时间为t,大正方形内除去小正方形部分的面积为S(阴影部分),那么S与t的大致图象应为()A.B.C.D.【答案】A【解析】【分析】【详解】解:根据题意,设小正方形运动速度为v,由于v分为三个阶段,①小正方形向右未完成穿入大正方形,=⨯-⨯=-≤.S vt vt vt2214(1)②小正方形穿入大正方形但未穿出大正方形,22113S=⨯-⨯=,③小正方形穿出大正方形,22(11)3(1)S vt vt vt =⨯-⨯-=+≤,∴符合变化趋势的是A 和C ,但C 中面积减小太多不符合实际情况,∴只有A 中的符合实际情况.故选A .17.甲乙两同学同时从400m 环形跑道上的同一点出发,同向而行,甲的速度为6/m s ,乙的速度为4/m s ,设经过xs 后,跑道上两人的距离(较短部分)为ym ,则y 与x 0300x ≤≤之间的关系可用图像表示为( )A .B .C .D .【答案】C【解析】【分析】根据同向而行,二人的速度差为642/m s -=,二人间的最长距离为200,最短距离为0,从而可以解答本题.【详解】二人速度差为642/m s -=,100秒时,二人相距2×100=200米,200秒时,二人相距2×200=400米,较短部分的长度为0,300秒时,二人相距2×300=600米,即甲超过乙600-400=200米.∴()201004002(100200)2400(200300)x x y x x x x ⎧≤≤⎪=-<≤⎨⎪-<≤⎩,函数图象均为线段,只有C 选项符合题意.故选:C .【点睛】本题考查了利用函数的图象解决实际问题以及动点问题的函数图象,正确理解函数图象表示的意义,理解问题的过程,就能够通过图象得到函数问题的相应解决.18.甲、乙两人沿相同的路线由A 地到B 地匀速前进,A 、B 两地间的路程为20km .他们前进的路程为s (km),甲出发后的时间为t (h),甲、乙前进的路程与时间的函数图象如图所示.根据图象信息,下列说法正确的是( )A .甲的速度是4km/hB .乙的速度是10km/hC .乙比甲晚出发1hD .甲比乙晚到B 地3h【答案】C【解析】甲的速度是:20÷4=5km/h ;乙的速度是:20÷1=20km/h ; 由图象知,甲出发1小时后乙才出发,乙到2小时后甲才到,故选C .19.如图1,点F 从菱形ABCD 的项点A 出发,沿A -D -B 以1cm/s 的速度匀速运动到点B .图2是点F 运动时,△FBC 的面积y (m 2)随时间x (s)变化的关系图象,则a 的值为( )A .5B .2C .52D .5【答案】C【解析】【分析】 过点D 作DE BC ⊥于点E 由图象可知,点F 由点A 到点D 用时为as ,FBC ∆的面积为2acm .求出DE=2,再由图像得5BD =BE=1,再在DEC Rt △根据勾股定理构造方程,即可求解.【详解】解:过点D 作DE BC ⊥于点E由图象可知,点F 由点A 到点D 用时为as ,FBC ∆的面积为2acm .AD BC a ∴== ∴12DE AD a =g 2DE ∴=由图像得,当点F 从D 到B 时,用5s5BD ∴=Rt DBE V 中, 2222(5)21BE BD DE =-=-=∵四边形ABCD 是菱形,1EC a ∴=-,DC a =DEC Rt △中,2222(1)a a =+-解得52a =故选:C .【点睛】本题综合考查了菱形性质和一次函数图象性质,要注意函数图象变化与动点位置之间的关系,解答此题关键根据图像关键点确定菱形的相关数据.20.已知:在ABC ∆中, 10,BC BC =边上的高5h =,点E 在边AB 上,过点E 作//EF BC 交AC 边于点F .点D 为BC 上一点,连接DE DF 、.设点E 到BC 的距离为x ,则DEF ∆的面积S 关于x 的函数图象大致为( )A .B .C.D.【答案】D【解析】【分析】判断出△AEF和△ABC相似,根据相似三角形对应边成比例列式求出EF,再根据三角形的面积列式表示出S与x的关系式,然后得到大致图象选择即可.【详解】解:∵EF∥BC,∴△AEF∽△ABC,∴55EF x BC-=,∴EF=55x-•10=10-2x,∴S=12(10-2x)•x=-x2+5x=-(x-52)2+254,∴S与x的关系式为S=-(x-52)2+254(0<x<5),纵观各选项,只有D选项图象符合.故选:D.【点睛】此题考查动点问题函数图象,相似三角形的性质,求出S与x的函数关系式是解题的关键.。

必修一函数测试题

必修一函数测试题

必修一函数测试题一、选择题(每题3分,共15分)1. 函数f(x) = 3x^2 - 2x + 1的图像关于哪条直线对称?A. x = 0B. x = 1C. x = -1/3D. x = 1/32. 若函数f(x) = x^3 - 2x^2 + x - 2在区间[-1, 2]上是增函数,则下列哪个选项是正确的?A. f(-1) < f(2)B. f(-1) > f(2)C. f(-1) = f(2)D. 无法确定3. 函数y = √(x^2 + 1)的值域是:A. (-∞, 0]B. [0, +∞)C. (-1, 1)D. [1, +∞)4. 已知函数f(x) = 2x - 3,求f(5)的值是:A. 7B. 4C. 1D. 05. 对于函数f(x) = ax + b,若f(1) = 0且f(2) = 5,求a和b的值分别是:A. a = 5, b = -5B. a = -5, b = 5C. a = 1, b = -1D. a = -1, b = 1二、填空题(每题2分,共10分)6. 若函数f(x) = x^2 + 2x + 3的顶点坐标是________。

7. 函数y = 2x + 3与x轴的交点坐标是________。

8. 函数y = 1/x的图像在第________象限是单调递增的。

9. 若函数f(x) = √x在区间[0, +∞)上是单调递增的,则f(4)与f(9)的大小关系是f(4)________f(9)。

10. 函数y = |x - 2| + 3的图像与y轴的交点坐标是________。

三、解答题(共25分)11. 求函数f(x) = x^3 - 6x^2 + 9x + 2的极值点,并判断其单调性。

(10分)12. 已知函数f(x) = x^2 - 4x + 4,求其在区间[0, 6]上的值域。

(7分)13. 给定函数f(x) = 2x - 1,请证明对于所有x > 0,都有f(x) > x。

(必考题)高中数学必修一第二单元《函数》测试卷(答案解析)(1)

(必考题)高中数学必修一第二单元《函数》测试卷(答案解析)(1)

一、选择题1.已知函数()1,0112,12x x x f x x +≤<⎧⎪=⎨-≥⎪⎩,若0a b >≥,()()f a f b =,则()bf a 的取值范围是( )A .3,24⎛⎤⎥⎝⎦B .1,22⎡⎤⎢⎥⎣⎦C .(]1,2D .3,24⎡⎫⎪⎢⎣⎭2.下列函数中既是奇函数,又在区间[]1,1-上单调递减的是( )A .1()()2xf x =B .()lg f x x =C .()f x x =-D .1()f x x=3.已知函数()y f x =是定义在R 上的单调函数,()0,2A ,()2,2B -是其函数图像上的两点,则不等式()12f x ->的解集为( ) A .()1,3 B .()(),31,-∞-⋃+∞ C .()1,1-D .()(),13,-∞+∞4.下列函数中,在其定义域内既是奇函数又是减函数的是( ) A .1y x=B.y =C .2x y =D .||y x x =-5.已知2()25x f x +=-,()()20g x ax a =+>,若对任意的[]11,2x ∈-,存在[]00,1x ∈,使()()10g x f x =,则a 的取值范围是( )A .1(0,]2B .1[,3]2C .[)3,+∞D .(]0,36.符号[]x 表示不超过x 的最大整数,如[]3π=,[]1.082-=-,定义函数{}[]x x x =-.给出下列结论:①函数{}x 的定义域是R ,值域为0,1;②方程{}12x =有无数个解;③函数{}x 是增函数;④函数{}x 为奇函数,其中正确结论的个数是( )A .0B .1C .2D .37.若函数2()34f x x x =--的定义域为[]0m ,,值域为2544⎡⎤--⎢⎥⎣⎦,,则m 的取值范围是( ) A .3,42⎡⎤⎢⎥⎣⎦B .3,32⎡⎤⎢⎥⎣⎦C .(]0,4 D .3,2⎡⎫+∞⎪⎢⎣⎭8.若函数()f x =的值域为0,,则实数m 的取值范围是( )A .()1,4B .()(),14,-∞⋃+∞C .(][)0,14,+∞D .[][)0,14,+∞ 9.已知函数()()220f x x mx m =-+>满足:①[]()0,2,9x f x ∀∈≤;②[]()000,2,9x f x ∃∈=,则m 的值为( ) A .1或3B .3或134C .3D .13410.若函数()y f x =为奇函数,且在(),0∞-上单调递增,若()20f =,则不等式()0f x >的解集为( )A .()()2,02,∞-⋃+B .()(),22,∞∞--⋃+C .()(),20,2∞--⋃D .()()2,00,2-⋃11.已知偶函数()f x 在 [0,)+∞上是增函数,且(2)0f =,则不等式 (1)0f x +<的解集是( ) A .[0,2)B .[]3,1-C .(1,3)-D .(2,2)-12.定义{},,max a b c 为,,a b c 中的最大值,设()28,,63⎧⎫=-⎨⎬⎩⎭h x max x x x ,则()h x 的最小值为( ) A .1811B .3C .4811D .4二、填空题13.已知函数211,0,22()13,,12x x f x x x ⎧⎡⎫+∈⎪⎪⎢⎪⎣⎭=⎨⎡⎤⎪∈⎢⎥⎪⎣⎦⎩,若存在12x x <,使得()()12f x f x =,则()12x f x ⋅的取值范围为_____________.14.函数1,1()32,12x a x f x a x x ⎧+>⎪=⎨⎛⎫-+≤ ⎪⎪⎝⎭⎩是R 上的单调递增函数,则实数a 取值范围为________.15.()f x 为定义在R 上的偶函数,2()()2=-g x f x x 在区间[0,)+∞上是增函数,则不等式()1246()f x f x x +-+>--的解集为___________. 16.自然下垂的铁链;空旷的田野上,两根电线杆之间的电线等这些现象中都有相似的曲线形态.事实上,这些曲线在数学上常常被称为悬链线.悬链线的相关理论在工程、航海、光学等方面有广泛的应用.在恰当的坐标系中,这类函数的表达式可以为()xxf ae ex b -=+(其中a ,b 是非零常数,无理数 2.71828e =…)(1)如果()f x 为单调函数.写出满足条件的一-组值:a =______,b =______. (2)如果()f x 的最小值为2,则+a b 的最小值为______.17.定义在R 上的奇函数()f x 在(0,)+∞上是增函数,又(3)0f -=,则不等式()0xf x <的解集为______. 18.函数21y ax ax =++R ,则a 的取值范围是_________.19.已知函数()2()10f x x ax a =++>,若“()f x 的值域为[)0,+∞”为真命题,则()3f =________.20.若4183y x x =--y 的取值范围是________三、解答题21.已知函数()21axf x x =-(0a ≠). (1)判断函数()f x 的奇偶性并给予证明;(2)若函数()f x 满足()1242f f ⎛⎫-= ⎪⎝⎭,判断函数()f x 在区间()1,+∞的单调性,并用单调性的定义证明.22.已知函数()f x x x a =-,a ∈R ,()21g x x =-.(1)当1a =-时,解不等式()()f x g x ≥;(2)当4a >时,记函数()f x 在区间[]0,4上的最大值为()F a ,求()F a 的表达式. 23.已知a R ∈,函数2()25f x x ax =-+.(1)若不等式()0f x >对任意的x ∈R 恒成立,求实数a 的取值范围; (2)若1a >,且函数()f x 的定义域和值域都是[1,]a ,求实数a 的值; (3)函数()f x 在区间[1,1]a +的最大值为()g a ,求()g a 的表达式. 24.已知定义在()0,∞+上的函数()f x 满足:①对任意的(),0,x y ∈+∞,都有()()()f xy f x f y =+;②当且仅当1x >时,()0f x <成立.(1)求()1f ;(2)设()12,0,x x ∈+∞,若()()12f x f x <,试比较1x ,2x 的大小关系,并说明理由;(3)若对任意的[]1,1x ∈-,不等式()()22333310xxxx f f m --⎡⎤+≤+-⎣⎦恒成立,求实数m 的取值范围.25.已知一次函数()y f x =满足()12f x x a -=+, . 在所给的三个条件中,任选一个补充到题目中,并解答. ①()5f a =,②142a f ⎛⎫=⎪⎝⎭,③()()41226f f -=. (1)求函数()y f x =的解析式;(2)若()()()g x x f x f x x λ=⋅++在[]0,2上的最大值为2,求实数λ的值. 26.已知函数6()f x x=,2()1g x x =+. (1)求函数()()f g x 的解析式; (2)关于x 的不等式()()af g x x>解集中正整数解恰有3个,求实数a 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】由()f x 在每一段上单调递增可知01b a ≤<≤,由()f x 每一段上的值域可知()3,22f b ⎡⎫∈⎪⎢⎣⎭,进一步确定112b ≤<,由()()()1bf a bf b b b ==+,根据二次函数的值域得到结果. 【详解】()f x 在[)0,1和[)1,+∞上单调递增,∴由()()f a f b =得:01b a ≤<≤,当[)0,1x ∈时,()[)1,2f x ∈;当[)1,x ∈+∞时,()3,2f x ⎡⎫∈+∞⎪⎢⎣⎭, 若()()f a f b =,则()3,22f x ⎡⎫∈⎪⎢⎣⎭,即()31,22f b b ⎡⎫=+∈⎪⎢⎣⎭,解得:112b ≤<, ()()()2211124bf a bf b b b b b b ⎛⎫==+=+=+- ⎪⎝⎭,∴当112b ≤<时,()3,24bf a ⎡⎫∈⎪⎢⎣⎭. 故选:D. 【点睛】易错点点睛:本题解题关键是能够将()bf a 转化为关于b 的函数,易错点是没有对b 的范围进行细化,造成函数值域求解错误.2.C解析:C 【分析】根据函数的单调性和奇偶性,排除选项得到答案. 【详解】A. 1()()2xf x =,非奇非偶函数,排除;B. ()lg ||lg ||()f x x x f x -=-==,函数为偶函数,排除;C. ()()f x x f x -==-,函数为奇函数,且单调递减,正确;D. 1()()f x f x x-=-=-,函数为奇函数,在[1,0)-和(0,1] 单调递减,排除. 故选:C 【点睛】熟悉函数的单调性和奇偶性是解题关键.3.D解析:D 【分析】根据题意可得出(0)2,(2)2f f ==-,从而得出()f x 在R 上为减函数,从而根据不等式()12f x ->得,(1)(2)f x f -<或(1)(0)f x f ->,从而得出12x ->或10x -<,解出x 的范围 【详解】解:由题意得(0)2,(2)2f f ==-, 因为函数()y f x =是定义在R 上的单调函数, 所以()f x 在R 上为减函数,由()12f x ->,得(1)2f x ->或(1)2f x -<-, 所以(1)(0)f x f ->或(1)(2)f x f -<, 所以10x -<或12x ->, 解得1x <或3x >,所以不等式()12f x ->的解集为()(),13,-∞+∞,故选:D【点睛】关键点点睛:此题考查函数单调性的应用,考查绝对值不等式的解法,解题的关键是把()12f x ->转化为(1)(0)f x f ->或(1)(2)f x f -<,再利用()f x 在R 上为减函数,得10x -<或12x ->,考查数学转化思想,属于中档题4.D解析:D 【分析】利用奇函数的定义和常见基本初等函数的性质,对选项逐一判断即可. 【详解】 选项A 中,函数1y x =,由幂函数性质知1y x=是奇函数,且其在()(),0,0,-∞+∞两个区间上递减,不能说在定义域内是减函数,故错误;选项B 中,函数y =[)0,+∞,不对称,故不具有奇偶性,,且在定义域内是增函数,故错误;选项C 中,指数函数2x y =,22x x -≠,且22x x -≠-,故不是奇函数,故错误;选项D 中,函数22,0,0x x y x x x x ⎧-≥=-=⎨<⎩,记()y f x =,当0x >时,0x -<,故22(),()f x x f x x =--=,故()()f x f x -=-, 当0x =时,(0)0f =,故()()f x f x -=-,当0x <时,0x ->,故22(),()f x x f x x =-=-,故()()f x f x -=-,综上,()y f x =是奇函数,又0x ≥时,2()f x x =-是开口向下的抛物线的一部分,是减函数,由奇函数性质知()y f x =在定义域R 上是减函数,故正确. 故选:D. 【点睛】本题解题关键是熟练掌握常见的基本初等函数的性质,易错点是分段函数奇偶性的判断,分段函数必须判断定义域内的每一段均满足()()f x f x -=-(或()()f x f x -=)才能判定其是奇函数(或偶函数).5.A解析:A 【分析】根据指数函数的性质求出()f x 在[0,1]上的值域A ,利用一次函数的单调性求出()g x 在[1,2]-上的值域B ,由题得B A ⊆,再根据集合的包含关系即可求解.【详解】2()25x f x +=-,[]00,1x ∈,()()min 01f x f ∴==-,()()max 13f x f ==,∴()f x 在[0,1]上的值域为[]1,3A =-,又()2(0)g x ax a =+>在[1,2]-上单调递增,∴()g x 在[1,2]-上的值域为[]2,22B a a =-++,由题意可得B A ⊆,021223a a a >⎧⎪∴-+≥-⎨⎪+≤⎩,解得102a <≤.故选:A 【点睛】本题考查函数的单调性求值域、集合的包含关系求参数的取值范围.探讨方程()()0f x g m -=解的存在性,通常可将方程转化为()()f x g m =,通过确认函数()f x 或()g m 的值域,从而确定参数或变量的范围6.B解析:B 【分析】根据函数性质判断[]x 是一个常见的新定义的形式,按照新定义,符号[]x 表示不超过x 的最大整数,由此可以得到函数的性质,又定义函数{}[]x x x =-,当0x ≥时,表示x 的小数部分,由于①③是错误的,举例可判断②,根据单调性定义可判断④. 【详解】①函数{}x 的定义域是R ,但[]01x x ≤-<,其值域为)01⎡⎣,,故错误; ②由{}[]12x x x =-=,可得[]12x x =+,则 1.52.5x =,……都是方程的解,故正确; ③由②可得{}11.52=,{}12.52=……当 1.52.5x =,……时,函数{}x 的值都为12,故不是增函数,故错误; ④函数{}x 的定义域是R ,而{}[]{}x x x x -=---≠-,故函数不是奇函数,故错误;综上,故正确的是②. 故选:B. 【点睛】本题以新定义函数{}[]x x x =-的意义为载体,考查了分段函数和函数的值域、单调性等性质得综合类问题,在解答的过程中体现了分类讨论和数形结合的思想,还可以利用函数的图象进行解题.7.B解析:B 【分析】求出(0)4f =-,再计算出最小值为32524f ⎛⎫=- ⎪⎝⎭,然后求出()4f m =-的值后可得m 的范围. 【详解】2325()24f x x ⎛⎫=-- ⎪⎝⎭,()f x 在3,2⎛⎫-∞ ⎪⎝⎭上递减,在3,2⎛⎫+∞ ⎪⎝⎭上递增, (0)4f =-,又32524f ⎛⎫=- ⎪⎝⎭,所以32m ≥,由2()344f m m m =--=-解得0m =或3m =, 因此332m ≤≤. 故选:B . 【点睛】方程点睛:本题考查二次函数的性质,掌握其对称轴、单调性是解题关键.由此可得二次函数2()f x ax bx c =++在区间[,]m n 上的最值求法: 设0a >,函数的对称轴0x x =(02bx a=-), 当0x m <时,min ()()f x f m =,0m x n ≤≤时,min 0()()f x f x =,0x n >时,min ()()f x f n =,当02m n x +≤时,max ()()f x f n =,当02m nx +>时,max ()()f x f m =. 0a <类似讨论.8.D解析:D 【分析】令t =()0,t ∈+∞()0,+∞,记函数()22(2)1g x mx m x =+-+的值域为A ,则()0,A +∞⊆,进而分0m =和0m ≠两种情况,分别讨论,可求出m 的取值范围. 【详解】令t =1y t=的值域为0,,根据反比例函数的性质,可知()0,t ∈+∞()0,+∞, 记函数()22(2)1g x mx m x =+-+的值域为A ,则()0,A +∞⊆,若0m =,则()41g x x =-+,其值域为R ,满足()0,A +∞⊆;若0m ≠,则00m >⎧⎨∆≥⎩,即()24240m m m >⎧⎪⎨--≥⎪⎩,解得4m ≥或01m <≤. 综上所述,实数m 的取值范围是[][)0,14,+∞.故选:D.9.D解析:D 【分析】依题意可得()f x 在[]0,2上的最大值为9,求出函数的对称轴,通过讨论m 的范围,求出函数的单调区间,求出函数的最大值,得到关于m 的方程,解出即可. 【详解】解:因为函数()()220f x x mx m =-+>满足:①[]()0,2,9x f x ∀∈≤;②[]()000,2,9x f x ∃∈=,即函数()()220f x x mx m =-+>在[]0,2上的最大值为9,因为222()2()f x x mx x m m =-+=--+,对称轴是x m =,开口向下, 当02m <<时,()f x 在[0,)m 递增,在(m ,2]递减, 故2()()9max f x f m m ===,解得:3m =,不合题意,2m 时,()f x 在[0,2]递增,故()()2449max f x f m ==-=,解得:134m =,符合题意, 故选:D . 【点睛】本题考查了二次函数的性质,考查函数的单调性、最值问题,考查导数的应用,属于中档题.10.A解析:A 【分析】根据题意,由奇函数的性质可得f (﹣2)=﹣f (2)=0,结合函数的单调性分析可得在区间(﹣∞,﹣2)上,f (x )<0,在(﹣2,0)上,f (x )>0,再结合函数的奇偶性可得在区间(0,2)上,f (x )<0,在(2,+∞)上,f (x )>0,综合即可得答案. 【详解】根据题意,函数y=f (x )为奇函数,且f (2)=0, 则f (﹣2)=﹣f (2)=0,又由f (x )在(﹣∞,0)上单调递增,则在区间(﹣∞,﹣2)上,f (x )<0,在(﹣2,0)上,f (x )>0, 又由函数y=f (x )为奇函数,则在区间(0,2)上,f (x )<0,在(2,+∞)上,f (x )>0,综合可得:不等式f (x )>0的解集(﹣2,0)∪(2,+∞); 故选A . 【点睛】本题考查函数单调性奇偶性的应用,关键是掌握函数的奇偶性与单调性的定义,属于基础题.11.B解析:B 【详解】由()f x 在[0,)+∞上是增函数,且(2)0f = 当0x >时,()0f x <的解集[0,2]; 当时()f x 为减函数,(2)0f -=,()0f x <的解集[2,0]-.综上()0f x <的解集[2,2]-,所以(1)0f x +<满足212,31x x -≤+≤∴-≤≤. 故选:B .12.C解析:C 【分析】首先根据题意画出()h x 的图象,再根据图象即可得到()h x 的最小值. 【详解】 分别画出2yx ,83y x =,6y x =-的图象, 则函数()h x 的图象为图中实线部分.由图知:函数()h x 的最低点为A ,836y x y x ⎧=⎪⎨⎪=-⎩,解得1848,1111⎛⎫⎪⎝⎭A .所以()h x 的最小值为4811. 故选:C. 【点睛】本题主要考查根据函数的图象求函数的最值,考查了数形结合的思想,属于中档题.二、填空题13.【分析】根据条件作出函数图象求解出的范围利用和换元法将变形为二次函数的形式从而求解出其取值范围【详解】由解析式得大致图象如下图所示:由图可知:当时且则令解得:又令则即故答案为:【点睛】思路点睛:根据解析:31,162⎡⎫⎪⎢⎣⎭【分析】根据条件作出函数图象求解出1x 的范围,利用()()12f x f x =和换元法将()12x f x ⋅变形为二次函数的形式,从而求解出其取值范围. 【详解】由解析式得()f x 大致图象如下图所示:由图可知:当12x x <时且()()12f x f x =,则令211322x ⎛⎫+=⋅ ⎪⎝⎭,解得:14x =, 111,42x ⎡⎫∴∈⎪⎢⎣⎭,又()()12f x f x =,221221333,124x x x ⎛⎫⎡⎫∴+=∈⎪ ⎪⎢⎣⎭⎝⎭,()2222121332x f x x x ⎛⎫∴⋅=⋅- ⎪⎝⎭,令2233,14x t ⎡⎫=∈⎪⎢⎣⎭,则()()2211113,124164x f x g t t t t t ⎛⎫⎛⎫⎛⎫⎡⎫⋅==-=--∈ ⎪ ⎪⎪ ⎪⎢⎝⎭⎝⎭⎣⎭⎝⎭, ()31,162g t ⎡⎫∴∈⎪⎢⎣⎭,即()2131,162x f x ⎡⋅⎫∈⎪⎢⎣⎭.故答案为:31,162⎡⎫⎪⎢⎣⎭ 【点睛】思路点睛:根据分段函数的函数值相等关系可将所求式子统一为一个变量表示的函数的形式,进而根据函数值域的求解方法求得结果;易错点是忽略变量的取值范围,造成值域求解错误.14.【分析】根据指数函数和一次函数的性质得出关于的不等式组即可求解【详解】由题意函数是上的单调递增函数可得解得即实数取值范围故答案为:【点睛】利用函数的单调性求解参数的取值范围:根据函数的单调性将题设条解析:8[,6)3【分析】根据指数函数和一次函数的性质,得出关于a 的不等式组,即可求解. 【详解】由题意,函数1,1()32,12x a x f x a x x ⎧+>⎪=⎨⎛⎫-+≤ ⎪⎪⎝⎭⎩是R 上的单调递增函数, 可得13021322a aa a ⎧⎪>⎪⎪->⎨⎪⎪+≥-+⎪⎩,解得863a ≤<,即实数a 取值范围8[,6)3.故答案为:8[,6)3. 【点睛】利用函数的单调性求解参数的取值范围:根据函数的单调性,将题设条件转化为函数的不等式(组),即可求出参数的值或范围; 若分段函数是单调函数,则不仅要保证在各区间上单调性一致,还要确保在整个定义域内是单调的.15.;【分析】根据题意判断出为偶函数且在上先减再增把转化为进行求解即可【详解】由为偶函数可知也为偶函数且在上先减再增由可知即可知解得故答案为:【点睛】关键点睛利用函数的性质得到的单调性通过化简把问题转化解析:3,2⎛⎫-∞- ⎪⎝⎭; 【分析】根据题意,判断出()g x 为偶函数,且在R 上先减再增,把(1)(2)46f x f x x +-+>--转化为(1)(2)g x g x +>+,进行求解即可【详解】由()f x 为偶函数,可知()g x 也为偶函数,且在R 上先减再增, 由(1)(2)46f x f x x +-+>--,可知22(1)2(1)(2)2(2)f x x f x x +-+>+-+,即(1)(2)g x g x +>+, 可知12x x +>+,解得32x <-. 故答案为:3,2⎛⎫-∞- ⎪⎝⎭【点睛】关键点睛,利用函数的性质,得到()g x 的单调性,通过化简把问题转化为(1)(2)g x g x +>+,进而利用()g x 的单调性求解,属于中档题16.2【分析】(1)取结合函数是单调函数利用复合函数的单调性求解的值即可;(2)根据的最小值为2分类讨论确定结合基本不等式进行求解即可【详解】(1)令则是增函数是减函数要使是单调函数只需综上当时时为增函解析:1- 2 【分析】(1)取1a =,结合函数是单调函数,利用复合函数的单调性求解b 的值即可; (2)根据()f x 的最小值为2,分类讨论确定0a >,0b >,结合基本不等式进行求解即可. 【详解】(1)令1a =,则()x x f x e be -=+,x y e =是增函数,x y e -=是减函数,要使()x x f x e be -=+是单调函数, 只需1b =-.综上,当1a =时,1b =-时,()x x f x e e -=-为增函数. (2)当0ab 时,()f x 为单调函数,此时函数没有最小值, 当0a <,0b <,()f x 有最大值,无最小值, 所以,若()f x 有最小值为2,则必有0a >,0b >,此时()22x x x f x ae be ae be -=+⨯=,1=,即1ab =,则22a b ab +=,当1a b ==时等号成立, 即+a b 的最小值为2. 故答案为:1,1,2- 【点睛】利用基本不等式求最值时,一定要正确理解和掌握“一正,二定,三相等”的内涵:一正是,首先要判断参数是否为正;二定是,其次要看和或积是否为定值(和定积最大,积定和最小);三相等是,最后一定要验证等号能否成立(主要注意两点,一是相等时参数是否在定义域内,二是多次用≥或≤时等号能否同时成立).17.【分析】由条件确定原点两侧函数的单调性和零点由函数的草图确定不等式的解集【详解】在R 上是奇函数且在上是增函数∴在上也是增函数由得由得作出的草图如图所示:则或由图象得所以或所以的解集为故答案为:【点睛 解析:(3,0)(0,3)-⋃【分析】由条件确定原点两侧函数的单调性和零点,由函数()f x 的草图确定不等式的解集. 【详解】()f x 在R 上是奇函数,且()f x 在(0,)+∞上是增函数,∴()f x 在(,0)-∞上也是增函数,由(3)0f -=,得(3)0f =,由(0)(0)f f =--,得(0)0f =, 作出()f x 的草图,如图所示:()0xf x <,则0()0x f x >⎧⎨<⎩ 或0()0x f x <⎧⎨>⎩,由图象得,所以03x <<或30x -<<,所以()0xf x <的解集为(3,0)(0,3)-⋃. 故答案为:(3,0)(0,3)-⋃. 【点睛】本题考查函数奇偶性、单调性的综合应用,考查数形结合思想,灵活作出函数的草图是解题关键.属于中档题.18.【分析】根据函数的解析式可知当定义域为时说明在上恒成立则对进行分类讨论确定满足条件的的范围【详解】由题意可得在上恒成立①当时则恒成立符合题意;②当时则解得综上可得∴实数的取值范围为故答案为:【点睛】 解析:[)0,4【分析】根据函数的解析式,可知当定义域为R 时,说明210ax ax ++>在R 上恒成立,则对a 进行分类讨论,确定满足条件的a 的范围. 【详解】由题意可得210ax ax ++>在R 上恒成立. ①当0a =时,则10>恒成立,0a ∴=符合题意;②当0a ≠时,则2040a a a >⎧⎨-<⎩,解得04a <<.综上可得04a ≤<,∴实数a 的取值范围为[)0,4. 故答案为:[)0,4. 【点睛】不等式20ax bx c ++>的解是全体实数(或恒成立)的条件是:当0a =时,00b c >=,;当0a ≠时,00a >⎧⎨∆<⎩; 不等式20ax bx c ++<的解是全体实数(或恒成立)的条件是当0a =时,00bc <=,;当0a ≠时,00a <⎧⎨∆<⎩.19.16【分析】二次函数的值域为得到求得值得解【详解】因为的值域为所以则又所以故答案为:16【点睛】二次函数的值域为得到是解题关键解析:16 【分析】二次函数()f x 的值域为[)0,+∞得到240a ∆=-=求得a 值得解 【详解】因为()2()10f x x ax a =++>的值域为[0,)+∞,所以240a ∆=-=,则2a =±.又0a >,所以2,a =.22()21,(3)323116f x x x f ∴=++∴=+⨯+=故答案为:16 【点睛】二次函数()f x 的值域为[)0,+∞得到0∆=是解题关键.20.【分析】首先求出的取值范围令将函数转化为三角函数再根据三角恒等变换及三角函数的性质计算可得;【详解】解:因为所以解得令则所以因为所以所以所以故答案为:【点睛】本题考查函数的值域的计算换元法的应用三角解析:【分析】首先求出x 的取值范围,令242sin x t =+,0,2t π⎡⎤∈⎢⎥⎣⎦将函数转化为三角函数,再根据三角恒等变换及三角函数的性质计算可得;【详解】解:因为y 所以401830x x -≥⎧⎨-≥⎩解得46x ≤≤,令242sin x t =+,0,2t π⎡⎤∈⎢⎥⎣⎦则y t t ==+3t π⎛⎫=+ ⎪⎝⎭所以3y t π⎛⎫=+ ⎪⎝⎭, 因为0,2t π⎡⎤∈⎢⎥⎣⎦,所以5,336t πππ⎛⎫⎡⎤+∈ ⎪⎢⎥⎝⎭⎣⎦,所以1sin ,132t π⎛⎫⎡⎤+∈ ⎪⎢⎥⎝⎭⎣⎦所以y ∈故答案为:【点睛】本题考查函数的值域的计算,换元法的应用,三角函数及三角恒等变换公式的应用,属于中档题.三、解答题21.(1)奇函数,证明见解析;(2)在区间()1,+∞单调递减,证明见解析. 【分析】(1)求出函数的定义域,直接得到()f x 和()f x -的关系即可得结果; (2)由题意解出a 的值,由单调性的定义即可得结果. 【详解】(1)函数()y f x =是奇函数,证明如下:()y f x =的定义域为{}1x x ≠±,又()()()()2211a x axf x f x x x --==-=--+-+ ∴()y f x =是定义在{}1x x ≠±的奇函数.(2)∵()1242f f ⎛⎫-= ⎪⎝⎭,即21242433112aa a -==⎛⎫- ⎪⎝⎭,解得:3a = ∴()231xf x x =-,1x ,()21,x ∈+∞且12x x <()()()()()()()()()()1212221222122112212222121231313111331111x x x x x x x x x x x x f x f x x x x x -=----+-=---=--- ∵1x ,()21,x ∈+∞且12x x <,∴2110x ->,2210x ->,1210x x ->,210x x ->∴()()12f x f x >,∴()y f x =在区间()1,+∞单调递减. 【点睛】利用定义证明函数单调性的步骤:(1)取值;(2)作差;(3)化简;(4)下结论.22.(1){}1x x ≥-;(2)()2,484416,8a x F a a a ⎧<<⎪=⎨⎪-≥⎩【分析】(1)由1a =-,得211x x x +≥-,进而分1x ≥-和1x <-两种情况,分别解不等式,进而可求出原不等式的解集;(2)由[]0,4x ∈,且4a >,可得()2f x x ax =-+,进而结合二次函数的性质,分类讨论,可求出()f x 在区间[]0,4上的最大值的表达式. 【详解】(1)当1a =-时,()1f x x x =+,则211x x x +≥-.①当1x ≥-时,不等式为221x x x +≥-,解得1x ≥-,所以1x ≥-; ②当1x <-时,不等式为221x x x --≥-,解得112x ≤≤-,所以解集为空集. 综上,不等式的解集为{}1x x ≥-.(2)因为[]0,4x ∈,且4a >,所以()()2f x x a x x ax =-=-+,①当48a <<时,242a <<,则()224a aF a f ⎛⎫== ⎪⎝⎭;②当8a ≥时,42a≥,则()()4416F a f a ==-. 综上()2,48{4416,8a a F a a a <<=-≥. 【点睛】方法点睛:“动轴定区间”型二次函数最值的方法: (2)根据对称轴与区间的位置关系,进行分类讨论;(2)根据二次函数的单调性,分别讨论参数在不同取值下的最值,必要时需要结合区间端点对应的函数值进行分析.23.(1)(a ∈;(2)2;(3)()g a 262,26,2a a a a ->⎧=⎨-⎩. 【分析】(1)利用二次函数的性质列出关系式求解即可.(2)根据二次函数定义域和值域之间的关系进行判断即可. (3)对对称轴分类讨论,得到最大值. 【详解】解:(1)a R ∈,函数2()25f x x ax =-+.开口向上,不等式()0f x >对任意的x ∈R 恒成立,可得:24200a -<,解得(a ∈.(2)函数2()25f x x ax =-+的对称轴为x a =,则函数在[1,]a 上为减函数, 函数的值域为[1,]a ,∴()1f a =,即22251a a -+=,即24a =, 解得2a =-(舍)或2a =.(3)函数2()25f x x ax =-+的对称轴为x a =,开口向上, ①当12aa +,即2a 时,()f x 在区间[1,1]a +上的最大值为2(1)6f a a +=-; ②2a >时,()f x 在区间[1,1]a +上的最大值为(1)f 62a =-.所以()g a 262,26,2a a a a ->⎧=⎨-⎩. 【点睛】方法点睛:求二次函数的最值或值域时,关键在于确定二次函数的对称轴与所求的区间的关系,也即是二次函数在所求区间上的单调性,利用单调性求得值域.24.(1)()10f =;(2)12x x >,理由见解析;(3)5m <≤ 【分析】(1)令1x y ==,代入可得(1)f ;(2)记12x kx =,代入已知等式,由12()()f x f x <可得()0f k <,从而有1k >,得结论12x x >;(3)根据函数的性质,不等式变形为()223333100xx x x m --+≥+->恒成立,然后设33x x t -=+后转化为一元二次不等式和一元不次不等式恒成立,再转化为求函数的最值,可求得参数范围. 【详解】(1)令1x y ==,则(1)(1)(1)f f f =+,所以()10f =.(2)12x x >,理由如下:记12x kx =,则()()()122()f x f kx f k f x ==+, 由()()12f x f x <可得:()0f k <,则1k >,故12x x >.(3)由(2)得()223333100xx x x m --+≥+->恒成立,令10332,3xxt -⎡⎤=+∈⎢⎥⎣⎦,则222332x x t -+=-,原不等式可化为:22100t mt -≥->, 由2210t mt -≥-恒成立可得:min 8m t t ⎛⎫≤+ ⎪⎝⎭,8t t +≥=,当且仅当8t t=,即t =m ≤ 由100mt ->恒成立可得:max 10m t ⎛⎫>⎪⎝⎭,102,3t ⎡⎤∈⎢⎥⎣⎦,则2t =时,max 105t ⎛⎫= ⎪⎝⎭,于是5m >.综上:实数m的取值范围是5m <≤ 【点睛】方法点睛:本题考查抽象函数的单调性,考查不等式恒成立问题,在解决不等式恒成立时,利用已求得的结论(函数的单调性),把问题进行转化,再用换元法转化为一元二次不等式和一元一次不等式恒成立,然后又由分离参数法转化为求函数的最值. 25.(1)()23f x x =+(2)2λ=- 【分析】利用待定系数法求出()22f x x a =++,(1)根据所选条件,都能求出1a =,可得()23f x x =+;(2)根据对称轴与区间中点值的大小分两种情况讨论求出最大值,结合已知最大值可求得λ的值.【详解】设()f x kx b =+(0)k ≠,则(1)2k x b x a -+=+,即2kx k b x a -+=+, 所以2k =,2b a ,所以()22f x x a =++,若选①,(1)由()5f a =得225a a ++=,得1a =,所以()23f x x =+. (2)()(23)(23)g x x x x x λ=++++=22(42)3x x λλ+++, 区间[]0,2的中点值为1,对称轴为()22x λ+=-,当()212λ+-≤,即4λ≥-时,max()(2)8843716f x f λλλ==+++=+,所以7162λ+=,解得2λ=-;当()212λ+->,即4λ<-时,max()(0)3f x f λ==,所以32λ=,解得23λ=(舍),综上所述:2λ=-. 若选②, (1)由142a f ⎛⎫=⎪⎝⎭得14222a a =⨯++,解得1a =,所以()23f x x =+; (2)()(23)(23)g x x x x x λ=++++=22(42)3x x λλ+++, 区间[]0,2的中点值为1,对称轴为()22x λ+=-,当()212λ+-≤,即4λ≥-时,max()(2)8843716f x f λλλ==+++=+,所以7162λ+=,解得2λ=-;当()212λ+->,即4λ<-时,max()(0)3f x f λ==,所以32λ=,解得23λ=(舍),综上所述:2λ=-. 若选③,(1)由()()41226f f -=得4(22)2(42)6a a ++-++=,解得1a =,所以()23f x x =+;(2)()(23)(23)g x x x x x λ=++++=22(42)3x x λλ+++, 区间[]0,2的中点值为1,对称轴为()22x λ+=-,当()212λ+-≤,即4λ≥-时,max()(2)8843716f x f λλλ==+++=+,所以7162λ+=,解得2λ=-;当()212λ+->,即4λ<-时,max()(0)3f x f λ==,所以32λ=,解得23λ=(舍),综上所述:2λ=-. 【点睛】关键点点睛:第二问,讨论对称轴与区间中点值的大小求最大值是解题关键. 26.(1)()2()61f x xg =+;(2)249175a ≤<. 【分析】(1)代入函数解析式运算即可得解; (2)转化条件为1116x x a ⎛⎫>+ ⎪⎝⎭恰有三个正整数解,结合对勾函数的性质即可得解. 【详解】(1)因为函数6()f x x =,2()1g x x =+, 所以()()()2661f g x g x x ==+; (2)由(1)得()()a f g x x >即261a x x >+, 当0x >时,有261x a x <+恰有三个正整数解, 当0a ≤时,不合题意;当0a >时,则1116x x a ⎛⎫>+ ⎪⎝⎭恰有三个正整数解, 设不等式1116x x a ⎛⎫>+ ⎪⎝⎭的解集为12(,)x x , 则由函数1y x x =+的性质可得(]12(0,1),3,4x x ∈∈, 所以11111346364a ⎛⎫⎛⎫+<≤+ ⎪ ⎪⎝⎭⎝⎭,解得249175a ≤<, 所以实数a 的取值范围为249175a ≤<. 【点睛】 关键点点睛:解决本题的关键是转化条件为1116x x a ⎛⎫>+ ⎪⎝⎭恰有三个正整数解及对勾函数性质的应用.。

【期末复习提升卷】浙教版2022-2023学年八上数学第5章 一次函数 测试卷1

【期末复习提升卷】浙教版2022-2023学年八上数学第5章 一次函数 测试卷1

【期末复习提升卷】浙教版2022-2023学年八上数学第5章 一次函数 测试卷1考试时间:120分钟 满分:120分一、选择题(本大题有10小题,每小题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的.1.一次函数y =kx+b 的图象经过原点,则( )A .k =0,b≠0B .k≠0,b =0C .k≠0,b≠0D .k =0,b =02.如果直线y=ax+2与直线y=bx -3相交于x 轴上的同一点,则a :b 等于 ( )A .-23B .23C .-32D .32 3.已知一次函数y=ax+b 的图象过第一、二、四象限,且与x 轴交于点(2,0),则关于x 的不等式a (x-1)-b >0的解集为( )A .x <-1B .x >-1C .x >1D .x <14.若一次函数y=kx+b ,当x 的值增大1时,y 值减小3,则当x 的值减小3时,y 值( ) A .增大3 B .减小3 C .增大9 D .减小95.平面直角坐标系中,若一个点的横、纵坐标都是整数,则称该点为整点。

若函数的图象的交点为整点时,若函数y=2x-1与y=kx+k 的图像的交点为整点时,则整数k 的值可取( )A .2个B .3个C .4个D .5个6.在全民健身环城越野赛中,甲乙两选手的行程y (千米)随时间(时)变化的图象(全程)如图所示.有下列说法:①起跑后1小时内,甲在乙的前面;②第1小时两人都跑了10千米;③甲比乙先到达终点;④两人都跑了20千米.其中正确的说法有( )A .1 个B .2 个C .3 个D .4个7.已知梯形ABCD 的四个顶点的坐标分別为A (-1,0),B (5,0),C (2,2),D (0,2),直线y=kx+2将梯形分成面积相等的两部分,则k 的值为( )A .-23B .-29C .-47D .-27 8.在平面直角坐标系中,已知直线y=-34x+3与x 轴、y 轴分别交于A 、B 两点,点C (0,n )是y 轴正半轴上一点.把坐标平面沿直线AC 折叠,使点B 刚好落在x 轴上,则点C 的坐标是( ) A .(0,43) B .(0,34) C .(0,3) D .(0,4) 9.已知(x 1,y 1),(x 2,y 2),(x 3,y 3)为直线y =−2x +3上的三个点,且x 1<x 2<x 3,则以下判断正确的是( ).A .若x 1x 2>0,则y 1y 3>0B .若x 1x 3<0,则y 1y 2>0C .若x 2x 3>0,则y 1y 3>0D .若x 2x 3<0,则y 1y 2>010.设直线kx+(k+1)y=1(k≥1且为正整数)与两坐标轴围成的三角形的面积为S k (k=1,2,…,2011),则S 1+S 2+…+S 2011=( )A .10052011B .20112012C .20102011D .20114024 二、填空题(本大题有6小题,每小题4分,共24分)要注意认真看清题目的条件和要填写的内容,尽量完整地填写答案.11.一次函数y =kx +b ,当3≤x≤4时,3≤y≤6,则 b k 的值是 . 12.若二元一次方程组 {4x −y =1,y =2x −m的解是 {x =2,y =7, 则一次函数 y =2x −m 的图象与一次函数 y =4x −1 的图象的交点坐标为 .13.如图,正方形 ABCD , CEFG 边在 x 轴的正半轴上,顶点 A , E 在直线 y =12x 上,如果正方形 ABCD 边长是1,那么点 F 的坐标是 .(第13题) (第15题) (第16题)14.定义:在平面直角坐标系中,把任意点 A(x 1,y 1) 与点 B(x 2,y 2) 之间的距离 d(A,B)=|x 1−x 2|+|y 1−y 2| 叫做曼哈顿距离( ManℎatanDistance ),则原点 O 与函数 y =2x +1(−12≤x ≤0) 图象上一点 M 的曼哈顿距离 d(O,M)=23 ,则点 M 的坐标为 . 15.如图,10个边长为1的正方形摆放在平面直角坐标系中,经过A (1,0)点的一条直线l 将这10个正方形分成面积相等的两部分,则该直线的解析式为 .16.如图,在平面直角坐标系xOy 中,点A 的坐标为(0,4),P 是x 轴上一动点,把线段PA 绕点P 顺时针旋转60°得到线段PF ,连接OF ,则线段OF 长的最小值是 .三、解答题(本题有8小题,第17~19题每题6分,第20、21题每题8分,第22、23题每题10分,第24题12分,共66分)解答应写出文字说明,证明过程或推演步骤.17.如图,在平面直角坐标系xOy 中,已知点A (﹣2,0),点B (0,1).(1)求直线AB 的解析式;(2)若点C 在直线AB 上,且点C 到x 轴的距离为2,求点C 的坐标.18.在平面直角坐标系中,一次函数y =kx +b 的图象是由一次函数y =−x +8的图象平移得到的,且经过点A(2,3).(1)求一次函数y =kx +b 的表达式;(2)若点P(2m ,4m +1)为一次函数y =kx +b 图象上一点,求m 的值.19.如图,点P (x ,y )是第一象限内一个动点,且在直线y =-2x +8上,直线与x 轴交于点A .(1)当点P 的横坐标为3时,△APO 的面积为多少?(2)设△APO 面积为S ,用含x 的代数式表示S ,并写出x 的取值范围.20.从今年3月开始,上海的疫情时刻牵动着全国人民的心.4月9日,上海最大方舱医院投入使用,市政府计划派出360名医务工作者去上海方舱医院支援.经研究,决定租用当地租车公司提供的A ,B 两种型号客车共20辆作为交通工具,运送所有医务工作者去方舱医院.下表是租车公司提供的两(2)若要使租车总费用不超过5700元,一共有几种租车方案?并求出最低租车费用.21.数学精英小组利用平面直角坐标系在研究直线上点的坐标规律时,发现直线y =kx +b 上的任意三点A(x 1,y 1),B(x 2,y 2),C(x 3,y 3)(x 1≠x 2≠x 3),满足y 1−y 2x 1−x 2=y 1−y 3x 1−x 3=k ,经小组查阅资料,再经请教老师验证,以上结论是成立的,即直线y =kx +b 上任意两点的坐标A(x 1,y 1),B(x 2,y 2),(x 1≠x 2),都有y 1−y 2x 1−x 2=k .例如:P(1,3),Q(2,4)为直线y =x +2上两点,则k =3−41−2=1. (1)已知直线y =kx +b 经过A(2,3),B(4,−2)两点,请直接写出k= .(2)如图,直线y 1⊥y 2于点A ,直线y 1,y 2分别交y 轴于B ,C 两点,A ,B ,C 三点坐标如图所示.请用上述方法求出k 1k 2的值.22.A 、B 两地相距30km ,甲、乙两人分别开车从A 地出发前往B 地,其中甲先出发1ℎ.如图是甲,乙行驶路程y 甲(km),y 乙(km)随行驶时间x(ℎ)变化的图象,请结合图象信息,解答下列问题: (1)填空:甲的速度为 km ℎ⁄;(2)分别求出y 甲,y 乙与x 之间的函数解析式;(3)求出点C 的坐标,并写出点C 的实际意义.23.如图,在平面直角坐标系中,已知点A 、B 的坐标分别为A(a ,5)、B(b ,2),若a 、b 满足等式:√2a −b −1+√a −b +3=0.(1)求A、B两点的坐标;(2)连接OA,OB,求S△AOB;(3)若G(0,−4),过G作直线m//AB,过点B作直线n//x轴,直线m和直线n相交于点P,请直接写出点P的坐标.24.如图,平面直角坐标系中,直线y=x+4分别交x、y轴于A、B两点,点P为线段AB的中点.(1)直接写出点P的坐标;(2)如图1,点C是x轴正半轴上的一动点,过点P作PD⊥PC交y轴正半轴于点D,连接CD,点M、N分别是CD、OB的中点,连接MN,求∠MNO的度数;(3)如图2,点Q是x轴上的一个动点,连接PQ.把线段PQ绕点Q逆时针旋转90°至线段QT,连接PT、OT.当PT+OT的值最小时,求此时点T的坐标.。

初中数学函数基础知识经典测试题含答案(1)

初中数学函数基础知识经典测试题含答案(1)

初中数学函数基础知识经典测试题含答案(1)一、选择题1.小明从家骑车上学,先匀速上坡到达A 地后再匀速下坡到达学校,所用的时间与路程如图所示,如果返回时,上、下坡速度仍然保持不变,那么他从学校回到家需要的时间是( )A .9分钟B .12分钟C .8分钟D .10分钟【答案】B【解析】【分析】 先根据图形,得到上坡、下坡的时间和距离,然后分别求出上、下坡的速度,最后计算返回家的时间【详解】根据图形得,从家到学校:上坡距离为1km ,用时5min ,下坡距离为2km ,用时为4min 故上坡速度115V =(km/min),下坡速度22142V ==(km/min) 从学校返回家的过程中,原来的上下坡刚好颠倒过来,即上坡2km ,下坡1km 故上坡时间12t 15==10(min),下坡时间21t 12==2(min) ∴总用时为:10+2=12(min)故选:B【点睛】 本题考查从函数图象获取信息,解题关键是将函数图像中的数据与生活实际一一对应2.李明骑车上学,一开始以某一速度行进,途中车子发生故障,只好停下修车,车修好后,因怕耽误时间,于是加快了车速.如用s 表示李明离家的距离,t 为时间.在下面给出的表示s 与t 的关系图中,符合上述情况的是( )A.B.C.D.【答案】C【解析】【分析】先弄清题意,再分析路程和时间的关系.【详解】∵停下修车时,路程没变化,观察图象,A、B、D的路程始终都在变化,故错误;C、修车是的路程没变化,故C正确;故选:C.【点睛】考核知识点:函数的图象.理解题意看懂图是关键.3.下列各曲线中表示y是x的函数的是()A.B.C.D.【答案】D【解析】根据函数的意义可知:对于自变量x的任何值,y都有唯一的值与之相对应,故D正确.故选D.4.如图,边长为 2 的正方形ABCD,点P从点A出发以每秒 1 个单位长度的速度沿A D C--的路径向点 C 运动,同时点 Q 从点 B 出发以每秒 2 个单位长度的速度沿∆的面B C D A---的路径向点 A运动,当点 Q 到达终点时,点P停止运动,设PQC积为S,运动时间为t秒,则能大致反映S与t的函数关系的图象是()A .B .C .D .【答案】C【解析】【分析】 分三种情况求出解析式,即可求解.【详解】当0≤t≤1时,即当点Q 在BC 上运动,点P 在AD 上运动时,()2222212S t t =⨯⨯-=-, ∴该图象y 随x 的增大而减小,当1<t≤2时,即当点Q 在CD 上运动时,点P 在AD 上运动时,()()21222322S t t t t =--=-+-, ∴该图象开口向下, 当2<t≤3,即当点Q 在AD 上运动时,点P 在DC 上运动时,()()21424682S t t t t =--=-+- ∴该图象开口向下,故选:C .【点睛】本题考查了动点问题的函数图象,求出分段函数解析式是本题的关键.5.若A(﹣3,y 1)、B(0,y 2)、C(2,y 3)为二次函数y =(x+1)2+1的图象上的三点,则y 1、y 2、y 3的大小关系是( )A .y 1<y 2<y 3B .y 2<y 1<y 3C .y 3<y 1<y 2D .y 1<y 3<y 2【答案】B【解析】【分析】把三个点的坐标代入二次函数解析式分别计算出则y 1、y 2、y 3的值,然后进行大小比较.【详解】解:∵A (﹣3,y 1)、B (0,y 2)、C (2,y 3)为二次函数y =(x+1)2+1的图象上的三点,∴y 1=(﹣3+1)2+1=5,y 2=(0+1)2+1=2,y 3=(2+1)2+1=10,∴y 2<y 1<y 3.故选:B.【点睛】本题考查了比较函数值大小的问题,掌握二次函数的性质、代入法是解题的关键.6.小丽早上步行去车站然后坐车去学校,下列能近似的刻画她离学校的距离随时间变化的大致图象是()A.B.C.D.【答案】D【解析】【分析】根据上学,可得离学校的距离越来越小,根据开始步行,可得距离变化慢,后来坐车,可得距离变化快.【详解】解:A、距离越来越大,选项错误;B、距离越来越小,但前后变化快慢一样,选项错误;C、距离越来越大,选项错误;D、距离越来越小,且距离先变化慢,后变化快,选项正确;故选:D.【点睛】本题考查了函数图象,观察距离随时间的变化是解题关键.7.弹簧挂上物体后会伸长,现测得一弹簧的长度y(厘米)与所挂物体的质量x(千克)之间有如下关系:物体质量x/千克 0 1 2 3 4 5 …弹簧长度y/厘米10 10.5 11 11.5 12 12.5 …下列说法不正确的是()A.x与y都是变量,其中x是自变量,y是因变量B .弹簧不挂重物时的长度为0厘米C .在弹性范围内,所挂物体质量为7千克时,弹簧长度为13.5厘米D .在弹性范围内,所挂物体质量每增加1千克弹簧长度增加0.5厘米【答案】B【解析】试题分析:根据图表数据可得,弹簧的长度随所挂重物的质量的变化而变化,并且质量每增加1千克,弹簧的长度增加0.5cm ,然后对各选项分析判断后利用排除法.解:A 、x 与y 都是变量,且x 是自变量,y 是因变量,正确,不符合题意;B 、弹簧不挂重物时的长度为10cm ,错误,符合题意;C 、在弹性范围内,所挂物体质量为7千克时,弹簧长度为10+0.5×7=13.5,正确,不符合题意;D 、在弹性范围内,所挂物体质量每增加1千克弹簧长度增加0.5厘米,正确,不符合题意.故选B .点评:本题考查了函数关系的确认,常量与变量的确定,读懂图表数据,并从表格数据得出正确结论是解题的关键,是基础题,难度不大.8.在平面直角坐标系中有三个点的坐标:()()0,2,2,01(),3A B C ---,,从、、A B C 三个点中依次取两个点,求两点都落在抛物线2y x x 2=--上的概率是( )A .13B .16C .12D .23【答案】A【解析】【分析】先画树状图展示所有6种等可能的结果数,再找出两点都落在抛物线2y x x 2=--上的结果数,然后根据概率公式求解.【详解】解:在()()0,2,2,01(),3A B C ---,三点中,其中AB 两点在2y x x 2=--上, 根据题意画图如下:共有6种等可能的结果数,其中两点都落在抛物线2y x x 2=--上的结果数为2, 所以两点都落在抛物线2y x x 2=--上的概率是2163=; 故选:A .【点睛】本题考查了列表法或树状图法和函数图像上点的特征.通过列表法或树状图法展示所有等可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式求出事件A或B的概率.也考查了二次函数图象上点的坐标特征.9.如图,矩形ABCD中,P为CD中点,点Q为AB上的动点(不与,A B重合).过Q作QM PA⊥于M,QN PB⊥于N.设AQ的长度为x,QM与QN的长度和为y.则能表示y与x之间的函数关系的图象大致是()A.B.C.D.【答案】D【解析】【分析】根据三角形面积得出S△PAB=12PE•AB;S△PAB=S△PQB+S△PAQ=12QN•PB+12PA•MQ,进而得出y=PE ABPB,即可得出答案.【详解】解:连接PQ,作PE⊥AB垂足为E,∵过Q作QM⊥PA于M,QN⊥PB于N,∴S△PAB=12 PE•AB;S△PAB=S△PQB+S△PAQ=12QN•PB+12PA•MQ,∵矩形ABCD中,P为CD中点,∴PA=PB,∵QM与QN的长度和为y,∴S△PAB=S△PQB+S△PAQ=12QN•PB+12PA•MQ=12PB(QM+QN)=12PB•y,∴S△PAB=12PE•AB=12PB•y,∴y=PE AB PB⋅,∵PE=AD,∴PE,AB,PB都为定值,∴y的值为定值,符合要求的图形为D,故选:D.【点睛】此题考查了矩形的性质,三角形的面积,动点函数的图象,根据已知得出y=PE ABPB⋅,再利用PE=AD,PB,AB,PB都为定值是解题关键.10.木杆AB斜靠在墙壁上,当木杆的上端A沿墙壁NO竖直下滑时,木杆的底端B也随之沿着射线OM方向滑动.下列图中用虚线画出木杆中点P随之下落的路线,其中正确的是()A.B.C.D.【答案】D【解析】解:如右图,连接OP ,由于OP 是Rt △AOB 斜边上的中线,所以OP=12AB ,不管木杆如何滑动,它的长度不变,也就是OP 是一个定值,点P 就在以O 为圆心的圆弧上,那么中点P 下落的路线是一段弧线.故选D .11.如图,矩形ABCD 的周长是28cm ,且AB 比BC 长2cm .若点P 从点A 出发,以1/cm s 的速度沿A D C →→方向匀速运动,同时点Q 从点A 出发,以2/cm s 的速度沿A B C →→方向匀速运动,当一个点到达点C 时,另一个点也随之停止运动.若设运动时间为()t s ,APQ V 的面积为()2cm S ,则()2cm S 与()t s 之间的函数图象大致是( )A .B .C .D .【答案】A【解析】【分析】先根据条件求出AB 、AD 的长,当0≤t≤4时,Q 在边AB 上,P 在边AD 上,如图1,计算S 与t 的关系式,分析图像可排除选项B 、C ;当4<t≤6时,Q 在边BC 上,P 在边AD 上,如图2,计算S 与t 的关系式,分析图像即可排除选项D ,从而得结论.【详解】解:由题意得2228AB BC +=,2AB BC =+,可解得8AB =,6BC =,即6AD =,①当0≤t≤4时,Q 在边AB 上,P 在边AD 上,如图1,S △APQ =211222AP AQ t t t ==g g , 图像是开口向上的抛物线,故选项B 、C 不正确;②当4<t≤6时,Q 在边BC 上,P 在边AD 上,如图2,S △APQ =118422AP AB t t =⨯=g , 图像是一条线段,故选项D 不正确;故选:A .【点睛】本题考查了动点问题的函数图象,根据动点P 和Q 的位置的不同确定三角形面积的不同,解决本题的关键是利用分类讨论的思想求出S 与t 的函数关系式.12.甲、乙两同学骑自行车从A 地沿同一条路到B 地,已知乙比甲先出发,他们离出发地的距离S (km )和骑行时间t (h )之间的函数关系如图所示,给出下列说法:①他们都骑行了20km ;②乙在途中停留了0.5h ;③甲、乙两人同时到达目的地;④相遇后,甲的速度小于乙的速度.根据图象信息,以上说法正确的有( )A .1个B .2个C .3个D .4个【答案】B【解析】 试题分析:根据图象上特殊点的坐标和实际意义即可作出判断.由图可获取的信息是:他们都骑行了20km ;乙在途中停留了0.5h ;相遇后,甲的速度>乙的速度,所以甲比乙早0.5小时到达目的地,所以(1)(2)正确.故选B .考点:本题考查的是学生从图象中读取信息的数形结合能力点评:同学们要注意分析其中的“关键点”,还要善于分析各图象的变化趋势.13.如图所示:边长分别为1和2的两个正方形,其一边在同一水平线上,小正方形沿该水平线自左向右匀速穿过大正方形,设穿过的时间为t,大正方形内除去小正方形部分的面积为S(阴影部分),那么S与t的大致图象应为()A.B.C.D.【答案】A【解析】【分析】【详解】解:根据题意,设小正方形运动速度为v,由于v分为三个阶段,①小正方形向右未完成穿入大正方形,=⨯-⨯=-≤.S vt vt vt2214(1)②小正方形穿入大正方形但未穿出大正方形,22113S=⨯-⨯=,③小正方形穿出大正方形,=⨯-⨯-=+≤,22(11)3(1)S vt vt vt∴符合变化趋势的是A和C,但C中面积减小太多不符合实际情况,∴只有A中的符合实际情况.故选A.14.2019年,中国少年岑小林在第六届上海国际交互绳大赛上,破“30秒内单脚单摇轮换跳次数最多”吉尼斯世界纪录!实践证明1分钟跳绳的最佳状态是前20秒频率匀速增加,最后10秒冲刺,中间频率保持不变,则跳绳频率(次/秒)与时间(秒)之间的关系可以用下列哪幅图来近似地刻画()A.B.C.D.【答案】C【解析】【分析】根据前20秒频率匀速增加,最后10秒冲刺,中间频率保持不变判断图象即可.【详解】:秒频率保持不变,排除选项A和D,再根据最后10秒冲解:根据题意可知,中间2050刺,频率是增加的,排除选项B,因此,选项C正确.故选:C.【点睛】本题考查的知识点是一次函数的实际应用,理解题意是解此题的关键.15.均匀地向一个容器注水,最后把容器注满,在注水过程中,水面高度h随时间t的变化规律如图所示(图中OABC为折线),这个容器的形状可以是()A.B.C.D.【答案】D【解析】试题分析:注水量一定,函数图象的走势是稍陡,平,陡;那么速度就相应的变化,跟所给容器的粗细有关.则相应的排列顺序就为D .故选D .考点:函数的图象.16.当实数x 的取值使得2x -有意义时,函数41y x =+中y 的取值范围是( ) A .7y ≥-B .9y ≥C .9y <-D .7y <-【答案】B【解析】【分析】根据二次根式有意义易得x 的取值范围,代入所给函数可得y 的取值范围.【详解】解:由题意得20x -≥,解得2x ≥, 419x ∴+≥,即9y ≥.故选:B .【点睛】本题考查了函数值的取值的求法;根据二次根式被开方数为非负数得到x 的取值是解决本题的关键.17.如图是某蓄水池的横断面示意图,分为深水池和浅水池,如果向这个蓄水池以固定的流量注水,下面能大致表示水的最大深度h 与时间t 之间的关系的图象是( )A .B .C .D .【答案】C【解析】【分析】首先看图可知,蓄水池的下部分比上部分的体积小,故h 与t 的关系变为先快后慢.【详解】根据题意和图形的形状,可知水的最大深度h 与时间t 之间的关系分为两段,先快后慢。

反比例函数测试卷1

反比例函数测试卷1

-1- 1yxO反比例函数测试卷(一)一、 选择题 1、若反比例函数22)12(--=mx m y 的图像在第二、四象限,则m 的值是( )(A )-1或1 (B )小于21的任意实数 (C ) -1 (D) 不能确定 2、如果点(3,-4)在反比例函数ky x =的图象上,那么下列各点中,在此图象上的是( )A.(3,4)B. (-2,-6)C.(-2,6)D.(-3,-4) 3、在反比例函数3k y x-=图象的每一支曲线上,y 都随x 的增大而减小,则k 的取值范围是 ( ) A .k >3 B .k >0 C .k <3 D . k <04、在下图中,反比例函数xk y 12+=的图象大致是( )5.函数y kx =-与y kx =(k ≠0)的图象的交点个数是( )A. 0B. 1C. 2D. 不确定6. 面积为4的矩形一边为x ,另一边为y ,则y 与x 的变化规律用图象大致表示为7.已知反比例函数的图像经过点(a ,b ),则它的图像一定也经过( ) A (-a ,-b ) B 、 (a ,-b ) C 、(-a ,b ) D 、 (0,0) 8. 已知函数1y x=的图象如下,当1x ≥-时,y 的 取值范围是( ) A .1y <- B .1y ≤-C .1y ≤- 或0y >D .1y <-或0y ≥2y x =xy OP 1 P 2P 3 P 4 1 234)二、 填空题 1. 如果函数22)1(--=k xk y 是反比例函数,那么=k ____________.2. 如图,若点A 在反比例函数(0)ky k x=≠的图象上,AM x ⊥轴于点M ,AMO △的面积为3,则k = .3. 已知反比例函数()0≠=k xk y 的图象经过点(2,-3),则k 的值是_______,图象在__________象限,当x>0时,y 随x 的减小而__________.4. 如图,在反比例函数2y x=(0x >)的图象上,有点1234P P P P ,,,,它们的横坐标依次为1,2,3,4.分别过这些点作x 轴与y 轴的垂线,图中所构成的阴影部分的面积从左到右依次为123S S S ,,,则123S S S ++= . 5. 反比例函数xk y =的图像经过(-23,5)点、(a ,-3)及(10,b )点,则k = ,a = ,b = ;6.如图,在平面直角坐标系中,函数ky x=(0x >,常数0k >) 的图象经过点(12)A ,,()B m n ,,(1m >),过点B 作y 轴的垂线,垂足为C .若ABC △的面积为2,则点B 的坐标为 . 三、 解答题1. 如图,一次函数y kx b =+的图象与反比例函数my x=的图象相交于A 、B 两点 (1)根据图象,分别写出A 、B 的坐标; (2)求出两函数解析式;(3)根据图象回答:当x 为何值时,一次函数的函数值大于反比例函数的函数值2. 如图,Rt △AOB 顶点A 是一次函数3++-=m x y 的图象与反比例函数xmy =的 图象在第二象限内的交点,且S △AOB =1,求A 点坐标.3.如图所示,点A 、B 在反比例函数xk y =的图象上,且点A 、B 的横坐标分别为()02,>a a a 。

函数与极限测试题及答案一

函数与极限测试题及答案一

函数与极限测试题(一)一、 填空题 二、1、若1ln 11ln x f x x+⎛⎫=⎪-⎝⎭,则()f x =_____。

三、2、函数()f x 的定义域为[],a b ,则()21f x -的定义域为_____。

四、3、若0x →时,无穷小221ln 1x x -+与2sin 2a 等价,则常数a =_____。

五、4、设()()21lim 1n n x f x nx →∞-=+,则()f x 的间断点为x =_____。

六、 单选题七、 1、当0x →时,变量211sinx x是( ) 八、A 、无穷小B 、无穷大九、 C 、有界的,但不是无穷小 D 、无界的,也不是无穷大 十、2、设函数()bx xf x a e=+在(),-∞+∞上连续,且()lim 0x f x →-∞=,则常数,a b 满足( )十一、 A 、0,0a b << B 、0,0a b >> 十二、 C 、0,0a b ≥< D 、0,0a b ≤> 十三、 3、设()232xxf x =+-,则当0x →时( )十四、 A 、()f x 与x 是等价无穷小 B 、()f x 与x 是同阶但非等价无穷小 十五、 C 、()f x 是x 的高阶无穷小 D 、()f x 是x 的低阶无穷小十六、 4、设对任意的x ,总有()()()x f x g x ϕ≤≤,且()()lim 0x g x x ϕ→∞-=⎡⎤⎣⎦,则()lim x f x →∞为( )十七、 A 、存在且等于零 B 、存在但不一定等于零十八、 C 、一定不存在 D 、不一定存在 十九、 例:()()()11,,221x x f x x g x x x x ϕ==+=+++ 二十、 求下列极限 二十一、1、2241limsin x x x x x+-+、()221212lim 1xx x x x -→⎛⎫ ⎪+⎝⎭二十二、确定,a b 的值,使()322ln 101tan 1sin 011ln 01ax x x x f x bx x x x x x x ⎧+⎪<+-+⎪⎪==⎨⎪-+⎪>++⎪⎩在(),-∞+∞内连续。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

函数测试1
1.(2015•江苏无锡)若点A (3,﹣4)、B (﹣2,m )在同一个反比例函数的图象上,则m 的值为( )
A .
6
B .
﹣6
C .
12
D .
﹣12
2、(2015•四川自贡)若点()()(),,,,,112233x y x y x y 都是反比例函数1y x =-图象上的点,并且
123y 0y y <<< ,则下列各式正确的是 ( )
A .123x x x <<
B .132x x x <<
C .213x x x <<
D .231x x x << 3(2015湖北鄂州)如图,直线y =x -2与y 轴交于点C ,与x 轴交于点B ,与反比例函数的图象在第一象限交于点A ,连接OA ,若S △AOB :S △BOC = 1:2,则k 的值为( )
A .2
B .3
C .4
D .6
4. (2015•浙江滨州)如图,在x 轴的上方,直角∠BOA 绕原点O 按顺时针方向旋转.若∠BOA 的两边分别与函数

的图象交于B 、A 两点,则∠OAB 大小的变化趋势为( )
A .逐渐变小
B .逐渐变大
C .时大时小
D .保持不变
5. (2015•四川省内江市)如图,正方形ABCD 位于第一象限,边长为3,点A 在直线y =x 上,点A 的横坐标为1,正方形ABCD 的边分别平行于x 轴、y 轴.若双曲线y =与正方形ABCD 有公共点,则k 的取值范围为( )A .1<k <9 B .2≤k ≤34C 1≤k ≤16 D .4≤k <16
6. (2015•四川凉山州)以正方形ABCD 两条对角线的交点O 为坐标原点,建立如图所示的平面直角坐标系,双曲线
经过点D ,则正方形ABCD 的面积是( )
A .10
B .11
C .12
D .13 7.(2015•山东临沂)在平面直角坐标系中,直线y =-x +2与反比例函数的图象有唯一
公共点. 若直线
与反比例函数的图象有2个公共点,则b 的取值范围是( )
(A) b﹥2. (B) -2﹤b﹤2. (C) b﹥2或b﹤-2. (D) b﹤-2.
8. (2015•内蒙古呼伦贝尔兴安盟,第11题3分)二次函数y=(x+2)2﹣1的图象大致为()
A.B.C.
9. (2015•辽宁省盘锦)如图是二次函数y=ax2+bx+c=(a≠0)图象的一部分,对称轴是直线x=﹣2.关于下列结论:①ab<0;②b2﹣4ac>0;③9a﹣3b+c<0;④b﹣4a=0;⑤方程ax2+bx=0的两个根为x1=0,x2=﹣4,其中正确的结论有()
A.①③④B.②④⑤C.①②⑤D.②③⑤
10.(2015•江苏南京)如图,过原点O的直线与反比例函数,的图象在第一象限内分别交于点A,B,且A为OB的中点,若函数,则与x的函数表达式是___________.
11. (2015山东菏泽)已知A(﹣1,m)与B(2,m﹣3)是反比例函数图象上的两个点.则m的值.
12.(2015•江苏泰州)点、在反比例函数的图像上,若,则的范围是 1.
13.(2015•宁德)二次函数y=x2﹣4x﹣3的顶点坐标是(,).
14.(2015福建龙岩)抛物线y=2x2﹣4x+3绕坐标原点旋转180°所得的抛物线的解析式是
________.
k 15. (2015辽宁大连)如图,在平面坐标系中,∠AOB=90°,AB∥x轴,OB=2,双曲线y=
x 经过点B.将△AOB绕点B逆时针旋转,使点O的对应点D落在X轴的正半轴上。

若AB的对应线段CB恰好经过点O.
(1)点B的坐标和双曲线的解析式。

(2)判断点C是否在双曲线上,并说明理由。

16. (2015•福建)已知二次函数y=﹣x2+2x+m.
(1)如果二次函数的图象与x轴有两个交点,求m的取值范围;
(2)如图,二次函数的图象过点A(3,0),与y轴交于点B,直线AB与这个二次函数图象的对称轴交于点P,求点P的坐标.
17.(2015•辽宁阜新)如图,抛物线y=﹣x2+bx+c交x轴于点A(﹣3,0)和点B,交y轴于点C(0,3).
(1)求抛物线的函数表达式;
(2)若点P在抛物线上,且S△AOP=4S BOC,求点P的坐标;
(3)如图b,设点Q是线段AC上的一动点,作DQ⊥x轴,交抛物线于点D,求线段DQ长度的最大值.。

相关文档
最新文档