归纳高三数学必修1-5知识点
高中数学必修1-5知识点归纳及公式大全

必修1数学知识点第一章、集合与函数概念§1.1.1、集合1、把研究的对象统称为元素,把一些元素组成的总体叫做集合。
集合三要素:确定性、互异性、无序性。
2、只要构成两个集合的元素是一样的,就称这两个集合相等。
3、常见集合:正整数集合:*N 或N ,整数集合:Z ,有理数集合:Q ,实数集合:R .4、集合的表示方法:列举法、描述法.§1.1.2、集合间的基本关系1、一般地,对于两个集合A 、B ,如果集合A 中任意一个元素都是集合B 中的元素,则称集合A 是集合B 的子集。
记作B A .2、如果集合B A,但存在元素B x,且A x,则称集合A 是集合B 的真子集.记作:A B.3、把不含任何元素的集合叫做空集.记作:.并规定:空集合是任何集合的子集.4、如果集合A 中含有n 个元素,则集合A 有n2个子集.§1.1.3、集合间的基本运算1、一般地,由所有属于集合A 或集合B 的元素组成的集合,称为集合A 与B 的并集.记作:B A . 2、一般地,由属于集合A 且属于集合B 的所有元素组成的集合,称为A 与B 的交集.记作:B A.3、全集、补集?{|,}U C A x x U x U 且§1.2.1、函数的概念1、设A 、B 是非空的数集,如果按照某种确定的对应关系f ,使对于集合A 中的任意一个数x ,在集合B 中都有惟一确定的数x f 和它对应,那么就称B Af :为集合A 到集合B 的一个函数,记作:A x x f y,.2、一个函数的构成要素为:定义域、对应关系、值域.如果两个函数的定义域相同,并且对应关系完全一致,则称这两个函数相等. §1.2.2、函数的表示法1、函数的三种表示方法:解析法、图象法、列表法.§1.3.1、单调性与最大(小)值1、注意函数单调性证明的一般格式:解:设b a x x ,,21且21x x ,则:21x f x f =,§1.3.2、奇偶性1、一般地,如果对于函数x f 的定义域内任意一个x ,都有x f x f,那么就称函数x f 为偶函数.偶函数图象关于y 轴对称.2、一般地,如果对于函数x f 的定义域内任意一个x ,都有x f x f,那么就称函数x f 为奇函数.奇函数图象关于原点对称.第二章、基本初等函数(Ⅰ)§2.1.1、指数与指数幂的运算1、一般地,如果a xn,那么x 叫做a 的n 次方根。
部编版高中数学重难点:必修1-5知识点归纳及公式大全

必修1數學知識點第一章、集合與函數概念 §1.1.1、集合1、 把研究的對象統稱為元素,把一些元素組成的總體叫做集合。
集合三要素:確定性、互異性、無序性。
2、 只要構成兩個集合的元素是一樣的,就稱這兩個集合相等。
3、 常見集合:正整數集合:*N 或+N ,整數集合:Z ,有理數集合:Q ,實數集合:R .4、集合的表示方法:列舉法、描述法. §1.1.2、集合間的基本關係1、 一般地,對於兩個集合A 、B ,如果集合A 中任意一個元素都是集合B 中的元素,則稱集合A 是集合B 的子集。
記作B A ⊆.2、 如果集合B A ⊆,但存在元素B x ∈,且A x ∉,則稱集合A 是集合B 的真子集.記作:A B.3、 把不含任何元素的集合叫做空集.記作:∅.並規定:空集合是任何集合的子集.4、 如果集合A 中含有n 個元素,則集合A 有n2個子集.§1.1.3、集合間的基本運算1、 一般地,由所有屬於集合A 或集合B 的元素組成的集合,稱為集合A 與B 的並集.記作:B A .2、 一般地,由屬於集合A 且屬於集合B 的所有元素組成的集合,稱為A 與B 的交集.記作:B A .3、全集、補集?{|,}U C A x x U x U =∈∉且 §1.2.1、函數的概念1、 設A 、B 是非空的數集,如果按照某種確定的對應關係f ,使對於集合A 中的任意一個數x ,在集合B 中都有惟一確定的數()x f 和它對應,那麼就稱B A f →:為集合A 到集合B 的一個函數,記作:()A x x f y ∈=,.2、 一個函數的構成要素為:定義域、對應關係、值域.如果兩個函數的定義域相同,並且對應關係完全一致,則稱這兩個函數相等. §1.2.2、函數的表示法1、 函數的三種表示方法:解析法、圖象法、列表法. §1.3.1、單調性與最大(小)值1、 注意函數單調性證明的一般格式:解:設[]b a x x ,,21∈且21x x <,則:()()21x f x f -=… §1.3.2、奇偶性1、 一般地,如果對於函數()x f 的定義域內任意一個x ,都有()()x f x f =-,那麼就稱函數()x f 為偶函數.偶函數圖象關於y 軸對稱.2、 一般地,如果對於函數()x f 的定義域內任意一個x ,都有()()x f x f -=-,那麼就稱函數()x f 為奇函數.奇函數圖象關於原點對稱. 第二章、基本初等函數(Ⅰ) §2.1.1、指數與指數冪的運算1、 一般地,如果a x n=,那麼x 叫做a 的n 次方根。
高中数学(高一至高三)知识点汇总

高中数学第一部分必备知识点第二部分学习难点必修1知识点重难点高考考点第一章:集合与函数1.1.1、集合1.1.2、集合间的基本关系1.1.3、集合间的基本运算1.2.1、函数的概念1.2.2、函数的表示法1.3.1、单调性与最大(小)值1.3.2、奇偶性重点:1、集合的交、并、补等运算。
2、函数定义域的求法3、函数性质难点:函数的性质1、集合的交、并、补等运算。
2、集合间的基本关系3、函数的概念、三要素及表示方法4、分段函数5、奇偶性、单调性和周期性第二章:基本初等函数(Ⅰ)2.1.1、指数与指数幂的运算2.1.2、指数函数及其性质2.2.1、对数与对数运算2..2.2、对数函数及其性质2.3、幂函数重点:1、指数函数的图像与性质2、对数函数的图像与性质3、特殊的幂函数的图像与性质4、指数、对数的运算难点:1、指数函数与对数函数相结合2、指数对数与不等式、导数、三角函数等结合1、指数函数的图像与性质2、对数函数的图像与性质3、特殊的幂函数的图像与性质4、指数、对数的运算5、数值大小的比较6、习惯与不等式、导数、三角函数等结合,难度较大第三章:函数的应用3.1.1、方程的根与函数的零点3.1.2、用二分法求方程的近似解3.2.1、几类不同增长的函数模型3.2.2、函数模型的应用举例重点:1、零点的概念2、二分法求方程近似解的方法难点:1、函数模型2、函数零点与导数,含有字母的参数相结合1、零点的概念2、二分法必修2知识点重难点高考考点第一章:空间几何体1、空间几何体的结构2、空间几何体的三视图和直观图3、空间几何体的表面积与体积重点:1、认识柱、锥、台、球及其简单组合体的结构特征2、几何体的三视图和直观图3、会利用公式求一些简单几何体的表面积和体积难点:空间想象能力1、几何体的三视图和直观图2、空间几何体的表面积与体积第二章:点、直线、平面之间的位置关系(重点)1、空间点、直线、平面之间的位置关系2、直线、平面平行的判定及其性质3、直线、平面垂直的判定及其性质重点:1、线面平行、面面平行的有关性质和判定定理2、证明线面垂直3、点到平面的距离难点:1、线面垂直2、点到平面的距离1、以选择填空的形式考查线与面、面与面的平行关系,考查线面位置的关系2、以解答的形式考查线与面、面与面的位置3、证明线面垂直4、点到平面的距离第三章:直线与方程1、直线的倾斜角与斜率2、直线方程3、直线的交点坐标与距离公式重点:1、初步建立代数方法解决几何问题的观念2、正确将几何条件与代数表示进行转化3、掌握直线方程并会用于定理地研究点与直线、直线与直线的位置关系。
高中数学必修1、2、3、4、5公式及知识点总结大全

1 2)(x 是偶函数; )(x f 是奇函数。
3).(0,1,0)a a N >≠>. 1a ≠,0m >,且1m ≠, 0N >).).).二、三角函数、三角变换、解三角形、平面向量4、同角三角函数的基本关系式22sin cos 1θθ+=,tan θ=θθcos sin . 5、正弦、余弦的诱导公式(奇变偶不变,符号看象限)απ±k 的正弦、余弦,等于α的同名函数,前面加上把α看成锐角时该函数的符号;αππ±+2k 的正弦、余弦,等于α的余名函数,前面加上把α看成锐角时该函数的符号。
()()1sin 2sin k παα+=,()cos 2cos k παα+=,()()tan 2tan k k παα+=∈Z . ()()2sin sin παα+=-,()cos cos παα+=-,()tan tan παα+=. ()()3sin sin αα-=-,()cos cos αα-=,()tan tan αα-=-. ()()4sin sin παα-=,()cos cos παα-=-,()tan tan παα-=-.口诀:函数名称不变,符号看象限.()5sin cos 2παα⎛⎫-= ⎪⎝⎭,cos sin 2παα⎛⎫-= ⎪⎝⎭.()6sin cos 2παα⎛⎫+=⎪⎝⎭,cos sin 2παα⎛⎫+=- ⎪⎝⎭. 口诀:正弦与余弦互换,符号看象限.6、和角与差角公式sin()sin cos cos sin αβαβαβ±=±;cos()cos cos sin sin αβαβαβ±=;tan tan tan()1tan tan αβαβαβ±±=.7、二倍角公式sin 2sin cos ααα=.2222cos 2cos sin 2cos 112sin ααααα=-=-=-.22tan tan 21tan ααα=-.公式变形: ;22cos 1sin ,2cos 1sin 2;22cos 1cos ,2cos 1cos 22222αααααααα-=-=+=+=sin y x =cos y x = tan y x =图象定义域R R,2x x k k ππ⎧⎫≠+∈Z ⎨⎬⎩⎭值域[]1,1-[]1,1-R最值当22x k ππ=+()k ∈Z 时,max 1y =;当22x k ππ=-()k ∈Z 时,min 1y =-.当()2x k k π=∈Z 时,max 1y =;当2x k ππ=+()k ∈Z 时,min 1y =-.既无最大值也无最小值周期性 2π2ππ奇偶性奇函数 偶函数奇函数单调性在2,222k k ππππ⎡⎤-+⎢⎥⎣⎦()k ∈Z 上是增函数;在32,222k k ππππ⎡⎤++⎢⎥⎣⎦ ()k ∈Z 上是减函数.在[]()2,2k k k πππ-∈Z 上是增函数;在[]2,2k k πππ+()k ∈Z 上是减函数.在,22k k ππππ⎛⎫-+⎪⎝⎭()k ∈Z 上是增函数.对称性对称中心()(),0k k π∈Z对称轴()2xk k ππ=+∈Z对称中心(),02k k ππ⎛⎫+∈Z ⎪⎝⎭对称轴()x k k π=∈Z对称中心(),02k k π⎛⎫∈Z ⎪⎝⎭无对称轴函 数性 质9、辅助角公式(化一公式))sin(cos sin 22ϕ++=+=x b a x b x a y 其中ab =ϕtan 10.正弦定理 :2sin sin sin a b cR A B C===(R 为ABC ∆外接圆的半径). 2sin ,2sin ,2sin a R A b R B c R C ⇔===::sin :sin :sin a b c A B C ⇔=11.余弦定理2222cos a b c bc A =+-;2222cos b c a ca B =+-;2222cos c a b ab C =+-.12.面积定理(1)111222a b c S ah bh ch ===(a b c h h h 、、分别表示a 、b 、c 边上的高). (2)111sin sin sin 222S ab C bc A ca B ===.13、三角形内角和定理在△ABC 中,有()A B C C A B ππ++=⇔=-+222C A Bπ+⇔=-222()C A B π⇔=-+. 14、a 与b 的数量积(或内积)θcos ||||b a b a ⋅=⋅15、平面向量的坐标运算(1)设A 11(,)x y ,B 22(,)x y ,则2121(,)AB OB OA x x y y =-=--. (2)设a =11(,)x y ,b =22(,)x y ,则b a ⋅=2121y y x x +. (3)设a =),(y x ,则22y x a +=16、两向量的夹角公式设a =11(,)x y ,b =22(,)x y ,且0≠b ,则121cos ||||x a ba b x θ⋅==⋅+a =11(,)x y ,b =22(,)x y ).17、向量的平行与垂直设a =11(,)x y ,b =22(,)x y ,且b ≠0b a //⇔a b λ= 12210x y x y ⇔-=.)0(≠⊥a b a ⇔0=⋅b a 12120x x y y ⇔+=.*平面向量的坐标运算(1)设a =11(,)x y ,b =22(,)x y ,则a +b =1212(,)x x y y ++. (2)设a =11(,)x y ,b =22(,)x y ,则a -b =1212(,)x x y y --. (3)设A 11(,)x y ,B 22(,)x y ,则2121(,)AB OB OA x x y y =-=--.(4)设a =(,),x y R λ∈,则λa =(,)x y λλ.(5)设a =11(,)x y ,b =22(,)x y ,则a ·b =1212x x y y +.三、数列18、数列的通项公式与前n 项的和的关系11,1,2n n n s n a s s n -=⎧=⎨-≥⎩( 数列{}n a 的前n 项的和为12n n s a a a =+++).19、等差数列的通项公式*11(1)()n a a n d dn a d n N =+-=+-∈;20、等差数列其前n 项和公式为1()2n n n a a s +=1(1)2n n na d -=+211()22d n a d n =+-. 21、等比数列的通项公式1*11()n nn a a a q q n N q-==⋅∈; 22、等比数列前n 项的和公式为11(1),11,1n n a q q s q na q ⎧-≠⎪=-⎨⎪=⎩ 或 11,11,1n n a a qq q s na q -⎧≠⎪-=⎨⎪=⎩.四、不等式23、xy y x ≥+2。
高中数学复习全册知识总结,必修1-5重点归纳,赶快背

高中数学复习全册知识总结,必修1-5重点
归纳,赶快背
高中数学必修1-5重点归纳如下:
一、必修一:函数与导数
1、定义域,值域;函数的分类以及函数的性质判断;
2、延拓函数定义及延拓函数的图象;
3、定义导数,求解一次函数的导数,包括指数函数和对数函数的导数;
4、求极限,利用极限的运算求导数;
5、求多变量函数的偏导数,梯度和方向导数;
二、必修二:应用类函数几何
1、单调函数,偶函数,周期函数及其变换;
2、指数函数,对数函数及其变换;
3、不定积分,定积分,面积函数及其在定义域上的性质;
4、反函数及其图象;
三、必修三:统计与概率
1、实践统计,频率表;
2、概率的定义及其分类,概率的计算;
3、随机事件的相互独立性,正、多项式分布,正态分布;
四、必修四:空间初步
1、定义空间中的点,直线,平面;
2、平行线,平行平面,非平行线,空间的顶点;
3、空间的距离,空间的弦长,空间的体积;
4、垂心线,平面斜率,直线斜率,平面及直线的相交;
五、必修五:曲面与向量
1、曲线求法,勒让德定理;
2、向量的定义,向量的运算;
3、平行四边形,平行四边形内角和;
4、向量积,叉积及其共面与垂直;。
【高考必备】高中数学必修一至必修五知识点总结

高一数学必修1知识网络集合123412n x A x B A B A B A n A ∈∉⎧⎪⎪⎨⎪⎪⎩∈⇒∈⊆()元素与集合的关系:属于()和不属于()()集合中元素的特性:确定性、互异性、无序性集合与元素()集合的分类:按集合中元素的个数多少分为:有限集、无限集、空集()集合的表示方法:列举法、描述法(自然语言描述、特征性质描述)、图示法、区间法子集:若 ,则,即是的子集。
、若集合中有个元素,则集合的子集有个, 注关系集合集合与集合{}00(2-1)23,,,,.4/n A A A B C A B B C A C A B A B x B x A A B A B A B A B A B x x A x B A A A A A B B A A B ⎧⎪⎧⎪⎪⎪⊆⎪⎪⎨⎪⊆⊆⊆⎨⎪⎪⎪⎩⎪⎪⊆≠∈∉⎪⊆⊇⇔=⎪⎩⋂=∈∈⋂=⋂∅=∅⋂=⋂⋂⊆真子集有个。
、任何一个集合是它本身的子集,即 、对于集合如果,且那么、空集是任何集合的(真)子集。
真子集:若且(即至少存在但),则是的真子集。
集合相等:且 定义:且交集性质:,,,运算{}{},/()()()-()/()()()()()()U U U U U U U U A A B B A B A B A B x x A x B A A A A A A B B A A B A A B B A B A B Card A B Card A Card B Card A B C A x x U x A A C A A C A A U C C A A C A B C A C B ⎧⎪⎨⋂⊆⊆⇔⋂⎪⎩⎧⋃=∈∈⎪⎨⋃=⋃∅=⋃=⋃⋃⊇⋃⊇⊆⇔⋃⎪⎩⋃=+⋂=∈∉=⋂=∅⋃==⋂=⋃,定义:或并集性质:,,,,, 定义:且补集性质:,,,, ()()()U U U C A B C A C B ⎧⎪⎪⎪⎪⎪⎪⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎧⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⋃=⋂⎪⎪⎩⎩⎩⎩函数,,,A B A x B y f B A B x y x f y y x y →映射定义:设,是两个非空的集合,如果按某一个确定的对应关系,使对于集合中的任意一个元素, 在集合中都有唯一确定的元素与之对应,那么就称对应:为从集合到集合的一个映射传统定义:如果在某变化中有两个变量并且对于在某个范围内的每一个确定的值,定义 按照某个对应关系都有唯一确定的值和它对应。
数学高中必修1-5知识点整理之必修5

高中数学必修5知识点1、正弦定理:在C ∆AB 中,a 、b 、c 分别为角A 、B 、C 的对边,R 为C ∆AB 的外接圆的半径,则有2sin sin sin a b cR A B C===. 2、正弦定理的变形公式:①2sin a R =A ,2sin b R =B ,2sin c R C =;②sin 2a A R =,sin 2b B R =,sin 2cC R=;③::sin :sin :sin a b c A B C =;④sin sin sin sin sin sin a b c a b cA B C A B C ++===++.3、三角形面积公式:111sin sin sin 222C S bc A ab C ac B ∆AB ===.4、余弦定理:在C ∆AB 中,有2222cos a b c bc A =+-,2222cos b a c ac B =+-, 2222cos c a b ab C =+-.5、余弦定理的推论:222cos 2b c a bc +-A =,222cos 2a c b ac +-B =,222cos 2a b c C ab+-=.6、设a 、b 、c 是C ∆AB 的角A 、B 、C 的对边, 则:①若222a b c +=,则90C =;②若222a b c +>,则90C <; ③若222a b c +<,则90C >.注:在C ∆AB 中,则有 (1)A B C π++=(2),,.a b c a c b b c a +>+>+> (3)sin sin A B A B a b >⇔>⇔> 7、数列:按照一定顺序排列着的一列数. 8、数列的项:数列中的每一个数. 9、有穷数列:项数有限的数列.10、无穷数列:项数无限的数列.11、递增数列:从第2项起,每一项都不小于它的前一项的数列.10n n a a +-> 12、递减数列:从第2项起,每一项都不大于它的前一项的数列.10n n a a +-< 13、常数列:各项相等的数列.14、摆动数列:从第2项起,有些项大于它的前一项,有些项小于它的前一项的数列. 15、数列的通项公式:表示数列{}n a 的第n 项与序号n 之间的关系的公式.16、数列的递推公式:表示任一项n a 与它的前一项1n a -(或前几项)间的关系的公式. 17、如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,则这个数列称为等差数列,这个常数称为等差数列的公差.18、由三个数a ,A ,b 组成的等差数列可以看成最简单的等差数列,则A 称为a 与b 的等差中项.若2a cb +=,则称b 为a 与c 的等差中项. 19、若等差数列{}n a 的首项是1a ,公差是d ,则()111()n a a n d dn a d An B =+-=+-=+.20、通项公式的变形:①()n m a a n m d =+-;②()11n a a n d =--;③11n a a d n -=-; ④11n a a n d -=+;⑤n ma a d n m-=-. 21、若{}n a 是等差数列,且m n p q +=+(m 、n 、p 、*q ∈N ),则m n p q a a a a +=+;若{}n a 是等差数列,且2n p q =+(n 、p 、*q ∈N ),则2n p q a a a =+.22、等差数列的前n 项和的公式:①()12n n n a a S +=; ②()22111()222n n n d dS na d n a n An Bn -=+=+-=+. ③n S An B n =+⇒n S n ⎧⎫⎨⎬⎩⎭是等差数列. 23、等差数列的前n 项和的性质:①若项数为()*2n n ∈N ,则()21n n n S n a a +=+,且S S nd -=偶奇,1n n S aS a +=奇偶. ②若项数为()*21n n -∈N ,则()2121n n S n a -=-,且n S S a -=奇偶,1S nS n =-奇偶 (其中n S na =奇,()1n S n a =-偶).③若等差数列{}n a 的前n 项和为n S ,则数列n S ,2n n S S -,32n n S S -成等差数列. 24、如果一个数列从第2项起,每一项与它的前一项的比等于同一个常数,则这个数列称为等比数列,这个常数称为等比数列的公比.注:等比数列中每一项都不等于零,其奇数项符号相同,偶数项符号相同。
高中数学必修1-5_知识点总汇+公式大全

( 2 )图象过定点( 1,0)
Y
a >1
X 01
Y 0<a<1
1
X
0
六、幂函数 y = x a 的图象 : (1) 根据 a 的取值画出函数在第一象限的简图 .
a>1
0<a<1
a<0
例如:
2
y=x
1
y x x2
y 1 x1 x
七. 图象平移:若将函数 y f ( x) 的图象右移 a 、上移 b 个单位,
( 2 )图象过定点( 0,1)
Y a>1
1 X
0
Y 0<a<1
1
0
X
5. 指数式与对数式的互化:
log a N b ab N (a 0, a 1, N 0) .
五、对数与对数函数
1 对数的运算法则: (1) a b = N <=> b = log
a N( 2)log a 1 = 0 ( 3) log a a = 1 ( 4) log a a b = b ( 5) a log a N = N
3.二分法求函数零点的步骤: (给定精确度
( 1 )确定区间 a, b ,验证 f (a) f (b)
)
0 ;(2) 求 a, b 的中点 x1
ab 2
( 3)计算 f ( x1 ) ①若 f ( x1) 0 ,则 x1 就是零点;②若 f (a) f ( x 1 ) 0 ,则零点
得到函数 y f (x a) b 的图象; 规律:左加右减,上加下减
八. 平均增长率的问题
如果原来产值的基础数为
N,平均增长率为
p ,则对于时间 x 的总产值 y ,有
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高一数学必修1知识网络集合123412n x A x B A B A B A n A ∈∉⎧⎪⎪⎨⎪⎪⎩∈⇒∈⊆()元素与集合的关系:属于()和不属于()()集合中元素的特性:确定性、互异性、无序性集合与元素()集合的分类:按集合中元素的个数多少分为:有限集、无限集、空集()集合的表示方法:列举法、描述法(自然语言描述、特征性质描述)、图示法、区间法子集:若 ,则,即是的子集。
、若集合中有个元素,则集合的子集有个, 注关系集合集合与集合{}00(2-1)23,,,,.4/n A A A B C A B B C A C A B A B x B x A A B A B A B A B A B x x A x B A A A A A B B A A B ⎧⎪⎧⎪⎪⎪⊆⎪⎪⎨⎪⊆⊆⊆⎨⎪⎪⎪⎩⎪⎪⊆≠∈∉⎪⊆⊇⇔=⎪⎩⋂=∈∈⋂=⋂∅=∅⋂=⋂⋂⊆真子集有个。
、任何一个集合是它本身的子集,即 、对于集合如果,且那么、空集是任何集合的(真)子集。
真子集:若且(即至少存在但),则是的真子集。
集合相等:且 定义:且交集性质:,,,运算{}{},/()()()-()/()()()()()()U U U U U U U U A A B B A B A B A A B x x A x B A A A A A A B B A A B A A B B A B A B B Card A B Card A Card B Card A B C A x x U x A A C A A C A A U C C A A C A B C A C B ⎧⎪⎨⋂⊆⊆⇔⋂=⎪⎩⎧⋃=∈∈⎪⎨⋃=⋃∅=⋃=⋃⋃⊇⋃⊇⊆⇔⋃=⎪⎩⋃=+⋂=∈∉=⋂=∅⋃==⋂=⋃,定义:或并集性质:,,,,, 定义:且补集性质:,,,, ()()()U U U C A B C A C B ⎧⎪⎪⎪⎪⎪⎪⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎧⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⋃=⋂⎪⎪⎩⎩⎩⎩函数,,,A B A x B y f B A B x y x f y y x y →映射定义:设,是两个非空的集合,如果按某一个确定的对应关系,使对于集合中的任意一个元素, 在集合中都有唯一确定的元素与之对应,那么就称对应:为从集合到集合的一个映射传统定义:如果在某变化中有两个变量并且对于在某个范围内的每一个确定的值,定义 按照某个对应关系都有唯一确定的值和它对应。
那么就是的函数。
记作函数及其表示函数{[][][][][]().,,()()(),,1212()()(),,12f x a b a x x b f x f x f x a b a b f x f x f x a b a b a =≤<≤<>⎧⎪⎪⎧⎪⎨⎨⎩⎪⎧⎪⎨⎪⎩⎩近代定义:函数是从一个数集到另一个数集的映射。
定义域函数的三要素值域对应法则解析法函数的表示方法列表法图象法单调性函数的基本性质传统定义:在区间上,若如,则在上递增,是 递增区间;如,则在上递减,是的递减区间。
导数定义:在区间[][][][][]()1()2()()00,()0(),,()0(),,y f x I M x I f x M x I f x M M y f x b f x f x a b a b f x f x a b a b =∈≤∈==⎧⎪⎪⎨><⎪⎪⎩最大值:设函数的定义域为,如果存在实数满足:()对于任意的,都有; ()存在,使得。
则称是函数的最大值最值最上,若,则在上递增,是递增区间;如 则在上递减,是的递减区间。
()1()2()()00(1)()(),()(2)()(),()y f x I N x I f x N x I f x N N y f x f x f x x D f x f x f x x D f x =∈≥∈==-=-∈-=∈⎧⎪⎨⎪⎩小值:设函数的定义域为,如果存在实数满足:()对于任意的,都有; ()存在,使得。
则称是函数的最小值定义域,则叫做奇函数,其图象关于原点对称。
奇偶性定义域,则叫做偶函数,其图()()()(0)()()1,()112y f x f x T f x T f x T T f x y y x a x y f x a a α+=≠=-=⇒=+⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎧⎪⎪⎪⎨⎪⎪⎩⎪⎪⎩象关于轴对称。
奇偶函数的定义域关于原点对称周期性:在函数的定义域上恒有的常数则叫做周期函数,为周期;的最小正值叫做的最小正周期,简称周期()描点连线法:列表、描点、连线向左平移个单位:向右平移个平移变换函数图象的画法()变换法,()11,()11,()1110111/()11)01)1y y x a x y f x a b x x y b y y b f x b x x y b y y b f x x w w w x wx y f wx y A A =+=⇒=-=+=⇒-==-=⇒+=><<=⇒=><<⎧⎪⎨⎪⎩单位:向上平移个单位:向下平移个单位:横坐标变换:把各点的横坐标缩短(当时)或伸长(当时)到原来的倍(纵坐标不变),即伸缩变换纵坐标变换:把各点的纵坐标伸长(或缩短(到{{{{{{/()1221010(,)2(2)0000221010221010(2)0011112(00221010A y y A y f x x x x x x x x y y y f x x y y y y y yx x x x x x x x y f x x y y y y x x x x y y y y f y y y y y y =⇒=+==-⇒⇒-=-+==-+==-=⇒⇒=-=====⇒⇒-=+==-⎧⎪⎨⎪⎩原来的倍 (横坐标不变), 即关于点对称:关于直线对称:对称变换关于直线对称:{)11()1x x x y x y f x y y =-=⇒==⎧⎪⎪⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎧⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎩⎩⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩关于直线对称: 附:一、函数的定义域的常用求法:1、分式的分母不等于零;2、偶次方根的被开方数大于等于零;3、对数的真数大于零;4、指数函数和对数函数的底数大于零且不等于1;5、三角函数正切函数tan y x =中()2x k k Z ππ≠+∈;余切函数cot y x =中;6、如果函数是由实际意义确定的解析式,应依据自变量的实际意义确定其取值范围。
二、函数的解析式的常用求法:1、定义法;2、换元法;3、待定系数法;4、函数方程法;5、参数法;6、配方法 三、函数的值域的常用求法:1、换元法;2、配方法;3、判别式法;4、几何法;5、不等式法;6、单调性法;7、直接法四、函数的最值的常用求法 1、配方法;2、换元法;3、不等式法;4、几何法;5、单调性法五、函数单调性的常用结论:1、若(),()f x g x 均为某区间上的增(减)函数,则()()f x g x +在这个区间上也为增(减)函数2、若()f x 为增(减)函数,则()f x -为减(增)函数3、若()f x 与()g x 的单调性相同,则[()]y f g x =是增函数;若()f x 与()g x 的单调性不同,则[()]y f g x =是减函数。
4、奇函数在对称区间上的单调性相同,偶函数在对称区间上的单调性相反。
5、常用函数的单调性解答:比较大小、求值域、求最值、解不等式、证不等式、作函数图象。
六、函数奇偶性的常用结论:1、如果一个奇函数在0x =处有定义,则(0)0f =,如果一个函数()y f x =既是奇函数又是偶函数,则()0f x =(反之不成立)2、两个奇(偶)函数之和(差)为奇(偶)函数;之积(商)为偶函数。
3、一个奇函数与一个偶函数的积(商)为奇函数。
4、两个函数()y f u =和()u g x =复合而成的函数,只要其中有一个是偶函数,那么该复合函数就是偶函数;当两个函数都是奇函数时,该复合函数是奇函数。
5、若函数()f x 的定义域关于原点对称,则()f x 可以表示为11()[()()][()()]22f x f x f x f x f x =+-+--,该式的特点是:右端为一个奇函数和一个偶函数的和。
,()0()()[,]()()0,()[,](,),()0,()0()0y f x f x x y f x y f x a b f a f b y f x a b c a b f c c f x f x ====⋅<=∈===零点:对于函数()我们把使的实数叫做函数的零点。
定理:如果函数在区间上的图象是连续不断的一条曲线,并且有零点与根的关系 那么,函数在区间内有零点。
即存在使得这个也是方 程的根。
(反之不成立)关系:方程函数与方程函数的应用()()(1)[,],()()0,(2)(,);(3)()()0,()()0,(,)0()()0,0y f x y f x x a b f a f b a b c f c f c c f a f c b c x a b f c f b a c x ε⇔=⇔=⋅<=⋅<=∈⋅<=⎧⎪⎨⎪⎩有实数根函数有零点函数的图象与轴有交点确定区间验证给定精确度;求区间的中点计算;二分法求方程的近似解 ①若则就是函数的零点; ②若则令(此时零点); ③若则令(此时零点(,)(4)-,();24c b a b a b εε∈<~⎧⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎧⎪⎨⎪⎪⎪⎨⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩⎩⎪⎧⎪⎨⎪⎩⎩);判断是否达到精确度:即若则得到零点的近似值或否则重复。
几类不同的增长函数模型函数模型及其应用用已知函数模型解决问题建立实际问题的函数模型(0,,)()(0,,)()(0,0,)(01)1lo m n a n a r s r s a a a a r s Q r s rsa a a r s Q r r s ab a b a b r Q x y a a a x =+=>∈=>∈=>>∈=>≠=⎧⎧⎪⎪⎪⎪⎪⎪⎧⎨⎪⎪⎪⎪⎨⎨⎪⎪⎪⎪⎪⎩⎩⎪⎧⎪⎨⎪⎩⎩为根指数,为被开方数分数指数幂指数的运算指数函数性质定义:一般地把函数且叫做指数函数。
指数函数性质:见表对数:基本初等函数对数的运算对数函数g ,log ()log log ;log log log ;.log log ;(0,1,0,0)log log (01)1log (,0,1,0)log c a c N a N a M N M N a a a M M N a a a N n M n M a a M N a a y x a a a b b a c a c b a ⋅=+=-=>≠>>=>≠⎧⎧⎪⎪⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎨⎪⎪⎨⎪⎪⎪⎪⎪=>≠>⎪⎪⎩⎩⎧⎨⎩⎩为底数,为真数性质换底公式:定义:一般地把函数且叫做对数函数对数函数性质:见表且y x x αα⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎧=⎪⎨⎪⎩⎩幂函数定义:一般地,函数叫做幂函数,是自变量,是常数。