材料学论文
材料科学前沿论文

材料科学前沿论文材料科学作为一门新兴的交叉学科,涉及到物质的结构、性能、制备和应用等方面,近年来取得了许多令人瞩目的成就。
在材料科学领域,前沿论文的发表往往代表着该领域的最新研究成果和发展方向。
本文将介绍一些材料科学领域的前沿论文,以期为相关研究人员提供参考和启发。
首先,近年来,基于二维材料的研究备受关注。
二维材料具有独特的结构和性能,在电子、光学、热学等方面具有广泛的应用前景。
一篇名为《二维材料的制备与性能调控》的论文,系统地总结了目前二维材料的制备方法和性能调控手段,为二维材料的应用提供了重要的参考依据。
另外,一篇名为《二维材料在光电器件中的应用》的论文,探讨了二维材料在光电器件中的应用前景和挑战,为光电器件的研究和开发提供了新的思路和方法。
其次,纳米材料的研究也是材料科学领域的热点之一。
纳米材料具有特殊的尺寸效应和表面效应,表现出与常规材料不同的性能和特点。
一篇名为《纳米材料的结构与性能研究》的论文,通过理论模拟和实验研究,揭示了纳米材料的结构与性能之间的关系,为纳米材料的设计和制备提供了重要的指导。
另外,一篇名为《纳米材料在能源存储领域的应用》的论文,系统地介绍了纳米材料在锂离子电池、超级电容器等能源存储领域的应用研究进展,为能源存储材料的开发和应用提供了新的思路和方法。
最后,功能材料的研究也是材料科学领域的重要方向之一。
功能材料具有特定的功能和性能,可以在电子、光学、磁学等领域发挥重要作用。
一篇名为《多功能材料的设计与应用》的论文,介绍了多功能材料的设计原理和应用案例,为多功能材料的研究和开发提供了重要的参考。
另外,一篇名为《智能材料在传感器领域的应用》的论文,探讨了智能材料在传感器领域的应用前景和挑战,为传感器材料的研究和开发提供了新的思路和方法。
综上所述,材料科学领域的前沿论文涉及到二维材料、纳米材料和功能材料等多个方面,这些论文的发表不仅代表着该领域的最新研究成果,也为相关研究人员提供了重要的参考和启发。
材料科学前沿论文

材料科学前沿论文材料科学是一门研究材料结构、性能、制备和应用的学科,其发展一直处于科技前沿。
随着科学技术的不断进步,材料科学领域也在不断涌现出新的研究成果和前沿技术。
本文将就材料科学领域的一些前沿论文进行介绍和分析,以期为同行提供新的思路和灵感。
首先,近年来,基于人工智能的材料设计和发现成为了研究热点。
通过机器学习和大数据分析,研究人员可以更快速地筛选出具有特定性能的材料,并进行定制设计。
这种方法不仅可以加速新材料的研发过程,还能够大大降低材料研发的成本,为材料科学的发展带来了新的机遇和挑战。
其次,纳米材料的研究也备受关注。
纳米材料因其特殊的尺寸效应和表面效应,在光电子、催化剂、生物医学等领域具有广泛的应用前景。
近年来,研究人员不断探索新的纳米材料制备方法和性能调控策略,取得了许多令人瞩目的成果。
例如,石墨烯、二维过渡金属硫化物等纳米材料的研究成果,为材料科学的发展开辟了新的方向。
另外,生物材料也是材料科学的一个重要分支。
生物材料具有良好的生物相容性和可降解性,被广泛应用于组织工程、药物传输、医疗器械等领域。
近年来,仿生材料的研究成果不断涌现,例如仿生多肽材料、生物陶瓷材料等,为生物医学领域的发展提供了新的可能性。
最后,材料的可持续发展也成为了研究的重要方向。
随着资源的日益枯竭和环境污染的加剧,研究人员开始关注可再生材料、循环利用材料等方面的研究。
新型的生物基材料、可降解材料等成为了研究的热点,为材料的可持续发展提供了新的思路和方法。
综上所述,材料科学领域的前沿论文涉及到人工智能、纳米材料、生物材料、可持续发展等多个方面。
这些研究成果不仅推动了材料科学的发展,也为其他领域的交叉研究提供了新的可能性。
相信随着科技的不断进步,材料科学领域的前沿论文将会不断涌现,为人类社会的发展做出更大的贡献。
关于材料学专业方面论文范文

关于材料学专业方面论文范文材料学是学生接触材料领域、定位未来方向的入门课程,学习和掌握该课程内容意义至关重要。
下文是店铺为大家整理的材料学方面论文的范文,欢迎大家阅读参考!材料学方面论文篇1浅析高分子材料成型加工技术摘要:近些年来,国防尖端工业和航空工业等特殊领域的发展对高分子材料成型的加工技术要求更高,更精细。
在此背景下,理清高分子材料加工技术的发展现状与发展趋势,探讨高分子材料的加工成型的方法,对促进我国高新技术及产业的发展具有重要的意义。
关键词:高分子材料加工方法成型技术一、前言近些年来,国防尖端工业和航空工业等特殊领域的发展要求更高性能的聚合物材料,开发研制满足特定要求的高聚合物迫在眉睫[1]。
在此背景下,理清高分子材料加工技术的发展现状与发展趋势,探讨高分子材料的加工成型的方法,对促进我国高新技术及产业的发展具有重要的意义。
二、高分子材料成型成型加工技术的相关定义1.高分子材料高分子材料是指由相对分子质量较高的化合物为基础构成的材料,其一般基本成分是聚合物或以含有聚合物的性质为主要性能特征的材料;主要是橡胶、塑料、纤维、涂料、胶黏剂和高分子基复合材料。
高分子材料独特的结构和易改性与易加工特点,使它具有其他材料不可取代与不可比拟的优异性能,从而广泛运用到科学技术、国防建设和国民经济等领域,并已成为现代社会生活中衣食住行用等各方面不可缺少的材料。
2.高分子材料成型加工技术在高分子工业的生产中分为高分子材料的制备与加工成型两个过程。
高分子材料的成型加工技术就是运用各种加工方法对高分子材料赋予形状,使其成为具有使用价值的各种制品。
高分子材料加工主要目的是高性能、高生产率、快捷交货和低成本;向小尺寸、轻质与薄壁方向发展是高分子材料成型技术制品方面的目标;成型加工方向是全回收、零排放、低能耗,从大规模向较短研发周期的多品种转变。
判断高分子材料的成型加工技术的质量因素是加工后制品的外观性、尺寸精度、技能性中的耐化学性、耐热性等等。
有关材料学的论文范文

有关材料学的论文范文在材料学科上,要求学生掌握坚实宽广的基础理论和系统深入的专门知识,了解材料科学的发展前沿。
下文是店铺为大家搜集整理的有关材料学的论文范文的内容,欢迎大家阅读参考!有关材料学的论文范文篇1论高电化学性能聚苯胺纳米纤维/石墨烯复合材料的合成石墨烯是一种二维单原子层碳原子SP2杂化形成的新型碳材料,因其非凡的导电性和导热性、极好的机械强度、较大的比表面积等特性,引起了国内外研究者极大的关注.石墨烯已经被探索应用在电子和能源储存器件、传感器、透明导电电极、超分子组装以及纳米复合物[8]等领域中.而rGO因易聚集或堆叠而导致电容量较低(101 F/g)[9],这限制了其在超级电容器电极材料领域的应用.另一方面,PANI作为典型的导电高分子之一,由于合成容易,环境稳定性好和导电性能可调等特性备受关注.具有纳米结构的导电材料,由于纳米效应不但能提高材料固有性能,并开创新的应用领域.PANI纳米结构的合成取得了许多的成果.PANI作为超级电容器电极材料因具有高的赝电容,其电容量甚至可高达3 407 F/g[10];然而,当经过多次充放电时PANI链因多次膨胀和收缩而降解导致其电容损失较大.碳材料具有高的导电性能和稳定的电化学性能,为了提高碳材料的电化学电容和PANI电化学性能的稳定性,人们把纳米结构的PANI与碳材料复合以期获得电容较高且稳定的超级电容器电极材料[11].作为新型碳材料的石墨烯和PANI的复合引起了极大的关注[12].但是用Hummers法合成的GO直接与PANI复合构建PANI/GO复合电极因导电率低而必须还原GO,化学还原剂的加入虽然还原了部分GO 而提高了导电性能,但也在一定程度上钝化了PANI [13],另外排除还原剂又对环境造成一定程度的污染.因而开拓一条简单且环境友好的制备PANI/rGO复合材料作为超级电容器的电极路线仍然是一个难题.基于以上分析,首先使PANI和GO相互分散和组装,借助水热反应这一绿色环境友好的还原方法制备PANI/rGO复合材料,以期获得高性能的超级电容器电极材料.1实验部分1.1原材料苯胺(AR,国药集团),经减压蒸馏后使用;氧化石墨烯(自制);过硫酸铵(APS, AR,湖南汇虹试剂);草酸(OX, AR,天津市永大化学试剂);十六烷基三甲基溴化铵(CTAB, AR,天津市光复精细化工研究所).1.2PANIF的制备PANIF的制备按我们先前提出的方法[14],制备过程如下:把250 mL去离子水加入三口烧瓶后,依次加入1.82 g CTAB,0.63 g 草酸以及0.9 mL苯胺,在12 ℃水浴上搅拌8 h;随后,往上述溶液中一次性加入20 mL含苯胺等量的过硫酸铵水溶液,同样条件下使反应保持7 h.所制备的样品用大量去离子水洗涤至滤液为中性,随后30 ℃真空干燥24 h. 1.3GO的制备采用Hummers法制备GO,具体过程如下:向干燥的2 000 mL 三口烧瓶(冰水浴)中加入10 g天然鳞片石墨(325目),加入5 g硝酸钠固体,搅拌下加入220 mL浓硫酸,10 min后边搅拌边加入30 g高锰酸钾,在冰水浴下搅拌120 min,再将三口烧瓶移至35 ℃水浴中搅拌180 min,然后向瓶中滴加460 mL去离子水,同时将水浴温度升至95 ℃,保持95 ℃搅拌60 min,再向瓶中快速滴加720 mL去离子水,10 min后加入80 mL双氧水,过10 min后趁热抽滤.将抽干的滤饼转移到烧杯中,加大约800 mL热水及200 mL浓盐酸,趁热抽滤,随后用大量去离子水洗涤直至中性.所得产品边搅拌边超声12 h后5 000 r/min下离心10 min,得氧化石墨烯溶液.1.4PANIF/rGO复合材料制备按照一定比例将含一定量的PANIF液与一定量的6.8 mg/mL 的GO溶液混合,使混合液总体积为30 mL,GO在混合液中的最终浓度为0.5 mg/ mL,磁力搅拌10 min后,将混合液转移到含50 mL聚四氟乙烯内衬的反应釜中进行水热反应,在180 ℃保温3 h;待反应釜自然冷却至室温后取出,用去离子水洗涤产物直至洗液无色后,于60 ℃真空干燥24 h,待用.按照上述步骤制备的PANIF与GO的质量比分别为5,10以及15,相应命名为PAGO5,PAGO10和PAGO15,对应的PANIF质量为75 mg,150 mg和225 mg.1.5仪器与表征用日本日立公司S4800场发射扫描电镜(SEM)分析样品的形貌;样品经与KBr混合压片后,用Nicolet 5700傅立叶红外光谱仪进行红外分析;用德国Siemens公司Xray衍射仪进行XRD分析;电化学性能测试使用上海辰华CHI660c电化学工作站.电极制备和电化学性能测试:将活性物质(PANIF或PANIF/rGO)、乙炔黑以及PTFE按照质量比85∶10∶5混合形成乳液,将其均匀地涂在不锈钢集流体上,在10 MPa压力下压片,之后烘干得工作电极.在电化学性能测试过程中,使用饱和甘汞电极(SCE)作为参比电极,铂片(Pt)作为对电极,在三电极测试体系中使用1 M H2SO4作为电解液进行电化学测试,电势窗为-0.2~0.8V.比电容计算依据充放电曲线,按式(1)[15]计算:Cs=iΔtΔVm.(1)式中:i代表电流,A;Δt代表放电时间,s;ΔV代表电势窗,V;m 代表活性物质质量,g.2结果与讨论2.1形貌表征图1为PANIF和PAGO10形貌的SEM图.低倍的SEM(图1(a))显示所制备PANIF为大面积的纳米纤维网络;高倍的图1(b)清晰地显现该3D纳米纤维网络结构含许多交联点.PANIF和PAGO10混合液经过水热反应后,从低倍的SEM(图1(c))可以看出,PAGO10复合物具有交联孔状结构;提高观察倍数(图1(d)和图1(e))后可以发现样品中rGO 与PANIF共存;而高倍的图1(d)清晰地显示出了rGO与PANIF紧密结合,且合成的褶皱rGO因层数较少而能观察到其遮盖的PANIF.从图1可知:成功合成了大面积的PANIF以及互相均匀分散的PANIF/rGO复合材料.2.2FTIR分析图2为PANIF,GO以及PAGO10 3种样品的FTIR图.图2中a曲线在1 581 cm-1,1 500 cm-1,1 305 cm-1,1 144 cm-1,829 cm-1等波数处展现的尖锐峰为PANI的特征峰,它们分别对应醌式结构中C=C双键伸缩振动、苯环中C=C双键伸缩振动、C-N伸缩振动峰、共轭芳环C=N伸缩振动、对位二取代苯的C-H面外弯曲振动.图2中b曲线为GO的红外谱图,在3 390 cm-1, 1 700 cm-1的峰分别对应-COOH中的O-H,C=O键振动,1 550~1 050 cm-1范围内的吸收峰代表COH/ COC中的C-O振动[16],可以看出,GO中存在大量的含氧官能团.图2中c曲线为PAGO10复合物红外吸收谱图,与GO,PANIF谱图比较,可以发现PAGO10中的GO特征峰不太明显而PANI的特征峰全部出现,这个结果归结于GO含量少以及GO经水热反应后形成了rGO,另外也表明水热反应对PANI品质无大的影响.2.4电化学性能分析图4为样品的CV曲线,其中图4(a)为不同样品在1 mV/s扫描速率下的CV图,可以看出,4个样品均出现明显的氧化还原峰,这归因于PANI掺杂/脱掺杂转变,表明PANIF以及复合物显示出优良的法拉第赝电容特性.图4(b)为PAGO10在不同扫描速率下的CV曲线,由图可知PAGO10电极的比电容随着扫描速率减小而稳步增加,在扫描速率为1 mV/s时,PAGO10电极的比电容为521.2 F/g.图5为PANI,PAGO5,PAGO10和PAGO15的充放电曲线以及交流阻抗图.图5(a)为电流密度为1 A/g时样品的放电曲线图,由图可知:4种样品均有明显的氧化还原平台,这与前述CV分析中的结果相吻合.根据充放电曲线,借助式(1),计算了4种样品在不同电流密度下的比电容,结果如图5(b)所示,很明显,相同电流密度下PAGO10比电容最大,当电流密度为1 A/g时,其比电容为517 F/g,这个结果表明PAGO10的电化学性能明显优于PANI/石墨烯微球和3D PANI/石墨烯有序纳米材料(电流密度为0.5 A/g时,比电容分别为261和495 F/g)[18-19],而PANIF比电容最小,仅为378 F/g;且在10 A/g 电流密度下PAGO10的比电容仍保持在356 F/g 左右,这表明PAGO10电极具有优异的倍率性能.该复合材料比电容以及倍率性能得到极大提高源于rGO与PANIF两组分间的协同效应.在充放电过程中连接在PANIF间的rGO为电子转移提供了高导电路径;同时,紧密连接在rGO上的PANIF有效阻止水热还原过程中石墨烯的团聚,增加了电极/电解质接触面积,从而提高了PANIF的利用率而使得容量增加. 为了更清晰地了解所制备材料的电子转移特点以及离子扩散路径,对样品进行了交流阻抗测试,图5(c)为4个样品的Nyquist图.从图5(c)可知:在高频区、低频区均分别具有阻抗弧半圆、频响直线.在高频区,电荷转移电阻Rct大小顺序为RPAGO5值说明rGO的加入提高了电极材料的导电性.在低频区,直线形状反映了样品电化学过程均受扩散控制,并且PAGO5所展现的直线斜率最大,说明其电容行为最接近理想电容,即频响特性最好,这也是源于rGO的加入提高了材料导电性以及复合物的独特微观结构.氧化还原反应的发生,导致PANIF具有十分高的赝电容,但由于在大电流充放电过程中高分子链重复膨胀和收缩,导致其循环稳定性差而限制了其实际应用.为此,对ANIF和PAGO10进行循环稳定性分析.图6显示,PAGO10在5 A/g电流密度下经过1 000次充放电后,电容保持率为77%,而不含rGO的PANIF电极在2 A/g电流密度下充放电1 000次电容保持率仅为54.3%,这个结果表明PANIF循环稳定性较差;另外,rGO的加入形成的PANIF/rGO紧密的连接,降低了PANI链在充放电过程中的膨胀与收缩,使得链段不容易脱落或者断裂,从而PAGO10具有出色的循环稳定性.3结论采用自组装的方法,经水热反应,制备了PANIF/rGO复合电极材料.研究发现,rGO与PANIF紧密连接;而且,当PANIF与GO质量比为10∶1时,复合材料展现了最佳的电化学性能,当电流密度为1和10 A/g时,其比电容分别为517,356 F/g.从上可知:合成的PAGO10具有高的比电容、较好的倍率性能和稳定性能,从而有望作为超级电容器电极材料在实践中应用.有关材料学的论文范文篇2浅谈水泥窑用新型环保耐火材料的研制及应用1 概述随着新型干法水泥生产技术在我国的迅速普及,我国水泥工业得到飞速发展,2012年,水泥总产量达21.8亿吨,占世界总产量55%左右。
材料的论文

材料的论文材料的论文材料是人类文明和进步的基石之一,它的重要性不言而喻。
材料的研究与发展对于科学技术和社会经济的进步起着重要的推动作用。
首先,材料的研究和开发有利于科学技术的进步。
新材料的出现为各个领域带来了新的科技突破和创新。
比如,高温超导材料的发现为能源传输和储存领域提供了全新的解决方案,大大提高了能源利用效率;纳米材料的研究使得我们能够制作更小、更快、更强的计算机芯片,推动了信息技术的发展;高分子材料的应用使得医学领域的人工器官和组织工程成为现实。
无论是能源、信息还是生命科学,材料都起着承上启下的重要作用。
其次,材料的研究与发展对社会经济的进步也具有重要意义。
新材料的应用可以带来新产业的崛起和旧产业的转型升级。
比如,新能源材料的应用大大推动了清洁能源产业的发展,促进了绿色发展和可持续发展的目标实现;高强度材料的应用扩大了航天、航空和交通运输等领域的发展空间,提高了安全性和经济性;先进材料的应用推动了智能制造和互联网+产业的蓬勃发展,促进了制造业的升级和转型。
可以说,没有材料的研究与开发,社会经济也难以实现高质量发展。
最后,材料的研究和提高对环境保护和可持续发展也起着重要的作用。
传统材料的开发和利用往往会对环境造成污染和破坏,而新材料的研究与开发可以减少资源的消耗和环境的污染。
比如,可降解材料的应用可以减少废物的产生,提高资源利用效率;绿色材料的研究可以减少生产过程中的有害物质排放,保护环境和生态系统。
材料的可持续发展对于构建生态文明和实现可持续发展目标具有重要意义。
综上所述,材料的研究与发展对科学技术和社会经济的进步起着至关重要的作用。
我们应该加强对材料的研究与开发,推动科学技术的创新和社会经济的发展。
只有不断追求材料的突破和革新,才能为人类创造更美好的未来。
材料科学前沿论文

材料科学前沿论文材料科学作为一门跨学科的学科,一直以来都是科研领域的热点之一。
随着科技的不断进步和发展,材料科学的研究也在不断深入和拓展。
本文将围绕材料科学的前沿论文展开讨论,探讨目前材料科学研究的最新进展和未来发展方向。
在材料科学的研究领域中,纳米材料一直备受关注。
纳米材料具有独特的物理、化学和生物学特性,因此在能源、环境、生物医学等领域具有广泛的应用前景。
近年来,关于纳米材料的研究论文层出不穷,涉及到纳米材料的合成、表征、性能和应用等方面。
其中,纳米材料在能源存储和转换领域的应用备受关注,例如纳米材料在锂离子电池、超级电容器和光伏器件中的应用研究。
此外,纳米材料在生物医学领域的应用也备受瞩目,比如纳米药物载体、纳米诊断试剂和纳米生物传感器等方面的研究。
除了纳米材料,新型功能材料也是材料科学研究的热点之一。
新型功能材料具有特殊的物理、化学或者生物学性能,可以应用于传感、催化、信息存储等领域。
例如,石墨烯作为一种新型的碳基材料,具有优异的导电性、热导性和机械性能,因此在传感、催化和电子器件等方面具有巨大的潜力。
此外,具有多铁性、多铁电耦合等特殊性质的功能材料也备受关注,这些材料在磁性存储、传感器和自旋电子器件等方面具有广阔的应用前景。
材料科学的另一个研究热点是多功能复合材料。
多功能复合材料是由两种或两种以上的材料组成的复合材料,具有多种功能和性能。
例如,具有自修复功能、自感应功能、自清洁功能等特性的多功能复合材料备受关注。
这些材料不仅可以应用于结构材料领域,还可以应用于智能材料、生物材料等领域,具有广泛的应用前景。
综上所述,材料科学前沿论文涉及到纳米材料、新型功能材料和多功能复合材料等研究领域。
随着科技的不断进步和发展,材料科学的研究将会迎来更多的突破和创新,为人类社会的发展进步提供更多的支持和保障。
相信在不久的将来,材料科学将会迎来更加辉煌的发展。
材料科学论文

材料科学论文
材料科学是一门研究材料的组成、结构、性能和制备工艺的学科,它涉及到多
个学科的知识,如化学、物理、工程等。
材料科学的发展对于现代工业和技术的进步起着至关重要的作用。
本文将从材料科学的基本概念、发展历程以及未来发展方向等方面进行论述。
首先,材料科学是一门跨学科的学科,它涉及到多个学科的知识。
材料是构成
物体的基本实体,材料科学的研究对象包括金属材料、无机非金属材料、有机高分子材料和复合材料等。
材料的性能对于物体的功能和性能起着决定性的作用。
因此,材料科学的研究对于提高材料的性能、开发新型材料具有重要意义。
其次,材料科学的发展历程可以追溯到古代。
古代人类利用石器、陶器等原始
材料进行生产和生活,这是材料科学的萌芽阶段。
随着社会的发展,人们开始利用金属材料进行生产和制造,这标志着材料科学的初步发展。
随着工业革命的到来,材料科学得到了迅速发展,新型材料的不断涌现为工业和技术的进步提供了强大的支撑。
最后,材料科学的未来发展方向主要包括两个方面。
一是新材料的研发和应用。
随着科技的进步,人们对材料的性能和功能要求越来越高,因此新型材料的研发成为材料科学的重要方向。
二是材料制备工艺的改进。
材料的性能不仅取决于其组成和结构,还取决于其制备工艺。
因此,材料制备工艺的改进对于提高材料的性能具有重要意义。
综上所述,材料科学是一门重要的学科,它对于现代工业和技术的进步起着至
关重要的作用。
随着科技的不断发展,材料科学将会迎来更加广阔的发展空间,为人类社会的进步做出更大的贡献。
有关材料学专业的论文(2)

有关材料学专业的论文(2)有关材料学专业的论文篇2浅谈基于人文价值的老旧材料再利用随着人们物质文化水平的提高,现在人们对生活环境、装修品位等方面也提出了更高的要求,当前新材料、新工艺的不断出现和使用,使我们的生活环境有了新的面貌。
然而也伴随着新的危机――环境污染和审美价值观念扭曲,环境质量问题不容小觑,但是审美价值观念要更加重视。
现代装饰中“新陈代谢”更替快,再次建造会选用新材料,一些拆卸下来的带有历史价值和人文内涵的物质材料会被无情丢弃,既造成了经济上的损失,又带来了地域文化的减弱。
设计师应该用怎样的视角来构建、传承与创造三者之间的关系?如何帮助人们对老旧材料建立新的美学的认识,以及老旧材料在满足功能需求的同时怎样体现人文价值及意境的表达?都是值得我们思考的。
一、人文触觉“人文”这个词的英文直译是“Humanities”,其含义在狭义上讲专指哲学,特指美学范畴,在广义上的解释是文化。
人文触觉是指具有历史的或文化的某一物质在特定空间中被多重感知产生的特殊情感,由此引起人们的集体无意识记忆。
而记忆是人脑对经验过的事物的识记、保持、再现或再认,它是进行思维、想象等高级心理活动的基础。
记忆的表现形式以回忆和认知的方式出现,过去的事物不在面前,人们在头脑中把它重新呈现出来的过程叫做回忆;过去的事物在面前感到熟悉,确信是以前感知过的叫做认知。
记忆联结着人类心理活动的过去和现在,记忆的历史性认知能使人的行为活动具有人文意义。
如上世纪90年代的Loft风格的形成,就是在旧工厂、旧厂房原有的基础上通过老旧材料进行的艺术创作,再现工业革命时期的场景,引发人们的集体记忆的回忆。
还有纽约SOHO艺术区,巴萨罗那卡洛尔化工厂,2001年松迪克、向京等大批艺术家创作了北京798艺术区,之后出现了昆明“创库”、重庆“坦克库”、上海8号桥、苏州河两岸的艺术家创库等。
这些创作都是对老旧材料所具有的历史的或文化的属性进行研究,然后创作出了这些各具地域文化的场所。