物理化学 01章 气体

合集下载

物理化学第一章课后答案

物理化学第一章课后答案

物理化学核心教程(第二版)参考答案第一章气体一、思考题1. 如何使一个尚未破裂而被打瘪的乒乓球恢复原状采用了什么原理答:将打瘪的乒乓球浸泡在热水中,使球壁变软,球中空气受热膨胀,可使其恢复球状。

采用的是气体热胀冷缩的原理。

2. 在两个密封、绝热、体积相等的容器中,装有压力相等的某种理想气体。

试问,这两容器中气体的温度是否相等答:不一定相等。

根据理想气体状态方程,若物质的量相同,则温度才会相等。

3. 两个容积相同的玻璃球内充满氮气,两球中间用一玻管相通,管中间有一汞滴将两边的气体分开。

当左球的温度为273 K,右球的温度为293 K时,汞滴处在中间达成平衡。

试问:(1)若将左球温度升高10 K,中间汞滴向哪边移动(2)若两球温度同时都升高10 K, 中间汞滴向哪边移动答:(1)左球温度升高,气体体积膨胀,推动汞滴向右边移动。

(2)两球温度同时都升高10 K,汞滴仍向右边移动。

因为左边起始温度低,升高10 K所占比例比右边大,283/273大于303/293,所以膨胀的体积(或保持体积不变时增加的压力)左边比右边大。

4. 在大气压力下,将沸腾的开水迅速倒入保温瓶中,达保温瓶容积的左右,迅速盖上软木塞,防止保温瓶漏气,并迅速放开手。

请估计会发生什么现象答:软木塞会崩出。

这是因为保温瓶中的剩余气体被热水加热后膨胀,当与迅速蒸发的水汽的压力加在一起,大于外面压力时,就会使软木塞崩出。

如果软木塞盖得太紧,甚至会使保温瓶爆炸。

防止的方法是灌开水时不要太快,且要将保温瓶灌满。

5. 当某个纯物质的气、液两相处于平衡时,不断升高平衡温度,这时处于平衡状态的气-液两相的摩尔体积将如何变化答:升高平衡温度,纯物的饱和蒸汽压也升高。

但由于液体的可压缩性较小,热膨胀仍占主要地位,所以液体的摩尔体积会随着温度的升高而升高。

而蒸汽易被压缩,当饱和蒸汽压变大时,气体的摩尔体积会变小。

随着平衡温度的不断升高,气体与液体的摩尔体积逐渐接近。

物理化学 第一章 绪论气体

物理化学  第一章 绪论气体
6. 界面与胶体科学:界面与高分散系统的热力学规 律
物理化学讲课的内容
第一章 气体的pVT关系 第二章 热力学第一定律 第三章 热力学第二定律 第四章 多组分热力学 第五章 相平衡
3-10周 讲课 40 h
第六章 化学平衡 第七章 电化学 第八章 化学动力学 第九章 界面现象与
描述真实气体的 pVT 关系的方法: 1)引入压缩因子Z,修正理想气体状态方程 2)引入 p、V 修正项,修正理想气体状态方程 3)使用经验公式,如维里方程,描述压缩因子Z 它们的共同特点是在低压下均可还原为理想气体状态方程
1. 真实气体的 pVm - p 图及波义尔温度
T > TB
pVm - p曲线都有左图所示三种
c
T4
说明Vm(g) 与Vm(l)之差减小。
l2 l1
l
g2 g1
T3
Tc
TT12gg´´12 g
T = Tc时, l – g 线变为拐点c c:临界点 ;Tc 临界温度; pc 临界压力; Vm,c 临界体积
Vm
临界点处气、液两相摩尔体积及其它性质完全相同,界
面消失气态、液态无法区分,此时:
V p m Tc 0 ,
类型。
pVm
T = TB T < TB
(1) pVm 随 p增加而上升; (2) pVm 随 p增加,开始不变, 然后增加
p 图1.4.1 气体在不同温度下的 pVm-p 图
(3) pVm 随 p增加,先降后升。
T > TB T = TB
对任何气体都有一个特殊温度 -
波义尔温度 TB ,在该温度下,压
(密闭容器)

乙醇

t / ºC 20 40 60 80 100 120

01章-气体解析

01章-气体解析
2018/12/28 29
29
3.临界点及临界参数
(1) 临界点:饱和蒸气与饱和液体无区别的点。 此时对应的温度、压力和 摩尔体积分别称临界温度 Tc 、 临界压力pc、临界摩尔体积Vc。 临界温度 Tc 、临界压力 pc 、 临界摩尔体积Vc统称临界参数, 是各物质的特性常数。
2018/12/28
例如,理想气体的状态方程可表示为:pV=nRT
2018/12/28
5
5
k1
1.1.1 理想气体状态方程
1、 理想气体状态方程(State equation of Ideal gases) 1) Boyles Law pV=k (定量,恒温,低压气体) 2) Gay—Lussac Law V/T=k1 (定量,恒压, 低压气体) 3) Avogadro Law V/n= k2 (恒温,恒压,低压气体) 结合以上三个经验公式,可得 pV=nRT 或 pVm=RT(理想气体或高温、低压气体)
物理化学电子教案
第一章
气体(复习)
2018/12/28
1
1
第一章
气体
1.1 理想气体状态方程 1.2 摩尔气体常数(R) 1.3 分子运动的速率分布和能量分布 1.4 实际气体与理想气体的偏差
1.5 实际气体的液化与临界现象 1.6 实际气体物态方程
1.7 有关气体的几个定律
2018/12/28
2
临界温度时气体液化所需的 最小压力称临界压力pc。

(3) 在p--Vm图上,临界点是 Tc恒温线的拐点,有两个特 征:
P ( ) Tc 0 Vm
2018/12/28
(
2P Vm
2
) Tc 0
32

物理化学第一章气体

物理化学第一章气体
3、电动势的测定及应用 4、乙酸乙酯皂化反应速率常数的测定
17
18
第一章 气体的pVT关系
1.了解理想气体的微观模型,能熟练使用理 想气体的状态方程 2.理解气体的液化和临界参数 3.了解真实气体的状态方程及对应状态原理 与压缩因子图 重点: 理想气体的状态方程、微观模型、 临界参数。 难点:对应状态原理与压缩因子图。

1
问题:1.理想气体的状态方程式主要有哪些 应用? 2.何为理想气体混合物?在理想气体混合物中 某组分的分压是如何定义的?其物理意义如何,如 何计算? 3.何为纯液体的饱和蒸气压?它与哪些因素
有关?
2
3
1.分子之间无相互作用力 2.分子本身不占有体积
状态方程 理想气体 分压及分体积定律 气体 液化及临界现象 实际气体 对应状态原理及压缩因子图 状态方程
如何变成理 想气体?
4
1.1 理想气体的状态方程
pV nRT
导出公式:
M mRT / pV
pM / RT
例:六氟化铀UF6是密度很大的一种气体,求在
适合条件:理想气体或低压下的真实气体
6
1.分子之间无相互作用力 2.分子本身不占有体积
状态方程 理想气体 分压及分体积定律 气体
液化及临界现象
实际气体 状态方程 对应状态原理及压缩因子图
7
1.3 气体的液化及临界参数
饱和蒸气压:指定温度下,密闭系统中某物质处 于气液平衡共存时其蒸气的压力。
临界参数:
9
b.求真实气体的压缩因子Z
真实气体的pVT关系: 对比参数: 对比压力: pr =p/pc
pVm ZRT
对比温度: Tr =T/Tc
对比体积: Vr =Vm/ Vm,c

大学物理化学知识点归纳

大学物理化学知识点归纳

第一章气体的pvT关系一、理想气体状态方程pV=(m/M)RT=nRT (1.1)或pVm=p(V/n)=RT (1.2)式中p、V、T及n的单位分别为P a 、m3、K及mol。

Vm=V/n称为气体的摩尔体积,其单位为m3·mol。

R=8.314510J·mol-1·K-1称为摩尔气体常数。

此式适用于理想,近似于地适用于低压下的真实气体。

二、理想气体混合物1.理想气体混合物的状态方程(1.3)pV=nRT=(∑BBn)RTpV=mRT/Mmix (1.4)式中Mmix为混合物的摩尔质量,其可表示为Mmix def ∑BBy M B(1.5)Mmix=m/n=∑BBm/∑BBn(1.6)式中MB为混合物中某一种组分B 的摩尔质量。

以上两式既适用于各种混合气体,也适用于液态或固态等均匀相混合系统平均摩尔质量的计算。

2.道尔顿定律p B =nBRT/V=yBp(1.7)P=∑BB p(1.8)理想气体混合物中某一种组分B 的分压等于该组分单独存在于混合气体的温度T及总体积V的条件下所具有的压力。

而混合气体的总压即等于各组分单独存在于混合气体的温度、体积条件下产生压力的总和。

以上两式适用于理想气体混合系统,也近似适用于低压混合系统。

3.阿马加定律VB*=nBRT/p=yBV (1.9)V=∑VB* (1.10)VB*表示理想气体混合物中物质B的分体积,等于纯气体B在混合物的温度及总压条件下所占有的体积。

理想气体混合物的体积具有加和性,在相同温度、压力下,混合后的总体积等于混合前各组分的体积之和。

以上两式适用于理想气体混合系统,也近似适用于低压混合系统。

三、临界参数每种液体都存在有一个特殊的温度,在该温度以上,无论加多大压力,都不可能使气体液化,我们把这个温度称为临界温度,以Tc或tc表示。

我们将临界温度Tc时的饱和蒸气压称为临界压力,以pc表示。

在临界温度和临界压力下,物质的摩尔体积称为临界摩尔体积,以Vm,c表示。

最新物理化学第1章 气体

最新物理化学第1章  气体
萨克定律(J. Gay-Lussac,1808): V / T = 常数 (n , p 一定)
(3)阿伏加德罗定律(A. Avogadro, 1811) V / n = 常数 (T, p 一定)
_______________________________________
_______________________________________
§ 1-1 -2. PV=nRT方程为什么称为理 想气体状态方程
因为方程中的V是气体自由活动的空间,低压下 气体所占体积大,分子间距离大,分子间的相互作用 可忽略,分子本身的体积也可忽略。
理想气体:在任何温度、压力下均服从 pV = nRT 的 气体为理想气体。
_______________________________________
§ 1-1 -1.理想气体状态方程
以此可相互计算 p, V, T, n, m, M, 。
例:用管道输送天然气,当输送压力为200 kPa,温 度为25 oC时,管道内天然气的密度为多少?假设天 然气可看作是纯的甲烷。
解:M甲烷 = 16.04×10-3 kg ·mol-1
(低压气体)p0 理想气体
通常在几十个大气压以下,一般气体能满足理想气 体方程。
_______________________________________
§1-2道尔顿定律和阿马格定律
1. 混合物组成表示法 2.分压力的定义与道尔顿定律 3. 阿马格定律与分体积概念 4.应用举例
_______________________________________
物理化学
主讲: 化学学院 周建敏
联系电话:
祝大家学习愉快,天天进步!

物理化学01章_气体

物理化学01章_气体

R = lim( pVm )T / T
p →0
= 2494.35J ⋅ mol −1 / 300K = 8.3145J ⋅ mol −1 ⋅ K −1
• (2)同一气体,不同温度 )同一气体,
波义耳温度:在此温度下, 波义耳温度 在此温度下, 在此温度下 当压力趋于零时, 当压力趋于零时, pVm-p 的斜率为零。 的斜率为零。波义耳温 度一般为气体临界温度 的2-2.5倍。 - 倍
pV
m
∂( pVm ) lim p =0 p →0 气体在不同温度下的pV 气体在不同温度下的 ∂p TB
示意图 m-p示意图
对于真实气体,靠近器壁的气体分子和 对于真实气体,靠近器壁的气体分子和 不靠近器壁的气体分子受力情况不同。 不靠近器壁的气体分子受力情况不同。 的气体分子受力情况不同
第一章 气体
§1.1 理想气体状态方程
• 1.理想气体状态方程 理想气体状态方程
波义耳(Boyle R)定律 波义耳 定律
pV = C( n, T一定) 一
盖-吕萨克(Gay J—Lussac J)定律 V / T = C( n, p一定) 吕萨克 定律 一 阿伏加德罗(Avogadro A)定律 阿伏加德罗 定律 整理可得如下状态方程
pVm = ZRT
• 例题:温度为273K,在容积分别为(1) 22.4 dm3, (2) 0.2 dm3 (3) 0.05 dm3 的容器 中,分别加入1 mol 的CO2气体,试分别用 理想气体状态方程和范德华方程计算其压 力。
• 4.阿马加分体积定律(Amagat’s law of 阿马加分体积定律( 阿马加分体积定律 partial volume) )
对于理想气体混合物, 对于理想气体混合物,有

物理化学第一章1

物理化学第一章1

由图查得:Z = 0.90,
m / V pM / ( ZRT ) [101 . 106 44.0 103 / (0.90 8.3145 471)] kg m3
127 kg m 3 127 g dm 3
实验值为124.97 g dm-3,误差1.6%。
第一章
热力学基础
物理化学多媒体课堂教学软件
上一页
下一页
返回目录
1-1 气体的性质
物理化学多媒体课堂教学软件
上一页
下一页
返回目录
一、物质的状态
物质的微粒或原子存在着下列行为
1.粒子间相互作用
气态
2.热运动
1.粒子间相互作 用
液态
2.热运 动
固态
物质的状态
◆ 三种主要的聚集状态 气体(g)、液体(l)、固体(s)
范德华方程
a,b-范德华常数,与气体种类有关
上一页
下一页
节首
2 a / V 1.压力修正项 m :分子间有吸引力而引入的对P的校正
P理 P +Pa 1 Pa d Pa 2 Vm
2 2 Pa a / Vm
a P理 P + 2 Vm
2.体积修正项
V理 Vm b
Tr (198 273) / 304.3 155 .
pr 101 . / 7.38 137 .
m M m MPV zRT 44 6078 0.02 0.58 8.314 300 3.7 kg
查压缩因子图得:z=0.58
pV nzRT zRT
结论:用压缩因子图计算更为方便
普遍化压缩因子图
压缩因子图的应用:
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

上一内容 下一内容 回主目录
返回
2019/12/1
§1.1 气体分子动理论
一 气体分子动理论的基本公式 二 理想气体状态方程 三 理想气体模型 四 理想气体混合物 五 分子平均平动能与温度的关系
上一内容 下一内容 回主目录
返回
2019/12/1
1 气体分子动理论的基本公式
气体分子运动的微观模型
相互作用力。
上一内容 下一内容 回主目录
返回
2019/12/1
3 理想气体模型
3 理想气体微观模型: 理想气体是一种分子本身没有体积,分子间
无相互作用力的气体。 理想气体是一个理想模型,在客观上是不存
在的,它只是真实气体在p→0时的极限情况。
4 建立理想气体模型的意义:
⑴ 建立了一种简化的模型:理想气体不考虑气体
的体积及相互作用力,使问题大大简化,为研究实
际气体奠定了基础。 ⑵ 低压下的实际气体可近似按理想气体对待。
上一内容 下一内容 回主目录
返回
2019/12/1
4 理想气体混合物
(1) 混合物的组成 (2) 理想气体混合物状态方程 (3) 道尔顿定律 (4) 阿马加定律
上一内容 下一内容 回主目录
物理化学电子教案—第一章
气体
上一内容 下一内容 回主目录
返回
2019/12/1
第一章 气体
§1.1 气体分子动理论 §1.2 摩尔气体常数(R) §1.3 理想气体的状态图 §1.4 分子运动的速率分布 §1.5 分子平动能的分布 §1.6 气体分子在重力场中的分布 §1.7 分子的碰撞频率与平均自由程 §1.8 实际气体 §1.9 气体间的转变—实际气体的等温线和液化过程 §1.10 压缩因子图--实际气体的有关计算 §1.11 分子间的相互作用力*
返回
2019/12/1
3 理想气体模型
1 理想气体定义: 任何温度、压力下均服从理想气体状态
方程的气体,称为理想气体。
2 理想气体的特征(或条件): ⑴ 分子本身无体积: 意味着:分子是质点(有质
量无体积),若p→∞,则Vm →0。
⑵ 分子间无相互作用力: 由p=nRT/V,温度恒定
时,p∝n/V,与分子间距离无关,所以分子间无
dV


V T
dT p,n

V p
T
,n
dp


V n
dn T , p
由盖.吕萨克定律
V V T p,n T
由波义尔定律

V p
T ,n

V p
由阿伏加德罗定律
V V n T , p n
• 将以上三式归纳整理,得到理想气体状态方程:
pV = nRT
单位:p Pa V m3 T K n mol R J mol-1 K-1
上一内容 下一内容 回主目录
返回
2019/12/1
2 理想气体状态方程
由三个经验定律导出理想气体状态方程的过程:
设 V=V(T,p,n) 则有
返回
2019/12/1
1 气体分子动理论的基本公式
气体分子动理论的基本公式
压力
质量 速度 面积 时间

动量 面积 时间
利用统计平均的方法,求出体积为V分子数为N的气
体系统的总动量。则可得出气体分子动理论的基本公式
pV 1 mNu2 3
式中,m是一个分子的质量,u为均方根速率。
V / T = 常数
(n, p 一定)
• 阿伏加德罗定律(A. Avogadro, 1811)
V / n = 常数
(T, p 一定)
气体分子运动公式可以对几个经验定律作出解释。
反过来也证明了气体分子运动基本公式的正确性。
上一内容 下一内容 回主目录
返回
2019/12/1
2 理想气体状态方程
u ( niui2 ) / n
i
n为单位体积内的分子数。
上一内容 下一内容 回主目录
返回
2019/12/1
2 理想气体状态方程
• 17~19世纪三个著名的低压气体经验定律:
• 波义尔定律(R.Boyle,1662):
pV = 常数
(T, n 一定)
• 盖.吕萨克定律(J. Gay-Lussac,1808):
返回
2019/12/1
(2) 理想气体混合物状态方程
• 理想气体混合物状态方程为:
pV n总RT nB RT B
pV m RT M mix
上一内容 下一内容 回主目录
返回
2019/12/1
(3) 道尔顿定律与分压力
⑴ 道尔顿定律:
混合气体的总压力等于各组分单独存在于混 合气体的温度、体积条件下所产生压力的总和。
返回
2019/12/1
(1) 混合物的组成
a 摩尔分数x或y:
xB 或yB
nB nA
显然 xB 1 或 yB 1
A
B
B
b 质量分数
wB
mB mA
A
wB 1
B
c 体积分数
B
xB Vm,B xA Vm, A
A
B 1
B
上一内容 下一内容 回主目录
pV nRT
上一内容 下一内容 回主目录
返回
2019/12/1
2 理想气体状态方程
•理想气体状态方程也可写为:
pV NkBT kB R / L N / L n pVm RT pV m RT M
以此可相互计算 p, V, T, n, m, M, (= m/ V)
上一内容 下一内容 回主目录
上一内容 下一内容 回主目录
返回
2019/12/1
2 理想气体状态方程
代入得
整理得 或写成
dV V dT V dp V dn
T
pn
dp dV dT dn pV T n
d ln( pV ) d ln(nT)
积分
ln( pV ) ln(nT) ln C
C是积分常数,通常用R表示,去掉对数得
(1)气体是大量分子的集合体。相对于分子与分子间 的距离以及整个容器的体积来说,气体分子本身的体积 很小,可以忽略不计,常将气体分子当作质点来处理。 (2)气体分子不断地做无规则的运动,均匀分布于整 个容器中。 (3)分子彼此的碰撞以及分子与器壁的碰撞是完全弹 性的(碰撞前后总动量不损失)。
上一内容 下一内容 回主目录
相关文档
最新文档