HPM视角下的“角平分线”教学
角平分线 教案

角平分线教案教案标题:角平分线教案目标:1. 理解角平分线的概念和性质;2. 能够绘制角平分线;3. 掌握角平分线的相关定理和应用。
教学资源:1. 教材:包含角平分线相关知识点的数学教材;2. 黑板、白板或投影仪;3. 直尺、量角器、铅笔和彩色笔。
教学步骤:引入活动:1. 使用投影仪或黑板上展示一张包含多个角的图形,并让学生观察图形;2. 引导学生思考,提问:“你们观察到什么规律或特点?”3. 学生回答后,引导他们思考角平分线的概念。
知识讲解:1. 讲解角平分线的定义和性质,即角平分线将一个角分成两个相等的角;2. 引导学生观察示例图形,解释角平分线的绘制方法;3. 讲解角平分线的相关定理,如角平分线定理等;4. 提供一些实际问题,让学生应用角平分线的知识解决问题。
练习活动:1. 让学生在纸上绘制给定角的角平分线;2. 给学生一些练习题,让他们应用角平分线的定理求解;3. 分组进行角平分线竞赛,每组选出一名代表进行绘制和解答问题。
总结反思:1. 总结角平分线的定义和性质;2. 回顾角平分线的绘制方法和定理;3. 鼓励学生分享解题思路和答案;4. 收集学生的反馈和建议,以改进教学。
拓展活动:1. 引导学生观察其他图形中的角平分线;2. 提供更复杂的角平分线问题,让学生挑战自己的解题能力;3. 鼓励学生设计自己的角平分线问题,并与同学分享。
教学评估:1. 观察学生在练习活动中的表现,包括绘制角平分线的准确性和解题的正确性;2. 收集学生的练习作业,检查他们对角平分线的理解和应用;3. 与学生进行个别或小组交流,了解他们对角平分线的掌握程度。
教学延伸:1. 在下一堂课中,引入垂直平分线的概念和性质,与角平分线进行对比;2. 将角平分线与其他几何概念(如三角形、平行线等)进行联系,拓展学生的几何思维能力;3. 提供更多的实际问题,让学生应用角平分线解决实际生活中的几何问题。
角的平分线数学教案

角的平分线数学教案
标题:《探索角的平分线》
一、教学目标
1. 知识与技能目标:理解并掌握角的平分线的概念,能够熟练地运用尺规作图法作出任意角的平分线。
2. 过程与方法目标:通过观察、思考、实践,提高学生的空间观念和逻辑思维能力。
3. 情感态度价值观目标:培养学生对几何学习的兴趣,增强他们解决问题的信心。
二、教学重点和难点
重点:理解和掌握角的平分线的概念,掌握尺规作图法作出任意角的平分线的方法。
难点:理解和应用角的平分线的性质。
三、教学过程
1. 导入新课:通过实例引入角的平分线的概念,引发学生的好奇心和求知欲。
2. 新课讲授:
(1) 角的平分线的概念:讲解角的平分线的定义,并让学生自己画出一些角的平分线,加深理解。
(2) 尺规作图法:详细解释如何使用尺规作图法作出任意角的平分线,包括步骤和注意事项。
(3) 角的平分线的性质:引导学生通过实验、讨论等方式发现角的平分线的一些性质,如等腰三角形的判定定理等。
3. 巩固练习:设计一些习题,让学生在实践中巩固所学知识。
4. 总结反思:回顾本节课的主要内容,鼓励学生分享他们的学习体验和收获。
四、作业布置
设计一些题目,要求学生在家中完成,以检验他们对角的平分线的理解和掌握程度。
五、教学评价
根据学生在课堂上的表现和作业完成情况,对学生的学习效果进行评估。
六、教学反思
教师应反思自己的教学方法是否有效,是否有需要改进的地方,以便更好地满足学生的学习需求。
角平分线 优秀课教案

1.4 角平分线 第1课时 角平分线1.复习角平分线的相关知识,探究归纳角平分线的性质和判定定理;(重点)2.能够运用角平分线的性质和判定定理解决问题.(难点)一、情境导入问题:在S 区有一个集贸市场P ,它建在公路与铁路所成角的平分线上,要从P 点建两条路,一条到公路,一条到铁路.问题1:怎样修建道路最短? 问题2:往哪条路走更近呢?二、合作探究探究点一:角平分线的性质定理【类型一】 应用角平分线的性质定理证明线段相等如图,在△ABC 中,∠C =90°,AD 是∠BAC 的平分线,DE ⊥AB 于E ,F 在AC 上,BD =DF .求证:(1)CF =EB ;(2)AB =AF +2EB.解析:(1)根据角平分线的性质,可得点D 到AB 的距离等于点D 到AC 的距离,即CD =DE .再根据Rt △CDF ≌Rt △EBD ,得CF=EB ;(2)利用角平分线的性质证明△ADC 和△ADE 全等得到AC =AE ,然后通过线段之间的相互转化进行证明.证明:(1)∵AD 是∠BAC 的平分线,DE ⊥AB ,DC ⊥AC ,∴DE =DC .在Rt △DCF和Rt △DEB 中,∵⎩⎪⎨⎪⎧BD =DF ,DC =DE ,∴Rt △CDF≌Rt △EBD (HL).∴CF =EB ;(2)∵AD 是∠BAC 的平分线,DE ⊥AB ,DC ⊥AC ,∴CD =DE .在△ADC 与△ADE中,∵⎩⎪⎨⎪⎧CD =DE ,AD =AD ,∴△ADC ≌△ADE (HL),∴AC =AE ,∴AB =AE +BE =AC +EB =AF +CF +EB =AF +2EB .方法总结:角平分线的性质是判定线段相等的一个重要依据,在应用时一定要注意是两条“垂线段”相等.【类型二】 角平分线的性质定理与三角形面积的综合运用如图,AD 是△ABC 的角平分线,DE ⊥AB ,垂足为E ,S △ABC =7,DE =2,AB =4,则AC 的长是( )A .6B .5C .4D .3解析:过点D 作DF ⊥AC 于F ,∵AD 是△ABC 的角平分线,DE ⊥AB ,∴DF =DE =2,∴S △ABC =12×4×2+12×AC ×2=7,解得AC =3.故选D.方法总结:利用角平分线的性质作辅助线构造三角形的高,再利用三角形面积公式求出线段的长度是常用的方法.【类型三】角平分线的性质定理与全等三角形的综合运用如图所示,D是△ABC外角∠ACG的平分线上的一点.DE⊥AC,DF⊥CG,垂足分别为E,F.求证:CE=CF.解析:由角平分线上的性质可得DE=DF,再利用“HL”证明Rt△CDE和Rt△CDF全等,根据全等三角形对应边相等证明即可.证明:∵CD是∠ACG的平分线,DE⊥AC,DF⊥CG,∴DE=DF.在Rt△CDE和Rt△CDF中,∵⎩⎪⎨⎪⎧CD=CD,DE=DF,∴Rt△CDE≌Rt△CDF(HL),∴CE=CF.方法总结:全等三角形的判定离不开边,而角平分线的性质是判定线段相等的主要依据,可作为判定三角形全等的条件.探究点二:角平分线的判定定理【类型一】角平分线的判定如图,BE=CF,DE⊥AB的延长线于点E,DF⊥AC于点F,且DB=DC,求证:AD是∠BAC的平分线.解析:先判定Rt△BDE和Rt△CDF全等,得出DE=DF,再由角平分线的判定可知AD是∠BAC的平分线.证明:∵DE⊥AB的延长线于点E,DF⊥AC于点F,∴∠BED=∠CFD,∴△BDE与△CDF是直角三角形.在Rt△BDE和Rt△CDF中,∵⎩⎪⎨⎪⎧BE=CF,BD=CD,∴Rt△BDE≌Rt△CDF(HL),∴DE=DF.∵DE⊥AB,DF⊥AC,∴AD是∠BAC的平分线.方法总结:证明一条射线是角平分线的方法有两种:一是利用三角形全等证明两角相等;二是角的内部到角两边距离相等的点在角平分线上.【类型二】角平分线的性质和判定的综合如图所示,△ABC中,AB=AC,AD是∠BAC的平分线,DE⊥AB,DF⊥AC,垂足分别是E、F.下面给出四个结论,①AD平分∠EDF;②AE=AF;③AD上的点到B、C两点的距离相等;④到AE、AF距离相等的点,到DE、DF的距离也相等.其中正确的结论有()A.1个B.2个C.3个D.4个解析:由AD平分∠BAC,DE⊥AB,DF⊥AC可得DE=DF,由此易得△ADE≌△ADF,故∠ADE=∠ADF,即①AD平分∠EDF正确;②AE=AF正确;中垂线上的点到两端点的距离相等,故③正确;∵④到AE、AF距离相等的点,在∠BAC的角平分线AD上,到DE、DF的距离相等的点在∠EDF的平分线DA上,两者同一条直线上,所以到DE、DF的距离也相等正确,故④正确;①②③④都正确.故选D.方法总结:运用角平分线的性质或判定时,可以省去证明三角形全等的过程,可以直接得到线段或角相等.【类型三】添加辅助线解决角平分线的问题如图,△ABC的∠ABC和∠ACB的外角平分线交于点D.求证:AD是∠BAC的平分线.解析:分别过点D作DE、DF、DG垂直于AB、BC、AC,垂足分别为E、F、G,然后利用角平分线上的点到角两边的距离相等可知DE=DG,再利用到角两边距离相等的点在角平分线上来证明.证明:分别过D作DE、DF、DG垂直于AB、BC、AC,垂足分别为E、F、G.∵BD 平分∠CBE,DE⊥BE,DF⊥BC,∴DE=DF.同理DG=DF,∴DE=DG,∴点D在∠BAC的平分线上,∴AD是∠BAC的平分线.方法总结:在遇到角平分线的问题时,往往过角平分线上的一点作角两边的垂线段,利用角平分线的判定或性质解决问题.【类型四】线段垂直平分线与角平分线的综合运用如图,在四边形ADBC中,AB与CD互相垂直平分,垂足为点O.(1)找出图中相等的线段;(2)OE,OF分别是点O到∠CAD两边的垂线段,试说明它们的大小有什么关系.解析:(1)由垂直平分线的性质可得出相等的线段;(2)由条件可证明△AOC≌△AOD,可得AO平分∠DAC,根据角平分线的性质可得OE=OF.解:(1)∵AB、CD互相垂直平分,∴OC=OD,AO=OB,且AC=BC=AD=BD;(2)OE=OF,理由如下:在△AOC和△AOD中,∵⎩⎪⎨⎪⎧AC=AD,OC=OD,AO=AO,∴△AOC≌△AOD(SSS),∴∠CAO=∠DAO.又∵OE⊥AC,OF⊥AD,∴OE=OF.方法总结:本题是线段垂直平分线的性质和角平分线的性质的综合,掌握它们的适用条件和表示方法是解题的关键.三、板书设计1.角平分线的性质定理角平分线上的点到这个角的两边的距离相等.2.角平分线的判定定理在一个角的内部,到角的两边距离相等的点在这个角的平分线上.本节课由于采用了动手操作以及讨论交流等教学方法,从而有效地增强了学生对角以及角平分线的性质的感性认识,提高了学生对新知识的理解与感悟,因而本节课的教学效果较好,学生对所学的新知识掌握较好,达到了教学的目的.不足之处是少数学生在性质的运用上还存在问题,需要在今后的教学与作业中进一步的加强巩固和训练.第2课时平行四边形的判定定理3与两平行线间的距离1.复习并巩固平行四边形的判定定理1、2;2.学习并掌握平行四边形的判定定理3,能够熟练运用平行四边形的判定定理解决问题;(重点)3.根据平行四边形的性质总结出求两条平行线之间的距离的方法,能够综合平行四边形的性质和判定定理解决问题.(重点,难点)一、情境导入小明的父亲的手中有一些木条,他想通过适当的测量、割剪,钉制一个平行四边形框架,你能帮他想出一些办法来吗?你能想出几种办法?二、合作探究探究点一:对角线互相平分的四边形是平行四边形【类型一】利用平行四边形的判定定理(3)判定平行四边形已知,如图,AB、CD相交于点O,AC∥DB,AO=BO,E、F分别是OC、OD中点.求证:(1)△AOC≌△BOD;(2)四边形AFBE是平行四边形.解析:(1)利用已知条件和全等三角形的判定方法即可证明△AOC≌△BOD;(2)此题已知AO=BO,要证四边形AFBE是平行四边形,根据全等三角形,只需证OE=OF就可以了.证明:(1)∵AC∥BD,∴∠C=∠D.在△AOC和△BOD中,∵⎩⎪⎨⎪⎧AO=OB,∠AOC=∠BOD,∠C=∠D,∴△AOC≌△BOD(AAS);(2)∵△AOC≌△BOD,∴CO=DO.∵E、F分别是OC、OD的中点,∴OF=12OD,OE=12OC,∴EO=FO,又∵AO=BO,∴四边形AFBE是平行四边形.方法总结:在应用判定定理判定平行四边形时,应仔细观察题目所给的条件,仔细选择适合于题目的判定方法进行解答,避免混用判定方法.熟练掌握平行四边形的判定定理是解决问题的关键.【类型二】利用平行四边形的判定定理(3)证明线段或角相等如图,在平行四边形ABCD中,AC交BD于点O,点E,F分别是OA,OC的中点,请判断线段BE,DF的位置关系和数量关系,并说明你的结论.解析:根据平行四边形的对角线互相平分得出OA=OC,OB=OD,利用中点的意义得出OE=OF,从而利用平行四边形的判定定理“对角线互相平分的四边形是平行四边形”判定BFDE是平行四边形,从而得出BE=DF,BE∥DF.解:BE=DF,BE∥DF.因为四边形ABCD是平行四边形,所以OA=OC,OB=OD.因为E,F分别是OA,OC的中点,所以OE=OF,所以四边形BFDE是平行四边形,所以BE=DF,BE∥DF.方法总结:平行四边形的性质也是证明线段相等或平行的重要方法.探究点二:平行线间的距离如图,已知l1∥l2,点E,F在l1上,点G,H在l2上,试说明△EGO与△FHO的面积相等.解析:结合平行线间的距离相等和三角形的面积公式即可证明.证明:∵l1∥l2,∴点E,F到l2之间的距离都相等,设为h.∴S△EGH=12GH·h,S△FGH=12GH·h,∴S△EGH=S△FGH,∴S△EGH-S△GOH=S△FGH-S△GOH,∴S△EGO=S△FHO.方法总结:解题的关键是明确三角形的中线把三角形的面积等分成了相等的两部分,同底等高的两个三角形的面积相等.探究点三:平行四边形判定和性质的综合如图,在直角梯形ABCD中,AD∥BC,∠B=90°,AG∥CD交BC于点G,点E、F分别为AG、CD的中点,连接DE、FG.(1)求证:四边形DEGF是平行四边形;(2)如果点G是BC的中点,且BC=12,DC=10,求四边形AGCD的面积.解析:(1)求出平行四边形AGCD,推出CD=AG,推出EG=DF,EG∥DF,根据平行四边形的判定推出即可;(2)由点G是BC的中点,BC=12,得到BG=CG=12BC=6,根据四边形AGCD是平行四边形可知AG=DC=10,根据勾股定理得AB=8,求出四边形AGCD的面积为6×8=48.解:(1)∵AG∥DC,AD∥BC,∴四边形AGCD是平行四边形,∴AG=DC.∵E、F分别为AG、DC的中点,∴GE=12AG,DF=12DC,即GE=DF,GE∥DF,∴四边形DEGF是平行四边形;(2)∵点G是BC的中点,BC=12,∴BG=CG=12BC=6.∵四边形AGCD是平行四边形,DC=10,AG=DC=10,在Rt△ABG中,根据勾股定理得AB=8,∴四边形AGCD的面积为6×8=48.方法总结:本题考查了平行四边形的判定和性质,勾股定理,平行四边形的面积,掌握定理是解题的关键.三、板书设计1.平行四边形的判定定理3:对角线互相平分的四边形是平行四边形;2.平行线的距离;如果两条直线互相平行,则其中一条直线上任意一点到另一条直线的距离都相等,这个距离称为平行线之间的距离.3.平行四边形判定和性质的综合.本节课的教学主要通过分组讨论、操作探究以及合作交流等方式来进行,在探究两条平行线间的距离时,要让学生进行合作交流.在解决有关平行四边形的问题时,要根据其判定和性质综合考虑,培养学生的逻辑思维能力.。
角的平分线教案设计

角的平分线教案设计第一章:认识角的平分线1.1 引入概念:通过实际图形和几何模型,让学生直观地理解角的概念。
1.2 讲解角的平分线的定义:角的平分线是将一个角平分成两个相等角的直线。
1.3 角的平分线特点:引导学生通过观察和操作,发现角的平分线与角的两边相互垂直,并且将角的两边等分。
第二章:角的平分线的性质2.1 性质1:角的平分线上的任意一点到角的两边的距离相等。
2.2 性质2:角的平分线将角的两边等分,即角的平分线与角的两边相交,交点将角的两边分为两对相等的部分。
2.3 性质3:角的平分线与角的两边相互垂直。
第三章:角的平分线的作图3.1 利用尺规作图方法作出一个角的平分线。
3.2 练习作图:让学生通过实际操作,运用尺规作图方法,作出给定角的平分线。
3.3 思考题:探讨如何作出一个任意角的平分线。
第四章:角的平分线与三角形的关系4.1 三角形的角平分线:介绍三角形的三条角平分线,并引导学生理解它们的作用和性质。
4.2 角平分线定理:讲解三角形三条角平分线交于一点,即三角形内心,并且内心到三角形的三个顶点的距离相等。
4.3 应用:通过实际例子,展示角的平分线在解决三角形问题中的应用。
第五章:角的平分线的应用5.1 构造图形:利用角的平分线解决实际问题,如构造特定的图形或解决几何问题。
5.2 证明题:通过构造图形和运用角的平分线性质,引导学生解决证明题。
5.3 应用题:让学生运用角的平分线知识解决实际问题,如计算距离或角度等。
第六章:角的平分线与圆的关系6.1 圆的角平分线:介绍圆的角平分线,即从圆上一点出发,经过圆心,将圆分成两个相等弧的直线。
6.2 圆心角平分线定理:讲解圆的角平分线与半径相垂直,并且平分圆心角。
6.3 应用:通过实际例子,展示角的平分线在解决圆的问题中的应用。
第七章:角的平分线与圆的内接四边形7.1 圆的内接四边形:介绍圆的内接四边形,即四边形的四个顶点都在圆上。
7.2 圆的内接四边形的性质:讲解圆的内接四边形的对角互补,即相对的角的和为180度。
HPM视角下“角的和、差、倍”的教学

HPM视角下“角的和、差、倍”的教学
李玲;汪晓勤;胡晓娟
【期刊名称】《中学数学月刊》
【年(卷),期】2014(000)011
【摘要】1引言“角的和、差、倍”是沪教版六(下)、人教版和苏教版七(上)和八(上)中的知识点.教材首先通过三角尺作特殊角的和与差,通过例题介绍两角和的作图;接着,通过折纸引入角平分线的概念,通过例题介绍用量角器作角平分线的方法;最后,介绍角平分线的尺规作图法.
【总页数】3页(P57-59)
【作者】李玲;汪晓勤;胡晓娟
【作者单位】华东师范大学数学系 200241;华东师范大学数学系 200241;上海市
建平远翔学校 200129
【正文语种】中文
【相关文献】
1.HPM视角下的教材理解与难点认识——以"两角差的余弦公式"为例 [J], 张小明
2.HPM视角下“两角和与差的余弦公式”课例研究 [J], 马艳荣; 汪晓勤
3.基于HPM视角的高中数学教学探究--以“两角和与差的余弦公式”一课的教学为例 [J], 梁建辉
4.HPM视角下的两角和与差的余弦公式教学 [J], 蔡东山[1];陈晏蓉[2];沈中宇[3]
5.基于HPM视角的高中数学教学探究——以"两角和与差的余弦公式"一课的教学为例 [J], 梁建辉
因版权原因,仅展示原文概要,查看原文内容请购买。
八年级角平分线

八年级角平分线角平分线,这是一个几何术语,也是数学中的一个基本概念。
在八年级的数学课程中,我们学习了角平分线的性质和判定方法。
下面,我将从定义、性质、判定方法三个方面,对八年级角平分线进行解析。
角平分线是指从一个角顶点引出一条射线,将这个角分成两个相等的角。
这条射线叫做角的平分线。
在书写时,我们通常用符号“”来表示角平分线,例如,如果有一个角AOB,那么它的角平分线可以表示为。
角平分线有许多重要的性质。
这些性质在几何学中有着广泛的应用。
以下是角平分线的一些主要性质:角平分线将对应的边分为两段,两段长度相等。
也就是说,如果一个角AOB被分为两个相等的角,那么从角的顶点到角平分线的任意一点的距离等于另一段距离。
角平分线上的任意一点到角的两边的距离相等。
这意味着,如果你在角平分线上画一个点,那么这个点到角的两边的距离是相等的。
角的两边中点之间的连线是角平分线。
这是一个重要的性质,可以帮助我们在不知道角平分线的情况下找到角平分线的位置。
在八年级的数学课程中,我们学习了如何判断一个线段是否是角平分线。
以下是两种主要的判定方法:如果一个线段将一个角的两边等分,那么这个线段是这个角的平分线。
如果一个线段通过一个角的顶点,且将这个角分成两个相等的角,那么这个线段是这个角的平分线。
在几何学中,角平分线是一个非常重要的概念。
它不仅可以帮助我们解决一些简单的问题,还可以帮助我们理解更复杂的几何问题。
在八年级的数学课程中,我们学习了角平分线的性质和判定方法,这为我们进一步学习几何学打下了坚实的基础。
三角形是几何学中最基础、最重要的图形之一。
在三角形中,中线和角平分线是两种非常重要的线段,它们在几何学中有着重要的性质和应用。
三角形的中线是指连接三角形的一个顶点和它所对的边的中点的线段。
三角形有三条中线,它们都在三角形的内部,且每条中线都与三角形的三条边相交。
三角形中线的性质包括:1)任意两边中线的长度相等;2)中线将三角形的面积分成相等的两部分;3)当一个顶点与中线的交点之间的连线作为辅助线时,可以构成直角三角形。
角平分线的性质的教案

角平分线的性质的教案教案标题:角平分线的性质教学目标:1. 了解角平分线的定义和性质。
2. 能够应用角平分线的性质解决相关问题。
3. 培养学生的观察力、分析能力和解决问题的能力。
教学重点:1. 角平分线的定义和性质。
2. 角平分线与角度相等的关系。
3. 角平分线的作用和应用。
教学准备:1. 教学投影仪或白板。
2. 角平分线的定义和性质的PPT或教学素材。
3. 角平分线的练习题。
教学过程:一、导入(5分钟)1. 引入角平分线的概念:请学生回顾角的定义,并提问角平分线的含义。
2. 引发思考:给出一个角,让学生尝试寻找角平分线。
二、讲解角平分线的定义和性质(15分钟)1. 展示角平分线的定义和性质的PPT或教学素材,解释角平分线的定义。
2. 引导学生观察和发现:通过几个示例,让学生体会角平分线与角度相等的关系。
3. 强化角平分线的性质:总结角平分线的性质,并与学生进行互动讨论。
三、角平分线的作用和应用(20分钟)1. 角平分线的作用:讲解角平分线在几何图形中的作用,如判断等腰三角形、证明两条线段垂直等。
2. 角平分线的应用:给出一些实际问题,让学生应用角平分线的性质解决问题。
3. 练习与巩固:分发角平分线的练习题,让学生进行练习,并及时给予指导和反馈。
四、总结与拓展(10分钟)1. 总结角平分线的定义和性质,强调学生的学习收获。
2. 拓展思考:提出一些拓展问题,让学生思考和探索更多与角平分线相关的性质和应用。
五、课堂小结与作业布置(5分钟)1. 小结本节课的重点内容,并与学生进行互动回顾。
2. 布置作业:要求学生完成相关的课后习题,并预告下节课的内容。
教学反思:本节课通过引入、讲解、应用和巩固的方式,全面介绍了角平分线的定义和性质。
通过实际问题的应用,培养了学生的解决问题的能力。
同时,在教学过程中注重与学生的互动和思维引导,提高了学生的参与度和学习效果。
16.3 角的平分线课件(共23张PPT)

角平分线的性质定理:
角平分线上的点到这个角的两边的距离相等.
角平分线性质定理的逆定理:
到角的两边距离相等的点在角平分线上.
尺规作图:作已知角的平分线
同学们再见!
授课老师:
时间:2024年9月15日
问题
发现:角是轴对称图形,角平分线所在的直线是它的对称轴.
新知探究
一起探究
知识点1 角平分线的性质定理
在一张半透明纸上画出一个角,将纸对折,使这个角的两边重合.你从中能得出什么结论?
思考
如图,OP是∠AOB的平分线,P是OP上的任一点,过点P分别作PC⊥OA,PD⊥OB,点D垂为足,点C为垂足. 你能猜想PC,PD长度间有什么关系吗?证明你的猜想.
随堂练习
1.如图,在△ABC中,∠C=90°,AD平分∠CAB交BC于点D,DE⊥AB于点E,点F在AC上,BE=FC. 求证:BD=DF.
∵ AD平分∠BAC, DE⊥AB, DC⊥AC, ∴ DC=DE.
在△DCF和△DEB中,
证明: ∵ ∠C=90°, ∴ DC⊥AC.
∴ △DCF≌△DEB. (SAS) ∴ BD=DF.
∴ Rt△ APC ≌ Rt△ APD (HL),∴ AC= AD = BC.
3.如图所示,CD⊥AB,BE⊥AC,垂足分别为点 D,E,BE,CD 相交于点O,且 OB = OC.求证:点O在∠BAC的平分线上.
证明:∵CD⊥AB,BE⊥AC, ∴∠BDO=∠CEO=90°. 又∵ OB=OC,(已知) ∠BOD =∠COE,(对顶角相等) ∴△BOD≌△COE(AAS) ∴ OD = OE. ∴点O在∠BAC的平分线上.(角的内部到角两边距离相等的点在角的平分线上)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
汪晓勤 (华东师范大学数学系,200241) 摘要:中学一线数学教师手头缺乏有关
的数学史材料,或在材料的取舍上存在一定的困难。角平分线是初中数学中的一个知识点,
多个版本的教材都没有涉及其相关的具体历史,内容呈现也未采用历史的视角。从角平分线
的起源、作图、推广、应用等方面搜集历史、文化素材,在趣味性、科学性、有效性、可学
性、新颖性五项原则的指导下,采用附加式、复制式、顺应式、重构式四种方式,对角平分
线进行HPM视角下的教学设计。 关键词:HPM角平分线 教学设计 三维目标 如何
将数学史融人数学教学,是HPM研究的中心课题之一。在与中学一线数学教师合作开发HPM
案例的过程中,我们发现,他们手头缺乏有关的数学史材料;在我们提供材料后,他们在材
料的取舍上也存在一定的困难。 角平分线是初中数学中的一个知识点,它在上教版、苏
教版和人教版三种初中数学教材中的具体内容及分
汪晓勤 (华东师范大学数学系,200241) 摘要:中学
一线数学教师手头缺乏有关的数学史材料,或在材料的取舍上存在一定的困难。