【名师教案1】5.6应用一元一次方程--能追上小明吗
初中数学教学课例《5.6.应用一元一次方程——能追上小明吗》教学设计及总结反思

一元一次方程模型解决问题。目的培养学生把生活中的
实际问题转化为数学模型的能力,让学生体会数学在生
教材分析 活中的作用。教学时是让学生根据事实提出问题并尝试
去解答,让学生在自主探索、互相启迪、合作交流中提
高分析问题和解决问题的能力,梳理所学知识,培养学
生的数学能力。本节内容(一元一次方程的应用)可以帮
Flash 动态展示两人相遇过程及完成的解题过程。 引导学生总结相遇问题小明的路程小彬的路程,小明相 遇、小彬总路程学生观看动态展示,核对自己的分析是 否正确,格式是否完整。学生总结相遇问题中典型叙述 和常用等量关系。通过学生画图讲解培养他们“三好” 写得好、画得好、讲得好的能力。动态演示让学生更直 教学过程 观、生动的理解题目培养学生总结能力,进一步掌握相 遇问题合作交流追及问题。PPT 展示探究二追及问题提 出问题:1、你能否实际模拟整个情景?2、这样的情景 可不可以画“线段图”表示,如果可以,画出“线段 图”。3、根据线段图找出等量关系,学生四人一组互 相探讨,解决提出的问题,两名学生实际模拟整个运动 情景。其他学生通过模拟清晰运动过程。一名学生画出
初中数学教学课例《5.6.应用一元一次方程——能追上小明 吗》教学设计及总结反思
学科
初中数学
教学课例名
《5.6.应用一元一次方程——能追上小明吗》
称
本节教材选自义务教育课程标准实验教科书《数
学》(北师大版)七年级上册。教材首先由一个实际事
例“能追上小明吗”创设问题情境,激发学生去分析问
题、探究解决问题的方法,然后通过画“线段图”建立
助学生从数量关系的角度更准确、清晰地描述和把握现
实世界,体现数学知识的形成与应用过程,使学生明确
方程是研究现实世界数量关系的重要数学建模。
《应用一元一次方程——能追上小明吗》教案 2022年北师大版数学七上1

第五章一元一次方程7.能追上小明吗一、学生起点分析:学生在小学阶段学过简单的方程和利用“线段图〞解一些简单应用题,前几节课又学习了解一元一次方程及一些运用方程模型解决的实际问题的有关知识。
学生是学习的“主人〞,教学应以学生为中心。
《能追上小明吗》从学生已有的生活经验出发,创设有助于学生自主学习的情境,让学生亲身经历将实际问题抽象成数学模型并进行解释与应用的过程,促使学生在教师的指导下生动活泼地、主动地、富有个性地学习。
本课让学生主动地参与数学活动,并通过亲身实践,演示追赶过程,更进一步认识和体会方程的作用。
学生已初步形成合作、交流、勇于探究与实践的良好学风,学生间互相评价和师生互动气氛较浓二、教学任务分析:《能追上小明吗》选自义务教育课程标准实验教科书《数学》〔北师大版〕七年级上册。
教材首先由一个实际事例“能追上小明吗〞创设问题情境,激发学生去分析问题、探究解决问题的方法,然后通过画“线段图〞建立一元一次方程模型解决问题。
目的培养学生把生活中的实际问题转化为数学模型的能力,让学生体会数学在生活中的作用。
教学时是让学生根据事实提出问题并尝试去解答,让学生在自主探索、互相启迪、合作交流中提高分析问题和解决问题的能力,梳理所学知识,培养学生的数学能力。
本节内容(一元一次方程的应用)可以帮助学生从数量关系的角度更准确、清晰地描述和把握现实世界,表达数学知识的形成与应用过程,使学生明确方程是研究现实世界数量关系的重要数学建模。
三、教学目标:1.知识技能⑴借助“线段图〞分析复杂问题中的数量关系,从而建立方程解决实际问题,进一步掌握列方程解应用题的步骤.⑵能充分利用行程中的速度、路程、时间之间的关系列方程解应用题.2.能力训练要求⑴培养学生分析问题、解决问题的能力,进一步体会方程模型的作用,提高学生应用数学的意识.⑵培养学生文字语言、图形语言、符号语言这三种语言转换的能力.3 情感与价值观要求⑴通过开放性的问题,为学生提供思维的空间,从而培养学生的创新意识,团队精神和克服困难的勇气.⑵体验生活中的数学的应用与价值,感受数学来源于生活,感受数学与人类生活的密切联系,激发学生学数学,用数学的兴趣。
5.6 应用一元一次方程-----能追上小明吗

李明要到郊外训练一只警犬.他从基地 以5米/秒的速度跑了18分钟后,他的警犬 再从基地按原路追去,已知警犬的速度是 14米/秒.问:警犬多少分钟可追上李明?
图示分析:
5×18
14x
┆ ┆
5x
┆
追及地
等量关系式
警犬所行路程-小明所行路程=间距
解:设警犬x分钟可追上小明,依题意,得
14x-5x =5×18
B等量Leabharlann 系:C乙走 x 小时所走的路程 72x
乙走的路程-甲走的路程=间隔的距离
解:设乙车开出x小时后追上甲车,根据题意,得
25 72x-- 48x = 60 ×48
24x=20
5 x= 6
5 答:乙开出 小时后追上甲车. 6
育红学校七年级学生步行到郊外旅行。(1)班 学生组成前队,步行速度为4千米时,(2)班学生 组成后队,速度为6千米时。前队出发一小时后, 后队才出发,同时后队派一名联络员骑自行车在 两队之间不间断地来回进行联络,他骑车的速度 为12千米时。 根据上面的事实提出问题,并尝试解答。 1.(2) 班追上了 (1)班用了多长时间? 2. (2)追上班 (1)班时,联络员共走了多少路程?
四、总结归纳
1. 行程问题中的相等关系是: 速度 ×时间 路程=_____ _____.
2. 追及问题常用的等量关系是: 速度差×追及时间=间距
五、巩固反馈
A、B两地相距230千米,甲队从A地出发2小时后,乙队从B 地出发与甲相向而行,乙队出发20小时后相遇,已知乙的速度 比甲的速度每小时快1千米,求甲、乙的速度各是多少? 设:甲速为x千米/时,则乙速为(x+1)千米/时 分析:
1.应用方程解决问题的一般步骤: 审: 设: 审清题意; 设未知数;
北师大版数学七年级上册5.6《应用一元一次方程——追赶小明》教学设计

北师大版数学七年级上册5.6《应用一元一次方程——追赶小明》教学设计一. 教材分析《北师大版数学七年级上册5.6<应用一元一次方程——追赶小明>》这一节主要通过一个实际问题引导学生应用一元一次方程解决问题。
通过列方程、解方程的过程,让学生掌握一元一次方程在实际问题中的应用。
教材通过追赶小明的例子,让学生理解速度、时间和路程之间的关系,并运用一元一次方程求解实际问题。
二. 学情分析学生在之前的学习中已经接触过一元一次方程的基本概念和解法,但对于如何将实际问题转化为方程,并将方程应用于解决实际问题可能还有一定的困难。
因此,在教学过程中,教师需要引导学生将实际问题转化为方程,并通过实际问题让学生理解一元一次方程在实际生活中的应用。
三. 教学目标1.知识与技能:学生会将实际问题转化为一元一次方程,并能运用一元一次方程求解实际问题。
2.过程与方法:学生通过自主探究、合作交流的方式,掌握一元一次方程在实际问题中的应用。
3.情感态度与价值观:学生体会数学与生活的紧密联系,培养解决实际问题的能力。
四. 教学重难点1.重点:学生能将实际问题转化为一元一次方程,并能运用一元一次方程求解实际问题。
2.难点:学生如何将实际问题转化为方程,并理解方程在实际问题中的应用。
五. 教学方法采用问题驱动法、情境教学法和合作交流法。
通过设置追赶小明的实际问题,激发学生的学习兴趣,引导学生自主探究、合作交流,从而掌握一元一次方程在实际问题中的应用。
六. 教学准备1.教师准备:教师需要准备与追赶小明相关的实际问题,以及解题过程中可能用到的数学知识。
2.学生准备:学生需要预习相关的一元一次方程知识,并准备参与课堂讨论。
七. 教学过程1.导入(5分钟)教师通过讲解一个简单的实际问题,引导学生思考如何将实际问题转化为方程。
例如,教师可以提出一个问题:如果小明每分钟跑60米,小红每分钟跑70米,小明比小红慢多少米?让学生思考如何用数学方法表示这个问题。
北师大版七年级上册5.6应用一元一次方程——追赶小明教学设计

北师大版七年级上册5.6应用一元一次方程——追赶小明教学设计一、教学目的1.了解什么是一元一次方程。
2.掌握应用一元一次方程解决实际问题的方法和技巧。
3.引导学生探究数学问题,培养学生的问题解决能力。
4.培养学生的合作意识和团队精神。
二、教学内容1.一元一次方程的概念。
2.应用一元一次方程解决实际问题。
3.追赶问题的应用。
三、教学重点和难点1.教学重点:应用一元一次方程解决实际问题。
2.教学难点:追赶问题的应用。
四、教学准备1.教师准备:•教学PPT•小黑板、彩笔、橡皮•追赶问题的示意图和解答步骤2.学生准备:•计算器•学习笔记和必备工具五、教学步骤第一步:导入与引入1.教师向学生介绍今天的教学内容,重点是什么,难点是什么。
并询问之前的学习情况,为接下来的教学做好铺垫。
2.通过实例和图片引入追赶问题的应用。
第二步:基础概念讲解1.介绍一元一次方程的概念,如何表示和解决方程。
2.讲解如何化解包含绝对值的方程。
第三步:追赶问题的讲解1.解释追赶问题的含义,介绍它是怎样发生的。
2.引导学生通过观察和思考,自己提出问题,搜集数据,系统地分析产生追赶问题的原因。
3.通过示例和图片讲解追赶问题的解决方法和步骤。
4.讲解如何应用一元一次方程解决追赶问题,引导学生运用数学知识解决实际问题。
第四步:练习和实战1.通过课堂练习和习题让学生掌握课程知识,并巩固运用技巧。
2.通过设置实际情境,让学生到实地进行模拟实战演练。
第五步:作业布置结合教学内容,布置课后作业,以巩固自己的知识与技能。
六、教学反思通过这堂课的教学,学生掌握了一元一次方程的概念和应用技巧,也算是成功解决了课题中的教学难点——追赶问题应用。
但教学途中也暴露出来的一些问题,比如有的学生还是不能完全掌握知识点,有些操作不够规范等。
这也提醒我们教师不仅要关注班级整体水平的提升,更要关注每个学生的个体能力,为他们提供个性化的教学方案,确保他们都能学有所获,更好地实现知识的掌握。
【名师教案1】5.6应用一元一次方程--能追上小明吗

5. 6应用一元一次方程--能追上小明吗•教学目标(一)教学知识点1进一步掌握列方程解应用题的步骤.2•能充分利用行程中的速度、路程、时间之间的关系列方程解应用题.(二)能力训练要求1借助“线段图”分析复杂问题中的数量关系,从而建立方程,解决实际问题,发展分析问题、解决问题的能力.2 •进一步体会方程模型的作用,提高应用数学的意识.3•培养学生文字语言、图形语言、符号语言这三种语言的转换的能力.(三)情感与价值观要求通过开放性的问题,为学生提供思维的空间,从而培养学生的创新意识,团队精神和克服困难的勇气.•教学重点1借助“线段图”分析复杂问题中的数量关系•从而建立方程,解决实际问题.用“线段图”分析复杂问题中的等量关系,从而建立方程.•教学方法教师启发与学生自主探索相结合.教师先从简单问题出发,启发诱导学生用“线段图”去寻找路程问题中的等量关系,从而学生在教师的启发诱导下自主探索复杂问题的解决过程,建立数学模型.•教具准备投影片三张第一张:(记作§ 5 • 6A)填空第二张:(记作§ 5 • 6B)想一想、试一试第三张:(记作§ 5 • 6C)议一议•教学过程I •提出问题,弓I入新课出示投影片(§ 5. 6A)[师]上面3个小题都是关于路程、速度、时间的问题,那么它们之间有何关系呢?[生]路程=速度X时间.知道这三个量中的两个就可以求出另一个.[师]很棒•那么我们就用这个同学所说的关系来解答上面的三个小问题.[生](1)已知速度、时间,求路程.所以小明5秒能跑4米/秒X 5秒=20米.(2) 已知时间、路程求速度.所以小明的速度为400米十4分=100米/分.(3) 已知路程、速度求时间.所以小明骑车到车站需要1500米十4米/秒=375秒=6. 25分.[师]下面我们就来根据路程、速度、时间之间的关系来讨论几个较为复杂的问题.n.讲授新课出示投影片(§ 5. 6B)[师生共析]已知小彬和小明的速度分别为4米/秒,6米/秒.(1)两人从百米跑道的两端同时相向起跑,相遇时,两人所跑的路程的和是100米.所以要解决这个问题,必须抓住这个等量关系.我们画出线段图,可以使他们的关系更加直观,等量关系更加清晰.如下图所以等量关系为:小明所跑的路程+小彬所跑的路程=100米.接下来我们只要把这个等量关系用数学符号一一方程表示出来即可.设两人x秒后可相遇,则小明跑的路程就为6x 米,小彬跑的路程为4x米,由此得到方程4x+6x=100.(2)如果小明站在百米跑道的起点处,而小彬在他前面10米处,当小明追上小彬时,小彬比小明少跑10米.在解决此问题时,只要抓住这个等量关系便可.为了使问题更直观,我们不妨也用线段图来表示,使等量关系更清晰.如下图:苻环帮--------- 10W ------- ------------------ »羽牡小険的路程一>__________________备一<1朗所跑的路程—追及所以等量关系为:小明跑的路程-小彬跑的路程=10米.如果设小明x秒可追上小彬, 则小明跑的路程为6x,小彬跑的路程为4x,则得到方程6x-4x=10.(由学生根据分析写出解答过程)解:(1)设小明和小彬x秒后相遇,根据题意得6x+4x=100,解,得x=10所以经过10秒两人相遇.⑵设小明x秒追上小彬,根据题意,得6x-4x=10解,得x=5所以小明5秒就追上了小彬.[师]由例1我们可以看到,在审题的过程中,如果能把文字语言变成图形语言一一线段图,可以使题中的等量关系“浮”出水面,最后我们只需设出未知数,把等量关系用符号语言表示出来,便得到了方程.在我们的生活中,一些同学养成一种很不好的习惯一一丢三落四. 常害得父母亲操心.小明今天就犯了这样的错误:小明每天早上要在7: 50之前赶到距家1000米的学校上学•一天,小明以80米/分的速度出发.5分钟后,小明的爸爸发现他忘了带语文书•于是,小明的爸爸立即为180米/分的速度去追小明,并且在途中追上了他•问:(1)爸爸追上小明用了多长时间?(2)追上小明时,距离学校还有多远?同学们可仿照例1的方法,画出线段图去分析题目中的等量关系.[生]我认为小明的爸爸追上小明时,他们父子二人所行驶的路程是相等的.[师]你能到黑板上画出这个问题的线段图吗?[生]可以•如果设爸爸追上小明用了x分钟,则可画得线段图:(黑板上板演)爸莒幵妬追小明到追上哺小明5输行驶路程■►烂时■小册驶『所以,根据题意,小明5分钟行驶的路程为:80X5米;爸爸开始追小明到追上,小明行驶的路程为80x米;小明的爸爸追上小明行驶的路程180x米•相等关系为:小明行驶的路程=爸爸行驶的路程即80X 5+80x=180x •[师]下面同学们在自己的练习本上完整地写出解答过程.[生]解:(1)设爸爸追上小明用了x分.根据题意,得180x=80x+80X5化简,得100x=400x=4所以小明的爸爸用了4分钟追上小明.(2)因为爸爸追上小明行驶的路程为180X 4=720米,1000-720=280米.所以,追上小明时,距离学校还有280米.[师]通过做上面这个题,除了要学会用线段图去寻找相等关系,从而建立模型一一方程,使问题得到解决外•更重要的是有丢三落四的毛病的同学,要吸取小明的教训,自己的事自己处理好,免得父母操心.川.议一议出示投影片(§ 5. 6C)力明爸爸追小明行驶路程队派一名联络员骑自行车在两队之间不断地来回进行联络,他骑车的速度为根据上面的事实提出问题并尝试解答.(这是一个开放性问题,教师应鼓励学生交流、讨论,然后大胆地提出问题,并试着利用方程去解决,并与同伴交流自己的问题和解决问题的过程)[生]我提出的问题是:后队用多长时间可以追上前队?[生]这个问题可用方程来解,只要找到这个问题等量关系即可. 根据题意画线段图如下:如果设后队x小时可追上前队,那么后队行驶的路程为6x千米,前队行驶的路程为(4 X 1+4X)千米•根据线段图可知:前队行驶路程=后队行驶的路程,由此可得方程6x=4X 1+4 x.[师]这位同学分析得很到位•下面请一位同学完整地写出过程.[生]解:设前队被后队追上用了x小时,根据题意,得6x=4X 1+4x解,得x=2所以前队被后队追上需2小时.[生]后队在追前队时,后队派了一名联络员骑自行车不停地在两队之间来回进行联络,那么这位联络员行了多少千米的路程.[师]这个问题提得非常好. 如何解决呢?同学们可以先讨论一下,也许解决起来不困难.[生]我们认为这个问题从整体上考虑较易. 因为联络员的速度是12千米/时,而且联络员是后队出发时,派他在两队之间不间断地来回进行联络,由此我们知道联络员用去的时间恰好就是后队追上前队的时间即2小时,所以联络员行驶的路程为12X 2=24千米.[师]你真棒!我们祝贺你,在困难面前,你是一个胜利者.大家应该向你学习.老师相信,我们每一位同学在遇到复杂的问题时,一定能树立信心,树立克服困难的勇气.[生]我还可以提出一个问题吗?[师]完全可以.我们欢迎他提出问题.[生]当联络员第一次追上前队后,往回返,当他和后队相遇时,后队离出发地有多远?[师]同学们可以讨论,并相互交流一下自己的想法.[生]我觉得这个问题要分两步完成:第一步:设联络员x小时后可追上前队,画线段图如下:* -------------- 12^丰米--------------- ** --- 仟米/---------------- -------- ►根据题意,可得12x=4X 1+4x12千米/时.后队所行驶的路程1分>42分.因此单靠汽车来回接送无法使 8人赶上火车.解,得X= —21所以联络员第一次追上前队用了丄小时.211第二步:这时,后队离出发点6千米/时X —小时=3千米•离前队有(1+ ) X4 -3=3千2 2米•设y 小时后,联络员又碰上了后队,画线段图如下:11 根据题意,可得 6y +12y =4X (1+)- 6X - 2 21解,得y =•61 1 所以此时后队离开出发点 6X +6X 丄=4千米.26[师]看来,同学们已能面对复杂问题•祝贺你们•关于这个题还能提出好多问题,同 学们若有兴趣,课余时间可继续发现,相信你们会有很大的收获.W.课时小结我们这节课学会了用线段图来形象直观地表达题意,找到等量关系.更可喜的是,我们面对开放性的问题,能够积极思维,大胆创新,这节课将是一节很难忘的课.课后作业1.习题5. 9.2 •继续合作完成 P 173议一议,大胆尝试着去提出问题,解决问题.活动与探究8个人分别乘两辆小汽车赶往火车站,其中一辆小汽车在距离火车站15千米的地方出了故障,此时离火车站停止检票的时间还有 42分钟,这时惟一可以利用的交通工具只有一辆小汽车,连司机在内限乘 5人,这辆小汽车的平均速度为60千米/时•这8个人能赶上火车吗?过程:这是开放性的问题,为学生提供了思维的空间•可以分多种情形讨论. 第一种情形:小汽车分 2批送8个人•如果第2批人在原地不动.第二种情形:如果在汽车送第一批人的同时,其他人先步行,可节省一点时间. 第三种情形:如果这辆汽车行驶到途中一定位置放下第一批人, 然后掉头再接另一批人使得两批人同时到达火车站,比较省时.1分>42分.因此单靠汽车来回接送无法使8人赶上火车.3结果:第一种情形:小汽车需来回走15X 3=45(千米),所需时间为45十60=(小时)=454第二种情形:如果设这些步行的速度为 5千米/时,汽车送完第1批人后,用了 x 小时二批人到达火车站要用 1+2X H=35小时<42分•因此不计其他时间的话,这8人能赶上452 52火车.第三种情形:如果这辆汽车行驶到途中, 一定位置放下第一批人, 然后掉头再接另一批 人,使得两批人同时到达火车站,那么比较省时,需要37分.•备课资料(一)学会解开放题随着素质教育的不断深入,考查学生灵活运用的综合能力成为热点.而开放性问题有利于培养学生灵活运用能力和创造性思维能力.[例1]按要求运用数字135和25%编一道应用题,要求:(1)要联系市场经济,其解符 合实际.(2)数25%要用两次.(3)列出的方程是一元一次方程,写出这道应用题的整个解的 过程.解:依据题目要求可编出应用题: 某个体商店同时出售两件衣服,每件售价都是135元,按进价核算,其中一件盈利25%另一件亏本25%试问在这次销售中,商店是亏还是赚?解这道应用题,设其中一件进价x 元,另一件进价y 元,由题意,得x (1+25%)=135,则 x =108; y (1-25%)=135,则 y =180.••• 2X 135-( x +y )=-18因此是亏,亏了 18元.根据题目要求还可编出一道应用题:某商店降价25%后,又提价25%该商品现价为135元,问该商品原价多少元? 解:设该商品原价x 元,则(1-25%)(1+25) x =135.解,得x =144所以该商品原价是 144 元.与第二批人相遇,根据题意有:1511 5x +60x =15-X 5,解得 x =- 6052,从汽车出故障开始,第[例2]下面是工厂各部门提供的信息:人事部:明年生产工人不多于800 人,每年每人工时按2400 工时计算;市场部:预测明年的产品销量是10000~12000 件;技术部:该产品平均每件需用120 工时,每件需要装4 个某种主要部件;供应部:今年年终库存某种主要部件6000 个,明年可采购到这种部件60000 个.请判断:(1) 工厂明年的生产量至多为多少件?(2)为减少积压,至多裁减多少人用于开发其他新产品.解:(1) 据人事部、技术部、供应部的信息,明年生产量为x 件,则4x=6000+60000,解得x=16500120x=800X 2400,解得x=16000受工时限制x 应取16000.(2) 据市场部信息,设应裁减y 人,则2400(800- y)=12000X 120解,得y=200.应裁减200人.(二)参考练习列方程解应用题1 .甲、乙两人骑自行车,同时从相距65 千米的两地相向而行,甲的速度为17. 5 千米/ 时,乙的速度为15 千米/ 时,经过几小时两人相距32. 5 千米?2•在一直的长河中有甲、乙两船,现同时由A地顺流而下,乙船到B地时接到通知需立即返回到C地执行任务,甲船继续顺流航行,已知甲、乙两船在静水中的速度都是每小时7. 5千米,水流速度为每小时2. 5千米,A、C两地间的距离为10千米•如果乙船由A地经B地再到达C地共用了4小时,问乙船从B地到达C地时,甲船驶离B地有多远?答案:1 .解:(1) 相遇前经过x 小时,甲、乙二人相距32.5 千米,根据题意,得:(17.5+15)x+32.5=65x=1(2) 相遇后甲乙继续前进,设从出发到相遇后经过x 小时相距32.5 千米,根据题意, 得(17.5+15)x-32 .5=65x=3所以经过1 小时或3小时甲、乙两人相距32.5千米.2•解:设乙船由B地航行到C地用了x小时,那么甲、乙两船由A地航行到B地都用了(4- x) 小时.(1)若C地在A B两地之间,有(4- x)(7 .5+2.5)- x(7 .5-2 .5)=10解,得x=210X 2=20 千米(2)若C 地不在A 、B 两地之间,有x (7 . 5-2 . 5)-(4- x )(7 . 5+2. 5)=1010解,得x=±3所以乙船从B 地到达C 地时甲船驶离B 地有20千米或千米.310X巴=100 3千米.。
最新北师大版七年级数学上册《应用一元一次方程——追赶小明》名师教案

5.6 应用一元一次方程——追赶小明教学目标:1.能利用行程中的速度、路程、时间之间的关系列方程解应用题,感知数学在生活中的作用.2.通过观察、抽象、探索、理解与运用,学生进一步体会到方程的模型作用,提高应用数学的意识.借助“线段图”分析复杂问题中的数量关系,从而建立方程,解决实际问题,发展分析问题、解决问题的能力.3.通过师生间、学生间的探索与交流以及情境的创设,激发学生的学习热情和求知欲望.从而进一步提高学习数学、应用数学解决实际问题的意识,养成良好的学习习惯.教学重点与难点:重点:分析题意,寻找等量关系,列方程解决行程问题.难点:利用线段图分析行程问题,寻找等量关系,建立数学模型.教法与学法指导:本节课主要是通过学生亲身的生活体验来展开,再加以延伸,从中抽象出数学问题,再通过建立模型解决实际问题.通过练习来巩固所学知识.消除了学生对新课、新知识的抵触情绪和畏惧心理,各个环节的过渡都非常自然.让学生在不知不觉中学完本节课.同时也体现出了从生活发现数学,让数学回归生活的设计理念.课前准备:制作课件,检查学生预习稿的完成情况,收集学生预习中遇到的问题信息.教学过程:一、创设情境,导入新课师:我们来看两张图片.(教师出示课件)生(热情洋溢地):是博尔特百米比赛,我们学校刚刚举行的运动会.师:看来同学们对这两张图片很熟悉,你知道其中蕴含着什么数学问题吗?生:路程、速度、时间.师:这三个量之间有怎样的关系呢?速度=路程÷时间路程=速度时间时间=路程÷速度行程问题中速度、路程、时间之间的关系?s=vt v=s/t t=s/v生:路程=速度⨯时间;速度=时间路程;时间=速度路程. 师:(展示课件)师:很好!那就用你的知识完成下面的问题吧.1.若小亮每秒跑4米,那么他10秒能跑多少____米.(路程=速度⨯时间)2.小亮用4分钟绕学校操场跑了两圈(每圈400米),那么他的速度为_____米/分. (速度=时间路程) 3.已知小亮家距离学校1000米,他以5米/秒的速度骑车到达学校需要_____分钟. (时间=速度路程) 师:好,看来同学们对这三个量的关系掌握的很好,请想一想生活中的行程问题都有那些?生:相遇问题、追及问题.(学生之间互相补充并说明特点)师:这节课我们就来共同研究有关相遇、追及等方面的问题.【教师板书课题:5.6 应用一元一次方程—追赶小明】【设计意图】通过图片的形式揭示生活中蕴含着我们数学的一个常见问题——追及问题,激发学生的好奇心,引起每位同学的兴趣,唤醒学生的思维和问题意识,进而轻松地引入本节所要探讨的主要问题.二、合作探究,获取新知师:(多媒体展示例题)例1 小明早晨要在7:20以前赶到距家1000米的学校上学,一天,小明以80米/分的速度出发.5分钟后,小明的爸爸发现他忘了带历史作业,于是,爸爸立即以180米/分的速度去追小明,并且在途中追上了他.(1)爸爸追上小明用了多长时间?(2)追上小明时,距离学校还有多远?(学生读题)师:同学们,你是否遇到过类似小明的经历呢.生(很兴奋,七嘴八舌):有的说有,有的说没有.师:家人要追上你与什么因素有关呢?生:绝大数学生都可能会说与速度有关,少数学生可能会说与距离有关等等.(学生仔细审题,理清题目中的数量关系,提高阅读能力.根据自己的理解口述题目中的内容.)师:在这个问题里已知条件是什么?求的是什么?生:小明家到学校距离1000m,小明的速度是80米/分,爸爸的速度是80米/分,小明提前5分钟出发.求的是爸爸追上小明的时间.师:这个问题中涉及了哪个数量关系?生:路程、速度、时间.师:你能将他们的行走过程用图形表示出来吗?(学生先自己画图但不够完整,教师适当点拨补充完善.)小明先走的路程小明又走的路程追及点家学校师:结合图形,你找到有几个等量关系?生:①小明走的路程=爸爸走的路程;②小明所用时间=5+爸爸所用时间.(对于第一个关系学生很容易得出,第二个关系需要教师提示.)师:你将用哪一个等量关系建立方程?生:小明走的路程=爸爸走的路程.师:如果设爸爸追上小明用了x分钟,你能将数量关系用线段图表示出来吗?生:生:80×5+80x=180x.师:好!根据我们的分析,你能将这题的步骤整理出来吗?(师生一起规范整理步骤)生:解:设爸爸追上小明用了x分钟,根据题意,得80×5+80x=180x.解得x=4.答:爸爸追上小明用了4分钟.师:你能独立完成问题(2)吗?生:(在前面的基础上学生比较容易得出结果.)180×4=720(米),1000-720=280(米).答:追上小明时,距离学校还有280米.(师生小结:追及问题若甲先走,乙后走则等量关系有:甲的路程=乙的路程;甲的时间=乙的时间+时间差.)【设计意图】从学生熟悉的生活经历出发,选择学生身边感兴趣的事件给学生提出有关的数学问题,唤起学生的思维和问题意识.三、变式训练,巩固提高变式训练(一):师:(多媒体展示问题)在前面的问题中如果小明的爸爸要赶时间上班,他必须在5分钟之内追上小明,那么爸爸的速度至少应是多少?生:表现出浓厚的兴趣,互相讨论.一部分同学借助上题的经验与方法,开始思考本道题的解题思路.师:这个问题与上面的问题有什么不同?生:本题限制了时间,所要解决的问题是爸爸的速度.师:(根据学生的讨论情况,进行适当的提示).1.如爸爸5分钟追上小明,这时小明共走了几分钟?2.追上小明时,小明走过的路程是多少?3.爸爸走的路程与小明所走的路程有什么关系?4.那么,爸爸的速度呢?生:在练习本上画出线段图,并完成书写步骤.(学生类比上题画出本题的线段图,互相交流改进补充完整.)小明前5分钟走的路程 小明后5分钟走的路程家生:解:设爸爸的速度为x 米/分,根据题意,得 5x=80×10.解这个方程,得 x=160.答:爸爸的速度至少应是160米/分.【设计意图】通过问题情境的转换,让学生在探索和教师的引导中进一步掌握用画线段图解决行程问题中的追赶问题,启发学生的思维,锻炼学生的解决问题能力.变式训练(二):师:(多媒体展示问题)在前面的问题中若当小明到校后才发现忘带语文课本,赶紧打电话给爸爸,爸爸立即以180米/分的速度从家出发,同时小明从学校以100米/分的速度从学校返回,两人几分钟后相遇?生:(阅读题目,理清题目中的逻辑关系)师:这个问题与上面的问题有什么区别?生:从两个地点相向而行.师:你能正确画出线段图并完成书写步骤吗?(教师进行点拨,规范.)生:(在练习本上画出线段图,并完成书写步骤.)生:解:设经过x 分钟相遇,根据题意,得 180x +100x =1000.解得x=257.答:经过257分钟相遇.(师生小结:相向而行,等量关系:甲所用时间=乙所用时间;甲的路程+乙的路程=总路程.)【设计意图】分析相遇问题,由于已有对上一个问题的理解故而学生能比较正确地画出线段图,并得出其中的等量关系,正确列出方程,解决问题,最终能规范写出解题过程.四、学以致用,解决问题师:(多媒体展示问题)育红学校七年级学生步行到郊外旅行.七(1)班学生组成前队,步行速度为4千米/时,七(2)班学生组成后队,速度为6千米/时.前队出发一小时后,后队才出发,同时后队派一名联络员骑自行车在两队之间不间断地来回进行联络,他骑车的速度为12千米/时.生:(积极的合作探究,根据上面的事实分组提出问题、讨论、交流,并尝试解答.)师:(在学生仔细读题后提问)这个问题与我们的例题有什么异同?生:(小组讨论,分析比较后得出)相同之处是有两个“人”一前一后,且后面的速度比前面的快,不同的是这个问题中有个联络员.师:提示学生从速度、时间、路程三个角度进行挖掘.生:通过小组讨论、交流比较容易得出:问题1:后队追上前队用了多长时间?解:设后队追上前队用了x小时,根据题意,得6x = 4x + 4×1.解这个方程,得x =2.答:后队追上前队时用了2小时.问题2:联络员第一次追上前队时用了多长时间?解:设联络员第一次追上前队时用了x小时.由题意,得12x = 4x + 4.解这个方程,得x =0.5.答:联络员第一次追上前队时用了0.5小时.问题3:后队追上前队时联络员行了多少路程?问题4:当后队追上前队时,他们已经行进了多少路程?问题5:联络员在前队出发多少时间后第一次追上前队?对于问题3、4、5学生不容易得出,教师适当引导提出问题,并鼓励学生课下利用方程解决问题.【设计意图】这是一个开放性的问题,答案不唯一,旨在拓展学生思维,寻求个性发展.教师应鼓励学生交流、讨论,结合例题大胆提出问题,如后队追上前队用了多少时间;后队追上前队时联络员行了多少路程;通讯员第一次追上前队时,用了多少时间;当后队追上前队时,他们已经行进了多少路程;联系员在前队出发多少时间后,第一次追上前队等,教师还应鼓励学生尝试利用方程去解决这些问题,并与同伴交流自己的问题和解决问题的过程.五、巩固训练,提升能力1.小兵每秒跑6米,小明每秒跑7米,小兵先跑4秒,小明几秒钟追上小兵.2.甲骑摩托车,乙骑自行车同时从相距150千米的两地相向而行,经过5小时相遇,已知甲每小时行驶的路程是乙每小时行驶的路程的3倍少6千米,求乙骑自行车的速度.3.七年级一班列队以每小时6千米的速度去甲地.王明从队尾以每小时10千米的速度赶到队伍的排头后又以同样的速度返回排尾,一共用了7.5分钟,求队伍的长.4.甲、乙两人相距280米,相向而行,甲从A地每秒走8米,乙从B地每秒走6米,那么甲出发几秒与乙相遇?【设计意图】进一步强化本节的内容,通过题目的练习让学生真正理解和掌握用画线段图来解决行程问题中的相遇和追赶问题.六、课堂小结,反思归纳师:今天你们学到了什么知识?是怎样学到的?还有什么疑问?(让学生自己总结,可以加深印象,提高学生学习的积极性.师适时点拨.)生1:借助“线段图”能帮助我们分析复杂问题中的数量关系,从而建立方程解决实际问题.生2:相遇问题:甲走的路程+乙走的路程=总路程.生3:追及问题:前者走的路程+两者间的距离=追者走的路程.生4:路程=速度×时间;时间=路程÷速度;速度=路程÷时间.【设计意图】强调本课的重点内容是要学会借线段图来分析行程问题,并能掌握各种行程问题中的规律及等量关系.引导学生自己对所学知识和思想方法进行归纳和总结,从而形成自己对数学知识的理解和解决问题的方法策略.七、达标检测,反馈矫正多媒体出示:1.A,B两地相距480千米,一列慢车从A地开出,每小时行60千米,一列快车从B 地开出,每小时行65千米,若两车同时开出,相向而行,x小时相遇,则由条件列出的方程为.2.甲乙两站相距450千米,一列慢车从甲站开出速度是52千米/时,一列快车从乙站开出速度是70千米/时,慢车开出0.5小时后快车开出,两车相向而行,问快车经过几小时与慢车相遇?设快车经过x小时与慢车相遇则可列方程()A、52x+70x=450B、70x=52x+52×0.5C、70x=52x+450D、52×0.5+52x+70x=4503.一架飞机飞行于两城市之间,顺风需要5小时30分,逆风需要6小时,已知风速每小时24千米,则顺风中飞机的速度为多少?逆风中飞机的速度为多少?【设计意图】通过达标检测及时反馈学生对本节课的知识点的掌握程度,以便有的放矢进行后续教学.七、布置作业,拓展延伸必做题:一个自行车队进行训练,训练时所有队员都以35千米/小时的速度前进.突然,1号队员一45千米/小时的速度独自行进,行进10千米后掉转车头,仍以45千米/小时的速度往回骑,直到与其他队员会合.1号队员从离队开始到与队员重新会合,经过了多长时间?选做题:给定方程2.5x+2.5(x+2)=55,你能联系生活实际编写一道数学问题吗?与同学探讨,并负责讲解.【设计意图】作业分层体现分层教学思想,让不同学生得到不同程度的发展.板书设计:教学反思:励志名言: 1、学习从来无捷径,循序渐进登高峰。
北师大版七年级上册数学 5.6应用一元一次方程 追赶小明 教案

提出问题:甲乙二人分别后,沿着铁轨反向而行。此时,一列火车匀速地向甲迎面驶来,列车在甲身旁开过,用了15秒;然后在乙身旁开过,用了17秒.已知两人步行速度都是3.6千米/时,这列火车有多长?它的速度是多少?
认真思考,寻找方法。
相遇与追及问题融于一题,进一步挖掘学生思维,加深学生对行程问题中这两类问题的理解。
(2)追上小明时,距离学校还有多远?
指导学生理解体会线段图的画法,指导学生将文字语言转化为图形语言。
认清路程、速度、时间三个量之间的关系。
用“线段图”分析问题中的相等关系:S=S甲+S乙
解:(1)设爸爸遇到小明用了x分,则
110x+140x=1000
(110+140)x=1000
x=4
(2)因为40+4x2=48<50
请根据以上的事实提出问题并尝试回答。
问题1.后队追上前队用了多长时间?
学生分小组互相讨论,提出自己的问题,每组的组长代表发言。
积极思维,认真思考,拿出自己的解决问题方法。
进一步培养学生分析问题能力,发展灵活思维。
在练习中充分利用学生的差异,互相探讨,共同发展.
问题2.后队追上前队时联络员行了多少路程?
教学重点:
行程问题中路程、速度、时间之间的关系,从而实现从文字语言到符号语言的转换
教学难点:
行程问题中路程、速度、时间之间的关系,从而实现从文字语言到符号语言的转换
四、教学策略选择与设计
1.利用新课程多元化的教学目标来设计教学,抛弃传统的教学模式,创设学生感兴趣的数学情境,引导学生分析、利用小组讨论等多种形式,有效地组织教学。
3、追击问题一般常用的等量关系是:S=S甲-S乙
师生互相交流、补充,归纳本节所学知识与收获。认真思考,积极思维,口答自己的解法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
5.6应用一元一次方程--能追上小明吗●教学目标(一)教学知识点1.进一步掌握列方程解应用题的步骤.2.能充分利用行程中的速度、路程、时间之间的关系列方程解应用题.(二)能力训练要求1.借助“线段图”分析复杂问题中的数量关系,从而建立方程,解决实际问题,发展分析问题、解决问题的能力.2.进一步体会方程模型的作用,提高应用数学的意识.3.培养学生文字语言、图形语言、符号语言这三种语言的转换的能力.(三)情感与价值观要求通过开放性的问题,为学生提供思维的空间,从而培养学生的创新意识,团队精神和克服困难的勇气.●教学重点1.借助“线段图”分析复杂问题中的数量关系.从而建立方程,解决实际问题.用“线段图”分析复杂问题中的等量关系,从而建立方程.●教学方法教师启发与学生自主探索相结合.教师先从简单问题出发,启发诱导学生用“线段图”去寻找路程问题中的等量关系,从而学生在教师的启发诱导下自主探索复杂问题的解决过程,建立数学模型.●教具准备投影片三张第一张:(记作§5.6A)填空第二张:(记作§5.6B)想一想、试一试第三张:(记作§5.6C)议一议●教学过程Ⅰ.提出问题,引入新课出示投影片(§5.6A)[师]上面3个小题都是关于路程、速度、时间的问题,那么它们之间有何关系呢?[生]路程=速度×时间.知道这三个量中的两个就可以求出另一个.[师]很棒.那么我们就用这个同学所说的关系来解答上面的三个小问题.[生](1)已知速度、时间,求路程.所以小明5秒能跑4米/秒×5秒=20米.(2)已知时间、路程求速度.所以小明的速度为400米÷4分=100米/分.(3)已知路程、速度求时间.所以小明骑车到车站需要1500米÷4米/秒=375秒=6.25分.[师]下面我们就来根据路程、速度、时间之间的关系来讨论几个较为复杂的问题.Ⅱ.讲授新课出示投影片(§5.6B)[师生共析]已知小彬和小明的速度分别为4米/秒,6米/秒.(1)两人从百米跑道的两端同时相向起跑,相遇时,两人所跑的路程的和是100米.所以要解决这个问题,必须抓住这个等量关系.我们画出线段图,可以使他们的关系更加直观,等量关系更加清晰.如下图所以等量关系为:小明所跑的路程+小彬所跑的路程=100米.接下来我们只要把这个等量关系用数学符号——方程表示出来即可.设两人x秒后可相遇,则小明跑的路程就为6x 米,小彬跑的路程为4x米,由此得到方程4x+6x=100.(2)如果小明站在百米跑道的起点处,而小彬在他前面10米处,当小明追上小彬时,小彬比小明少跑10米.在解决此问题时,只要抓住这个等量关系便可.为了使问题更直观,我们不妨也用线段图来表示,使等量关系更清晰.如下图:所以等量关系为:小明跑的路程-小彬跑的路程=10米.如果设小明x秒可追上小彬,则小明跑的路程为6x,小彬跑的路程为4x,则得到方程6x-4x=10.(由学生根据分析写出解答过程)解:(1)设小明和小彬x秒后相遇,根据题意得6x+4x=100,解,得x=10所以经过10秒两人相遇.(2)设小明x秒追上小彬,根据题意,得6x-4x=10解,得x=5所以小明5秒就追上了小彬.[师]由例1我们可以看到,在审题的过程中,如果能把文字语言变成图形语言——线段图,可以使题中的等量关系“浮”出水面,最后我们只需设出未知数,把等量关系用符号语言表示出来,便得到了方程.在我们的生活中,一些同学养成一种很不好的习惯——丢三落四.常害得父母亲操心.小明今天就犯了这样的错误:小明每天早上要在7:50之前赶到距家1000米的学校上学.一天,小明以80米/分的速度出发.5分钟后,小明的爸爸发现他忘了带语文书.于是,小明的爸爸立即为180米/分的速度去追小明,并且在途中追上了他.问:(1)爸爸追上小明用了多长时间?(2)追上小明时,距离学校还有多远?同学们可仿照例1的方法,画出线段图去分析题目中的等量关系.[生]我认为小明的爸爸追上小明时,他们父子二人所行驶的路程是相等的.[师]你能到黑板上画出这个问题的线段图吗?[生]可以.如果设爸爸追上小明用了x分钟,则可画得线段图:(黑板上板演)所以,根据题意,小明5分钟行驶的路程为:80×5米;爸爸开始追小明到追上,小明行驶的路程为80x米;小明的爸爸追上小明行驶的路程180x米.相等关系为:小明行驶的路程=爸爸行驶的路程即80×5+80x=180x.[师]下面同学们在自己的练习本上完整地写出解答过程.[生]解:(1)设爸爸追上小明用了x分.根据题意,得180x=80x+80×5化简,得100x=400x=4所以小明的爸爸用了4分钟追上小明.(2)因为爸爸追上小明行驶的路程为180×4=720米,1000-720=280米.所以,追上小明时,距离学校还有280米.[师]通过做上面这个题,除了要学会用线段图去寻找相等关系,从而建立模型——方程,使问题得到解决外.更重要的是有丢三落四的毛病的同学,要吸取小明的教训,自己的事自己处理好,免得父母操心.Ⅲ.议一议出示投影片(§5.6C)(这是一个开放性问题,教师应鼓励学生交流、讨论,然后大胆地提出问题,并试着利用方程去解决,并与同伴交流自己的问题和解决问题的过程)[生]我提出的问题是:后队用多长时间可以追上前队?[生]这个问题可用方程来解,只要找到这个问题等量关系即可.根据题意画线段图如下:如果设后队x小时可追上前队,那么后队行驶的路程为6x千米,前队行驶的路程为(4×1+4x)千米.根据线段图可知:前队行驶路程=后队行驶的路程,由此可得方程6x=4×1+4x.[师]这位同学分析得很到位.下面请一位同学完整地写出过程.[生]解:设前队被后队追上用了x小时,根据题意,得6x=4×1+4x解,得x=2所以前队被后队追上需2小时.[生]后队在追前队时,后队派了一名联络员骑自行车不停地在两队之间来回进行联络,那么这位联络员行了多少千米的路程.[师]这个问题提得非常好.如何解决呢?同学们可以先讨论一下,也许解决起来不困难.[生]我们认为这个问题从整体上考虑较易.因为联络员的速度是12千米/时,而且联络员是后队出发时,派他在两队之间不间断地来回进行联络,由此我们知道联络员用去的时间恰好就是后队追上前队的时间即2小时,所以联络员行驶的路程为12×2=24千米.[师]你真棒!我们祝贺你,在困难面前,你是一个胜利者.大家应该向你学习.老师相信,我们每一位同学在遇到复杂的问题时,一定能树立信心,树立克服困难的勇气.[生]我还可以提出一个问题吗?[师]完全可以.我们欢迎他提出问题.[生]当联络员第一次追上前队后,往回返,当他和后队相遇时,后队离出发地有多远?[师]同学们可以讨论,并相互交流一下自己的想法.[生]我觉得这个问题要分两步完成:第一步:设联络员x小时后可追上前队,画线段图如下:根据题意,可得12x=4×1+4x解,得x=1 2所以联络员第一次追上前队用了12小时.第二步:这时,后队离出发点6千米/时×12小时=3千米.离前队有(1+12)×4-3=3千米.设y小时后,联络员又碰上了后队,画线段图如下:根据题意,可得6y+12y=4×(1+12)-6×12解,得y=16.所以此时后队离开出发点6×12+6×16=4千米.[师]看来,同学们已能面对复杂问题.祝贺你们.关于这个题还能提出好多问题,同学们若有兴趣,课余时间可继续发现,相信你们会有很大的收获.Ⅳ.课时小结我们这节课学会了用线段图来形象直观地表达题意,找到等量关系.更可喜的是,我们面对开放性的问题,能够积极思维,大胆创新,这节课将是一节很难忘的课.Ⅴ.课后作业1.习题5.9.2.继续合作完成P173议一议,大胆尝试着去提出问题,解决问题.Ⅵ.活动与探究8个人分别乘两辆小汽车赶往火车站,其中一辆小汽车在距离火车站15千米的地方出了故障,此时离火车站停止检票的时间还有42分钟,这时惟一可以利用的交通工具只有一辆小汽车,连司机在内限乘5人,这辆小汽车的平均速度为60千米/时.这8个人能赶上火车吗?过程:这是开放性的问题,为学生提供了思维的空间.可以分多种情形讨论.第一种情形:小汽车分2批送8个人.如果第2批人在原地不动.第二种情形:如果在汽车送第一批人的同时,其他人先步行,可节省一点时间.第三种情形:如果这辆汽车行驶到途中一定位置放下第一批人,然后掉头再接另一批人使得两批人同时到达火车站,比较省时.结果:第一种情形:小汽车需来回走15×3=45(千米),所需时间为45÷60=34(小时)=45分>42分.因此单靠汽车来回接送无法使8人赶上火车.第二种情形:如果设这些步行的速度为5千米/时,汽车送完第1批人后,用了x小时与第二批人相遇,根据题意有:5x+60x=15-1560×5,解得x=1152,从汽车出故障开始,第二批人到达火车站要用14+2×1152=3552小时<42分.因此不计其他时间的话,这8人能赶上火车.第三种情形:如果这辆汽车行驶到途中,一定位置放下第一批人,然后掉头再接另一批人,使得两批人同时到达火车站,那么比较省时,需要37分.●板书设计●备课资料(一)学会解开放题随着素质教育的不断深入,考查学生灵活运用的综合能力成为热点.而开放性问题有利于培养学生灵活运用能力和创造性思维能力.[例1]按要求运用数字135和25%编一道应用题,要求:(1)要联系市场经济,其解符合实际.(2)数25%要用两次.(3)列出的方程是一元一次方程,写出这道应用题的整个解的过程.解:依据题目要求可编出应用题:某个体商店同时出售两件衣服,每件售价都是135元,按进价核算,其中一件盈利25%,另一件亏本25%.试问在这次销售中,商店是亏还是赚?解这道应用题,设其中一件进价x元,另一件进价y元,由题意,得x(1+25%)=135,则x=108;y(1-25%)=135,则y=180.∴2×135-(x+y)=-18因此是亏,亏了18元.根据题目要求还可编出一道应用题:某商店降价25%后,又提价25%,该商品现价为135元,问该商品原价多少元?解:设该商品原价x元,则(1-25%)(1+25)x=135.解,得x=144所以该商品原价是144元.[例2]下面是工厂各部门提供的信息:人事部:明年生产工人不多于800人,每年每人工时按2400工时计算;市场部:预测明年的产品销量是10000~12000件;技术部:该产品平均每件需用120工时,每件需要装4个某种主要部件;供应部:今年年终库存某种主要部件6000个,明年可采购到这种部件60000个.请判断:(1)工厂明年的生产量至多为多少件?(2)为减少积压,至多裁减多少人用于开发其他新产品.解:(1)据人事部、技术部、供应部的信息,明年生产量为x件,则4x=6000+60000,解得x=16500120x=800×2400,解得x=16000受工时限制x应取16000.(2)据市场部信息,设应裁减y人,则2400(800-y)=12000×120解,得y=200.应裁减200人.(二)参考练习列方程解应用题1.甲、乙两人骑自行车,同时从相距65千米的两地相向而行,甲的速度为17.5千米/时,乙的速度为15千米/时,经过几小时两人相距32.5千米?2.在一直的长河中有甲、乙两船,现同时由A地顺流而下,乙船到B地时接到通知需立即返回到C地执行任务,甲船继续顺流航行,已知甲、乙两船在静水中的速度都是每小时7.5千米,水流速度为每小时2.5千米,A、C两地间的距离为10千米.如果乙船由A 地经B地再到达C地共用了4小时,问乙船从B地到达C地时,甲船驶离B地有多远?答案:1.解:(1)相遇前经过x小时,甲、乙二人相距32.5千米,根据题意,得:(17.5+15)x+32.5=65x=1(2)相遇后甲乙继续前进,设从出发到相遇后经过x小时相距32.5千米,根据题意,得(17.5+15)x-32.5=65x=3所以经过1小时或3小时甲、乙两人相距32.5千米.2.解:设乙船由B地航行到C地用了x小时,那么甲、乙两船由A地航行到B地都用了(4-x)小时.(1)若C地在A、B两地之间,有(4-x)(7.5+2.5)-x(7.5-2.5)=10解,得x=210×2=20千米(2)若C地不在A、B两地之间,有x(7.5-2.5)-(4-x)(7.5+2.5)=10解,得x=10 310×103=1003千米.所以乙船从B地到达C地时甲船驶离B地有20千米或1003千米.。