最新版密卷高考文科数学湖南卷
湖南省普通高中2025届高考全国统考预测密卷数学试卷含解析

湖南省普通高中2025届高考全国统考预测密卷数学试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。
选择题必须用2B 铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知函数()()()2cos 0,0f x x ωϕωϕπ=+><≤的图象如图所示,则下列说法错误的是( )A .函数()f x 在1711,1212ππ⎡⎤--⎢⎥⎣⎦上单调递减 B .函数()f x 在3,2ππ⎡⎤⎢⎥⎣⎦上单调递增 C .函数()f x 的对称中心是(),026k k Z ππ⎛⎫-∈ ⎪⎝⎭ D .函数()f x 的对称轴是()5212k x k Z ππ=-∈ 2.已知a ,b ,R c ∈,a b c >>,0a b c ++=.若实数x ,y 满足不等式组040x x y bx ay c ≥⎧⎪+≤⎨⎪++≥⎩,则目标函数2z x y=+( )A .有最大值,无最小值B .有最大值,有最小值C .无最大值,有最小值D .无最大值,无最小值3.已知集合{}1,2,3,4,5,6U =,{}13,5A =,,{}2,3,4B =,则集合()UB A =( )A .{}1,2,6B .{}1,3,6C .{}1,6D .{}64.已知函数()()f x x R ∈满足(1)1f =,且()1f x '<,则不等式()22lg lg f x x <的解集为( )A .10,10⎛⎫ ⎪⎝⎭B .10,10,10C .1,1010⎛⎫⎪⎝⎭D .()10,+∞5.设点P 是椭圆2221(2)4x y a a +=>上的一点,12F F ,是椭圆的两个焦点,若1243F F =,则12PF PF +=( ) A .4B .8C .42D .476.设x ∈R ,则“327x <”是“||3x <”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件7.已知向量(,4)a m =-,(,1)b m =(其中m 为实数),则“2m =”是“a b ⊥”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件8.某几何体的三视图如图所示,则该几何体的体积为( )A .23B .13C .43D .569.对于函数()f x ,若12,x x 满足()()()1212f x f x f x x +=+,则称12,x x 为函数()f x 的一对“线性对称点”.若实数a 与b 和+a b 与c 为函数()3xf x =的两对“线性对称点”,则c 的最大值为( )A .3log 4B .3log 41+C .43D .3log 41-10.如图所示,直三棱柱的高为4,底面边长分别是5,12,13,当球与上底面三条棱都相切时球心到下底面距离为8,则球的体积为 ( )A .B .C .D .11.已知复数为纯虚数(为虚数单位),则实数( )A .-1B .1C .0D .212.已知函数()ln f x x ax b =++的图象在点(1,)a b +处的切线方程是32y x =-,则a b -=( ) A .2B .3C .-2D .-3二、填空题:本题共4小题,每小题5分,共20分。
2025届湖南省湘潭市一中高考全国统考预测密卷数学试卷含解析

2025届湖南省湘潭市一中高考全国统考预测密卷数学试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
2.答题时请按要求用笔。
3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.为研究某咖啡店每日的热咖啡销售量y 和气温x 之间是否具有线性相关关系,统计该店2017年每周六的销售量及当天气温得到如图所示的散点图(x 轴表示气温,y 轴表示销售量),由散点图可知y 与x 的相关关系为( )A .正相关,相关系数r 的值为0.85B .负相关,相关系数r 的值为0.85C .负相关,相关系数r 的值为0.85-D .正相关,相关负数r 的值为0.85-2.存在点()00,M x y 在椭圆22221(0)x y a b a b +=>>上,且点M 在第一象限,使得过点M 且与椭圆在此点的切线00221x x y y a b +=垂直的直线经过点0,2b ⎛⎫- ⎪⎝⎭,则椭圆离心率的取值范围是( )A .20,2⎛⎤⎥⎝⎦B .2,12⎛⎫⎪⎪⎝⎭C .30,3⎛⎤⎥⎝⎦D .3,13⎛⎫⎪⎪⎝⎭3.某几何体的三视图如图所示,则该几何体的体积为( )A .83B .3C .113D .44.函数的定义域为( )A .[,3)∪(3,+∞)B .(-∞,3)∪(3,+∞)C .[,+∞)D .(3,+∞)5.已知空间两不同直线m 、n ,两不同平面α,β,下列命题正确的是( ) A .若m α且n α,则m n B .若m β⊥且m n ⊥,则n βC .若m α⊥且m β,则αβ⊥D .若m 不垂直于α,且n ⊂α,则m 不垂直于n6.已知,,,m n l αβαβαβ⊥⊂⊂=,则“m ⊥n”是“m ⊥l ”的A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件7.5()(2)x y x y +-的展开式中33x y 的系数为( ) A .-30B .-40C .40D .508.已知抛物线2:2(0)C y px p =>的焦点为F ,过点F 的直线l 与抛物线C 交于A ,B 两点(设点A 位于第一象限),过点A ,B 分别作抛物线C 的准线的垂线,垂足分别为点1A ,1B ,抛物线C 的准线交x 轴于点K ,若11||2||A KB K =,则直线l 的斜率为 A .1B 2C .2D 39.若()12nx -的二项展开式中2x 的系数是40,则正整数n 的值为( ) A .4B .5C .6D .710.若,x y 满足320020x y x y x y --≤⎧⎪-≥⎨⎪+≥⎩,且目标函数2(0,0)z ax by a b =+>>的最大值为2,则416a b +的最小值为( )A .8B .4C .2D . 611.已知正四面体ABCD 的棱长为1,O 是该正四面体外接球球心,且AO x AB y AC z AD =++,,,x y z ∈R ,则x y z ++=( )A .34B .13 C .12D .1412.已知双曲线2222:1(0,0)x y C a b a b-=>>,O 为坐标原点,1F 、2F 为其左、右焦点,点G 在C 的渐近线上,2F G OG ⊥,且16||||OG GF =,则该双曲线的渐近线方程为( ) A .22y x =±B .32y x =±C .y x =±D .2y x =±二、填空题:本题共4小题,每小题5分,共20分。
湖南长郡中学2025届高考全国统考预测密卷数学试卷含解析

湖南长郡中学2025届高考全国统考预测密卷数学试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。
回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知函数()()()2sin 0,0f x x ωϕωϕπ=+><<,28f π⎛⎫= ⎪⎝⎭,02f ⎛⎫= ⎪⎝⎭π且在()0,π上是单调函数,则下列说法正确的是( ) A .12ω=B .6282f π+⎛⎫-= ⎪⎝⎭C .函数()f x 在,2ππ⎡⎤--⎢⎥⎣⎦上单调递减D .函数()f x 的图像关于点5,04π⎛⎫⎪⎝⎭对称 2.已知双曲线C 的一个焦点为()0,5,且与双曲线2214x y -=的渐近线相同,则双曲线C 的标准方程为( )A .2214y x -=B .221520y x -=C .221205x y -=D .2214x y -=3.阅读下侧程序框图,为使输出的数据为,则①处应填的数字为A .B .C .D .4.中国古代用算筹来进行记数,算筹的摆放形式有纵横两种形式(如图所示),表示一个多位数时,像阿拉伯记数一样,把各个数位的数码从左到右排列,但各位数码的筹式需要纵横相间,其中个位、百位、方位……用纵式表示,十位、千位、十万位……用横式表示,则56846可用算筹表示为( )A .B .C .D .5.已知双曲线22221(0,0)x y a b a b-=>>的左右焦点分别为1(,0)F c -,2(,0)F c ,以线段12F F 为直径的圆与双曲线在第二象限的交点为P ,若直线2PF 与圆222:216⎛⎫-+= ⎪⎝⎭c b E x y 相切,则双曲线的渐近线方程是( )A .y x =±B .2y x =±C . 3y x =D .2y x =6.小明有3本作业本,小波有4本作业本,将这7本作业本混放在-起,小明从中任取两本.则他取到的均是自己的作业本的概率为( ) A .17B .27C .13D .18357.函数sin (3sin 4cos )y x x x =+()x R ∈的最大值为M ,最小正周期为T ,则有序数对(,)M T 为( ) A .(5,)πB .(4,)πC .(1,2)π-D .(4,2)π8.已知平面向量a ,b ,c 满足:0,1a b c ⋅==,5a c b c -=-=,则a b -的最小值为( ) A .5B .6C .7D .89.要排出高三某班一天中,语文、数学、英语各2节,自习课1节的功课表,其中上午5节,下午2节,若要求2节语文课必须相邻且2节数学课也必须相邻(注意:上午第五节和下午第一节不算相邻),则不同的排法种数是( ) A .84B .54C .42D .1810.某公园新购进3盆锦紫苏、2盆虞美人、1盆郁金香,6盆盆栽,现将这6盆盆栽摆成一排,要求郁金香不在两边,任两盆锦紫苏不相邻的摆法共( )种 A .96B .120C .48D .7211.已知双曲线()222210,0x y a b a b-=>>的左、右焦点分别为12F F ,,过2F 作一条直线与双曲线右支交于A B ,两点,坐标原点为O ,若22215OA a b BF a =+=,,则该双曲线的离心率为( ) A .152B .102C .153D .10312.已知集合{}2(,)|A x y y x ==,{}22(,)|1B x y xy =+=,则A B 的真子集个数为( )A .1个B .2个C .3个D .4个二、填空题:本题共4小题,每小题5分,共20分。
2023-2024学年湖南省衡阳一中高考数学全真模拟密押卷含解析

2024年高考数学模拟试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置. 3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B 铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效. 5.如需作图,须用2B 铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.如图,四边形ABCD 为正方形,延长CD 至E ,使得DE CD =,点P 在线段CD 上运动.设AP x AB y AE =+,则x y +的取值范围是( )A .[]1,2B .[]1,3C .[]2,3D .[]2,42.复数z 满足()11z z i -=+ (i 为虚数单位),则z 的值是( ) A .1i +B .1i -C .iD .i -3.若i 为虚数单位,则复数112iz i+=+在复平面上对应的点位于( ) A .第一象限B .第二象限C .第三象限D .第四象限4.在区间[]3,3-上随机取一个数x ,使得301xx -≥-成立的概率为等差数列{}n a 的公差,且264a a +=-,若0n a >,则n 的最小值为( ) A .8B .9C .10D .115.如图,正三棱柱111ABC A B C -各条棱的长度均相等,D 为1AA 的中点,,M N 分别是线段1BB 和线段1CC 的动点(含端点),且满足1BM C N =,当,M N 运动时,下列结论中不正确...的是A .在DMN ∆内总存在与平面ABC 平行的线段B .平面DMN ⊥平面11BCC B C .三棱锥1A DMN -的体积为定值D .DMN ∆可能为直角三角形6.已知某批零件的长度误差(单位:毫米)服从正态分布()20,3N ,从中随机取一件,其长度误差落在区间(3,6)内的概率为( )(附:若随机变量ξ服从正态分布()2,N μσ,则()68.26%P μσξμσ-<<+=,()2295.44%P μσξμσ-<<+=.)A .4.56%B .13.59%C .27.18%D .31.74%7.函数()()sin f x x θ=+在[]0,π上为增函数,则θ的值可以是( ) A .0B .2πC .πD .32π 8.直线20(0)ax by ab ab ++=>与圆221x y +=的位置关系是( ) A .相交B .相切C .相离D .相交或相切9.某市气象部门根据2018年各月的每天最高气温平均数据,绘制如下折线图,那么,下列叙述错误的是( )A .各月最高气温平均值与最低气温平均值总体呈正相关B .全年中,2月份的最高气温平均值与最低气温平均值的差值最大C .全年中各月最低气温平均值不高于10°C 的月份有5个D .从2018年7月至12月该市每天最高气温平均值与最低气温平均值呈下降趋势10.设函数()f x 的定义域为R ,满足(2)2()f x f x +=,且当2(]0,x ∈时,()(2)f x x x =--.若对任意(,]x m ∈-∞,都有40()9f x ≤,则m 的取值范围是( ).A .9,4⎛⎤-∞ ⎥⎝⎦B .19,3⎛⎤-∞ ⎥⎝⎦C .(,7]-∞D .23,3⎛⎤-∞ ⎥⎝⎦11.函数()()sin ωϕ=+f x x 的部分图象如图所示,则()f x 的单调递增区间为( )A .51,,44k k k Z ππ⎡⎤-+-+⎢⎥⎦∈⎣B .512,2,44k k k Z ππ⎡⎤-+-+∈⎢⎥⎣⎦C .51,,44k k k Z ⎡⎤-+-+∈⎢⎥⎣⎦D .512,2,44k k k Z ⎡⎤-+-+∈⎢⎥⎣⎦12.若平面向量,,a b c ,满足||2,||4,4,||3a b a b c a b ==⋅=-+=,则||c b -的最大值为( )A .523+B .523-C .2133+D .2133-二、填空题:本题共4小题,每小题5分,共20分。
2025届湖南长沙铁一中高考数学全真模拟密押卷含解析

2025届湖南长沙铁一中高考数学全真模拟密押卷请考生注意:1.请用2B 铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。
写在试题卷、草稿纸上均无效。
2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.一个算法的程序框图如图所示,若该程序输出的结果是34,则判断框中应填入的条件是( )A .5?i >B .5?i <C .4?i >D .4?i <2.若复数221a ii++(a R ∈)是纯虚数,则复数22a i +在复平面内对应的点位于( ) A .第一象限B .第二象限C .第三象限D .第四象限3.已知数列{}n a 满足()*331log 1log n n a a n N ++=∈,且2469aa a ++=,则()13573log a a a ++的值是( )A .5B .3-C .4D .9914.在ABC ∆中,M 是BC 的中点,1AM =,点P 在AM 上且满足2AP PM =,则()PA PB PC ⋅+等于( ) A .49B .49-C .43D .43-5.已知双曲线222:1(0)3-=>y x C a a 的一个焦点与抛物线28x y =的焦点重合,则双曲线C 的离心率为( ) A .2 B 3C .3D .46.已知函数()2xf x x a =+⋅,()ln 42xg x x a -=-⋅,若存在实数0x ,使()()005f x g x -=成立,则正数a 的取值范围为( )A .(]01,B .(]04,C .[)1+∞,D .(]0,ln2 7.蒙特卡洛算法是以概率和统计的理论、方法为基础的一种计算方法,将所求解的问题同一定的概率模型相联系;用均匀投点实现统计模拟和抽样,以获得问题的近似解,故又称统计模拟法或统计实验法.现向一边长为2a 的正方形模型内均匀投点,落入阴影部分的概率为p ,则圆周率π≈( )A .42p +B .41p +C .64p -D .43p +8.已知函数21()(1)()2x f x ax x e a R =--∈若对区间[]01,内的任意实数123x x x 、、,都有123()()()f x f x f x +≥,则实数a 的取值范围是( )A .[]12, B .[]e,4C .[]14, D .[)[]12,4e ⋃, 9.设x 、y 、z 是空间中不同的直线或平面,对下列四种情形:①x 、y 、z 均为直线;②x 、y 是直线,z 是平面;③z 是直线,x 、y 是平面;④x 、y 、z 均为平面.其中使“x z ⊥且y z x y ⊥⇒∥”为真命题的是( ) A .③④B .①③C .②③D .①②10.设集合A ={y |y =2x ﹣1,x ∈R },B ={x |﹣2≤x ≤3,x ∈Z },则A ∩B =( ) A .(﹣1,3] B .[﹣1,3]C .{0,1,2,3}D .{﹣1,0,1,2,3}11.设复数z =213ii-+,则|z |=( ) A .13B .23C .12D .2212.当输入的实数[]230x ∈,时,执行如图所示的程序框图,则输出的x 不小于103的概率是( )A .914B .514C .37D .928二、填空题:本题共4小题,每小题5分,共20分。
湖南省衡阳县江山中英文学校2025届高考数学全真模拟密押卷含解析

湖南省衡阳县江山中英文学校2025届高考数学全真模拟密押卷注意事项:1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
2.选择题必须使用2B 铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.记等差数列{}n a 的公差为d ,前n 项和为n S .若1040S =,65a =,则( ) A .3d =B .1012a =C .20280S =D .14a =-2.已知函数()(),12,1x e x f x f x x ⎧≤⎪=⎨->⎪⎩,若方程()10f x mx --=恰有两个不同实根,则正数m 的取值范围为( )A .()1,11,12e e -⎛⎫-⎪⎝⎭B .(]1,11,12e e -⎛⎫- ⎪⎝⎭C .()1,11,13e e -⎛⎫-⎪⎝⎭D .(]1,11,13e e -⎛⎫-⎪⎝⎭3.做抛掷一枚骰子的试验,当出现1点或2点时,就说这次试验成功,假设骰子是质地均匀的.则在3次这样的试验中成功次数X 的期望为( ) A .B .C .1D .24.已知x 与y 之间的一组数据:x1 2 3 4 ym3.24.87.5若y 关于x 的线性回归方程为 2.10.25y x =-,则m 的值为( ) A .1.5B .2.5C .3.5D .4.55.对某两名高三学生在连续9次数学测试中的成绩(单位:分)进行统计得到折线图,下面是关于这两位同学的数学成绩分析.①甲同学的成绩折线图具有较好的对称性,故平均成绩为130分; ②根据甲同学成绩折线图提供的数据进行统计,估计该同学平均成绩在区间内;③乙同学的数学成绩与测试次号具有比较明显的线性相关性,且为正相关; ④乙同学连续九次测验成绩每一次均有明显进步. 其中正确的个数为( ) A .B .C .D .6.设非零向量a ,b ,c ,满足||2b =,||1a =,且b 与a 的夹角为θ,则“||3b a -=”是“3πθ=”的( ).A .充分非必要条件B .必要非充分条件C .充分必要条件D .既不充分也不必要条件7.设复数z 满足(1)21z i i ⋅+=+(i 为虚数单位),则复数z 的共轭复数在复平面内对应的点位于( ) A .第一象限B .第二象限C .第三象限D .第四象限8.()712x x-的展开式中2x 的系数为( )A .84-B .84C .280-D .2809.若复数52z i=-(i 为虚数单位),则z =( ) A .2i + B .2i -C .12i +D .12i -10.复数21iz i=-(i 为虚数单位),则z 等于( ) A .3 B .2C .2D 211.己知四棱锥-S ABCD 中,四边形ABCD 为等腰梯形,//AD BC ,120BAD ︒∠=,ΔSAD 是等边三角形,且23SA AB ==P 在四棱锥-S ABCD 的外接球面上运动,记点P 到平面ABCD 的距离为d ,若平面SAD ⊥平面ABCD ,则d 的最大值为( )A 1B 2C 1D 212.已知n S 是等差数列{}n a 的前n 项和,若312S a S +=,46a =,则5S =( )A .5B .10C .15D .20二、填空题:本题共4小题,每小题5分,共20分。
湖南省长沙市(新版)2024高考数学部编版考试(押题卷)完整试卷

湖南省长沙市(新版)2024高考数学部编版考试(押题卷)完整试卷一、单选题:本题共8小题,每小题5分,共40分 (共8题)第(1)题已知圆锥的顶点为,母线所成角的余弦值为,且该圆锥的母线是底面半径的倍,若的面积为,则该圆锥的表面积为()A.B.C.D.第(2)题如图,在直三棱柱中,为等腰直角三角形,且,则异面直线与所成角的正弦值为()A.B.C.D.第(3)题已知定义在上的偶函数,对,有成立,当时,,则()A.B.C.D.第(4)题已知函数是的导数,则以下结论中正确的是()A .函数是奇函数B.函数与的值域相同C.函数的图象关于直线对称D.函数在区间上单调递增第(5)题已知某工厂生产零件的尺寸指标,单位为.该厂每天生产的零件尺寸在(43.8,48.6)的数量为84000,则可以估计该厂每天生产的零件尺寸在42.6以下的数量为()参考数据:若,则.A.1587B.2275C.2700D.1350第(6)题已知函数的图象关于点对称,且在上没有最小值,则的值为()A.B.C.D.第(7)题函数的图象与函数的图象交点的横坐标,则=()A.B.-C.D.第(8)题已知O为坐标原点,抛物线的焦点为F,点M在抛物线上,且,则M点到轴的距离为()A.2B.C.D.二、多选题:本题共3小题,每小题6分,共18分 (共3题)第(1)题定义在上的函数满足在区间内恰有两个零点和一个极值点,则下列说法不正确的是()A.的最小正周期为B .将的图象向右平移个单位长度后关于原点对称C.图象的一个对称中心为D .在区间上单调递增第(2)题已知定义在上的函数在上单调递增,且为偶函数,则()A.的对称中心为B.的对称轴为直线C.D.不等式的解集为第(3)题已知正方体的棱长为分别为的中点,为正方体的内切球上任意一点,则()A.球被截得的弦长为B.球被四面体表面截得的截面面积为C.的范围为D.设为球上任意一点,则与所成角的范围是三、填空题:本题共3小题,每小题5分,共15分 (共3题)第(1)题已知A,B是不过原点O的直线l与椭圆C:的两个交点,E为A,B中点,设直线AB、OE的斜率分别为且、,若,则该椭圆的离心率为_________.第(2)题已知,如图是的部分图象,则___________;在区间内有___________条对称轴.第(3)题如图,四边形中,,,,,则面积的最大值为______.四、解答题:本题共5小题,每小题15分,最后一题17分,共77分 (共5题)第(1)题已知数列中,,,.(1)求数列的通项公式;(2)设,数列的前n项和,求证:.第(2)题已知函数,.(1)当,求的单调递减区间;(2)若在恒成立,求实数a的取值范围.第(3)题已知函数.(1)若的最小值为.求的值;(2)若函数有两个极值点.其中为自然对数的底数.求实数的取值范围.第(4)题已知a>0,函数.(1)若f(x)为减函数,求实数a的取值范围;(2)当x>1时,求证:.(e=2.718…)第(5)题如图,四棱锥的底面是等腰梯形,,,,,为棱上的一点.(1)证明:;(2)若二面角的余弦值为,求的值.。
湖南省长沙市(新版)2024高考数学部编版真题(押题卷)完整试卷

湖南省长沙市(新版)2024高考数学部编版真题(押题卷)完整试卷一、单选题:本题共8小题,每小题5分,共40分 (共8题)第(1)题已知等差数列的公差,且,,成等比数列,若,为数列的前n项和,则的最小值为()A.B.7C.D.第(2)题如图所示,圆柱与圆锥的组合体,已知圆锥部分的高为,圆柱部分的高为,底面圆的半径为,则该组合体的体积为()A.B.C.D.第(3)题已知椭圆的左、右焦点分别为,左顶点为A,离心率为,经过的直线与该椭圆相交于P,Q两点(其中点P在第一象限),且,若的周长为,则该椭圆的标准方程为()A.B.C.D.第(4)题如图,在平行六面体中,为与的交点.若,则下列向量中与相等的是()A.B.C.D.第(5)题椭圆的左右焦点分别为为上一点,则当的面积最大时,的取值为()A.B.C.D.第(6)题已知,,有以下命题:①;②;③;④.其中正确命题的序号是()A.②③B.①③C.①④D.②④第(7)题设x,y满足约束条件,则的最小值为()A.1B.C.D.2第(8)题在平行四边形中,M为的中点,,则()A.B.C.D.二、多选题:本题共3小题,每小题6分,共18分 (共3题)下列命题成立的是()A.若,则B.若,,,则C.若,,则D.若,,则第(2)题已如斜率为k的直线l经过抛物线的焦点且与此抛物线交于,两点,,直线l与抛物线交于M,N两点,且M,N两点在y轴的两侧,现有下列四个命题,其中为真命题的是().A.为定值B.为定值C.k的取值范围为D.存在实数k使得第(3)题已知a,b,c分别为内角A,B,C的对边,下面四个结论正确的是()A.若,则为等腰三角形B.在锐角中,不等式恒成立C .若,,且有两解,则b的取值范围是D.若,的平分线交于点D,,则的最小值为9三、填空题:本题共3小题,每小题5分,共15分 (共3题)第(1)题小王自主创业开了一家礼品店,平常需要用彩绳对礼品盒做一个捆扎(要求扎紧绳子不能松动),其中一种长方体的礼品盒一般都是采用“十字捆扎”(如图1所示),后来他又学习了一种新的彩绳捆扎方法“对角捆扎”(如图2所示),并认为“对角捆扎”比一般的“十字捆扎”包装更节省彩绳.设长方体礼品盒的长、宽、高分别为,则“十字捆扎”所需绳长为__________;若采用“对角捆扎”,则所需绳长的最小值为__________.(注:长方体礼品盒的高小于长、宽,结果用含的式子表示)第(2)题若直线y=2x+b是曲线y=e x-2的切线,则实数b=______.第(3)题设集合其中均为整数},则集合_____..四、解答题:本题共5小题,每小题15分,最后一题17分,共77分 (共5题)第(1)题已知中,角,,所对边分别为,,,若满足.(1)求角的大小;(2)若,求面积的取值范围.第(2)题在直角坐标系中,曲线:(为参数),以原点为极点,轴的正半轴为极轴建立极坐标系,曲线:,曲线与曲线相交于,两点.(1)求曲线的直角坐标方程与直线的一般方;(2)点,求.第(3)题长江十年禁渔计划全面施行,渔民老张积极配合政府工作,如期收到政府的补偿款.他决定拿出其中10万元进行投资,并看中了两种为期60天(视作2个月)的稳健型(不会亏损)理财方案.方案一:年化率,且有的可能只收回本金;方案二:年化率,且有的可能只收回本金;已知老张对每期的投资本金固定(都为10万元),且第一次投资时选择了方案一,在每期结束后,老张不间断地进行下一期投资,并且他有的可能选择另一种理财方案进行投资.(1)设第i次投资()选择方案一的概率为,求;(2)求一年后老张可获得总利润的期望(精确到1元).注:若拿1千元进行5个月年化率为的投资,则该次投资获利元.三个互不相同的函数与在区间上恒有或恒有,则称为与在区间上的“分割函数”.(1)设,试分别判断是否是与在区间上的“分割函数”,请说明理由;(2)求所有的二次函数(用表示,使得该函数是与在区间上的“分割函数”;(3)若,且存在实数,使得为与在区间上的“分割函数”,求的最大值.第(5)题已知,,函数的最小值为.(1)求的值;(2)求的最小值.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数学试卷 第1页(共6页) 数学试卷 第2页(共6页) 数学试卷 第3页(共6页)
绝密★启用前
2013年普通高等学校招生全国统一考试(湖南卷)
数学(文史类)
本试题卷包括选择题、填空题和解答题三部分,共6页.时量120分钟.满分150分. 一、选择题:本大题共9小题,每小题5分,共45分.在每小题给出的四个选项中,只有一
项是符合题目要求的.
1.复数i (1i)z =+g (i 为虚数单位)在复平面上对应的点位于
( )
A .第一象限
B .第二象限
C .第三象限
D .第四象限 2.“12x <<”是“2x <”成立的
( )
A .充分不必要条件
B .必要不充分条件
C .充分必要条件
D .既不充分也不必要条件
3.某工厂甲、乙、丙三个车间生产了同一种产品,数量分别为120件,80件,60件.为了解它们的产品质量是否存在显著差异,用分层抽样方法抽取了一个容量为n 的样本进行调查,其中从丙车间的产品中抽取了3件,则n =
( )
A .9
B .10
C .12
D .13
4.已知()f x 是奇函数,()g x 是偶函数,且(1)(1)2f g -+=,(1)(1)4f g +-=,则(1)g 等于
( )
A .4
B .3
C .2
D .1
5.在锐角ABC △中,角A ,B 所对的边长分别为a ,b .若2sin 3a B b =,则角A 等于( ) A .
π3
B .
π4
C .
π6
D .
π12
6.函数()ln f x x =的图象与函数2
()44g x x x =-+的图象的交点个数为
( )
A .0
B .1
C .2
D .3
7.已知正方体的棱长为1,其俯视图是一个面积为1的正方形,侧视图是一个面积为2的矩形,则该正方体的正视图的面积等于
( )
A .
3
B .1
C .
21
+ D .2
8.已知a ,b 是单位向量,0=a b g .若向量c 满足||1--=c a b ,则||c 的最大值为 ( )
A .21-
B .2
C .21+
D .22+
9.已知事件“在矩形ABCD 的边CD 上随机取一点P ,使APB △的最大边是AB ”发生的概
率为12,则AD AB =
( )
A .12
B .
1
4
C .
32 D .
74
二、填空题:本大题共6小题,每小题5分,共30分.
10.已知集合{2,3,6,8}U =,{2,3}A =,{2,6,8}B =,则()U A B =I ð .
11.在平面直角坐标系xOy 中,若直线1l :21,x s y s =+⎧⎨=⎩(s 为参数)和直线2l :,
21x at y t =⎧⎨=-⎩
(t
为参数)平行,则常数a 的值为 .
12.执行如图所示的程序框图,如果输入1a =,2b =,则输出的a
的值为 .
13.若变量x ,y 满足约束条件28,04,x y x +⎧⎪
⎨⎪⎩
≤≤≤则x y +的最大值为 .
14.设1F ,2F 是双曲线C :22
221(0,0)x y a b a b
-=>>的两个焦点.若在C 上存在一点P ,使
12PF PF ⊥,且1230PF F ∠=o
,则C 的离心率为 .
15.对于12100{,,,}E a a a =L 的子集12{,,,}k i i i X a a a =L ,定义X 的“特征数列”为
12100,,,x x x L ,其中121k i i i x x x ====L ,其余项均为0.例如:子集23{,}a a 的“特征数列”为0,1,1,0,0,,0L .
(1)子集135{,,}a a a 的“特征数列”的前3项和等于 .
(2)若E 的子集P 的“特征数列”1p ,2p ,L ,100p 满足11p =,11i i p p ++=,
199i ≤≤;
E 的子集Q 的“特征数列”1q ,2q ,L ,100q 满足11q =,121j j j q q q ++++=,
198j ≤≤,则P Q I 的元素个数为 .
三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤. 16.(本小题满分12分)
已知函数π
()cos cos()3
f x x x =-
g .
(Ⅰ)求2π
(
)3
f 的值; (Ⅱ)求使1
()4
f x <成立的x 的取值集合.
17.(本小题满分12分)
如图,在直棱柱111ABC A B C -中,90BAC ∠=o ,2AB AC ==,13AA =,D 是BC 的中点,点E 在棱1BB 上运动. (Ⅰ)证明:1AD C E ⊥;
(Ⅱ)当异面直线AC ,1C E 所成的角为60o 时,求三棱锥111C A B E -的体积.
--------在
--------------------此--------------------
卷--------------------
上--------------------
答--------------------
题--------------------无--------------------
效--------
--------
姓名________________ 准考证号_____________
数学试卷 第4页(共6页) 数学试卷 第5页(共6页) 数学试卷 第6页(共6页)
18.(本小题满分12分)
某人在如图所示的直角边长为4米的三角形地块的每个格点(指纵、横直线的交叉点以及三角形的顶点)处都种了一株相同品种的作物.根据历年的种植经验,一株该种作物的年收获量Y (单位:㎏)与它的“相近”作物株数X 之间的X 1 2 3 4 Y
51
48
45
42
这里,两株作物“相近”是指它们之间的直线距离不超过1米. Y
51 48 45 42 频数
4
(Ⅱ)在所种作物中随机选取一株,求它的年收获量至少为48 ㎏的概率.
19.(本小题满分13分)
设n S 为数列{}n a 的前n 项和,已知10a ≠,112n n a a S S -=g ,*n ∈N . (Ⅰ)求1a ,2a ,并求数列{}n a 的通项公式; (Ⅱ)求数列{}n na 的前n 项和.
20.(本小题满分13分)
已知1F ,2F 分别是椭圆E :2
215
x y +=的左、
右焦点,1F ,2F 关于直线20x y +-=的对称点是圆C 的一条直径的两个端点. (Ⅰ)求圆C 的方程;
(Ⅱ)设过点2F 的直线l 被椭圆E 和圆C 所截得的弦长分别为a ,b .当ab 最大时,求直线l 的方程.
21.(本小题满分13分)
已知函数2
1()e 1x
x f x x
-=
+. (Ⅰ)求()f x 的单调区间;
(Ⅱ)证明:当1212()()()f x f x x x =≠时,120x x +<.
谢谢观赏。