云南省2012届高三毕业班统一检测--数学文
云南昆明一中2012届高三上12月月考数学文试题

因为 AB 平面 ABC , 所以 AB CC1 又因为 AC BC 2 , N 是 AB 中点,所以 AB CN . 由于 CC1 CN C且CC1、CN 面MCN
所以 AB 面MCN
……………………5 分
又因为 AB 面ABB1A1 所以 平面 MCN 平面 ABB1A1 ;
nad-bc2
附:K2=
;
a+bc+da+cb+d
非优秀 总计
P(k2>k0) 0.10
甲校 乙校 总计 0.025 0.010
K
2.706 5.024 6.635
20.(本小题满分 12 分)已知函数 f (x) x 2 a ln x.
(I)当 a 2e时, 求函数f (x) 的单调区间和极值; (II)若函数 g(x) f (x) 2 在[1,4]上是减函数,求实数 a 的取值范围.
C. y2 4x
D. y 4x2
8.若一个底面是正三角形的三棱柱的正视图如图所示,则其侧面积等于
()
A. 3
B.2
C. 2 3
D.6
9.在 ABC 中,如果 sin A 3 sin C , B 30 , b 2 ,则 ABC 的面积为
()
A.4
B.1
C. 3
D.2
10.若直线 2ax by 2 0a 0,b 0 恰好平分圆 x2 y2 2x 4y 1 0 的面积,则 1 1 的最小值
x
当 x 变化时, f (x), f (x) 的变化情况如下:
x f (x)
(0, e)
e
—
0
( e,)
+
f (x)
云南省2012年第一次高中毕业生复习统一检测(文数,解析版)

2012年云南省第一次高中毕业生复习统一检测文科数学第1题:已知集合{}1,2S =,{}1,3T =,则S T =(A ){}1(B ){}2,3 (C ){}1,2,3(D ){}1,2,1,3解:∵{}1,2S =,{}1,3T =,∴S T ={}12,3,. 故选(C ).答题分析:这本是一道容易题,仅仅只涉及了集合的并运算.然而在抽样阅卷的过程中,发现选其他错误选项的考生大有人在,这一方面说明考生之间差异巨大,同时是否也暴露出我们的教学对后进生没有很好地照顾到,是否遗忘了后进生。
第2题:抛物线22x y =的焦点坐标是(A )1(,0)2 (B )1(0,)2(C )(1,0) (D )(0,1) 解:∵2221x y y ==⨯⨯∴22x y =的焦点坐标是1(0,)2. 故选(B ).答题分析:一些考生没有注意到抛物线的开口方向,错误地选择了 A.关于抛物线的四种标准方程,务必注意它们的开口方向同方程结构的关系,关于这个知识点,历年来的各种大型考试多有所涉及,可出错的考生每次都不少! 第3题:函数()tan(2)f x x π=+的最小正周期等于(A )2π (B )π (C )2π (D )4π 解:∵()tan(2)tan 2f x x x π=+= ∴()tan 2f x x =的最小正周期为2π 故选(C ).答题分析:有的考生可能是错误地记成了正弦函数的周期,故得到了错误答案22T ππ==,选(B ).实际上,()tan(2)f x x π=+的周期是2T π=.需要强调的是:如果对三角函数的图象性质有深刻地理解,tan (2)y x π=+与tan (2)y x =之间只是一个平移变换,因此本题不必化简函数就可以直接得出答案.第4题:已知i 是虚数单位,122z i =+,213z i =-,那么复数212z z z =在复平面内对应的点位于(A )第一象限 (B )第二象限 (C )第三象限 (D )第四象限解:∵222122(1)4(3)135z i z i z i +===-+-∴212z z z =在复平面上对应的点位于第二象限.故选(B ).答题分析:一些考生可能是复数运算有失误而导致出错. 第5题:如果函数213xy x -=+在x t =时取得极小值,那么t =(A )3 (B )1 (C )1- (D )3- 解:∵213xy x-=+ ∴2222223(1)223(3(3)x x x x x y x x ----⨯--'==++) ∵当1x <-或3x >时,0y '>,当13x -<<时,0y '<, ∴当3t =时,y 取得极小值. 故选(A ).答题分析:1.一些考生把()f x '求错,导致了错误. 2.有的考生是这样做的:把四个选项分别代回函数213xy x -=+,即当x 分别等于3、1、-1、-3时,计算y 值分别为16-、0、12、13.因为16-最小,所以当3t =时,y 取得极小值,选A.应该说,这样的答案是凑巧对的,但过程不对.因为尽管16-是四个数中的最小的,但它并不一定是极小值!3.本题也可以用均值不等式解决,但比较好的通用方法是用导数为工具研究函数的性质.第6题:下图是一个几何体的三视图,其中正视图是边长为2的等边三角形,侧视图是直角边长分别为11的半圆,则该几何体的体积等于(A(B(C(D )12π解:∵在几何体的三视图中,正视图是边长为2的等边三角形,侧视图是直角边长分别为11的半圆,∴此几何体是底面半径等于1.. 故选(A ).答题分析:1.一些考生到了最后关头,忘了是半个圆锥,没有把体积除以2,所以误选B.2.由三视图还原立体图形,对学生的空间想象能力要求较高,也一直是近几年新课标高考的常考题型,在教学中要重点突破!第7题:已知n S 是等比数列{}n a 的前n 项和,1a 与3a 的等差中项等于15. 如果4120S =,那么2012200920093S S -= (A )18 (B )25 (C )32 (D )39解:设等比数列{}n a 的公比为q ,由已知得1q ≠,2114130(1)1201a a q a q q⎧+=⎪⎨-=⎪-⎩,正视图侧视图俯视图化简得2121(1)30(1)(1)120a q a q q ⎧+=⎨++=⎩,解得133a q ⎧=⎨=⎩. ∴3(13)3(31)132n n n S --==-.∴20122009201220092009200933339323S S --=⨯=. 故选(D ).答题分析:本题考查基本量方法,考查方程的思想.一些考生在解方程组的时候不能整体消元,导致运算冗长甚至出错.对计算能力的考查,一直是高考数学的一个着眼点,教学中要加强对计算能力的培养,学生对常见的计算问题,如解方程组、解不等式组等要训练有素.第8题:已知01a = (,),34)b =-(,,则向量a 在向量b 方向上的投影等于(A )4- (B )45-(C )45 (D )4解:∵01a = (,),34)b =-(,, ∴4a b ⋅=- ,5b = ,45a b b⋅=-.∴向量a 在向量b 方向上的投影为45-.故选(B ).答题分析:1. 向量a 在向量b 方向上的投影,根据定义等于cos ,a a b 〈〉.一些考生正是通过计算模长和两向量夹角的余弦值的积来获得答案,这无疑是正确的,但加大了运算量,思维也有来回重复之处.2. 向量a 在向量b 方向上的投影等于a b b ⋅ ,由cos ,a ba ab b⋅〈〉=可得,应理解该公式并牢牢记清楚.另一方面还可结合点积的形方面进行记忆。
2012年云南省第一次省统测(文科数学)答案

2012年云南省第一次高中毕业班复习统一检测文科数学 客观题参考答案 文澜高级中学 徐永祥 唐剑一、选择题1. 由}3,1{},2,1{==T S ,得}3,2,1{=T S .故选C.2. 抛物线)21,0(22F y y x 轴上,的焦点在=,故选B. 3. 由正切函数的周期公式ωπ=T ,得2π=T ,故选C.4. 因为,8)22(,31,2222121i i z i z i z =+=-=+=所以)31)(31()31(8318221i i i i i i z z z +-+=-== i i 5451210824+-=+-=,所以在复平面内对应的点是)54,512(-位于第二象限.故选B. 5.由222222)3()3)(1()3(32)31(x x x x x x x x y +-+=+--='+-=',令1,3,0-==='x x y 则,当1-<x 时, 0>'y ;当31<<-x 时,0<'y ; 当3>x 时,0>'y .所以当3=x 时,函数y 取得极小值,所以 3=t .故选A.6.根据三视图及相关数据,将三视图还原成一个几何体,该几何体是一个底面半径为1、母线长为2、锥高为3的半圆锥。
所以该几何体的体积等于其圆锥体积的一半.即圆锥几何体V V 21=. 所以ππ633131212=⨯⨯⨯⨯=几何体V .故选A. 7.设公比为q ,由1201)1(15241431=--=⨯=+qq a S a a 及,解得3,31==q a .所以通项公式nn n a 3331=⨯=-.而393)133(3332009220102009201020112012200920092012=++⨯=++=+a a a S S .故选D. 8.向量b a 在向量方向上的投影等于><⋅b a ,cos ,而b a b a >=<,cos ,所以><,c o s54)4(3)4(13022-=-+-⨯+⨯=b a .故选B.9.不妨设点P 的纵坐标为0>p y ,则由9212121=⨯⨯=∆p PA A y A A S ,得59=p y ,代入椭圆方程25925922⨯=+y x 中,计算得4±=x .所以点P 坐标为()59,4(±.而)59,9(1=PA ,)59,1(2-=PA ,所以25144)59,1()59,9(21-=-∙=∙PA PA . 故选A.10.已知是异面直线与直线平面n m ,βα⊥,对于①,βα⊂n m ,//不能推出n m ⊥;对于②,βα//,n m ⊥不能推出n m ⊥;对于③, n m n m ⊥⇒⊥⊥βα,;对于④,βα//,//n m ,且m与α的距离等于n 与β的距离, 不能推出n m ⊥. 所以选C.11.观察如图所示的程序框图可知,是在不满足条件.....时输出1320=sum ,代初始值,第一次运算:;12121,12=⨯=∙==i sum sum i第二次运算:;1321112,11112=⨯=∙==-=i sum sum i 第三次运算:132010132,10111=⨯=∙==-=i sum sum i .即取9=i 时,不满足10≥i 条件时输出1320=sum . 故选B.12.由所给出的频率分布直方图和已知条件可知,第二小组的频率为:4.0)05.01.02.025.0(1=+++-,所以高三年级的男生总数:10004.0400=(人). 体重正常的频率(第二小组和第三小组)为: 6.02.04.0=+. 故选D. 二、填空题13.依题意,实心球的体积等于圆柱形量杯上升水的体积,即体积圆柱形量杯上社升水的球V V =. 所以r r ⨯⨯=⨯⨯23634ππ,得33=r . 故填33. 14.根据分段函数可得,3)0(,0)1(==f f , 故填3. 15.当2≥n 时,11,32132111-+=∴+--+=-=---n n a a a n a n S S a n n n n n n n . 利用累积法得,6)1(,31,111223211+==⨯⨯⨯∙∙∙⨯⨯=---n n a a a a a a a a a a a a n n n n n n 所以已知. 所以15109619=⨯⨯=a , 故填15. 16.由弦长8的一半4及圆的半径5,得弦心距为3.又由圆心(0,0)到直线01=++by ax 的距离为:310022弦心距=++⨯+⨯b a b a ,解之,得1)(922=+b a .所以)53(972)5533(9)(9)53(5322222222222222b a a b b a a b b a b a b a ++=+++=+⨯+=+.而1521525322222222=⋅⋅≥+ba ab b a a b ,所以151872)53(97253222222+≥++=+b a a b b a .故填151872+.。
2012年云南省第二次高中毕业生复习检测文科数学

2012年云南省第二次高中毕业生复习检测文科数学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.参考公式:样本数据12,,,n x x x 的标准差s =其中x 为样本平均数 柱体体积公式V Sh = 其中S 为底面面积,h 为高锥体体积公式13V Sh =其中S 为底面面积,h 为高 球的表面积,体积公式24R S π=,334R V π=其中R 为球的半径第Ⅰ卷(选择题共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.函数()sin 2f x x =A .是奇函数但不是偶函数B .是偶函数但不是奇函数C .既是奇函数也是偶函数D .既不是奇函数也不是偶函数2.已知直线y x =与圆229x y +=相交于M 、N 两点,则||M N 等于A .3B .6C .9D .183.已知2sin cos 9sin 3cos αααα+=-,则tan α等于A .-4B .14-C .14D .44.已知i 是虚数单位,那么复数23i i+等于A .32i --B .32i -C .132i -+ D .132i -5.已知0a >,如果直线2y x =是双曲线22219x ya-=的渐近线,那么a 等于A .6B .18C .32D .926.某赛季,甲、乙两名篮球运动员都参加了11场比赛,他们在这11场比赛的得分用下面的茎甲乙3 8 52 6 81 2 6127 8 51 1 22 01 01234叶图表示,设甲运动员得分的中位数为1M,乙运动员得分的中位数为2M,则在下面选项中,正确的是A.1218,12M M==B.1281,12M M==C.128,2M M==D.123,1M M==7.已知等比数列{}n a的公比为2q=,它的前9项的平均值等于5113,若从中去掉一项ma,剩下的8项的平均值等于14378,则m等于A.5 B.6 C.7 D.88.设R是实数集,平面向量(2,sin)3xa=,2(cos,2cos)33x xb=,()f x a b=⋅.若n R∃∈,x R∀∈,()()f x f n≤,则()f n等于A.4B.1-C.1+D.23+9.已知平面向量(3,1)a=,(,6)b x=-,设a与b的夹角的余弦值等于35-,那么x的值为A.263B.-2 C.263,-2 D.263-,210.已知椭圆E上存在点P,在P与椭圆E和两个焦点1F、2F构成的△12F P F中,121221s i n:s i n:s i n7:10:11P F F F P F P F F∠∠∠=,则椭圆E的离心率等于A.59B.711C.1117D.1311.已知2()3lnf x x ax x=++在(1,)+∞上是增函数,则实数a的取值范围为A.(,-∞-B.(,2-∞C.[)-+∞D.[5,)-+∞12.如图在棱长等于2的正方体1111ABC D A B C D-中,点E、F分别是棱11A B、B C的中点,则异面直线A E 与1B F 所成的角的余弦值等于A .12 B.2C .35D .45第Ⅱ卷(非选择题共90分)注意事项:用钢笔或圆珠笔直接答在答题卡上.二、填空题:本大题共4小题,每小题5分,共20分,把答案填在题中横线上.13.已知函数()f x 的定义域为正整数N +,x N +∀∈,1()(2)1()f x f x f x -+=+,若1(1)2f =,1(2)4f =,则(2011)(2012)f f += (用数字作答).14规定:程序运行到“判断结果是否大于244”为1次运算.若输入5x =,程序经过n 次运算才结束,则n = . 15.在[]6,9-内作取一个实数m ,设2()f x x m x m =-++,则函数()f x 的图像与x 轴有公共点的概率等于 .16.如图是一个空间几何体的三视图,其中正视图是长、宽分别等于5和3的长方形,侧视图是长、宽分别等于5和4的长方形,俯视图是直角边长分别为3和4的直角三角形,则这个几何体的表面积等于 .三、解答题:本大题共6小题,共70分,解答应写出文字说明,证明过程或演算步正视图 侧视图俯视图骤.17.(本小题满分12分)已知等差数列{}n a 的前n 项和为n S ,82a =,868S =-. (1)求数列{}n a 的通项公式; (2)求数列{}||n a 的前n 项和为n T .18.(本小题满分12分)经过随机抽样,得到1000名高三学生体重的基本情况,见下表:(1)根据研究需要,有关部门按体重偏瘦、正常、偏胖在这1000名学生中进行了分层抽样.已知抽取了16名体重偏胖的学生,那么在这1000名学生中一共应该抽多少名?(2)假设150b ≥,190c ≥,求这1000名学生中,体重偏胖的男生人数少于体重偏胖的女生人数的概率.19.(本小题满分12分)在三棱锥P A B C -中,P A ⊥面ABC ,B C P B ⊥.(1)求证:点P 、A 、B 、C 有同一个球面上;(2)设2P A A B B C ===,求三棱锥A P B C -的体积.20.(本小题满分12分)已知抛物线2:4P y x =的焦点为F ,经过点(4,0)H 作直线与抛物线P 相交于A 、B 两点,设11(,)A x y 、22(,)B x y ,且1216y y =-. (1)求12y y 的值;(2)是否存在常数a ,当点M 在抛物线P 上运动时,直线x a =都与以M F 为直径的圆相切?若存在,求出所有a 的值;若不存在,请说明理由.A PB21.(本小题满分12分)已知a 、b 都是实数,32()4f x ax x bx =+-+的图像在点(1,(1))f 处的切线与y 轴垂直.(1)当1a =时,解关于x 的不等式()216f x x ax +>-; (2)当103a -<<,101x ≤≤,201x ≤≤时,求证:211()()1f x f x -<-<请考生在第22、23、24三题中任选一题作答,如果多做,则按所做的第一题记分.作答时请写清题号. 22.(本小题满分10分)【选修4-1:几何选讲】如图,O 的半径O B 垂直于直径A C .M 是半径O A 上的点,BM 的延长线与O 交于点N ,O 的经过N 的切线与A C 的延长线交于点P .(1)求证:2PMPA PC =⋅;(2)设O的半径等于8B M M N ⋅=,求P A 的长.23.(本小题满分10分)【选修4-4:坐标系与参数方程】在平面直角坐标系xOy 中,倾斜角等于6π的直线l 经过点(1,2)P -,在以原点O 为极点,x轴正半轴为极轴的极坐标系中,曲线C 的极坐标方程为23cos sin 4ρρθρθ+-=. (1)写出直线l 的参数方程;(2)设l 与曲线C 的两个交点为A 、B ,求||||PA PB ⋅的值. 24.(本小题满分10分)【选修4-5:不等式选讲】已知集合S 中的元素是同时满足以下三个条件的函数()f x :①定义域为(,)-∞+∞;②(2)(2)f f -=;③对任何实数12,x x ,如果1||2x ≤,2||2x ≤,那么2121|()()|||f x f x x x -≤-.(1)求证:2()54xF x S=+∈;(2)设a是实数,且()||f x x ax S=+∈,解关于x的不等式(3)()2f x f x+≤+.。
云南省2012年第一次省统测数学(文科)

2012年云南省第一次高中毕业生复习统一检测文科数学一、填空题1.已知集合{}{}1,2,1,3S T ==,则ST =A .{}1B .{}2,3C .{}1,2,3D .{}1,2,1,3 2.抛物线22x y =的焦点坐标是 A .1,02⎛⎫⎪⎝⎭ B .10,2⎛⎫⎪⎝⎭C .()1,0D .()0,1 3.函数()()tan 2f x x π=+的最小正周期等于 A .2π B .π C .2π D .4π4.已知i 是虚数单位,1222,13z i z i =+=-,那么复数212z z z =在复平面内对应的点位于A .第一象限B .第二象限C .第三象限D .第四象限 5.如果函数213xy x-=+在x t =时取得极小值,那么t = A .3 B .1 C .-1 D .-36.下图是一个几何体的三视图,其中正视图是边长为2的等边三角形,侧视图是直角边长分别为11的半圆,则该几何体的体积等于ABCD .12π正视图 侧视图俯视图7.已知n S 是等比数列{}n a 的前n 项和,1a 和3a 的等差中项等于15,如果4120S =,那么2012200920093S S -= A .18 B .25 C .32 D .398.已知()()0,1,3,4==-a b ,则向量a 在向量b 方向上的投影等于 A .4- B .45-C .45D .4 9.已知椭圆22:1259x y E +=的长轴的两个端点分别为1A 、2A ,点P 在椭圆E 上,如果12A PA ∆的面积等于9,那么12PA PA ⋅=A .14425-B .14425C .8125-D .812510.已知,αβ是两个互相垂直的平面,,m n 是一对异面直线,下列四个结论: ① //,m n αβ⊂;② ,//m n αβ⊥;③ ,m n αβ⊥⊥;④ //,//m n αβ,且m 与α的距离等于n 与β的距离.其中是m n ⊥的充分条件的为 A .① B .② C .③ D .④11.运行下图所示的程序,如果输出结果为1320sum =,那么判断框中应填 A .9i ≥ B .10i ≥ C .9i ≤ D .10i ≤12.某校对高三年级学生进行体检,并将高三男生的体重()kg 数据进行整理后分成五组,绘制成下图所示的频率分布直方图.如果规定,高三男生的体重结果只分偏胖、偏瘦和正常三个类型,超过65kg 属于偏胖,低于55kg 属于偏瘦.已知图中从左到右第一、第三、第四、第五小组的频率分别为0.25,0.2,0.1,0.05,第二小组的频数为400.若该校高三男生的体重没有55kg 和65kg ,则该校高三年级的男生总数和体重正常的频率分别为 A .1000,0.5 B .800,0.5 C .800,0.6 D .1000,0.6二、填空题13.在一个水平放置的底面半径等于6的圆柱形量杯中装有适量的水,现放入一个半径等于r 的实心球,如果球完全浸没于水中且无水溢出,水面高度恰好上升r ,那么r =____.14.已知()2log ,03,0x x f x x >⎧=⎨≤⎩,计算()1f f =⎡⎤⎣⎦____3_____. 15.设数列{}n a 的前n 项和为n S ,如果112,33n n n a S a +==,那么9a =___15_____. 16.如果直线10ax by ++=被圆2225x y +=截得的弦长等于8,那么2235a b+的最小值等于______72+.)三、解答题17.已知A 、B 、C 是ABC ∆的三个内角,A 、B 、C 对的边分别为a 、b 、c ,设平面向量()()2cos ,sin ,cos ,sin ,3B C C B =-=⋅=m n m n . (Ⅰ)求cos A 的值;(Ⅱ)设3,a ABC =∆的面积S =,求b c +的值. (Ⅰ)23-(Ⅱ)我得到226,1bc b c =+=,根据此b 、c 无实数解,不知道是不是我计算错了……18.盒子内装有4张卡片,上面分别写着数字1,1,2,2,每张卡片被取到的概率相等.先从盒子中随机任取1张卡片,记下在上面的数字x ,然后放回盒子内搅匀,再从盒子中随机任取1张卡片,记下它上面的数字y . (Ⅰ)求2x y +=的概率P ; (Ⅱ)设“函数()()231855f t t x y t =-++在区间()2,4内有且只有一个零点”为事件A ,求A 的概率()P A .(Ⅰ)14 (Ⅱ)1219.如图,在空间几何体SABCD 中,四边形ABCD 为矩形,,,SD AD SD AB ⊥⊥2,4,AD AB SD ===(Ⅰ)证明:平面SDB ⊥平面ABCD ; (Ⅱ)求SA 与平面SDB 所成角的正弦值.20.双曲线S 的中心在原点,焦点在x 轴上,离心率e =350y -+=上的点与双曲线S . (Ⅰ)求双曲线S 的方程;(Ⅱ)设经过点()2,0-,斜率等于k 的直线与双曲线S 交与A 、B 两点,且以A 、B 、()0,1P 为顶点的ABP ∆是以AB 为底的等腰三角形,求k 的值.(Ⅰ)2212x y -=(Ⅱ)k =或0(此处不知道是否算错,答案比较不一般……) 21.已知实数a 是常数,()()27ln 1f x x a x =+-+,当1x >时,()f x 是增函数. (Ⅰ)求a 的取值范围; (Ⅱ)设n 是正整数,证明:()221111111ln 1722n n n ⎛⎫⎛⎫⨯+++++++>+ ⎪ ⎪⎝⎭⎝⎭. 解析:(Ⅰ)52a ≥; (Ⅱ)看到不等式的左边可以理解为21117n n⋅+的累加,可以考虑到不等式的右边也可以写成n 项的累加()231ln 1ln ln ln 12n n n++=+++即只要证明:21111ln 7n n n n+⋅+>()*n N ∈ ① 即可 根据题意我们可以联想到原函数,其中有ln x ,不妨令1n x n +=,得11n x n+=>(这样刚好满足原函数在1x >时为增函数)代入①并整理可得2567ln x x x +-> ②即:只要能够证明②,就可以得到①对任意的*n N ∈成立 根据原函数当52a ≥时在()1,+∞上为增函数 即()()()()227ln 1111f x x a x f x =+-+>=++ 整理得:22217ln x ax a x +--> ③ 结合②式,令52a =时,③式即可转化为②式如图,四边形ABCD 是○· O 的内接四边形,BD 不经过点O ,AC 平分∠BAD ,经过点C 的直线分别交AB 、AD 的延长线于E 、F ,且2CD AB DF =⋅.证明: (Ⅰ)△ABC ∽△CDF ;(Ⅱ)EF 是○· O 的切线.23.选修4-4:坐标系与参数方程在平面直角坐标系xOy 中,()()1,0,2,0A B 是两个定点,曲线C 的参数方程为22x t y t⎧=⎨=⎩(t 为参数).(Ⅰ)讲曲线C 的参数方程化为普通方程;(Ⅱ)以()1,0A 为极点,AB 为长度单位,射线AB 为极轴建立极坐标系,求曲线C 的极坐标方程 (Ⅰ)24y x = (Ⅱ)cos 2ρρθ=+已知实数a 、b 、c 、d 满足22223,2365a b c d a b c d +++=+++=. 证明:(Ⅰ)()2222236b c d b c d ++≤++;(Ⅱ)3122a -≤.解析:x y z === 即b c d === 2222x y z ≤++ ①由柯西不等式可得()2222222111236x y z x y z ⎛⎫≤++++=++ ⎪⎝⎭ 所以原式得证(Ⅱ)将(Ⅰ)中的不等式两边都用a 表示,就可以解出a 的取值范围,就是(Ⅱ)的解,得证。
2012年高考文科数学(新课标卷)(云南)试题及答案(解析精美版)

绝密*启用前2012年普通高等学校招生全国统一考试文科数学(适用地区:吉林黑龙江山西、河南、新疆、宁夏、河北、云南、内蒙古)本试卷包括必考题和选考题两部分,第1-21题为必考题,每个考生都必须作答.第22题~第24题,考生根据要求作答.注息事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答卷前,考生务必将自己的姓名、准考证号填写在本试卷和答题卡相应位置上。
2.问答第Ⅰ卷时。
选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动.用橡皮擦干净后,再选涂其它答案标号。
写在本试卷上无效.3.回答第Ⅱ卷时。
将答案写在答题卡上.写在本试卷上无效·4.考试结束后.将本试卷和答且卡一并交回。
第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给同的四个选项中,只有一项是符合题目要求的。
(1)已知集合A={x|x2-x-2<0},B={x|-1<x<1},则(A)AB (B) BA (C)A=B (D)A∩B=(2)复数z=的共轭复数是(A)2+i (B)2-i (C)-1+i (D)-1-i.(3)在一组样本数据(x1,y1),(x2,y2),…,(xn,yn)(n≥2,x1,x2,…,xn不全相等)的散点图中,若所有样本点(xi,yi)(i=1,2,…,n)都在直线y=x+1上,则这组样本数据的样本相关系数为(A)-1 (B)0 (C)(D)1(4)设F1、F2是椭圆E:+=1(a>b>0)的左、右焦点,P为直线x=上一点,△F1PF2是底角为30°的等腰三角形,则E的离心率为()(A)(B)(C)(D)(5)已知正三角形ABC的顶点A(1,1),B(1,3),顶点C在第一象限,若点(x,y)在△ABC内部,则z=-x+y的取值范围是(A)(1-,2) (B)(0,2) (C)(-1,2) (D)(0,1+)(6)如果执行右边的程序框图,输入正整数N(N≥2)和实数a1,a2,…,aN,输出A,B,则(A)A+B为a1,a2,…,aN的和(B)为a1,a2,…,aN的算术平均数(C)A和B分别是a1,a2,…,aN中最大的数和最小的数(D)A和B分别是a1,a2,…,aN中最小的数和最大的数[来源:学,科,网(7)如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为(A)6(B)9(C)12(D)18.(8)平面α截球O的球面所得圆的半径为1,球心O到平面α的距离为,则此球的体积为(A)π(B)4π(C)4π(D)6π(9)已知ω>0,0<φ<π,直线x=和x=是函数f(x)=sin(ωx+φ)图象的两条相邻的对称轴,则φ=(A)(B)(C)(D)(10)等轴双曲线C的中心在原点,焦点在x轴上,C与抛物线y2=16x的准线交于A,B两点,|AB|=4,则C的实轴长为(A)(B)2(C)4(D)8(11)当0<x≤时,4x<logax,则a的取值范围是(A)(0,) (B)(,1) (C)(1,) (D)(,2)(12)数列{an}满足an+1+(-1)nan =2n-1,则{an}的前60项和为(A)3690 (B)3660 (C)1845 (D)1830.第Ⅱ卷本卷包括必考题和选考题两部分。
昆明市2012届高三第一次统测试卷及答案(文科数学)

昆明市2012届高中新课程高三摸底调研测试数 学 试 题(文)第I 卷(选择题,共60分)一、选择题:本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合{|13},{|4,}A x x B x x x Z =≤≤=≤∈,则A B =( )A .(1,3)B .[1,3]C .{1,3}D .{1,2,3} 2.已知()1a ii a R i+=∈-,其中i 为虚数单位,则a 等于 ( )A .1B .-1C .2D .0 3.命题“20,10x R x ax ∃∈++<使”的否定是( ) A .20,10x R x ax ∃∈++>使 B .20,10x R x ax ∃∈++≥使C .2,10x R x ax ∀∈++>成立D .2,10x R x ax ∀∈++≥成立4.已知角α的终边上一点的坐标为(sin ,cos )66ππ,则角α的最小正值为 ( )A .116πB .56π C .3π D .6π5.在ABC ∆中,AB=1,AC=3,D 是BC 边的中点,则()AD AC AB ⋅-= ( )A .4B .3C .2D .1 6.设函数22,3()2,3x x x x f x x ⎧-+≥⎪=⎨<⎪⎩,若()4,f a =则a 的值等于( )A .3B .2C .-1D .-27.已知{(,)||1,||1},{(,)|01,01}x y x y A x y x y Ω=≤≤=≤≤≤≤,若向区域Ω上随机投一点P ,则点P 落入区域A 的概率为( )A .12B .14C .18D .1128.执行如图所示的程序框图,输出的s 的值是 ( )A .34B .45C .56D .679.双曲线22221(0,0)x y a b a b -=>>的右焦点为F ,右顶点为P ,点B (0,b ),离心率e =,则双曲线C 是下图中 ( )10.某几何体的三视图如图所示,则该几何体的表面积是( )A .4+B .4+C .D .11.函数1()()cos [0,5]2xf x x x =-∈在上的零点个数为( )A .2B .3C .4D .512.设抛物线212y x =的焦点为F ,经过点P (1,0)的直线l 与抛物线交于A ,B 两点,且2BP PA =,则||||AF BF +=( )A .52F B .92C .8D .172第II 卷(非选择题,共90分)二、填空题:本大题共4小题,每小题5分,共20分。
云南省全省重点中学12校2012届高三下学期3月大联考数学(文)试题

云南省全省重点中学12校2012届高三下学期3月大联考数学(文)试题启用前绝密考试时间:2012年3月4日15:00—17:00,共120分钟请考生注意:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,答卷前,考生务必将自己的姓名、准考证号填写在答题卡上.2.回答第Ⅰ卷时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.写在本试卷上无效. 3.回答第Ⅱ卷时,将答案写在答题卡或答题纸上,写在本试卷上无效. 4.考试结束后,将本试卷和答题卡或答题纸一并交回.第I 卷(选择题共60分)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1.150sin =A .21 B .-21 C .23 D .-23 2.已知全集U =N ,集合P ={1,2,3,4,5},Q ={1,2,3,6,8},则U (C Q)P=A .{1,2,3}B .{4,5}C .{6,8}D .{1,2,3,4,5} 3.复数111iz i i=+-+,则z = A .i B .-i C .1+i D .1-i4.已知中心在原点,焦点在yA .2y x =±B .y x =C .12y x =±D .y =5.已知命题1:R p x ∃∈,使得210x x ++<;2:[1,2]p x ∀∈,使得210x -≥.以下命题为真命题的为A .12p p ⌝∧⌝B .12p p ∨⌝C .12p p ⌝∧D .12p p ∧6.函数()x f 满足()00=f ,其导函数()x f '的图象如下图,则()x f 在[-2,1]上的最小值为A .-1B .0C .2D .37.已知平面向量a 、b ,|a |=1,|b |=3,且|b a +2|=7,则向量a 与向量b a +的夹角为 A .2πB .3πC .6πD .π8.图示是计算1+31+51+…+291值的程序框图,则图中(1)处应填写的语句是A .15≤i ?B .15>i ?C .16>i ?D .16≤i ? 9.一个袋子中有5个大小相同的球,其中3个白球与2个黑球,现从袋中任意取出一个球,取出后不放回,然后再从袋中任意取出一个球,求第一次为白球第二次为黑球的概率为 A .53 B .103 C .21 D .256 10.已知某几何体的三视图如图所示,则该几何体的表面积为A .34B .6+5C .4+25D .6+25 11.已知正三棱柱内接于一个半径为2的球,则正三棱柱的侧面积取得最大值时,其底面边长为A .6B .3C .3D .2 12.对向量12(,)a a a =,12(,)b b b =定义一种运算“⊗”.12121122(,)(,)(,)a b a a b b a b a b ⊗=⊗=,已知动点JP 、Q 分别在曲线sin y x =和()y f x =上运动,且OQ m OP n =⊗+(其中O 为坐标原点),若1(,3),(,0)26m n π==,则()y f x =的最大值为 A .12B .2C .3 D第II 卷(非选择题 共90分)本卷包括必考题和选考题两部分,第13题至第21题为必考题,每个试题考生都必须作答.第22题至第24题为选考题,考生根据要求作答. 二、填空题:本大题共4小题,每小题5分,共20分. 13.函数()f x =的定义域为 .14.在ABC ∆中,60,2,3A BC AC ∠===,则B ∠= . 15.已知点Q (5,4),动点P (x ,y )满足⎪⎩⎪⎨⎧≥-≤-+≥+-0102022y y x y x ,则|PQ |的最小值为 .16.抛物线24y x =的焦点为F ,则经过点F 、)4,4(M 且与抛物线的准线相切的圆的个数为 .三、解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分)已知数列{n a }为公差不为零的等差数列,1a =1,各项均为正数的等比数列{n b }的第1 项、第3项、第5项分别是1a 、3a 、21a . (I)求数列{n a }与{n b }的通项公式; (Ⅱ)求数列{n a n b }的前n 项和.18.(本小题满分l2分)如图,在多面体ABCDEF 中,ABCD 为菱形,∠ABC=60,EC ⊥面ABCD ,FA ⊥面ABCD ,G 为BF 的中点,若EG//面ABCD .(I)求证:EG ⊥面ABF ;(Ⅱ)若AF=AB=2,求多面体ABCDEF 的体积. 19.(本小题满分12分)某班甲、乙两名同学参加l00米达标训练,在相同条件下两人l0次训练的成绩(单位:秒)如下:(I)请画出适当的统计图;如果从甲、乙两名同学中选一名参加学校的100米比赛,从成绩的稳定性方面考虑,选派谁参加比赛更好,并说明理由(不用计算,可通过统计图直接回答结论).(Ⅱ)经过对甲、乙两位同学的若干次成绩的统计,甲、乙的成绩都均匀分布在[11.5,14.5]之间,现甲、乙比赛一次,求甲、乙成绩之差的绝对值小于0.8秒的概率. 20.(本小题满分12分)点P 为圆O :422=+y x 上一动点,PD ⊥x 轴于D 点,记线段PD 的中点M 的运动轨迹为曲线C .(I)求曲线C 的方程;(II)直线l 经过定点(0,2)与曲线C 交于A 、B 两点,求△OAB 面积的最大值. 21.(本小题满分l2分)已知函数)1(ln )(--=x a x x f ,a ∈R. (I)讨论函数)(x f 的单调性;(Ⅱ)当1≥x 时,)(x f ≤1ln +x x恒成立,求a 的取值范围. 请者生在第22~24三题中任选一题做答。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
云南省
2012届高三毕业班统一检测
数学(文)试题
本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
第Ⅰ卷1至3页,第Ⅱ卷4至7页。
考试结束后,将本试卷和答题卡一并交回。
满分150分,考试用时l20分钟。
第Ⅰ卷 (选择题,共60分)
注意事项:
1.答题前,考生务必用黑色碳索笔将自己的姓名、准考证号、考场号、座位号在答题卡上填写清楚,
并认真核准条形码上的准考证号、姓名、考场号、座位号及科目,在规定的位置贴好条形码。
2.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦擦干
净后,再选涂其它答案标号。
答在试卷上的答案无效。
本卷共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
一、选择题
1.已知集合S={1,2},T={1,3},则S T=
A .{1}
B .{2,3} (c ){1,2,3}
D .{1,2,1,3}
2.抛物线22x y =的焦点坐标是
A .(
1
2
,0) B .(0,
1
2
) C .(1,0) D .(0,1)
3.函数2f (x )tan(x )π=+的最小正周期等于
A .2π
B .π
C .
2
π
D .
4
π 4. 已知i 是虚数单位,122213z i,z i =+=-,那么复数2
12
z z z =在复平面内对应的点位于
A .第一象限
B .第二象限
C .第三象限
D .第四象限
5.如果函数2
13x
y x
-=
+在x=t 时取得极小值,那么t = A .3 B .1 C .-1 D .-3
6. 下图是一个几何体的三视图,其中正视图是边长为2的等边三角形,侧视图是直角边长分别为
l
1的半圆,则该几何体的体积等于
A .
6
B .
3
C .
3
D .
12
π 7.已知最是等比数列{a n }的前行项和,a l 与a 3的等差中项等于15.如果S 4=120,那么20122009
2009
3
S S -
A .18
B .25
C .32
D .39
8. 已知0134a (,),b (,)==-
,则向量a 在向量b 方向上的投影等于
A .-4
B .4
5
-
C .
45
D .4
9. 已知椭圆E:
22
1259
x y +=的长轴的两个端点分别为A 1、A 2,点P 在椭圆E 上,如果12A PA ∆的面积等于9,那么12PA PA =
A .144
25
-
B .
144
25
C .8125
-
D .
8125
10. 已知α、β是两个互相垂直的平面,m 、n 是一对异面直线,下列四个结论:
①m ∥α、n β⊂;②m α⊥、n ∥β;
③m α⊥、n β⊥;
④m ∥α、n ∥β,且m 与α的距离等于n 与β的距离.其中是m n ⊥的充分条件的为
A .①
B .②
C .③
D .④
11. 运行下图所示的程序,如果输出结果为
sum=1320,那么判断框中应填 A .i ≥9 B .i ≥10 C .i ≤9 D .i ≤l0
12. 某校对高三年级学生进行体检,并将高三男生的体
重(豫)数据进行整理后分成五组,绘制成下图所示的频率分布直方图.如果规定,高三男生的体重结果只分偏胖、偏瘦和正常三个类型,超过65kg 属于偏胖,低于55kg 属于偏瘦,已知图中从左到右第一、第三、第四、第五小组的频率分别为0.25、0.2、0.1、0.05,第二小组的频数为400.若该校高三男生的体重没有55kg 和65kg ,则该校高三年级的男生总数和体重正常的频率分别为 A .1000,0.5 B .800,0.5 C .800,0.6 D .1000,0.6
第Ⅱ卷 (非选择题,共90分)
本卷包括必考题和选考题两部分。
第(13)题~第(21)题为必考题,每个试题考生都必须做答。
第(22)题~第(24)题为选考题,考生根据要求做答。
二.填空题:本大题共4小题,每小题5分,共20分。
把答案填在答题卡上。
13. 在一个水平放置的底面半径等于6的圆柱形量杯中装有适量的水,现放入一个半径等于r 的实
心球,如果球完全浸没于水中且无水溢出,水面高度恰好上升,那么r = . 14.已知2log ,0,
()3,0.
x x f x x >⎧=⎨
≤⎩计算[(1)]f f = 。
15. 设数列{n a }的前n 项和为n S ,如果11233
n n n a ,S a +=
=,那么9a = . 16.如果直线10ax by ++=被圆2225x y +=截得的弦长等于8,那么2235
a b
+的最小值等于 .
三.解答题:本大题共6小题,共70分。
解答应写出文字说明,证明过程或演算步骤。
17.(本小题满分l2分) 已知A 、B 、C 是△ABC 的三个内角,A 、B 、C 对的边分别为a 、b 、c ,设平面向量
23
m (cos B,sinC ),n (cos C,sin B ),m n =-==
(I )求cos A 的值;
(II )设a=3,△ABC 的面积b+c 的值.
18.(本小题满分12分) 盒子内装有4张卡片,上面分别写着数字l ,1,2,2,每张卡片被取到的概率相等.先从盒子中随机任取1张卡片,记下它上面的数字x ,然后放回盒子内搅匀,再从盒子中随机任取l 张卡片,记下它上面的数字y .
(I )求x+y =2的概率P ;
(II )设“函数231855
f (t )t x y )t =-++(在区间(2,4)内有且只有一个零点”为事件A ,求A 的概率以P (A ). 19.(本小题满分12分)
如图,在空间几何体SABCD 中,四边形ABCD 为矩形,SD ⊥AD ,SD ⊥AB ,且AD=2, AB=4,
(I )证明:平面SDB ⊥平面ABCD ;
(II )求SA 与平面SDB 所成角的正弦值.
20.(本小题满分12分)
已知双曲线S 的中心在原点,焦点在x 轴上,离心率350y -+=上的点与
双曲线S . (I )求双曲线S 的方程。
(II )设经过点(-2,0),斜率等于k 的直线与双曲线S 交于A 、B 两点,且以A 、B 、P (0,1)为顶点的∆ABP 是以AB 为底的等腰三角形,求k 的值.
21.(本小题满分12分) 已知实数a 是常数,2()()7ln 1f x x a x =+-+.当x>1时,()f x 是增函数. (I )求a 的取值范围;
(II )设n 是正整数,证明:
2211111
1++)(1+)ln(1)722n n n
⨯+++>+(…+ .
选考题(本小题满分10分) 。
请考生在第(22)、(23)、(24)三道题中任选一题作答,并用2B 铅笔在答题卡上把所选的题号涂黑。
注意:所做题目必须与所涂题号一致。
如果多做,则按所做的第一题计分。
22.(本小题满分10分)选修4—1:几何证明选讲 如图,四边形ABCD 是O 的内接四边形,BD 不经过点O ,AC 平分BAD ∠,经过点C 的直线分别交AB 、AD 的延长线于E 、F ,且CD 2=AB·DF ,证明: (I )△ABC ∽△CDF;
(Ⅱ)EF 是O 的切线.
23.(本小题满分10分)选修4—4:坐标系与参数方程
在平面直角坐标系xOy 中,A (1,0),B (2,0)是两个定点,曲线C 的参数方程为2
2x t y t
⎧=⎨=⎩(t
为参数). (I )将曲线C 的参数方程化为普通方程;
(II )以A (1,0)为极点,|AB
|为长度单位,射线AB 为极轴建立极坐标系,求曲线C 的极
坐标方程.
24.(本小题满分l0分)选修4—5:不等式选讲 已如实数a 、b 、c 、d 满足a+b+c+d=3,a 2+2b 2+3c 2+6d 2=5. 证明: (I ) (b c d ++)2≤2b 2+3c 2+6d 2; (Ⅱ)|32a -
|12
≤.。