2015年新湘教版九年级上册期末考试试卷

合集下载

湘教版九年级数学上册期末测试题1(含答案)

湘教版九年级数学上册期末测试题1(含答案)

湘教版九年级数学上册期末测试题1(含答案)(考试时间:120分钟 满分:120分)第Ⅰ卷(选择题 共36分)一、选择题(每小题3分,共36分)1.已知反比例函数y =kx(k ≠0)的图象经过点M (-2,2),则k 的值是( A )A .-4B .-1C .1D .4 2.下列一元二次方程中,没有实数根的是( D ) A .x 2+2x -4=0 B .x 2-4x +4=0 C .x 2-2x -5=0 D .x 2+3x +4=03.某“中学生暑假环保组”的同学,随机调查了“幸福小区”10户家庭一周内使用环保方便袋的数量,数据如下(单位:只):6,5,7,8,7,5,8,10,5,9,利用上述数据估计小区2 000户家庭一周内需要环保方便袋约( B )A .2 000只B .14 000只C .21 000只D .9 800只4.对于反比例函数y =1x,下列说法正确的是( C )A .图象经过点(1,-1)B .图象位于第二、四象限C .图象是中心对称图形D .当x <0时,y 随x 的增大而增大5.在△ABC 中,∠C =90°,若cos A =35,则sin A 等于( C )A.43B.34C.45D.35 6.如图,△AOB ∽△COD ,∠A =∠C ,下列各式中正确的个数为( A ) ①AB BO =CD CO ②AB AO =CD OD ③OB CO =AO OD ④AO OC =BO DO A .1 B .2 C .3 D .4第6题图 第7题图 第11题图7.如图, 一河坝的横断面为四边形ABCD ,AD ∥BC ,AB =DC ,坝顶宽10 m ,坝高12 m ,斜坡AB 的坡度i =1∶1.5,则坝底AD 的长度为( D )A .26 mB .28mC .30 mD .46 m8.若点(x 1,y 1),(x 2,y 2),(x 3,y 3)都是反比例函数y =-1x图象上的点,并且y 1<0<y 2<y 3,则下列各式中正确的是( D )A .x 1<x 2<x 3B .x 1<x 3<x 2C .x 2<x 1<x 3D .x 2<x 3<x 1 9.关于x 的一元二次方程(a -1)x 2+3x -2=0有实数根,则a 的取值范围是( D )A .a >-18B .a ≥-18C .a >-18且a ≠1D .a ≥-18且a ≠110.某种衬衫平均每天销售40件,每件盈利20元,若每件降价1元,则每天可多售10件,在每件盈利不低于10元的情况下,如果每天要盈利1 080元,每件应降价多少元( C )A .2或14B .14C .2D .811.如图,在矩形ABCD 中,AB =2,BC =3,若点E 是边CD 的中点,连接AE ,过点B 作BF ⊥AE 交AE 于点F ,则BF 的长为( B )A.3102B.3105C.105D.35512.为测量操场上旗杆的高度,小丽同学想到了物理学中平面镜成像的原理.她拿出随身携带的镜子和卷尺,先将镜子放在脚下的地面上,然后后退,直到她站直身子刚好能从镜子里看到旗杆的顶端E ,标记好脚掌中心位置为B .测得脚掌中心位置B 到镜面中心C 的距离是50 cm ,镜面中心C 距旗杆底部D 的距离是4 m .如图所示,已知小丽同学的身高是1.54 m ,眼睛位置A 距离小丽头顶的距离是4 cm ,则旗杆的高度DE 等于( B )A .10 mB .12 mC .12.4 mD .12.32 m第12题图 第14题图 第16题图第Ⅱ卷(非选择题 共84分)二、填空题(每小题3分,共18分)13.一元二次方程(x -4)2=4(x -4)的实数根是 x 1=4,x 2=8 .14.)如图,在△ABC 中,AB ≠AC ,D ,E 分别为边AB ,AC 上的点,AC =3AD ,AB =3AE ,F 为BC 边上一点,添加一个条件: ∠A =∠BDF ,得△FDB 与△ADE 相似.(只需写出一个)15.学习委员调查本班学生课外阅读情况,对学生喜爱的书籍进行分类统计,其中“古诗词类”的频数为12人,频率为0.25,那么被调查的学生人数为 48 .16.如图,在一笔直的沿湖道路上有A ,B 两个游船码头,观光岛屿C 在码头A 北偏东60°的方向,在码头B 北偏西45°的方向,AC =4 km.游客小张准备从观光岛屿C 乘船沿CA 回到码头A 或沿CB 回到码头B ,设开往码头A ,B 的游船速度分别为v 1,v 2,若回到A ,B 所用时间相等,则v 1v 2=结果保留根号).17.如图,正方形ABCD 边长是2,BE =CE ,MN =1,线段MN 的两端在CD ,AD 上滑动,当DM = 55或255时,△ABE 与以D ,M ,N 为顶点的三角形相似.第17题图 第18题图18.如图,平行四边形OABC 的顶点B ,C 在第一象限,点A 的坐标为(3,0),点D 为边AB 的中点,反比例函数y =kx(x >0)的图象经过C ,D 两点,若∠COA =α,则k 的值等于4tan α .三、解答题(共66分) 19.(6分)计算:(1)2tan 60°·sin 30°+cos 230°-6cos 45°;解:原式=23× 12+⎝⎛⎭⎫322-6× 22=3+34-3=34;(2)2sin 60°-4cos 230°+sin 45°·tan 60°.解:原式=2× 32-4× ⎝⎛⎭⎫322+22× 3 =62-3+62 =6-3.20.(6分)解下列方程: (1)x 2-3x -7=0;解:a =1,b =-3,c =-7, 则x =-b±b 2-4ac 2a =3±372,∴x 1=3+372,x 2=3-372;(2)(x +3)2=x (5x -2)-7.解:原方程可化为x 2-2x -4=0, ∴(x -1)2=5, ∴x -1=± 5,∴x 1=1+5,x 2=1- 5.21.(8分)(贵港中考)如图,一次函数y =2x -4的图象与反比例函数y =kx的图象交于A ,B 两点,且点A 的横坐标为3.(1)求反比例函数的表达式; (2)求点B 的坐标.解:(1)∵点A 的横坐标为3,代入y =2x -4,得y =2× 3-4=2, ∴A(3,2).将A(3,2)代入y =kx,得k =6,∴反比例函数的表达式为y =6x;(2)由题意得⎩⎪⎨⎪⎧y =2x -4,y =6x ,∴x 2-2x -3=0.解得x =3或-1,∴B(-1,-6).22.(8分)(盐城中考)“大美湿地,水韵盐城”.某校数学兴趣小组就“最想去的盐城市旅游景点”随机调查了本校部分学生,要求每位同学选择且只能选择一个最想去的景点,下面是根据调查结果进行数据整理后绘制出的不完整的统计图.请根据图中提供的信息,解答下列问题: (1)求被调查的学生总人数;(2)补全条形统计图,并求扇形统计图中表示“最想去景点D ”的扇形圆心角的度数; (3)若该校共有800名学生,请估计“最想去景点B ”的学生人数.解:(1)由“最想去A 景点”的人数和其所占百分比可求总人数:8÷ 20%=40人. 答:被调查的学生总人数是40人.(2)总人数减去已知的人数可求“最想去景点D ”的人数40-(8+14+4+6)=8人. 补全条形统计图,如图所示.“最想去景点D ”的扇形圆心角:840× 100%× 360°=72°.答:“最想去景点D ”的扇形圆心角度数为72°.(3)“最想去景点B ”的人数:1440× 100%× 800=280人.答:“最想去景点B ”的人数为280人.23.(8分)(襄阳中考)受益于国家支持新能源汽车发展和“一带一路”倡议等多重利好因素,我市某汽车零部件生产企业的利润逐年提高.据统计,2014年利润为2亿元,2016年利润为2.88亿元.(1)求该企业从2014年到2016年利润的年平均增长率;(2)若2017年保持前两年利润的年平均增长率不变,该企业2017年的利润能否超过3.4亿元?解:(1)设该企业利润的年平均增长率为x , 根据题意,得2(1+x)2=2.88.解这个方程,得x 1=0.2=20%,x 2=-2.2(不合题意,舍去). 答:该企业利润的年平均增长率为20%. (2)2.88×(1+20%)=3.456>3.4.答:该企业2017年的利润能超过3.4亿元.24.(10分)(南宁中考)如图,在平面直角坐标系中,已知△ABC 三个顶点的坐标分别是A (2,2),B (4,0),C (4,-4).(1)请画出△ABC 向左平移6个单位长度后得到的△A 1B 1C 1;(2)以点O 为位似中心,将△ABC 缩小为原来的12,得到△A 2B 2C 2,请在y 轴右侧画出△A 2B 2C 2,并求出∠A 2C 2B 2的正弦值.解:(1)如图所示. (2)如图所示.∵△A 2C 2B 2与△ACB 是位似图形,△A 2C 2B 2∽△ACB. ∴∠A 2C 2B 2=∠ACB.过点A 作AD ⊥CB 延长线于点D ,得到Rt △ACD ,此时,AD =2,CD =6,由勾股定理可得AC =AD 2+CD 2=22+62=210,sin ∠ACB =AD AC =2210=1010,∴sin ∠A 2C 2B 2=1010.25.(10分)(潍坊中考)如图,某数学兴趣小组要测量一栋五层居民楼CD 的高度,该楼底层为车库,高2.5米,上面五层居住,每层高度相等,测角仪支架离地1.5米,在A 处测得五楼顶部点D 的仰角为60°,在B 处测得四楼顶部点E 的仰角为30°,AB =14米,求居民楼的高度.(精确到0.1米,参考数据:3≈1.73)解:设每层高为x 米,由题意得MC′=MC -CC′=2.5-1.5=1. 则DC′=5x +1,EC ′=4x +1,在Rt △DC ′A ′中,∠DA ′C ′=60°,∴C ′A ′=DC′tan 60°=33(5x +1).在Rt △EC ′B 中,∠EB ′C ′=30°,∴C ′B ′=EC′tan 30°=3(4x +1).∵A ′B ′=C′B′-C′A′=AB.∴3(4x +1)-33(5x +1)=14.解得x ≈3.17.所以居民楼高为5× 3.17+2.5=18.4米.26.(10分)(茂名中考)如图,Rt △ABC 中,∠ACB =90°,AC =6 cm ,BC =8 cm.动点M 从点B 出发,在BA 边上以每秒3 cm 的速度向定点A 运动,同时动点N 从点C 出发,在CB 边上以每秒2 cm 的速度向点B 运动,运动时间为t 秒⎝⎛⎭⎫0<t <103,连接MN . (1)若△BMN 与△ABC 相似,求t 的值; (2)连接AN ,CM ,若AN ⊥CM ,求t 的值.解:(1)由题意知,BM =3t cm ,CN =2t cm ,∴BN =(8-2t)cm ,BA =62+82=10 cm ,当△BMN ∽△BAC 时,BM BA =BNBC,∴3t 10=8-2t 8,解得t =2011; 当△BMN ∽△BCA 时,BM BC =BN BA ,∴3t 8=8-2t 10,解得t =3223,∴△BMN 与△ABC 相似时,t 的值为2011或3223.(2)作MG ⊥BC 于点G ,当AN ⊥CM 时,∠1=∠2,tan ∠2=CN AC =2t 6=t3,在Rt △BMG 中,BG =BM·cos B =3t·45=125t.MG =BM·sin B =3t·35=95t ,CG =8-125t ,在Rt △CMG 中,tan ∠1=MG CG =95t 8-125t ,95t 8-125t=t 3,解得t =1312.。

湘教版数学九年级上册期末试卷附答案

湘教版数学九年级上册期末试卷附答案

湘教版数学九年级上册期末试卷姓名 得分一、填空(每小题3分,共30分)1. 定理“等腰梯形的对角线相等”的逆定理是 2.一元二次方程(x+3)(x-3) = 2x 化为一般形式为: 3.已知2143y x x =--,23y x =+,当x =_______时,1y 与2y 的值相等. 4.若25a b =,则a ba b+-=_________. 5.若关于x 的一元二次方程20x mx n ++=有两个相等的实数根,则符合条件的一组,m n 的值可以是m =_________,n =_________. 6.如图,已知△ABC ∽△DBE . DB =8 , AB =6 , 则ABC S ∆:DBE S ∆=_________.7.点C 是线段AB 的黄金分割点,若AB =5cm ,则BC 的长是_______.8.梯形的中位线长为12cm ,一条对角线把中位线分成1:3两部分,则梯形较长的底边为 cm9.在△ABC 中,∠C =90°, cosB ==则b =_______.10.李叔叔有两副完全相同的手套(分左,右手)上班时,他从中任意拿了两只就出门了,那么这两只手套恰好配成一副手套的概率是 二、选择题(每小题3分,共24分)11.袋子中有同样大小的红、绿小球各一个,随机摸出1个小球后放回,再随机摸出一个,则两次摸到的球中有绿球的概率是( )A.14 B.12 C.34D. 1 12.在Rt △ABC,∠C =90°, sinB =35,则sinA 的值是( )A.35B.45C.53D.54 13.已知等腰梯形ABCD 中, AD ∥BC ,∠B =60°, AD =2 , BC =8 ,则此梯形的周长为( )A. 19B. 20C. 21D.22CABD第9题图14.已知3x =是关于方程23230x ax a +-=的一个根,则关于y 的方程212y a -=的解是( )以上答案都不对 15.下列命题中,逆命题正确的是A 、全等三角形的面积相等B 、全等三角形的对应角相等C 、等边三角形是锐角三角形D 、直角三角形的两个锐角互余16.计算:020202sin304cos 30tan 45+-的值等于( )A .4B.C .3D .17.若顺次连结四边形ABCD 各边的中点所得到的四边形是正方形,则四边形ABCD 一定是( )A.矩形B.菱形C.正方形D.对角线垂直且相等的四边形 18.把方程2310x x +-=的左边配方后可得方程( )A.2313(24x +=B.235()24x +=C.2313(24x -=D. 235(24x -=19.如图,在Rt △ABC 中,CD 是斜边AB 上的高,则下列比式与sinA 不相等的是( )A.CDAC B.DBCBC.CBAB D.CDCB20.用13m 的铁丝网围成一个长边靠墙面积为20m 2的长方形,求这个长方形的长和宽,设平行于墙的一边为x m ,可得方程 ( )A .(13)20x x -=B .20)13(2=-x xC .113202x x ⎛⎫-= ⎪⎝⎭ D . 20)213(2=-x x三、解答题)21.解下列方程(21.22每小题5分,共15分)(1)23720x x -+= (2)2(21)4(12)50x x -+--=X22. 计算:cos450.tan450tan300-2cos600.sin45023. 如图BE 是△ABC 中∠ABC 的平分线.DE ∥BC ,若AE =3,AD =4,AC =5求DE 的长.(6分)24.已知方程x 2+kx -10=0一个根是-5,求它的另一个根及k 的值(6)25.为举办毕业联欢会,小颖设计了一个游戏:游戏者分别转动如图3的两个可以自由转动的转盘各一次,当两个转盘停后,指针所指字母相同时,他就可以获得一次指定一位到会者为大家表演节目的机会。

湘教版数学九年级上册期末试卷附答案

湘教版数学九年级上册期末试卷附答案

湘教版数学九年级上册期末试卷附答案湘教版数学九年级上册期末试卷一、填空(每小题3分,共24分)1.人们口语中常说的:“太阳从西边出来”是指某一事件不可能发生。

2.已知y1=x^2-4x-3,y2=x+3,当x=-1时,y1与y2的值相等。

3.若a^2/(a+b)=1/5,则b^2/(5a-b)=24.4.符合条件的一组m,n的值可以是m=-2,n=1.5.点C是线段AB的黄金分割点,若AB=5cm,则BC的长是3cm。

6.如图,已知△ABC∽△DBE。

DB=8.AB=6,则S△.7.在△ABC中,∠C=90°。

cosB=3/5.a=23,则b=184/5.8.同时抛两枚质地均匀的骰子,则朝上的点数之积为偶数的概率是11/18.二、选择题(每小题3分,共24分)1.袋子中有同样大小的红、绿小球各一个,随机摸出1个小球后放回,再随机摸出一个,则两次摸到的球中有绿球的概率是1/4.2.在Rt△ABC,∠C=90°。

sinB=3/5,则sinA的值是4/5.3.已知等腰梯形ABCD中,AD∥BC,∠B=60°,AD=2,BC=8,则此梯形的周长为20.4.已知x=3是关于方程3x+2ax-3a=0的一个根,则关于y的方程y-12=a^2的解是9.5.一个小组有若干人,新年互送贺年卡一张,已知全组共送贺年卡72张,则这个小组共有9人。

6.若顺次连结四边形ABCD各边的中点所得到的四边形是正方形,则四边形ABCD一定是矩形。

7.把方程x^2+3x-1=0的左边配方后可得方程(x+3/2)^2=13/4.根据题意,PD=PE,且PF垂直于CD,因此DF=EF。

如图2所示,连接PH并垂直于AD,设PA=2PH=2DF=2EF,PC=2CF。

因此,PC-PA=2(CF-EF),即PC-PA=2CE。

综合题解:1)设x秒后,PB=42厘米,则AP=x,CQ=2x,BP=6-x,BQ=2x。

湘教版九年级上册数学期末考试试题有答案

湘教版九年级上册数学期末考试试题有答案

湘教版九年级上册数学期末考试试卷一、选择题。

(每小题只有一个正确答案)1.如果∠A 是锐角,且sin A =12,那么∠A 的度数是( )A .90°B .60°C .45°D .30°2.若(2)10m m x mx ++-=是关于x 的一元二次方程,则 A .m =±2B .m =2C .m =-2D .m ≠ ±23.若ABC DEF ∽,且AB :DE 1:3=,则ABC DEF S :S (? = )A .1:3B .1:9C .D .1:1.54.如表记录了甲、乙、丙、丁四名跳高运动员最近几次选拔赛成绩的平均数与方差:根据表数据,从中选择一名成绩好且发挥稳定的参加比赛,应该选择( ) A .甲B .乙C .丙D .丁5.关于反比例函数y=2x,下列说法中错误的是( ) A .它的图象是双曲线 B .它的图象在第一、三象限 C .y 的值随x 的值增大而减小D .若点(a ,b )在它的图象上,则点(b ,a )也在它的图象上 6.对于二次函数22(1)2y x =-+的图象,下列说法正确的是 A .开口向下;B .对称轴是直线x =-1;C .顶点坐标是(-1,2);D .与x 轴没有交点.7.如图,在▱ABCD 中,E 是AB 的中点,EC 交BD 于点F ,那么EF 与CF 的比是( )A .1:2B .1:3C .2:1D .3:18.如图,四边形OABC 是矩形,四边形ADEF 是正方形,点A 、D 在x 轴的负半轴上,点C 在y 轴的正半轴上,点F 在AB 上,点B 、E 在反比例函数ky x=(k 为常数,k ≠0)的图象上,正方形ADEF的面积为16,且BF=2AF,则k值为A.-8 B.-12 C.-24 D.-369.若二次函数22y x x m=-+的图像与x轴有两个交点,则实数m的取值范围是()A.m1≥B.1m C.1m D.1m<二、填空题10.方程2x x=的根是____________.11.已知反比例函数y=2mx-,当x>0时,y随x增大而减小,则m的取值范围是_____.12.若3m=2n,那么m:n=_____.13.如图,要使△ABC与△DBA相似,则只需添加一个适当的条件是_____(填一个即可)14.《九章算术》是中国传统数学的重要著作,方程术是它的最高成就.其中记载:今有共买物,人出八,盈三;人出七,不足四,问人数、物价各几何?译文:今有人合伙购物,每人出8钱,会多3钱;每人出7钱,又会差4钱,问人数、物价各是多少?设合伙人数为x 人,物价为y钱,根据题意可列出方程组____.15.已知二次函数y=﹣x2+2x+m的部分图象如图所示,则关于x的一元二次方程﹣x2+2x+m =0的解为_____.三、解答题16.计算:201921(1)()022sin6---︒+17.如图,在△ABC 中,D ,E 分别是边AB ,AC 上的点,连接DE ,且∠ADE =∠ACB . (1)求证:△ADE ∽△ACB ;(2)如果E 是AC 的中点,AD =8,AB =10,求AE 的长.18.某校为了解学生对新闻、体育、动画、娱乐、戏曲五类电视节目的喜爱情况,随机选取该校部分学生进行调查,要求每名学生从中只选一类最喜爱的电视节目,以下是根据调查结果绘制的不完整统计表,根据表中信息,回答下列问题: (1)本次共调查了______名学生;(2)若将各类电视节目喜爱的人数所占比例绘制成扇形统计图,则“喜爱体育”对应扇形的圆心角度数是_________度;(3)该校共有1500名学生,根据调查结果估计该校“喜爱体育”节目的学生人数.19.已知关于x 的方程2610x x k -++=有两个实数根x 1,x 2. (1)求实数k 的取值范围; (2)若方程的两个实数根x 1,x 2满足121112x x +=-,求k 的值.20.如图,小明今年国庆节到青城山游玩,乘坐缆车,当登山缆车的吊箱经过点A 到达点B时,它经过了200m ,缆车行驶的路线与水平夹角∠α=16°,当缆车继续由点B 到达点D 时,它又走过了200m ,缆车由点B 到点D 的行驶路线与水平面夹角∠β=42°,求缆车从点A 到点D 垂直上升的距离.(结果保留整数)(参考数据:sin16°≈0.27,cos16°≈0.77,sin42°≈0.66,cos42°≈0.74)21.如图,在足够大的空地上有一段长为20米的旧墙MN ,某人利用旧墙和木栏围成一个矩形菜园ABCD ,其中AD ≤MN ,已知矩形菜园的一边靠墙,另三边一共用了80米木栏.若所围成的矩形菜园的面积为350平方米,求所利用旧墙AD 的长.22.在平面直角坐标系中,一次函数y ax b =+(a≠0)的图象与反比例函数(0)ky k x=≠的图象交于第二、第四象限内的A 、B 两点,与y 轴交于点C ,过点A 作AH ⊥y 轴,垂足为点H ,OH=3,tan ∠AOH=43,点B 的坐标为(m ,-2).(1)求该反比例函数和一次函数的解析式; (2)求△AHO 的周长.23.已知二次函数y =﹣x 2+bx +c 的图象经过点A (﹣1,0),C (0,3).(1)求二次函数的解析式; (2)在图中,画出二次函数的图象;(3)根据图象,直接写出当y ≤0时,x 的取值范围.24.在平面直角坐标系中,抛物线22y mx x n =-+与x 轴的两个交点分别是(3,0)A -、(1,0)B ,C 为顶点.(1)求m 、n 的值和顶点C 的坐标;(2)在y 轴上是否存在点D ,使得ACD ∆是以AC 为斜边的直角三角形?若存在,求出点D 的坐标;若不存在,请说明理由.25.定义:我们知道,四边形的一条对角线把这个四边形分成了两个三角形,如果这两个三角形相似(不全等),我们就把这条对角线叫做这个四边形的“相似对角线”.(1)如图1,已知Rt△ABC在正方形网格中,请你只用无刻度的直尺在网格中找到一点D,使四边形ABCD是以AC为“相似对角线”的四边形(保留画图痕迹,找出3个即可);(2)如图2,在四边形ABCD中,∠ABC=80°,∠ADC=140°,对角线BD平分∠ABC.求证:BD是四边形ABCD的“相似对角线”;(3)如图3,已知FH是四边形EFCH的“相似对角线”,∠EFH=∠HFG=30°,连接EG,若△EFG的面积为FH的长.参考答案1.D【分析】利用特殊角的三角函数值解答即可.【详解】A∠是锐角,且1 sin2A=,∴A∠的度数是30.故选D.【点睛】此题考查特殊角的三角函数值,关键是利用特殊角的三角函数值解答.【分析】根据一元二次方程的定义,令系数不为0,指数为2即可解答. 【详解】∵方程(2)10m m x mx ++-=是关于x 的一元二次方程, ∴|m|=2,m +2≠0, 解得m =2. 故选:B . 【点睛】本题考查了一元二次方程的概念.只有一个未知数且未知数最高次数为2的整式方程叫做一元二次方程,一般形式是ax 2+bx +c =0(且a≠0).特别要注意a≠0的条件.这是在做题过程中容易忽视的知识点. 3.B 【解析】∵△ABC ∽△DEF ,且AB :DE=1:3, ∴S △ABC :S △DEF =1:9. 故选B . 4.A 【分析】首先比较平均数,平均数相同时选择方差较小的运动员参加. 【详解】∵x 甲=x 丙>x 乙=x 丁,∴从甲和丙中选择一人参加比赛,∵2S 甲=2S 乙<2S 丙<2S 丁,∴选择甲参赛, 故选A . 【点睛】此题主要考查了平均数和方差的应用,解题关键是明确平均数越高,成绩越高,方差越小,成绩越稳定.5.C 【分析】根据反比例函数y=2x的图象上点的坐标特征,以及该函数的图象的性质进行分析、解答.【详解】A.反比例函数2yx的图像是双曲线,正确;B.k=2>0,图象位于一、三象限,正确;C.在每一象限内,y的值随x的增大而减小,错误;D.∵ab=ba,∴若点(a,b)在它的图像上,则点(b,a)也在它的图像上,故正确.故选C.【点睛】本题主要考查反比例函数的性质.注意:反比例函数的增减性只指在同一象限内.6.D【分析】由抛物线解析式可直接得出抛物线的开口方向、对称轴、顶点坐标,可判断A、B、C,令y =0利用判别式可判断D,则可求得答案.【详解】∵y=2(x−1)2+2,∴抛物线开口向上,对称轴为x=1,顶点坐标为(1,2),故A、B、C均不正确,令y=0可得2(x−1)2+2=0,可知该方程无实数根,故抛物线与x轴没有交点,故D正确;故选:D.【点睛】本题主要考查二次函数的性质,掌握二次函数的顶点式是解题的关键,即在y=a(x−h)2+k中,对称轴为x=h,顶点坐标为(h,k).7.A【分析】根据平行四边形的性质可以证明△BEF∽△DCF,然后利用相似三角形的性质即可求出答案.【详解】解:由平行四边形的性质可知:AB∥CD,∴△BEF∽△DCF,∵点E是AB的中点,∴12 BE BEAB CD==∴12 EF BECF CD==,故选A.【点睛】本题考查相似三角形,解题的关键是熟练运用相似三角形的性质与判定,本题属于基础题型.8.C【分析】先由正方形ADEF的面积为16,得出边长为4,BF=2AF=8,AB=AF+BF=4+8=12.再设B点坐标为(t,12),则E点坐标(t−4,4),根据点B、E在反比例函数kyx=的图象上,利用根据反比例函数图象上点的坐标特征得k=12t=4(t−4),即可求出k=−24.【详解】∵正方形ADEF的面积为16,∴正方形ADEF的边长为4,∴BF=2AF=8,AB=AF+BF=4+8=12.设B点坐标为(t,12),则E点坐标(t−4,4),∵点B、E在反比例函数kyx=的图象上,∴k=12t=4(t−4),解得t=-2,k=−24.故选C.【点睛】本题考查了反比例函数图象上点的坐标特征:反比例函数kyx=(k为常数,k≠0)的图象是双曲线,图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.9.D【解析】【分析】由抛物线与x 轴有两个交点可得出△=b 2-4ac >0,进而可得出关于m 的一元一次不等式,解之即可得出m 的取值范围. 【详解】∵抛物线y=x 2-2x+m 与x 轴有两个交点, ∴△=b 2-4ac=(-2)2-4×1×m >0,即4-4m >0, 解得:m <1. 故选D . 【点睛】本题考查了抛物线与x 轴的交点,牢记“当△=b 2-4ac >0时,抛物线与x 轴有2个交点”是解题的关键. 10.0和1 【分析】观察本题形式,用因式分解法比较简单,在移项提取x 后,左边将变成两个式子相乘为0的情况,让每个式子分别为0,即可求出x . 【详解】移项得:20x x -=, 即()10x x -=, 解得:1201x x ==,. 故答案为:0和1 . 【点睛】本题考查了因式分解法解一元二次方程,因式分解法是解一元二次方程的一种简便方法,要会灵活运用.解一元二次方程常用的方法有直接开平方法,配方法,公式法,因式分解法,要根据方程的特点灵活选用合适的方法. 11.m >2. 【解析】分析:根据反比例函数y =2m x-,当x >0时,y 随x 增大而减小,可得出m ﹣2>0,解之即可得出m 的取值范围. 详解:∵反比例函数y =2m x-,当x >0时,y 随x 增大而减小,∴m ﹣2>0,解得:m >2.故答案为m>2.点睛:本题考查了反比例函数的性质,根据反比例函数的性质找出m﹣2>0是解题的关键.12.2:3【分析】根据比例的定义即可求解.【详解】∵3m=2n∴23 mn=即m:n=2:3故填:2:3.【点睛】此题主要考查比例的性质,解题的关键是熟知比例的定义. 13.∠C=∠BAD(答案不唯一)【详解】试题分析:∵∠B=∠B(公共角),∴可添加:∠C=∠BAD.此时可利用两角法证明△ABC与△DBA相似.故答案可为:∠C=∠BAD.考点:相似三角形的判定.14.83 74 x yx y-=⎧⎨-=-⎩.【分析】设合伙人数为x人,物价为y钱,根据“每人出8钱,会多3钱;每人出7钱,又会差4钱”,即可得出关于x,y的二元一次方程组,此题得解.【详解】设合伙人数为x人,物价为y钱,依题意,得:8374x yx y-=⎧⎨-=-⎩.故答案为8374x yx y-=⎧⎨-=-⎩.【点睛】本题考查了由实际问题抽象出二元一次方程组以及数学常识,找准等量关系,正确列出二元一次方程组是解题的关键.15.x 1=﹣1或x 2=3.【分析】由二次函数y =﹣x 2+2x +m 的部分图象可以得到抛物线的对称轴和抛物线与x 轴的一个交点坐标,然后可以求出另一个交点坐标,再利用抛物线与x 轴交点的横坐标与相应的一元二次方程的根的关系即可得到关于x 的一元二次方程﹣x 2+2x +m =0的解.【详解】解:依题意得二次函数y =﹣x 2+2x +m 的对称轴为x =1,与x 轴的一个交点为(3,0), ∴抛物线与x 轴的另一个交点横坐标为1﹣(3﹣1)=﹣1,∴交点坐标为(﹣1,0)∴当x =﹣1或x =3时,函数值y =0,即﹣x 2+2x +m =0,∴关于x 的一元二次方程﹣x 2+2x +m =0的解为x 1=﹣1或x 2=3.故答案为x 1=﹣1或x 2=3.【点睛】本题考查了关于二次函数与一元二次方程,在解题过程中,充分利用二次函数图象,根据图象提取有用条件来解答,这样可以降低题的难度,从而提高解题效率.16.1-【分析】根据实数的性质即可化简求解.【详解】201921(1)()022sin6---︒+=1-【点睛】此题主要考查实数的运算,解题的关键是熟知实数的性质.17.(1)证明见解析;(2)【解析】【分析】(1)根据相似三角形的判定即可求出证.(2)由于点E是AC的中点,设AE=x,根据相似三角形的性质可知AD AEAC AB=,从而列出方程解出x的值.【详解】解:(1)∵∠ADE=∠ACB,∠A=∠A,∴△ADE∽△ACB;(2)由(1)可知::△ADE∽△ACB,∴AD AEAC AB=,∵点E是AC的中点,设AE=x,∴AC=2AE=2x,∵AD=8,AB=10,∴8210xx=,解得:x=,∴AE=.【点睛】本题考查相似三角形,解题的关键是熟练运用相似三角形的性质与判定,本题属于中等题型.18.(1)50;(2)72°;(3)300【分析】(1)利用喜欢新闻类节目的人数除以其频率即可得到调查的总人数;(2)求出喜欢看体育的人数,再求出其频率即可得到对应扇形的圆心角度数(3)利用1500乘以喜欢看体育的的频率即可求解.【详解】解:(1)本次共调查数为4÷0.08=50(人)故填:50;(2)喜欢看戏曲的人数为50×0.06=3人, ∴喜欢看体育的人数为50-4-15-18-3=10人,∴“喜爱体育”对应扇形的圆心角度数是10÷50×360°=72°故填:72°(3)该校共有1500名学生,根据调查结果估计该校“喜爱体育”节目的学生人数为 1500×10÷50=300人【点睛】此题主要考查统计调查的应用,解题的关键是根据题意求出调查的总人数.19.(1)k≤8;(2)k =-13.【分析】(1)由根的情况,根据根的判别式,可得到关于k 的不等式,则可求得k 的取值范围; (2)由根与系数的关系可用k 表示出两根之和、两根之积,由条件可得到关于k 的方程,则可求得k 的值.【详解】(1)∵关于x 的方程2610x x k -++=有两个实数根,∴△≥0,即(-6)2−4(k+1)≥0,解得k≤8;(2)由根与系数的关系可得x 1+x 2=6,x 1x 2=k+1, 由121112x x +=- 可得:2(x 1+x 2)=−x 1x 2,∴2×6=−(k+1),∴k =-13,【点睛】本题主要考查根的判别式及根与系数的关系,熟练掌握根的个数与根的判别式的关系是解题的关键.20.缆车垂直上升了186 m .【分析】在Rt ABC 中,sin 200sin1654BC AB α=⋅=⨯︒≈米,在Rt BDF 中,sin 200sin42132DF BD β=⋅=⨯︒≈,即可求出缆车从点A 到点D 垂直上升的距离.【详解】解:在Rt ABC中,斜边AB=200米,∠α=16°,BC ABα=⋅=⨯︒≈(m),sin200sin1654在Rt BDF中,斜边BD=200米,∠β=42°,=⋅=⨯︒≈,DF BDβsin200sin42132因此缆车垂直上升的距离应该是BC+DF=186(米).答:缆车垂直上升了186米.【点睛】本题考查了解直角三角形的应用-坡度坡角问题,锐角三角函数的定义,结合图形理解题意是解决问题的关键.21.10m【分析】设AB=x米,则BC=(80-2x)米,根据矩形的面积公式得出关于x的一元二次方程,解之即可得出x的值,故可求出AD的长.【详解】解:设AB=xm,则BC=(80-2x)m,根据题意得x(80-2x)=350,解得x1=5,x2=35,当x=5时,80-2x=70>20,不合题意舍去;当x=35时,80-2x=10,答:AD的长为10m.【点睛】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.22.(1)一次函数为112y x=-+,反比例函数为12yx=-;(2)△AHO的周长为12【详解】分析:(1)根据正切函数可得AH=4,根据反比例函数的特点k=xy为定值,列出方程,求出k的值,便可求出反比例函数的解析式;根据k的值求出B两点的坐标,用待定系数法便可求出一次函数的解析式.(2)由(1)知AH的长,根据勾股定理,可得AO的长,根据三角形的周长,可得答案.详解:(1)∵tan∠AOH=AH OH=43∴AH=43OH=4∴A(-4,3),代入kyx=,得k=-4×3=-12∴反比例函数为12 yx =-∴12 2m -=-∴m=6∴B(6,-2)∴43 62a ba b-+=⎧⎨+=-⎩∴a=12-,b=1∴一次函数为112y x=-+(2)5OA==△AHO的周长为:3+4+5=12点睛:此题考查的是反比例函数图象上点的坐标特点及用待定系数法求一次函数及反比例函数的解析式.23.(1)y=﹣x2+2x+3;(2)该函数图象如图所示;见解析(3)x的取值范围x≤﹣1或x≥3.【分析】(1)用待定系数法将A(﹣1,0),C(0,3)坐标代入y=﹣x2+bx+c,求出b和c即可. (2)利用五点绘图法分别求出两交点,顶点,以及与y轴的交点和其关于对称轴的对称点,从而绘图即可.(3)根据A,B,C 三点画出函数图像,观察函数图像即可求出x 的取值范围.【详解】解:(1)∵二次函数y =﹣x 2+bx+c 的图象经过点A (﹣1,0),C (0,3),∴103b c c --+=⎧⎨=⎩,得23b c =⎧⎨=⎩, 即该函数的解析式为y =﹣x 2+2x+3;(2)∵y =﹣x 2+2x+3=﹣(x ﹣1)2+4,∴该函数的顶点坐标是(1,4),开口向上,过点(﹣1,0),(3,0),(0,3),(2,3), 该函数图象如右图所示;(3)由图象可得,当y≤0时,x 的取值范围x≤﹣1或x≥3.【点睛】本题考查二次函数综合问题,结合待定系数法求二次函数解析式以及二次函数性质和二次函数图像的性质进行分析.24.(1)1m =-,3n =,(-1,4);(2)在y 轴上存在点D (0,3)或D (0,1),使△ACD 是以AC 为斜边的直角三角形【分析】(1)把A(-3,0),B(1,0)代入22y mx x n =-+解方程组即可得到结论;(2)过C 作CE ⊥y 轴于E ,根据函数的解析式求得C(-1,4),得到CE=1,OE=4,设()0D a ,,得到4OD a DE a ==-,,根据相似三角形的性质即可得到结论.【详解】(1)把A(−3,0)、B(1,0)分别代入22y mx x n =-+,96020m n m n ++=⎧⎨-+=⎩,解得:1m =-,3n =,则该抛物线的解析式为:223y x x =--+,∵2223(1)4y x x m =--+=-++,所以顶点C 的坐标为(1-,4);故答案为:1m =-,3n =,顶点C 的坐标为(1-,4);(2)如图1,过点C 作CE ⊥y 轴于点E ,假设在y 轴上存在满足条件的点D ,设D (0,c ),则OD c =,∵()()3014A C --,,,,∴1CE =,3OA =,4OE =,4ED c =-,由∠CDA =90︒得∠1+∠2=90︒,又∵∠2+∠3=90︒,∴∠3=∠1,又∵∠CED =∠DOA =90︒,∴△CED ∽△DOA , ∴CEDOED OA =, 则143cc =-,变形得2430c c -+=,解得11c =,23c =.综合上述:在y轴上存在点D(0,3)或D(0,1),使△ACD是以AC为斜边的直角三角形.【点睛】本题考查了二次函数综合题,待定系数法求函数的解析式,相似三角形的判定和性质,正确的理解题意是解题的关键.25.(1)见解析;(2)证明见解析;(3)【详解】【分析】(1)先求出AB,BC,AC,再分情况求出CD或AD,即可画出图形;(2)先判断出∠A+∠ADB=140°=∠ADC,即可得出结论;(3)先判断出△FEH∽△FHG,得出FH2=FE•FG,再判断出,继而求出FG•FE=8,即可得出结论.【详解】(1)由图1知,∠ABC=90°,AC=5,∵四边形ABCD是以AC为“相似对角线”的四边形,当∠ACD=90°时,△ACD∽△ABC或△ACD∽△CBA,∴12AC ABCD BC==或2AC BCCD AB==,∴CD=10或CD=2.5同理:当∠CAD=90°时,AD=2.5或AD=10,(2)∵∠ABC=80°,BD平分∠ABC,∴∠ABD=∠DBC=40°,∴∠A+∠ADB=140°∵∠ADC=140°,∴∠BDC+∠ADB=140°,∴∠A=∠BDC,∴△ABD∽△BDC,∴BD是四边形ABCD的“相似对角线”;(3)如图3,∵FH是四边形EFGH的“相似对角线”,∴△EFH与△HFG相似,∵∠EFH=∠HFG,∴△FEH∽△FHG,∴FE FH FH FG,∴FH2=FE•FG,过点E作EQ⊥FG于Q,∴,∵12FG×∴12∴FG•FE=8,∴FH2=FE•FG=8,∴【点睛】本题考查了相似三角形的综合题,涉及到新概念、相似三角形的判定与性质等,正确理解新概念,熟练应用相似三角形的相关知识是解题的关键.。

湘教版九年级上册数学期末考试试卷带答案(1)

湘教版九年级上册数学期末考试试卷带答案(1)

湘教版九年级上册数学期末考试试题一、选择题。

(每小题只有一个正确答案)1.1x =是关于x 的一元一次方程220x ax b ++=的解,则24a+b =( ) A .2-B .3-C .4D .6-2.已知反比例函数ky x=的图象经过点(1,2),则k 的值为( ) A .0.5B .1C .2D .43.已知1x 、2x 是一元二次方程220x x -=的两个实数根,下列结论错误..的是( ) A .12x x ≠B .21120x x -=C .122x x +=D .122x x ⋅=4.如图,在△ABC 中,∠C=90°,AB=5,BC=3,则sinA 的值是( )A .34B .43C .35D .455.下列说法正确的是( ) A .对应边都成比例的多边形相似 B .对应角都相等的多边形相似 C .边数相同的正多边形相似 D .矩形都相似6.对于二次函数214y x =的图象,下列结论错误的是( ) A .顶点为原点B .开口向上C .除顶点外图象都在x 轴上方D .当0x =时,y 有最大值7.如图,在ABC ∆中,DE ∥BC ,5AD =,10BD =,4AE =,AC =( )A .8B .9C .10D .128.为了解我市居民用水情况,在某小区随机抽查了20户家庭,并将这些家庭的月用水量进行统计,结果如下表:则关于这20户家庭的月用水量,下列说法正确的是( ) A .中位数是5B .平均数是5C .众数是6D .方差是69.如图,ABC ∆是等边三角形,被一矩形所截,AB 被截成三等分,EH ∥BC ,则四边形EFGH的面积是ABC ∆的面积的:( )A .19B .13C .49D .9410.关于反比例函数y =﹣3x,下列说法错误的是( )A .图象经过点(1,﹣3)B .图象分布在第一、三象限C .图象关于原点对称D .图象与坐标轴没有交点二、填空题11.已知点1.(3,)A y ,2.(5,)B y 在函数5y x=的图象上,则12,y y 的大小关系是________ 12.如图,若被击打的小球飞行高度h (单位:m )与飞行时间t (单位:s )之间具有的关系为2205h t t =-,则小球从飞出到落地所用的时间为_____s .13.将抛物线22y x =向左平移2个单位后所得到的抛物线为 ________ 14.方程()()30x m x --=和方程2230x x --=同解,m =________.15.如果方程x 2-4x+3=0的两个根分别是Rt △ABC 的两条边,△ABC 最小的角为A ,那么tanA 的值为 .16.如图,在矩形ABCD 中,DE ⊥AC ,垂足为E ,且tan ∠ADE =43,AC =5,则AB 的长____.三、解答题17.如图一根竖直的木杆在离地面3.1m 处折断,木杆顶端落在地面上,且与地面成38°角,则木杆折断之前高度约为多少?(参考数据:sin380.62,cos380.79,tan380.78︒≈︒≈︒≈)18020192sin30︒︒+-19.如图,一位测量人员,要测量池塘的宽度 AB 的长,他过 A B 、 两点画两条相交于点 O 的射线,在射线上取两点 D E 、 ,使13OD OE OB OA == ,若测得 37.2DE = 米,他能求出 A B 、 之间的距离吗?若能,请你帮他算出来;若不能,请你帮他设计一个可行方案.20.某游乐园有一个直径为16米的圆形喷水池,喷水池的周边有一圈喷水头,喷出的水柱为抛物线,在距水池中心3米处达到最高,高度为5米,且各方向喷出的水柱恰好在喷水池中心的装饰物处回合,如图所示,以水平方向为x 轴,喷水池中心为原点建立平面直角坐标系.(1)求水柱所在抛物线(第一象限部分)的函数表达式;(2)王师傅在喷水池内维修设备期间,喷水管意外喷水,为了不被淋湿,身高1.8米的王师傅站立时必须在离水池中心多少米以内?21.文明交流互鉴是推动人类文明进步和世界和平发展的重要动力.2019年5月“亚洲文明对话大会”在北京成功举办,引起了世界人民的极大关注.某市一研究机构为了了解10~60岁年龄段市民对本次大会的关注程度,随机选取了100名年龄在该范围内的市民进行了调查,并将收集到的数据制成了尚不完整的频数分布表、频数分布直方图和扇形统计图,如下所示:(1)请直接写出a=,m=,第3组人数在扇形统计图中所对应的圆心角是度.(2)请补全上面的频数分布直方图;(3)假设该市现有10~60岁的市民300万人,问40~50岁年龄段的关注本次大会的人数约有多少?22.已知关于x 的一元二次方程2102ax bx ++=. (1)若1x =是方程的一个解,写出a 、b 满足的关系式; (2)当1b a =+时,利用根的判别式判断方程根的情况;(3)若方程有两个相等的实数根,请写出一组满足条件的a 、b 的值,并求出此时方程的根.23.如图,在等边△ABC 中,把△ABC 沿直线MN 翻折,点A 落在线段BC 上的D 点位置(D 不与B 、C 重合),设∠AMN =α.(1)用含α的代数式表示∠MDB 和∠NDC ,并确定的α取值范围; (2)若α=45°,求BD :DC 的值; (3)求证:AM •CN =AN •BD .24.如图,某城建部门计划在新修的城市广场的一块长方形空地上修建一个面积为1200m 2的停车场,将停车场四周余下的空地修建成同样宽的通道,已知长方形空地的长为50m ,宽为40m .(1)求通道的宽度;(2)某公司希望用80万元的承包金额承揽修建广场的工程,城建部门认为金额太高需要降价,通过两次协商,最终以51.2万元达成一致,若两次降价的百分率相同,求每次降价的百分率.25.如图,四边形OABC是矩形,A、C分别在y轴、x轴上,且OA=6cm,OC=8cm,点P从点A开始以2cm/s的速度向B运动,点Q从点B开始以1cm/s的速度向C运动,设运动时间为t.(1)如图(1),当t为何值时,△BPQ的面积为4cm2?(2)当t为何值时,以B、P、Q为顶点的三角形与△ABC相似?(3)如图(2),在运动过程中的某一时刻,反比例函数y=mx的图象恰好同时经过P、Q两点,求这个反比例函数的解析式.参考答案1.A【分析】先把x=1代入方程220x ax b++=得a+2b=-1,然后利用整体代入的方法计算2a+4b的值【详解】将x=1代入方程x2+ax+2b=0,得a+2b=-1,2a+4b=2(a+2b)=2×(-1)=-2.故选A.【点睛】此题考查一元二次方程的解,整式运算,掌握运算法则是解题关键 2.C 【解析】 【分析】将(1,2)代入解析式中即可. 【详解】解:将点(1,2)代入解析式得, 21k =, k =2. 故选:C . 【点睛】此题考查的是求反比例系数解析式,掌握用待定系数法求反比例函数解析式是解决此题的关键. 3.D 【分析】根据一元二次方程的根的判别式、一元二次方程根的定义、一元二次方程根与系数的关系逐一进行分析即可. 【详解】x 1、x 2是一元二次方程x 2-2x=0的两个实数根, 这里a=1,b=-2,c=0, b 2-4ac=(-2)2-4×1×0=4>0,所以方程有两个不相等的实数根,即12x x ≠,故A 选项正确,不符合题意; 21120x x -=,故B 选项正确,不符合题意; 12221b x x a -+=-=-=,故C 选项正确,不符合题意; 120cx x a⋅==,故D 选项错误,符合题意, 故选D. 【点睛】本题考查了一元二次方程的根的判别式,根的意义,根与系数的关系等,熟练掌握相关知识是解题的关键. 4.C 【详解】解:在Rt △ABC 中,∠C=90°,AB=5,BC=3, sinA=35BC AB =, 故选C .考点:锐角三角函数的定义. 5.C 【详解】试题分析:根据相似图形的定义,对选项一一分析,排除错误答案. 解:A 、对应边都成比例的多边形,属于形状不唯一确定的图形,故错误; B 、对应角都相等的多边形,属于形状不唯一确定的图形,故错误; C 、边数相同的正多边形,形状相同,但大小不一定相同,故正确; D 、矩形属于形状不唯一确定的图形,故错误. 故选C .考点:相似图形.点评:本题考查相似变换的定义,即图形的形状相同,但大小不一定相同的是相似形. 6.D 【分析】根据二次函数的性质逐项判断即可. 【详解】根据二次函数的性质,可得: 二次函数214y x =顶点坐标为(0,0),104>开口向上,故除顶点外图象都在x 轴上方, 故A 、B 、C 正确;当x=0时,y 有最小值为0,故D 错误. 故选:D. 【点睛】本题考查二次函数的性质,熟练掌握二次函数顶点坐标,开口方向,最值与系数之间的关系是解题的关键. 7.D先由DE∥BC得出AD AEAB AC=,再将已知数值代入即可求出AC.【详解】∵DE∥BC,∴AD AE AB AC=,∵AD=5,BD=10,∴AB=5+10=15,∵AE=4,∴5415AC=,∴AC=12.故选:D.【点睛】本题考查平行线分线段成比例,熟练掌握平行线分线段成比例定理是解题的关键.8.C【分析】根据中位数的定义、平均数的公式、众数的定义和方差公式计算即可.【详解】解:A、按大小排列这组数据,第10,11个数据的平均数是中位数,(6+6)÷2=6,故本选项错误;B、平均数=(4×4+5×5+6×7+8×3+13×1)÷20=6,故本选项错误;C、6出现了7次,出现的次数最多,则众数是6,故本选项正确;D、方差是:S2=120[4×(4﹣6)2+5×(5﹣6)2+7×(6﹣6)2+3×(8﹣6)2+(13﹣6)2]=4.1,故本选项错误;故选C.【点睛】此题考查的是中位数、平均数、众数和方差的算法,掌握中位数的定义、平均数的公式、众数的定义和方差公式是解决此题的关键.9.B根据题意,易证△AEH ∽△AFG ∽△ABC ,利用相似比,可求出S △AEH 、S △AFG 与S △ABC 的面积比,从而表示出S △AEH 、S △AFG ,再求出四边形EFGH 的面积即可. 【详解】∵在矩形中FG ∥EH ,且EH ∥BC , ∴FG ∥EH ∥BC ,∴△AEH ∽△AFG ∽△ABC , ∵AB 被截成三等分, ∴13AE AB =,23AF AB =, ∴S △AEH :S △ABC =1:9,S △AFG :S △ABC =4:9, ∴S △AEH =19S △ABC ,S △AFG =49S △ABC ,∴S 四边形EFGH = S △AFG -S △AEH =49S △ABC -19S △ABC =13S △ABC .故选:B . 【点睛】本题考查相似三角形的判定与性质,明确面积比等于相似比的平方是解题的关键. 10.B 【解析】 【分析】反比例函数y =kx(k ≠0)的图象k >0时位于第一、三象限,在每个象限内,y 随x 的增大而减小;k <0时位于第二、四象限,在每个象限内,y 随x 的增大而增大.根据反比例函数的性质并结合其对称性对各选项进行判断. 【详解】A 、把点(1,﹣3)代入函数解析式,﹣3=﹣3,故本选项正确,不符合题意,B 、∵k =﹣2<0,∴图象位于二、四象限,且在每个象限内,y 随x 的增大而增大,故本选项错误,符合题意,C 、反比例函数的图象可知,图象关于原点对称,故本选项正确,不符合题意D 、∵x 、y 均不能为0,故图象与坐标轴没有交点,故本选项正确,不符合题意. 故选:B .本题主要考查的是反比例函数的性质,是中考中比较常见的知识点,一般难度不大,需熟练掌握.11.12y y >【分析】把横坐标分别代入关系式求出纵坐标,再比较大小即可.【详解】∵A (3,y 1),B (5,y 2)在函数5y x=的图象上, ∴153y =,2515y ==, ∴y 1>y 2.【点睛】本题考查反比例函数,掌握反比例函数图象上点的坐标特征是解题的关键.12.4.【分析】根据关系式,令h=0即可求得t 的值为飞行的时间.【详解】解:依题意,令0h =得:∴20205t t =-得:(205)0t t -=解得:0t =(舍去)或4t =∴即小球从飞出到落地所用的时间为4s故答案为4.【点睛】本题考查了二次函数的性质在实际生活中的应用.此题为数学建模题,关键在于读懂小球从飞出到落地即飞行的高度为0时的情形,借助二次函数解决实际问题.此题较为简单. 13.22(2)y x =+【分析】根据平移规律“左加右减,上加下减”即可写出表达式.根据函数的图形平移规律可知:抛物线22y x =向左平移2个单位后所得到的抛物线为()222y x =+.【点睛】本题考查了平移的知识,掌握函数的图形平移规律是解题的关键.14.1-【解析】【分析】分别求解两个方程的根即可.【详解】解:()()30x m x --=,解得x=3或m ;()()223310x x x x --=-+=,解得x=3或-1,则m=-1,故答案为:-1.【点睛】本题考查了运用因式分解法解一元二次方程.15.13【详解】解方程x 2-4x+3=0得,x 1=1,x 2=3,①当3是直角边时,∵△ABC 最小的角为A ,∴tanA=13;②当3是斜边时,根据勾股定理,∠A 的邻边=∴=;所以tanA 的值为13 16.3.【分析】先根据同角的余角相等证明∠ADE =∠ACD ,在△ADC 根据锐角三角函数表示用含有k 的代数式表示出AD=4k 和DC=3k ,从而根据勾股定理得出AC=5k ,又AC=5,从而求出DC 的值即为AB.【详解】∵四边形ABCD 是矩形,∴∠ADC =90°,AB =CD ,∵DE ⊥AC ,∴∠AED =90°,∴∠ADE +∠DAE =90°,∠DAE +∠ACD =90°,∴∠ADE =∠ACD ,∴tan ∠ACD =tan ∠ADE =43=AD CD, 设AD =4k ,CD =3k ,则AC =5k ,∴5k =5,∴k =1,∴CD =AB =3,故答案为3.【点睛】本题考查矩形的性质和利用锐角三角函数解直角三角形,解决此类问题时需要将已知角的三角函数、已知边、未知边,转换到同一直角三角形中,然后解决问题.17.8.1m【分析】由题意得,在直角三角形中,知道了两直角边,运用勾股定理即可求出斜边,从而得出这棵树折断之前的高度.【详解】解:如图:3.1,38AC m B =∠=︒, ∴ 3.15sin 0.62AC AB B ===, ∴木杆折断之前高度()3.158.1AC AB m =+=+=故答案为8.1m【点睛】本题考查勾股定理的应用,熟练掌握运算法则是解题关键.18.1【分析】先计算锐角三角函数值,然后再根据实数的运算法则进行计算即可.【详解】解:原式1122-⨯ =1+1-1=1.【点睛】本题考查锐角三角函数,实数的混合运算,熟记特殊角的三角函数值及实数各运算法则是解题的关键.19.可以求出A 、B 之间的距离为111.6米.【分析】 根据OD OE OB OA =,AOB EOD ∠=∠(对顶角相等),即可判定AOB EOD ∽,根据相似三角形的性质得到13DE OE AB OA ==,即可求解. 【详解】解:∵OD OE OB OA=,AOB EOD ∠=∠(对顶角相等), ∴AOB EOD ∽, ∴13DE OE AB OA ==, ∴37.213AB =, 解得111.6AB =米.所以,可以求出A 、B 之间的距离为111.6米【点睛】考查相似三角形的应用,掌握相似三角形的判定方法和性质是解题的关键.20.(1)()2161608555y x x x =-++≤≤;(2)王师傅必须在7米以内. 【分析】(1)由抛物线的顶点坐标为(3,5),设抛物线解析式为y=a(x-3)+5,把(8,0)单人宽求出a 的值,即可得抛物线解析式;(2)把y=1.8代入解析式求出x 的值,根据函数图像的对称性求出负半轴的坐标即可.【详解】(1)设()235y a x =-+,过点()80, ∴代入,解得15a =- ∴抛物线(第一象限部分)的函数表达式为()2161608555y x x x =-++≤≤ (2)091.85y ==∴200916165555x x =-++ 07x ∴=或-108x ≤≤,图象对称∴负半轴为-7答:王师傅必须在7米以内.【点睛】本题考查了待定系数法求二次函数解析式以及二次函数图象上点的坐标特征,解题的关键是:(1)根据点的坐标,利用待定系数法求出二次函数表达式;(2)利用二次函数图象上点的坐标特征求出当y=1.8时x 的值.21.(1)25,20,126;(2)补全的频数分布直方图如图所示;见解析;(3)40~50岁年龄段的关注本次大会的人数约有60万人.【分析】(1)随机选取总人数减去其他组人数即可得到a ,第4组人数除以调查总人数即可得到答案;第3组人数所占百分比乘以360度,即可得到答案;(2)由(1)值,2030x ≤<有25人,即可得到答案;(3)300万乘以调查40~50岁年龄段的百分比可得答案.【详解】(1)100535201525a =----=,()%20100100%20%m =÷⨯=,第3组人数在扇形统计图中所对应的圆心角是:35360126100︒⨯=︒, 故答案为25,20,126;(2)由(1)值,2030x ≤<有25人,补全的频数分布直方图如图所示;(3)2030060100⨯=(万人), 答:40~50岁年龄段的关注本次大会的人数约有60万人.【点睛】本题考查扇形统计图和条形统计图,解题的关键是熟练读出扇形统计图和条形统计图的信息.22.(1)102a b ++=;(2)原方程有两个不相等的实数根;(3)2a =,2b =,1212x x ==-(答案不唯一).【分析】(1)把方程的解代入即可;(2)根据根的判别式及b=a +1计算即可;(3)根据方程根的情况得到根的判别式,从而得到a 、b 的值,再代入方程解方程即可.【详解】解:(1)把1x =代入方程可得102a b ++= ,故a 、b 满足的关系式为102a b ++=;(2)△221422b a b a =-⨯=-, ∵1b a =+,∴△2(1)2a a =+-2212a a a =++-210a =+>,∴原方程有两个不相等的实数根;(3)∵方程有两个相等的实数根,∴△=220b a -=,即22b a =,取2a =,2b =(取值不唯一), 则方程为212202x x ++=, 解得1212x x ==-. 【点睛】本题考查一元二次方程的解,解法,及根的判别式,熟记根的判别式,掌握一元二次方程的解法是解题的关键.23.(1)∠MDB ==2α﹣60°,∠NDC =180°﹣2α,(30°<α<90°);(2;(3)见解析【分析】(1)利用翻折不变性,三角形内角和定理求解即可解决问题.(2)设BM =x .解直角三角形用x 表示BD ,CD 即可解决问题.(3)证明△BDM ∽△CND ,推出DM ND =BD CN ,推出DM •CN =DN •BD 可得结论. 【详解】(1)由翻折的性质可知∠AMN =∠DMN =α,∵∠AMB =∠B +∠MDB ,∠B =60°,∴∠MDB =2α﹣60°,∠NDC =180°﹣∠MDB ﹣∠MDN =180°﹣(2α﹣60°)﹣60°=180°﹣2α,(30°<α<90°)(2)设BM =x .∵α=45°,∴∠AMD =90°,∴∠BMD =90°,∵∠B =60°,∴∠BDM =30°,∴BD =2x ,DN =BD •cos30°,∴MA =MD ,∴BC=AB=x,∴CD=BC﹣BD﹣x,∴BD:CD=2x:﹣x.(3)∵∠BDN=∠BDM+∠MDN=∠C+∠DNC,∠MDN=∠A=∠C=60°,∴∠BDM=∠DNC,∵∠B=∠C,∴△BDM∽△CND,∴DMND=BDCN,∴DM•CN=DN•BD,∵DM=AM,ND=AN,∴AM•CN=AN•BD.【点睛】本题考查了翻折变换、解直角三角形以及相似三角形的判定与性质,熟练掌握折叠的性质是解题的关键.24.(1)5m,(2)20%【分析】(1)设通道的宽度为x米.由题意(50﹣2x)(40﹣2x)=1200,解方程即可;(2)可先列出第一次降价后承包金额的代数式,再根据第一次的承包金额列出第二次降价的承包金额的代数式,然后令它等于51.2即可列出方程.【详解】(1)设通道宽度为xm,依题意得(50﹣2x)(40﹣2x)=1200,即x2﹣50x+225=0解得x1=5,x2=40(舍去)答:通道的宽度为5m.(2)设每次降价的百分率为x,依题意得80(1﹣x)2=51.2解得x1=0.2=20%,x2=1.8(舍去)答:每次降价的百分率为20%.【点睛】本题考查了一元二次方程的应用,根据题意,正确列出关系式是解题的关键.25.(1)t=2s时,△PBQ的面积为4;(2)t为125s或3211s时,以B、P、Q为顶点的三角形与△ABC相似;(3)y=144 5x【分析】(1)利用三角形的面积公式构建方程求出t即可解决问题.(2)分两种情形分别利用相似三角形的性质构建方程即可解决问题.(3)求出P,Q两点坐标,利用待定系数法构建方程求出t的值即可解决问题.【详解】(1)由题意AB=OC=8cm,AO=BC=6cm,∠B=90°,∵P A=2t,BQ=t,∴PB=8﹣2t,∵△BPQ的面积为4cm2,∴12•(8﹣2t)•t=4,解得t=2,∴t=2s时,△PBQ的面积为4.(2)①当△BPQ∽△BAC时,PBAB =BQBC,∴828-t=6t,解得t=125.②当△BPQ∽△BCA时,BPBC=BQBA,∴826-t=8t,解得t=32 11,∴t为125s或3211s时,以B、P、Q为顶点的三角形与△ABC相似.(3)由题意P(2t,6),Q(8,6﹣t),∵反比例函数y=mx的图象恰好同时经过P、Q两点,∴12t=8(6﹣t),解得t=125,∴P(245,6),∴1445m,∴反比例函数的解析式为y=1445x.【点睛】本题主要考查了相似三角形的判定与性质以及反比例函数的性质,属于综合性比较强的题.。

湘教版九年级上册数学期末考试试卷及答案

湘教版九年级上册数学期末考试试卷及答案

湘教版九年级上册数学期末考试试题一、选择题。

(每小题只有一个正确答案)1.已知反比例函数经过(-2,3),则下列哪个点在此函数图象上()A.(-1,-6) B.(3,2) C.(-2,-3) D.(-6,1) 2.一元二次方程x2+4x=3配方后化为()A.(x+2)2=3 B.(x+2)2=7 C.(x-2)2=7 D.(x+2)2=-1 3.点B是线段AC的黄金分割点,且AB<BC.若AC=4,则BC的长为()A.2B.2C D14.Rt△ABC中,∠C=90°,若AB=4,cosA=35,则AC的长为()A.95B.125C.163D.55.小明随机抽查了九年级(2)班9位同学一周写数学作业的时间,分别为6,4,6,5,6,7,6,6,8(单位:h).则估计本班大多数同学一周写数学作业的时间约为()A.4h B.5h C.6h D.7h6.已知二次函数y=(m+2)23mx-,当x<0时,y随x的增大而增大,则m的值为()A.B C.D.27.如图,在△ABC中,∠A=90°,sinB=35,点D在边AB上,若AD=AC,则tan∠BCD的值为( )A.15B.16C.17D.188.函数y=mx与y=mx﹣m(m≠0)在同一平面直角坐标系中的图象可能是()A .B .C .D .9.已知关于x 的方程2(2)230m x mx m -+++=有实根,则m 的取值范围是( ) A .2m ≠B .6m =且2m ≠C .6m <D .2m =或6m ≤10.如图,已知直线l 1∥l 2∥l 3,直线m 、n 分别与直线l 1、l 2、l 3分别交于点A 、B 、C 、D 、E 、F ,若DE =3,DF =8,则BCAC的值为( )A .35B .58C .53D .85二、填空题11.若反比例函数2k y x-=的图象经过第一、三象限,则k 的取值范围是______________.12.已知2334b a b =-,则a b=________ 13.如图,网高为0.8米,击球点到网的水平距离为3米,小明在打网球时,要使球恰好能打过网,且落点恰好在离网4米的位置上,则球拍击球的高度h 为___米.14.若关于x 的一元二次方程220x x k +-=有实数根,则k 的取值范围是__________. 15.如果抛物线y=x 2-6x+c-2的顶点到x 轴的距离是4,则c 的值等于_________.16.如图所示,D 为AB 边上一点,AD :DB=3:4,DE //AC 交BC 于点E ,则S △BDE :S △AEC 为_____.17.如图,垂直于x 轴的直线AB 分别与抛物线C 1:y =x 2(x ≥0)和抛物线C 2:y =24x (x ≥0)交于A ,B 两点,过点A 作CD ∥x 轴分别与y 轴和抛物线C 2交于点C 、D ,过点B 作EF ∥x 轴分别与y 轴和抛物线C 1交于点E 、F ,则OFB EADS S的值为_____.三、解答题18.计算:4sin60°+(3.14- )0230°.19.随着科技的进步和网络资源的丰富,在线学习已经成为更多人的自主学习选择.某校计划为学生提供以下四类在线学习方式:在线阅读、在线听课、在线答题和在线讨论.为了解学生需求,该校随机对本校部分学生进行了“你对哪类在线学习方式最感兴趣”的调查,并根据调查结果绘制成如下两幅不完整的统计图.(1)求本次调查的学生总人数,并补全条形统计图; (2)求扇形统计图中“在线讨论”对应的扇形圆心角的度数;(3)该校共有学生3000人,请你估计该校对在线阅读最感兴趣的学生人数.20.某高速公路建设中,需要确定隧道AB 的长度.已知在离地面1800m 高度C 处的飞机上,测量人员测得正前方A ,B 两点处的俯角分别为60°和45°(即∠DCA =60°,∠DCB =45°).求隧道AB 的长.(结果保留根号)21.如图,△ABC 中,BD 平分∠ABC ,E 为BC 上一点,∠BDE=∠BAD=90°, (1)求证:BD 2=BA·BE ; (2)若AB=6,BE=8,求CD 的长.22.已知关于x 的一元二次方程x 2+2mx+m 2+m=0有两个不相等的实数根. (1)求m 的取值范围.(2)若x 1,x 2是方程的两根,且x 12+x 22=12,求m 的值.23.如图,直线y 1=kx+b 与函数y 2=(0)kx x的图象相交于点A(-1,6),与x 轴交于点C ,且∠ACO=45°,点D 是线段AC 上一点. (1)求k 的值与一次函数的解析式.(2)若直线与反比例函数的另一支交于B 点,直接写出y 1<y 2自变量x 的取值范围,并求出△AOB 的面积.(3)若S △COD :S △AOC =2:3,求点D 的坐标.24.如图,抛物线y=ax2+bx+c的图象过点A(-1,0)、B(3,0)、C(0,3) .(1)求抛物线的解析式;(2)在抛物线的对称轴上是否存在一点P,使得△PAC的周长最小,若存在,请求出点P 的坐标及△PAC的周长;若不存在,请说明理由;(3)在抛物线的对称轴上是否存在点M,使△MAC为等腰三角形?若存在,求出所有符合条件的点M的坐标;若不存在,请说明理由.25.(1)如图1,在四边形ABCD中,点M在BC上,∠B=∠C=∠AMD时.求证:△ABM∽△MCD.(2)如图2,在△ABC中,点M是边BC的中点,点D,E分别在边AB,AC上.若∠B=∠C=∠DME=45°,BC=CE=6,求DE的长.参考答案1.D【分析】将已知点代入反比例函数的解析式kyx=中求出k值,再根据k=xy解答即可.【详解】解:设反比例函数的解析式为kyx =,将(﹣2,3)代入解析式中,得:k=﹣2×3=﹣6,只有D选项满足k=﹣6×1=﹣6,故选:D.【点睛】本题考查反比例函数图象上的点的坐标特征、待定系数法求反比例函数解析式,熟练掌握反比例函数图象上的点的坐标特征是解答的关键.2.B【分析】在方程的两边同时加上一次项系数一半的平方,化成完全平方的形式即可得出答案.【详解】解:x2+4x=3,x2+4x+4=7,(x+2)2=7,故选:B.【点睛】此题考查了解一元二次方程-配方法,熟练掌握完全平方公式是解本题的关键;配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.3.B【分析】根据黄金分割的定义可得出较长的线段AC,将AC=4代入即可得出BC的长度.【详解】解:∵点B是线段AC的黄金分割点,且AB<BC,∴AC,∵AC=4,∴BC=2.故选:B.【点睛】本题考查了黄金分割的定义:把线段AB分成两条线段AC和BC(AC>BC),且使AC是AB和BC的比例中项(即AB:AC=AC:BC),叫做把线段AB黄金分割,点C叫做线段AB的黄金分割点.其中AB≈0.618AB,并且线段AB的黄金分割点有两个.4.B【分析】根据三角函数可求出AC长.【详解】解:∵∠C=90°,若AB=4,∴cosA=ACAB,即345AC=,AC=125,故选:B.【点睛】本题考查了三角函数的计算,解题关键是理解余弦的意义,熟练进行计算.5.C【分析】求平均数即可.【详解】解:这9位同学一周写数学作业的时间平均数为64656766869++++++++=(小时);故选:C.【点睛】本题考查了平均数的计算,解题关键是理解样本可以估计总体,会熟练的运用平均数公式计算.6.A【分析】根据次数为2可列方程,再根据函数增减性确定m值.【详解】解:根据题意可知,232m-=,解得,m=∵二次函数y=(m+2)23mx-,当x<0时,y随x的增大而增大,∴m+2<0,解得m<-2,综上,m=故选:A.【点睛】本题考查了二次函数的定义和增减性,解题关键是根据二次函数的定义列方程,依据增减性确定二次项系数的符号.7.C【分析】作DE⊥BC于E,在△CDE中根据已知条件可求得DE,CE的长,从而求得tan∠BCD. 【详解】解:作DE⊥BC于E.∵∠A=90°,sinB=35,设AC=3a=AD,则AB=4a,BC=5a, ∴BD=AB-AD=a.∴DE= BD·sinB=35 a,∴根据勾股定理,得BE=45 a,∴CE=BC-BE=215a, ∴tan ∠BCD=1.7DE CE = 故选C.【点睛】本题考查了勾股定理在直角三角形中的运用,考查了直角三角形中三角函数值的计算,本题中正确求三角函数值是解题的关键. 8.C 【分析】分别根据反比例函数及一次函数的图象在坐标系中的位置,对四个选项逐一分析,即可得到答案. 【详解】解:A 、由反比例函数的图象在可一、三象限知m >0时,-m <0, ∴一次函数(0)y mx m m =-≠的图象经过一,三,四象限 ∴A 错误,C 、由反比例函数的图象在可一、三象限知m >0时,-m <0, ∴一次函数(0)y mx m m =-≠的图象经过一,三,四象限 C 正确;B 、反比例函数的图象在二、四象限可知当m <0时,-m >0, ∴一次函数(0)y mx m m =-≠的图象经过一,二,四象限, ∴B 错误,D 、由反比例函数的图象在二、四象限可知当m <0时,-m >0, ∴一次函数(0)y mx m m =-≠的图象经过一,二,四象限, ∴D 错误; 故选C. 【点睛】本题主要考查反比例函数和一次函数的图象比例系数的关系,掌握反比例函数和一次函数的比例系数的几何意义,是解题的关键. 9.D 【分析】分两种情况讨论,当方程是一元一次方程时,20m -=,或方程是一元二次方程时,根据一元二次方程的定义,二次项系数不为零,再结合一元二次方程根的判别式:当0∆≥时,方程有实根,据此解题. 【详解】解:当20m -=时,即2m =时,原方程是一元一次方程450x +=54x ∴=-,方程有实根;当2m ≠时,一元二次方程2(2)230m x mx m -+++=有实根,则0∆≥ 即22444(2)(3)0b ac m m m -=--+≥ 4240m -+≥解得6m ≤故选:D . 【点睛】本题考查方程的根、一元二次方程的根的情况求参数等知识,是重要考点,涉及分类讨论的数学思想,掌握相关知识是解题关键. 10.B 【分析】根据平行线分线段成比例定理解答即可. 【详解】 解:∵l 1∥l 2∥l 3, ∴=EF BCDF AC, ∵DE =3,DF =8, ∴838BCAC-=,即BC AC =58, 故选:B .【点睛】本题考查了平行线分线段成比例定理,注意:一组平行线截两条直线,所截的线段对应成比例.11.2k >【分析】根据反比例函数的图象和性质即可得.【详解】由题意得:20k ->,解得2k >,故答案为:2k >.【点睛】本题考查了反比例函数的图象和性质,熟练掌握反比例函数的图象和性质是解题关键.12.119【解析】 ∵2334ba b =-,∴8b=3(3a-b),即9a=11b ,∴119a b =, 故答案为119.13.1.4【分析】根据相似三角形对应边成比例列式计算即可得解.【详解】由题意得,40.843h =+,解得h=1.4.故答案为1.4.【点睛】本题考查了相似三角形的应用,熟练掌握性质定理是解题的关键.14.1k ≥-【分析】一元二次方程220+-=有实数根,即240x x k∆=-≥b ac【详解】解:一元二次方程220+-=有实数根x x k24440∴∆=-=+≥b ac kk≥-解得1【点睛】本题考查24b ac∆=-与系数的关系.15.7或15.【分析】根据题意可知,抛物线顶点纵坐标是±4,化成顶点式求解即可.【详解】解:∵抛物线y=x2-6x+c-2的顶点到x轴的距离是4,∴抛物线顶点纵坐标是±4,抛物线y=x2-6x+c-2化成顶点式为:y=(x-3)2+c-11,c-11=4,c=15,c-11=-4,c=7,故答案为:7或15.【点睛】本题考查了抛物线的顶点坐标,解题关键是理解到x轴的距离是纵坐标的绝对值,注意:分类讨论.16.16:21【分析】根据平行线分线段成比例得出DE:AC=BD:AB=4:7,再根据相似三角形的面积比等于相似比的平方可求得S△BDE:S四边形ADEC=16:33,然后根据平行线间的距离相等得到S△ADE:S△AEC=DE:AC=4:7,进而可求得S△BDE:S△AEC.【详解】解:∵DE∥AC,∴△BDE∽△BAC,又AD:DB=3:4,∴DE:AC=BD:AB=4:7,∴S △BDE :S △BAC =16:49,∴S △BDE :S 四边形ADEC =16:33,∵DE ∥AC ,∴△ADE 与△AEC 的高相等,∴S △ADE :S △AEC =DE :AC=4:7=12:21,∴S △BDE :S △AEC =16:21,故答案为:16:21.【点睛】本题考查平行线分线段成比例、相似三角形的判定与性质、平行线的性质、比例性质,熟练掌握平行线分线段成比例和相似三角形的面积比等于相似比的平方是解答的关键.17.16【分析】根据二次函数的图象和性质结合三角形面积公式求解.【详解】解:设点A B 、横坐标为a ,则点A 纵坐标为2a ,点B 的纵坐标为24a , ∵BE ∥x 轴,∴点F 纵坐标为24a , ∵点F 是抛物线2y x 上的点,∴点F横坐标为12x a ==, ∵CD x 轴,∴点D 纵坐标为2a ,∵点D 是抛物线24x y =上的点, ∴点D横坐标为2x a ==,22131,,,244AD a BF a CE a OE a ∴==== ∴1141218362OFB EAD BF OE SS AD CE ⋅⋅==⨯=⋅⋅,故答案为16.【点睛】此题重点考查学生对二次函数的图象和性质的应用能力,熟练掌握二次函数的图象和性质是解题的关键.18.23.【分析】先计算特殊角的三角函数值、零指数幂,化简二次根式,再计算各部分的和即可得到结果.【详解】4sin60°+(3.14-π)0230°2=1 3=23.【点睛】本题考查特殊角的三角函数值、零指数幂及化简二次根式,熟记各特殊角的三角函数值及实数运算法则是解题关键.19.(1)见解析;(2)48︒;(3)800人.【分析】(1)根据在线答题的人数和所占的百分比即可求得本次调查的人数,然后再求出在线听课的人数,即可将条形统计图补充完整;(2)根据统计图中的数据可以求得扇形统计图中“在线讨论”对应的扇形圆心角的度数;(3)根据统计图中的数据可以求得该校对在线阅读最感兴趣的学生人数.【详解】(1)本次调查的学生总人数为:18÷20%=90,在线听课的人数为:90−24−18−12=36,补全的条形统计图如图所示:;(2)扇形统计图中“在线讨论”对应的扇形圆心角的度数是:360︒×1290=48︒, 即扇形统计图中“在线讨论”对应的扇形圆心角的度数是48︒;(3)3000×2490=800(人), 答:该校对在线阅读最感兴趣的学生有800人.【点睛】本题考查条形统计图、扇形统计图、用样本估计总体,解答本题的关键是明确题意,利用数形结合的思想解答.20.隧道AB 的长为(1800﹣m【分析】易得∠CAO =60°,∠CBO =45°,利用相应的正切值可得BO ,AO 的长,相减即可得到AB 的长.【详解】解:∵CD //OB ,∴∠CAO =∠DCA =60°,∠CBO =∠DCB =45°,在Rt CAO 中,tan ∠CAO =CO OA=tan60°,∴1800OA =∴OA =在Rt CAO 中,tan ∠CBO =CO OB=tan45°, ∴OB =OC =1800,∴AB =OB ﹣OA =1800﹣答:隧道AB 的长为(1800﹣m .本题考查了解直角三角形的应用﹣俯角和仰角,解答本题的关键是利用三角函数值得到与所求线段相关线段的长度.21.(1)见解析;(2)【分析】(1)根据角平分线定义可证得∠ABD=∠EBD,再根据相似三角形的判定证明△BAD∽△BDE,然后根据相似三角形的性质即可证得结论;(2)根据(1)中结论求得BD长,再根据勾股定理求得AD长,进而可求得∠ABD=30°,即∠ABC=60°,利用锐角三角函数求得AC长,即可求得CD长.【详解】解:(1)∵BD平分∠ABC ,∴∠ABD=∠EBD,又∵∠BDE=∠BAD=90°,∴△BAD∽△BDE ,∴BD:BE=BA:BD ,即BD2=BA·BE;(2)∵由(1)可知,BD2=BE·BA,且AB=6,BE=8 ,∴∴AD2=BD2-AB2=12 即AD=,∵sin∠ABD=ADBD=12,∴∠ABD=30°,又∠ABD=∠EBD,∴∠ABC=60°,∴CA=BA×tan60°,∴【点睛】本题考查相似三角形的判定与性质、锐角三角函数、勾股定理、角平分线的定义,熟练掌握相似三角形的判定与性质是解答的关键.22.(1)0m ;(2)-2(1)根据根的判别式大于零求解即可;(2)先求出x 1+x 2=-2m ,x 1·x 2=m 2+m ,然后把x 12+x 22=12变形为(x 1+x 2)2-2x 1x 2=12,再把x 1+x 2=-2m ,x 1·x 2=m 2+m 代入求解即可;【详解】解:(1)∵此方程有两个不相等的实数根,∴b 2-4ac>0 ,即4m 2-4(m 2+m)>0,∴m<0;(2)x 1+x 2=-2m ,x 1·x 2=m 2+m , ∵x 12+x 22=12,∴(x 1+x 2)2-2x 1x 2=12,∴m=3或m=-2,由(1)可知m<0,故m=3舍去,∴m=-2.【点睛】本题考查了一元二次方程ax 2+bx +c =0(a ≠0)根的判别式,以及根与系数的关系,若x 1,x 2为方程的两个根,则x 1,x 2与系数的关系式:12b x x a +=-,12c x x a⋅=. 23.(1)16,5k y x =-=-+;(2)10x -<<或6x >,352;(3)D (1,4) 【分析】(1)将A(-1,6)代入y=(0)k x x <可求出k 的值,再求出点C 的坐标,然后用待定系数法即可求出一次函数的解析式;(2)解1256y x y x =-+⎧⎪-⎨=⎪⎩即可求出点B 的坐标,根据图象可求出y 1<y 2时自变量x 的取值范围,根据S △AOB =12OC AE ⋅求解即可求出△AOB 的面积; (3)过点D 作DF ⊥x 轴,垂足为F ,设D(x ,-x+5)(x >0),然后根据DF :AE=2:3列方程即可求解.【详解】解:(1)∵反比例函数经过点A(-1,6) ,∴k=-1×6==-6.如图1,作AE ⊥x 轴,交x 轴于点E ,∴E(-1,0),EA=6,∵∠ACO=45°,∴CE=AE=6,∴C(5,0) ,∴650k b k b -+=⎧⎨+=⎩,∴15k b =-⎧⎨=⎩,∴直线y 1`=-x+5;(2)解1256y x y x=-+⎧⎪-⎨=⎪⎩,得x 1=-1,x 2=6,故B(6,-1).如图2,由图象可知,当y 1<y 2时,-1<x<0或 x>6 ,S △AOB =1·2OC AE =352;(3)如图1,作DF⊥x轴,交x轴于点F.∵S△COD:S△AOC=2:3,∴DF:AE=2:3.设点D(x,-x+5),即有(-x+5):6=2:3,∴x=1,∴D(1,4).【点睛】本题考查了反比例函数与一次函数额综合,待定系数法求解析式,三角形的面积等,解题关键是能够熟练运用反比例函数的性质.24.(1)2y x2x3=-++;(2)存在,P(1,2),△PAC(3)存在,点M的坐标为(1,1),(1),(1,,(1,0)【分析】(1)将A、B、C分别代入抛物线表达式中求解a、b、c即可解答;(2)由于为定值,所以要使得△PAC的周长最小,只需PA+PC最小,由点A与点B关于对称轴对称,连接BC,与对称轴的交点即为△PAC周长取得最小值点P的位置,求出直线BC的解析式,将x=1代入即可求得点P的坐标及最小周长;(3)根据题意,分三种情况:①MA=MC ;②MA=AC ;③MC=AC 进行求解即可解答.【详解】解:(1)将A,B,C代入抛物线的解析式y=ax2+bx+c中,得:9303a b ca b cc-+=⎧⎪++=⎨⎪=⎩,解得:123abc=-⎧⎪=⎨⎪=⎩,∴抛物线的解析式为2y x2x3=-++;(2)因为所以要使得△PAC的周长最小,只需PA+PC最小,由题意,抛物线的对称轴为直线x=1,根据抛物线的对称性,点A的对称点为B,连接BC,与对称轴的交点即为△PAC周长取得最小值点P的位置.设直线BC的解析式为y=kx+t,将B(3,0)、C(0,3)代入,得303k tt+=⎧⎨=⎩,解得:13kt=-⎧⎨=⎩,∴直线BC的解析式为y=﹣x+3,当x=1时,y=2,∴P(1,2),又BC= =∴△PAC周长的最小值为AC+BC=(3)设M(1,n),A(-1,0),C(0,3),则MA2=4+n2;MC2=1+(3-n)2;AC2=10,根据题意,分三种情况:①当MA=MC时,由4+n2=1+(3-n)2得:n=1,②当MA=AC 时,由4+n2=10得:n=③当MC=AC 时,由1+(3-n)2 =10得:n1=0,n2=6,但当n=6时,A,C,M三点共线,不构不成三角形,需舍去,综上所述,满足条件的点M的坐标为(1,1),(1),(1,,(1,0).【点睛】本题是二次函数的综合题,主要考查待定系数法求二次函数的解析式、二次函数的图象与性质、轴对称-最短路径、两点间距离公式、等腰三角形的判定、解一元一次方程、解一元二次方程等知识,解答的关键是明确题意,找寻知识的关联点,利用数形结合思想和分类讨论的方法等解题方法进行推理、探究和计算.25.(1)见解析;(2)103【分析】(1)由∠AMB +∠AMD +∠DMC =180°及△ABM 内角和为180°、∠B =∠AMD ,可得∠BAM =∠DMC ,从而可判定△ABM ∽△MCD ;(2)可判定△BDM ∽△CME ,从而有对应边成比例,则易求得BD 的长,然后在Rt △ADE 中,利用勾股定理或求得DE 的长.【详解】(1)∵∠AMB +∠AMD +∠DMC =180°,∠B +∠AMB +∠BAM = 180°,∠B =∠AMD ∴∠BAM =∠DMC∵∠B =∠C∴△ABM ∽△MCD(2)∵M 是BC 的中点∴BM =CM =1122BC =⨯ ∵∠DMB +∠DME +∠EMC =180°,∠B +∠DMB +∠BDM = 180°,∠B =∠DME∴∠BDM =∠EMC∵∠B =∠C∴△BDM ∽△CME ∴BM BD CE CM=∴4163 BM CMBDCE===∵∠B=∠C=45°∴∠A=180°-∠B-∠C=90°∴由勾股定理得:AB=AC8BC=∴AD=AB-BD=168833-=,AE=AC-CE=8-6=2在Rt△ADE中,由勾股定理得:103 DE=【点睛】本题考查了相似三角形的判定与性质,勾股定理,三角形内角和定理,关键是得出两个三角形相似.。

湘教版九年级数学上册期末考试卷(及答案)

湘教版九年级数学上册期末考试卷(及答案)

湘教版九年级数学上册期末考试卷(及答案)班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)1.若1aab+有意义,那么直角坐标系中点A(a,b)在()A.第一象限B.第二象限C.第三象限D.第四象限2.已知=2{=1xy是二元一次方程组+=8{=1mx nynx my-的解,则2m n-的算术平方根为()A.±2 B.2C.2 D.4 3.下列结论中,矩形具有而菱形不一定具有的性质是()A.内角和为360° B.对角线互相平分C.对角线相等 D.对角线互相垂直4.已知一个多边形的内角和等于900º,则这个多边形是()A.五边形B.六边形C.七边形D.八边形5.如果分式||11xx-+的值为0,那么x的值为()A.-1 B.1 C.-1或1 D.1或06.下列性质中,菱形具有而矩形不一定具有的是()A.对角线相等 B.对角线互相平分C.对角线互相垂直 D.邻边互相垂直7.在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是()A.B.C.D.8.如图,点P是边长为1的菱形ABCD对角线AC上的一个动点,点M,N分别是AB,BC边上的中点,则MP+PN的最小值是()A.12B.1 C.2D.29.如图,已知⊙O的直径AE=10cm,∠B=∠EAC,则AC的长为()A.5cm B.52cm C.53cm D.6cm10.如图,抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=1,与x轴的一个交点坐标为(-1,0),其部分图象如图所示,下列结论:①4ac<b2;②方程ax2+bx+c=0的两个根是x1=-1,x2=3;③3a+c>0;④当y>0时,x的取值范围是-1≤x<3;⑤当x<0时,y随x增大而增大.其中结论正确的个数是()A.4个B.3个C.2个D.1个二、填空题(本大题共6小题,每小题3分,共18分)1.9的算术平方根是__________.2.分解因式:a2b+4ab+4b=_______.3.若a,b都是实数,b12a-21a-﹣2,则a b的值为__________.4.如图1是一个由1~28的连续整数排成的“数阵”.如图2,用2×2的方框围住了其中的四个数,如果围住的这四个数中的某三个数的和是27,那么这三个数是a,b,c,d中的__________.5.如图所示,一次函数y=ax+b的图象与x轴相交于点(2,0),与y轴相交于点(0,4),结合图象可知,关于x的方程ax+b=0的解是__________.6.如图是一张矩形纸片,点E在AB边上,把BCE沿直线CE对折,使点B落在对角线AC上的点F处,连接DF.若点E,F,D在同一条直线上,AE=2,则DF=_____,BE=__________.三、解答题(本大题共6小题,共72分)1.解方程:113 22xx x-=---2.已知关于x的一元二次方程(a+c)x2+2bx+(a﹣c)=0,其中a、b、c分别为△ABC三边的长.(1)如果x=﹣1是方程的根,试判断△ABC的形状,并说明理由;(2)如果方程有两个相等的实数根,试判断△ABC的形状,并说明理由;(3)如果△ABC是等边三角形,试求这个一元二次方程的根.3.某市推出电脑上网包月制,每月收取费用y(元)与上网时间x(小时)的函数关系如图所示,其中BA是线段,且BA∥x轴,AC是射线.(1)当x≥30,求y与x之间的函数关系式;(2)若小李4月份上网20小时,他应付多少元的上网费用?(3)若小李5月份上网费用为75元,则他在该月份的上网时间是多少?4.在▱ABCD中,∠BAD的平分线交直线BC于点E,交直线DC于点F(1)在图1中证明CE=CF;(2)若∠ABC=90°,G是EF的中点(如图2),直接写出∠BDG的度数;(3)若∠ABC=120°,FG∥CE,FG=CE,分别连接DB、DG(如图3),求∠BDG 的度数.5.我市某中学举行“中国梦•校园好声音”歌手大赛,高、初中部根据初赛成绩,各选出5名选手组成初中代表队和高中代表队参加学校决赛.两个队各选出的5名选手的决赛成绩如图所示.(1)根据图示填写下表;平均数(分)中位数(分)众数(分)初中部85高中部85 100(2)结合两队成绩的平均数和中位数,分析哪个队的决赛成绩较好;(3)计算两队决赛成绩的方差并判断哪一个代表队选手成绩较为稳定.平均数(分)中位数(分)众数(分)初中部85 85 85高中部85 80 1006.某商场举办抽奖活动,规则如下:在不透明的袋子中有2个红球和2个黑球,这些球除颜色外都相同,顾客每次摸出一个球,若摸到红球,则获得1份奖品,若摸到黑球,则没有奖品.(1)如果小芳只有一次摸球机会,那么小芳获得奖品的概率为;(2)如果小芳有两次摸球机会(摸出后不放回),求小芳获得2份奖品的概率.(请用“画树状图”或“列表”等方法写出分析过程)参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、C3、C4、C5、B6、C7、D8、B9、B10、B二、填空题(本大题共6小题,每小题3分,共18分)1、3.2、b(a+2)23、44、a,b,d或a,c,d5、x=26、 1三、解答题(本大题共6小题,共72分)1、无解2、(1) △ABC是等腰三角形;(2)△ABC是直角三角形;(3) x1=0,x2=﹣1.3、(1)y=3x﹣30;(2)4月份上网20小时,应付上网费60元;(3)5月份上网35个小时.4、(1)略;(2)45°;(3)略.5、(1)(2)初中部成绩好些(3)初中代表队选手成绩较为稳定6、(1)12;(2)概率P=16。

2015-2016学年湘教版九年级数学上期末统考模拟试卷含答案

2015-2016学年湘教版九年级数学上期末统考模拟试卷含答案

2015-2016学年九年级数学上期末模拟试卷一、选择题(每小题3分,共30分)1. 反比例函数y=X在第一象限的图象如图所示,则k的值可能是(TX2A. 1 B . 2 C . 3 D . 42、现有一个测试距离为5m的视力表(如图),根据这个视力表,a小华想制作一个测试距离为3m 的视力表,则图中的b的值为3 2 3 5A . 2B . 3C . 5D . 33.把方程x-6x十4 =0的左边配成完全平方,正确的变形是( ) (第3?题图1)A (x-3)2=9B (x-3)2=13C (x-3)2=52D.(x + 3) =5k4. 关于x的函数y= k(x+ 1)和y= x(k^0在同一坐标系中的图象大致是()入5. 如图所示,河堤横断面迎水坡AB的坡比(指坡面的铅直高度BC与水平宽度CA的比)是1:3,堤高BC=5m,则坡面AB的长度是( )A. 10mB. 10'3 mC. 15m D . 5、3 m6. 某商品原价200元,连续两次降价a%后售价为148元,下列所列方程正确的是 (2 2A. 200(1+a%)2=148B. 200(1 - a%)2=1482C. 200(1 - 2a%)=148D. 200(1 —a%)=1487、如图,点A是反比例函数- ' (x v 0)的图象上的一点,过点A作平行四x I怕边形ABCD,使点B、C在x轴上,点D在y轴上,虫则平行四边形ABCD的面积为7A.1B.3C.6D.12 —~BC~O8. 随机抽取某城市30天的空气质量状况如下,当污染指数w 100寸为良,请根据以下记录估计该城市一年(以365天计)中,空气质量达到良以上的天数为污染指数407090110120140天数3510741A.216 天B . 217 天C . 218 天D . 219 天29、已知a、b、c分别是三角形的三边,则方程(a + b)x + 2cx + (a + b)= 0的根的14、计算:sin30 ° tan45 ° -cos30° tan30 ° + sin45 tan60 二 _____________ 15、请写出一个图象在第二、四象限的反比例函数关系式 _______________ 16. 已知关于x 的一元二次方程x 2 + bx + b — 1 = 0有两个相等的实数根, 则b 的值是 ____ .AB 117、如图,AB // CD ,CD 一3,△ COD 的周 长为12cm 则厶AOB 的周长是cm.18. 某学校为了做好道路交通安全教育工作,随机抽取本校 100名学生就上学的交通方式进行调查,根据调查结果绘制 扇形图如图所示.若该校共有1000名学生,请你估计全校 步行上学的学生人数约有—人19. 在 Rt A ABC , 若CD 是Rt △ ABC 斜边AB 上的高, AD=3, CD=4,贝U BC = _______ . 20. 在平面直角坐标系中,正方形 ABCD 的位置 如右图所示,点A 的坐标为(1,0),点D 的 坐标为(0,2).延长CB 交x 轴于点A 1,作 正方形A 1B 1C 1C ;延长C 1B 1交x 轴于点A 2, 作正方形A 2B 2C 2C 1,…情况是A •没有实数根B .可能有且只有一个实数根C .有两个相等的实数根D •有两个不相等的实数根10、如果两个相似三角形的相似比是那么它们的面积比是A 「 B. 1〕| C.丨 J : D. _ 1二、填空题(每小题3分,共30分)11、已知x = 1是关于x 的一元二次方程2x 2 + kx -1 = 0 的 一个根,则实数k 的值是______________________ 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

新湘教版数学九年级上册期末考试试卷
时量:90分钟 满分:120分
一、填空(每小题4分,共32分)
1.将 y =x 2-2x +3 化成 y =a (x -h)2+k 的形式,则 y =
2.已知双曲线x y 3=
和x
k
y =的部分图象如图所示,点C 是y 轴正半轴上一点,过点C 作AB ∥x 轴分别交两个图象于点B A 、.若CB =CA 2,则k = .
3.若
25a b =,则
a b
a b
+-=_________. 4.若关于x 的一元二次方程20x mx n ++=有两个相等的实数根,则符合条件的一组,m n 的值可以是m =_________,n =_________.
5.点C 是线段AB 的黄金分割点,若AB =5cm ,则BC 的长是_______.
6.如图,在△ABC 中,D 是AB 边上的一点,连接CD ,请添加一个适当的条件 ,
使△ABC ∽△ACD .(只填一个即可)
7.在△ABC 中,∠C =90°, cosB =
=则
b =_______.
8.甲、乙、丙、丁四人进行射击测试,每人10次射击成绩的平均数均是9.2环,
方差分别为0.56s =2甲,0.60s =2乙,20.50s =丙,20.45s =丁,则成绩最稳定的是
_______.
二、选择题(每小题3分,共24分)
9.已知数据:2323
1
-,
,,,π.其中无理数出现的频率为( ) A. 20% B. 40% C. 60% D. 80%
10.如图,在Rt ABC △中,ACB ∠=Rt ∠,1BC =,2AB =,则下列结论正确的是( )
A .sin A =
B .1tan 2A =
C .cos B =
D .tan B =
11.已知等腰梯形ABCD 中, AD ∥BC ,∠B =60°, AD =2 , BC =8 ,则此梯形的周长为( )
A. 19
B. 20
C. 21
D.22 12.已知3x =是关于方程23230x ax a +-=的一个根,则关于y 的方程212y a -=的解
是( )
以上答案都不对 13.图中的两个三角形是位似图形,它们的位似中心是 ( )
A .点P
B .点O
C .点M
D .点N
14.已知函数c bx ax y ++=2的图象如图所示,则函数b ax y +=的图象是( )
15.把方程2310x x +-=的左边配方后可得方程 ( )
A.2313()24x +=
B.235()24x +=
C.2313()24x -=
D. 235
()24
x -=
16.如图,DE 是△ABC 的中位线,延长DE 至F 使EF=DE ,连接CF ,则S △CEF :S 四边形BCED
的值为 ( )
三、解答题
17.计算(6分):
2009
1
2sin603tan30(1)
3
⎛⎫
-++-

⎝⎭
°°
18.(6分)已知x=1是一元二次方程2400
ax bx
+-=的一个解,且a b
≠,求
22 22 a b a b
-
-
的值.
19.(8分)已知关于x的一元二次方程x2+4x+m-1=0。

(1)请你为m选取一个合适的整数,使得到的方程有两个不相等的实数根;
(2)设α、β是(1)中你所得到的方程的两个实数根,求α2+β2+αβ的值。

20.(8分)“戒烟一小时,健康亿人行”.今年国际无烟日,小华就公众对在餐厅吸烟的态度进行了随机抽样调查,主要有四种态度:A.顾客出面制止;B.劝说进吸烟室;C.餐厅老板出面制止;D.无所谓.他将调查结果绘制了两幅不完整的统计图.请你根据图中的信息回答下列问题:
(1)这次抽样的公众有__________人;
(2)请将统计图补充完整;
x (时)
y (℃)
18
2
O 图5
A B
C (3)在扇形统计图中,“无所谓”部分所对应的圆心角是_________度;
(4)若城区人口有20万人,估计赞成“餐厅老板出面制止”的有__________万人.并根据统计信息,谈谈自己的感想.(不超过30个字
)
21.(8分)我市某蔬菜生产基地在气温较低时,用装有恒温系统的大棚栽培一种在自然光
照且温度为18℃的条件下生长最快的新品种.图5是某天恒温系统从开启到关闭及关闭后,大棚内温度y (℃)随时间x (小时)变化的函数图象,其中BC 段是双曲线x
k
y 的一部分.请根据图中信息解答下列问题:
(1)恒温系统在这天保持大棚内温度18℃的时间有多少小时? (2)求k 的值;
(3)当x =16时,大棚内的温度约为多少度?
(第2题)
22.(8分)据报道,我省农作物秸杆的资源巨大,但合理利用量十分有限,2006年的利用率只有30%,大部分秸杆被直接焚烧了,假定我省每年产出的农作物秸杆总量不变,且
合理利用量的增长率相同,要使2008年的利用率提高到60%,求每年的增长率。

(
1.41)
23、(10分)在矩形ABCD中,DC=2,CF⊥BD分别交BD、AD于点E、F,连接BF.(1)求证:△DEC∽△FDC;
(2)当F为AD的中点时,求sin∠FBD的值及BC的长度.
24.(10分)如图,抛物线y=ax2+bx+c经过A(﹣3.0)、C(0,4),点B在抛物线上,CB ∥x轴,且AB平分∠CAO.
(1)求抛物线的解析式;
(2)线段AB上有一动点P,过点P作y轴的平行线,交抛物线于点Q,求线段PQ的最大值;
(3)抛物线的对称轴上是否存在点M,使△ABM是以AB为直角边的直角三角形?如果存在,求出点M的坐标;如果不存在,说明理由.。

相关文档
最新文档