高考冲刺专题训练--动量与动能综合
2020年高考物理复习:动量与能量综合 专项练习题(含答案解析)

2020年高考物理复习:动量与能量综合专项练习题1.如图所示,在平直轨道上P点静止放置一个质量为2m的物体A,P点左侧粗糙,右侧光滑。
现有一颗质量为m 的子弹以v0的水平速度射入物体A并和物体A一起滑上光滑平面,与前方静止物体B发生弹性正碰后返回,在粗糙面滑行距离d停下。
已知物体A与粗糙面之间的动摩擦因数为μ=v2072gd,求:(1)子弹与物体A碰撞过程中损失的机械能;(2)B物体的质量。
2.如图所示,水平光滑地面的右端与一半径R=0.2 m的竖直半圆形光滑轨道相连,某时刻起质量m2=2 kg的小球在水平恒力F的作用下由静止向左运动,经时间t=1 s 撤去力F,接着与质量m1=4 kg以速度v1=5 m/s向右运动的小球碰撞,碰后质量为m1的小球停下来,质量为m2的小球反向运动,然后与停在半圆形轨道底端A点的质量m3=1 kg的小球碰撞,碰后两小球粘在一起沿半圆形轨道运动,离开B点后,落在离A点0.8 m的位置,求恒力F 的大小。
(g取10 m/s2)3.如图所示,半径为R的四分之三光滑圆轨道竖直放置,CB是竖直直径,A点与圆心等高,有小球b静止在轨道底部,小球a自轨道上方某一高度处由静止释放自A点与轨道相切进入竖直圆轨道,a、b小球直径相等、质量之比为3∶1,两小球在轨道底部发生弹性正碰后小球b经过C点水平抛出落在离C点水平距离为22R的地面上,重力加速度为g,小球均可视为质点。
求(1)小球b碰后瞬间的速度;(2)小球a 碰后在轨道中能上升的最大高度。
4.如图所示,一对杂技演员(都视为质点)荡秋千(秋千绳处于水平位置),从A 点由静止出发绕O 点下摆,当摆到最低点B 时,女演员在极短时间内将男演员沿水平方向推出,然后自己刚好能回到高处A .已知男演员质量为2m 和女演员质量为m ,秋千的质量不计,秋千的摆长为R ,C 点比O 点低5R .不计空气阻力,求:(1)摆到最低点B ,女演员未推男演员时秋千绳的拉力;(2)推开过程中,女演员对男演员做的功;(3)男演员落地点C 与O 点的水平距离s .5.如图所示,光滑水平面上放着质量都为m 的物块A 和B ,A 紧靠着固定的竖直挡板,A 、B 间夹一个被压缩的轻弹簧(弹簧与A 、B 均不拴接),用手挡住B 不动,此时弹簧弹性势能为92mv 20,在A 、B 间系一轻质细绳,细绳的长略大于弹簧的自然长度。
2024届高考物理微专题:动量和能量的综合问题

微专题50动量和能量的综合问题1.如果要研究某一时刻的速度、加速度,可用牛顿第二定律列式.2.研究某一运动过程时,一般用动量定理(涉及时间的问题)或动能定理(涉及位移的问题)去解决问题.3.若研究对象为一系统,一般用动量守恒定律和机械能守恒定律去解决问题,但需注意所研究的问题是否满足守恒的条件.4.在涉及碰撞、爆炸、打击、绳绷紧等物理现象时,这些过程一般均隐含有系统机械能与其他形式能量之间的转换.这些问题由于作用时间都极短,满足动量守恒定律.1.(多选)一个质量为m 的小型炸弹自水平地面朝右上方射出,在最高点以水平向右的速度v 飞行时,突然爆炸为质量相等的甲、乙、丙三块弹片,如图所示.爆炸之后乙由静止自由下落,丙沿原路径回到原射出点.若忽略空气阻力,则下列说法正确的是()A .爆炸后乙落地的时间最长B .爆炸后甲落地的时间最长C .甲、丙落地点到乙落地点O 的距离比为4∶1D .爆炸过程释放的化学能为7m v 23答案CD解析爆炸后甲、丙从同一高度做平抛运动,乙从同一高度自由下落,则落地时间均为t =2H g ,选项A 、B 错误;爆炸过程动量守恒,以向右为正方向,有m v =-13m v 丙+13m v 甲,由题意知v 丙=v ,得v 甲=4v ,又因x =v t ,t 相同,则x ∝v ,甲、丙落地点到乙落地点O 的距离比为x 甲∶x 丙=v 甲∶v 丙=4∶1,选项C 正确;释放的化学能ΔE =12×m 3v 甲2+12×m 3v 丙2-12m v 2=73m v 2,选项D 正确.2.(2023·湖南永州市第一中学模拟)如图所示,质量均为m 的木块A 和B ,并排放在光滑水平地面上,A 上固定一竖直轻杆,轻杆上端的O 点系一长为L 的细线,细线另一端系一质量为m 0的球C (可视为质点),现将C 球拉起使细线水平伸直,并由静止释放C 球,重力加速度为g ,则下列说法不正确的是()A .A 、B 两木块分离时,A 、B 的速度大小均为mm mgL 2m +m 0B .A 、B 两木块分离时,C 的速度大小为2mgL 2m +m 0C .C 球由静止释放到最低点的过程中,A 对B 的弹力的冲量大小为2m 0mgL 2m +m 0D .C 球由静止释放到最低点的过程中,木块A 移动的距离为m 0L 2m +m 0答案C解析小球C 下落到最低点时,A 、B 开始分离,此过程水平方向动量守恒.根据机械能守恒定律有m 0gL =12m 0v C 2+12×2m v AB 2,由水平方向动量守恒得m 0v C =2m v AB ,联立解得v C =2mgL 2m +m 0,v AB =m 0m mgL2m +m 0,故A 、B 正确;C 球由静止释放到最低点的过程中,选B为研究对象,由动量定理得I AB =m v AB =m 0mgL2m +m 0,故C 错误;C 球由静止释放到最低点的过程中,系统水平方向动量守恒,设C 对地水平位移大小为x 1,AB 对地水平位移大小为x 2,则有m 0x 1=2mx 2,x 1+x 2=L ,可解得x 2=m 0L2m +m 0,故D 正确.3.(多选)如图所示,质量为M 的小车静止在光滑水平面上,小车AB 段是半径为R 的四分之一圆弧轨道,BC 段是长为L 的粗糙水平轨道,两段轨道相切于B 点.一质量为m 的可视为质点的滑块从小车上的A 点由静止开始沿轨道下滑,然后滑入BC 轨道,最后恰好停在C 点.已知小车质量M =4m ,滑块与轨道BC 间的动摩擦因数为μ,重力加速度为g ,则()A .全过程滑块在水平方向上相对地面的位移的大小为R +LB .小车在运动过程中速度的最大值为gR10C .全过程小车相对地面的位移大小为R +L 5D .μ、L 、R 三者之间的关系为R =μL答案BCD解析滑块与小车组成的系统水平方向动量守恒,由人船模型特点有Mx 1=mx 2,x 1+x 2=R+L ,又M =4m ,由上两式解得x 1=R +L 5,x 2=4 R +L5,全过程滑块在水平方向上相对地面的位移的大小为4 R +L 5,全过程小车相对地面的位移大小为R +L5,所以A 错误,C 正确;滑块滑到圆弧轨道最低点时,小车速度最大,滑块与小车组成的系统水平方向动量守恒,则有M v 1=m v 2,mgR =12M v 12+12m v 22,解得v 1=gR10,小车在运动过程中速度的最大值为gR10,所以B 正确;滑块最后恰好停在C 点时,小车也停止运动,全程由能量守恒定律有mgR =μmgL ,解得R =μL ,所以μ、L 、R 三者之间的关系为R =μL ,所以D 正确.4.(多选)如图所示,质量为M 的长木板静止在光滑水平面上,上表面OA 段光滑,AB 段粗糙且长为l ,左端O 处固定轻质弹簧,右侧用不可伸长的轻绳连接于竖直墙上,轻绳所能承受的最大拉力为F .质量为m 的小滑块以速度v 从A 点向左滑动压缩弹簧,弹簧的压缩量达最大时细绳恰好被拉断,再过一段时间后长木板停止运动,小滑块恰未掉落,重力加速度为g .则()A .细绳被拉断瞬间木板的加速度大小为FMB .细绳被拉断瞬间弹簧的弹性势能为12m v 2C .弹簧恢复原长时滑块的动能为12m v 2D .滑块与木板AB 段间的动摩擦因数为v 22gl答案ABD解析细绳被拉断瞬间,对木板,由于OA 段光滑,没有摩擦力,在水平方向上只受到弹簧的弹力,则细绳被拉断瞬间弹簧的弹力大小等于F ,根据牛顿第二定律有F =Ma ,解得a =FM ,A 正确;滑块以速度v 从A 点向左滑动压缩弹簧,到弹簧压缩量最大时速度为0,由系统的机械能守恒得,细绳被拉断瞬间弹簧的弹性势能为12m v 2,B 正确;弹簧恢复原长时木板获得动能,由系统机械能守恒知滑块的动能小于12m v 2,C 错误;由于细绳被拉断瞬间,木板速度为零,小滑块速度为零,所以小滑块的动能全部转化为弹簧的弹性势能,即E p =12m v 2,小滑块恰未掉落时滑到木板的右端,且速度与木板相同,设为v ′,取向左为正方向,由动量守恒定律和能量守恒定律得0=(m +M )v ′,E p =12(m +M )v ′2+μmgl ,联立解得μ=v 22gl,D 正确.5.(多选)(2023·湖南省长沙市高三检测)如图所示,竖直放置的轻弹簧下端固定在地上,上端与质量为m 的钢板连接,钢板处于静止状态.一个质量也为m 的物块从钢板正上方h 处的P 点自由落下,打在钢板上并与钢板一起向下运动x 0后到达最低点Q ,重力加速度为g .下列说法正确的是()A .物块与钢板碰后的速度大小为2ghB .物块与钢板碰后的速度大小为2gh2C .从P 到Q 的过程中,弹性势能的增加量为mg (2x 0+h2)D .从P 到Q 的过程中,弹性势能的增加量为mg (2x 0+h )答案BC解析物块下落h ,由机械能守恒定律得mgh =12m v 12,物块与钢板碰撞,以竖直向下的方向为正方向,由动量守恒定律得m v 1=2m v 2,解得v 2=12v 1=2gh2,选项A 错误,B 正确;从碰撞到Q 点,由能量守恒定律可知12×2m v 22+2mgx 0=ΔE p ,则弹性势能的增加量为ΔE p =mg (2x 0+h2),选项C 正确,D 错误.6.(2023·广东韶关市适应性考试)短道速滑接力赛是北京冬奥会上极具观赏性的比赛项目之一,如图所示为A 、B 两选手在比赛中的某次交接棒过程.A 的质量m A =60kg ,B 的质量m B =75kg ,交接开始时A 在前接棒,B 在后交棒,交棒前两人均以v 0=10m/s 的速度向前滑行.交棒时B 从后面用力推A ,当二人分开时B 的速度大小变为v 1=2m/s ,方向仍然向前,不计二人所受冰面的摩擦力,且交接棒前后瞬间两人均在一条直线上运动.(1)求二人分开时A 的速度大小;(2)若B 推A 的过程用时0.8s ,求B 对A 的平均作用力的大小;(3)交接棒过程要消耗B 体内的生物能,设这些能量全部转化为两人的动能,且不计其他力做功,求B 消耗的生物能E .答案(1)20m/s(2)750N(3)5400J解析(1)设二人分开时A 的速度大小为v 2,取v 0的方向为正方向,根据动量守恒定律可得(m A +m B )v 0=m B v 1+m A v 2解得v 2=20m/s(2)对A 由动量定理得F ·t =m A v 2-m A v 0解得F =750N(3)设B 消耗的生物能为E ,对二人组成的系统,根据能量守恒定律得12(m A +m B )v 02+E =12m B v 12+12m A v 22解得E =5400J.7.(2023·天津市南开区模拟)如图所示,光滑轨道abcd 固定在竖直平面内,ab 水平,bcd 为半圆,圆弧轨道的半径R =0.32m ,在b 处与ab 相切.在直轨道ab 上放着质量分别为m A =2kg 、m B =1kg 的物块A 、B (均可视为质点),用轻质细绳将A 、B 连接在一起,且A 、B 间夹着一根被压缩的轻质弹簧(未被拴接).轨道左侧的光滑水平地面上停着一质量为M =2kg 、足够长的小车,小车上表面与ab 等高.现将细绳剪断,之后A 向左滑上小车且恰好没有掉下小车,B 向右滑动且恰好能冲到圆弧轨道的最高点d 处.物块A 与小车之间的动摩擦因数μ=0.2,重力加速度g =10m/s 2.求:(1)物块B 运动到圆弧轨道的最低点b 时对轨道的压力大小;(2)细绳剪断之前弹簧的弹性势能E p ;(3)小车长度L 和物块A 在小车上滑动过程中产生的热量Q .答案(1)60N(2)12J(3)0.5m2J解析(1)物块B 在最高点时,有m B g =m Bv d 2R从b 到d 由动能定理可得-m B g ·2R =12m B v d 2-12m B v b 2在b 点有F N -m B g =m B v b 2R联立解得F N =60N由牛顿第三定律可知物块B 对轨道的压力大小为60N.(2)由动量守恒定律可得m A v A =m B v b 由能量守恒定律可得E p =12m A v A 2+12m B v b 2联立解得E p =12J(3)物块滑至小车左端时与小车恰好共速,设速度为v ,根据动量守恒定律得m A v A =(m A +M )v 由能量守恒定律可得Q =μm A gL =12m A v A 2-12(m A +M )v 2联立解得Q =2J ,L =0.5m.8.(2023·河北省模拟)如图是某个同学设计的一个游戏装置,该游戏装置的滑道分为光滑的OA 、AB 、BE 、CD 四段,O 点右端固定安装一弹簧发射装置.将一质量为M 的物块a 与弹簧紧贴,释放弹簧,物块a 从O 处出发,运动到A 处时与质量为m 的滑块b 发生弹性碰撞.已知物块a 的质量为M =2kg ,滑块b 的质量为m =1kg ,竖直面内四分之一圆弧轨道CD 的半径为R =0.9m ,BE 段水平且距底座高度h =0.8m ,四分之一圆弧轨道C 端的切线水平,C 、E 两点间的高度差刚好可容滑块b 通过,两点间水平距离可忽略不计,滑块b 可以视为质点,不计空气阻力,重力加速度g =10m/s 2.若滑块b 恰好能够通过C 处并沿轨道滑落,求:(1)碰撞后瞬间滑块b 的速度大小;(2)碰撞后a 在AB 上运动能上升到的最大高度(保留两位有效数字);(3)释放物块a 前弹簧的弹性势能(保留两位小数).答案(1)5m/s(2)0.078m(3)14.06J解析(1)滑块b 恰好能够通过C 处并沿轨道滑落,有mg =mv C 2R解得v C =3m/s滑块b 由A 到C ,根据机械能守恒定律,有mgh +12m v C 2=12m v A 2解得v A =5m/s(2)物块a 与滑块b 发生弹性碰撞,根据动量守恒定律,有M v 0=m v A +M v根据机械能守恒定律,有12M v 02=12m v A 2+12M v 2联立解得v 0=3.75m/s ,v =1.25m/s对物块a 由机械能守恒定律,有Mgh M =12M v 2解得h M ≈0.078m(3)物块a 和弹簧组成的系统机械能守恒,可知释放物块a 前弹簧的弹性势能E p =12M v 02≈14.06J.。
新高考 动量和能量综合题(单选多选)

新高考动量和能量综合题(单选多选)1.(2020·北京海淀高三检测)(多选)如图所示,在A、B两物体间有一与物体不连接的轻质弹簧,两物体用轻细线连接在一起并使弹簧处于压缩状态,整体静止在光滑水平面上。
现将细线烧断,在弹簧对两物体施加作用力的整个过程中,设弹簧弹力对A、B物体的冲量大小分别为I A 和I B ,弹簧弹力对A、B物体所做的功分别为W A 和W B,若A、B物体的质量关系是m A>m B·则下面关系式中正确的是A . I A=IB A . I A <I B D .W A =W B D .W A<W B2.(2020·福州八中高三质检)(多选)质量分别为m1与m2的甲、乙两球在水平光滑轨道上同向运动,已知它们的动量分别是p1-5kg·m/s,p2=7kg·m/s,甲从后面追上乙并发生碰撞,碰后乙球的动量变为8kg.m/s,则甲、乙两球质量m1与m2间的关系可能是A. m1一m2B. 2m1一m2C. 5m1=3m2D.4m1=m23.(2020·保定一中阶段性考试)矩形滑块由不同材料的上下两层粘合在一起组成,将其放在光滑的水平面上,如图所示,质量为m的子弹以速度υ水平射向滑块。
若射向上层滑块,子弹刚好不射出;若射向下层滑块,则子弹整个刚好嵌入滑块,由上述两种情况相比较A.子弹嵌入两滑块的过程中对滑块的冲量一样多B.子弹嵌人上层滑块的过程中对滑块做的功较多C.子弹嵌入下层滑块的过程中对滑块做的功较多D.子弹嵌入上层滑块的过程中系统产生的热量较多4.(2020·河北名校高三联考)如图所示,两个完全相同的小球A、B用等长的细线悬于O点,线长为L。
若将A由图示位置静止释放,则B球被碰后第一次速度为零时的高度不可能是A.L/2B.L/4C.L/8D.L/105,(2020·江西十三县联考)(多选)如图所示,一异形轨道由粗糙的水平部分和光滑的四分之一圆弧部分组成,置于光滑的水平面上,如果轨道固定,将可视为质点的物块从圆弧轨道的最高点由静止释放,物块恰好停在水平轨道的最左端。
动量与能量综合专题

动量与能量综合专题一、动量守恒定律动量守恒定律是物理学中的一个重要定律,它表述的是物体动量的变化遵循一定的规律。
当两个或多个物体相互作用时,它们的总动量保持不变。
这个定律的适用范围非常广泛,从微观粒子到宏观宇宙,只要有物体之间的相互作用,就可以应用动量守恒定律来描述。
在理解动量守恒定律时,需要注意以下几点:1、系统:动量守恒定律适用于封闭的系统,即系统内的物体之间相互作用,不受外界的影响。
2、总动量:动量的变化是指物体之间的总动量的变化,而不是单个物体的动量变化。
3、方向:动量是矢量,具有方向性。
在计算动量的变化时,需要考虑动量的方向。
二、能量守恒定律能量守恒定律是物理学中的另一个重要定律,它表述的是能量不能被创造或消灭,只能从一种形式转化为另一种形式。
这个定律的适用范围同样非常广泛,从微观粒子到宏观宇宙,只要有能量的转化和转移,就可以应用能量守恒定律来描述。
在理解能量守恒定律时,需要注意以下几点:1、封闭系统:能量守恒定律适用于封闭的系统,即系统内的能量之间相互转化和转移,不受外界的影响。
2、转化与转移:能量的转化和转移是不同的。
转化是指一种形式的能量转化为另一种形式的能量,而转移是指能量从一个物体转移到另一个物体。
3、方向:能量的转化和转移是有方向的。
在计算能量的变化时,需要考虑能量的方向。
三、动量与能量的综合应用在实际问题中,动量和能量往往是相互的。
当一个物体受到力的作用时,不仅会引起物体的运动状态的变化,还会引起物体能量的变化。
因此,在解决复杂问题时,需要综合考虑动量和能量的因素。
例如,在碰撞问题中,两个物体相互作用后可能会发生弹射、粘合、破碎等情况。
这些情况的发生不仅与物体的动量有关,还与物体的能量有关。
如果两个物体的总动量不为零,它们将会继续运动;如果两个物体的总能量不为零,它们将会继续发生能量的转化和转移。
因此,在解决碰撞问题时,需要综合考虑物体的动量和能量因素。
四、总结动量守恒定律和能量守恒定律是物理学中的两个重要定律,它们分别描述了物体动量的变化和能量的转化和转移遵循的规律。
2024年高考物理题型突破限时大题精练01 动力学与能量综合问题

大题精练01 动力学与能量综合问题公式、知识点回顾(时间:5分钟)一、考向分析1.本专题是力学两大观点在多运动过程问题、传送带问题和滑块一木板问题三类问题中的综合应用,高考常以计算题压轴题的形式命题。
2.用到的知识有:动力学方法观点(牛顿运动定律、运动学基本规律),能量观点(动能定理、机械能守恒定律、能量守恒定律)。
二、动力学三、运动学四、功和能【例题】【传送带模型中的动力学和能量问题】如图所示,水平传送带AB,长为L=2m,其左端B点与半径R=0.5的半圆形竖直轨道BCD平滑连接,其右端A点与光滑长直水平轨道平滑连接。
轨道BCD最高点D与水平细圆管道DE平滑连接。
管道DE与竖直放置的内壁光滑的圆筒上边缘接触,且DE延长线恰好延圆筒的直径方向。
已知水平传送带AB以v=6m/s的速度逆时针匀速运行,圆筒半径r=0.05m、高度h=0.2m。
质量m=0.5kg、可视为质点的小滑块,从P 点处以初速度v0向左运动,与传送带间的动摩擦因数μ=0.6,与其它轨道间的摩擦以及空气阻力均忽略不计,不计管道DE的粗细。
(1)若小滑块恰好能通过半圆形轨道最高点D,求滑块经过半圆形轨道B点时对轨道的压力大小F N;(2)若小滑块恰好能通过半圆形轨道最高点D,求滑块的初速度v0;(3)若小滑块能从D点水平滑入管道DE,并从E点水平离开DE后与圆筒内壁至少发生6次弹性碰撞,求滑块的初速度v0的范围。
【解答】解:(1)小滑块恰好能通过最高点D处,则在最高点重力提供向心力,轨道对小滑块无压力,即mg=m v D2 R小滑块从B点向D点运动过程中根据动能定理﹣mg•2R=12m v D2−12m v B2代入数据解得v B=5m/s在最低点B点,有F′N−mg=m v B2 R联立以上各式,根据牛顿第三定律可知,滑块经过半圆形轨道B点时对轨道的压力大小为F N=1.【用动力学和能量观点解决直线+圆周+平抛组合多过程问题】如图甲所示是一款名为“反重力”磁性轨道车的玩具,轨道和小车都装有磁条,轨道造型可以自由调节,小车内装有发条,可储存一定弹性势能。
高考物理最新模拟题精选训练动量专题03动量与能量综合问题含解析

专题03 动量与能量综合问题1.(2017陕西宝鸡模拟)滑腻水平面上放有质量别离为2m和m的物快A和B,用细线将它们连接起来,两物块中间夹有一紧缩的轻质弹簧(弹簧与物块不相连),弹簧的紧缩量为x。
现将细线剪断,此刻物快A的加速度大小为a,两物块刚要离开弹簧时物块A的速度大小为v,则A.物块开始运动前,弹簧的弹性势能为32mv2B.物块开始运动前,弹簧的弹性势能为3 mv2 C.物快B的加速度大小为a时弹簧的紧缩量为x/2D.物块A从开始运动到刚要离开弹簧时位移大小为23x【参考答案】.BC【命题用意】本题考查动量守恒定律、能量守恒定律、牛顿运动定律、胡克定律、运动学公式等知识点。
对动量守恒定律、能量守恒定律、牛顿运动定律,必然要能够灵活运用,熟练掌握。
2.(多项)(2017安徽两校联考)如图所示,用轻绳将两个弹性小球牢牢束缚在一路并发生微小的形变,现正在滑腻水平面上以速度v0=s 向右做直线运动,已知两弹性小球质量别离为m1=和m2=。
一段时间后轻绳突然自动断开,断开后两球仍沿原直线运动。
通过t=两球的间距为s=,则下列说法正确的是()A.刚分离时,a、b两球的速度方向相同B.刚分离时,b球的速度大小为sC.刚分离时,a球的速度大小为sD.两球分开进程中释放的弹性势能为【参考答案】CD3.(2016·湖北八市联考)如图所示,一辆质量为M=3 kg的平板小车A停泊在竖直滑腻墙壁处,地面水平且滑腻,一质量为m=1 kg的小铁块B(可视为质点)放在平板小车A最右端,平板小车A上表面水平且与小铁块B之间的动摩擦因数μ=,平板小车A的长度L= m。
现给小铁块B一个v0=5 m/s的初速度使之向左运动,与竖直墙壁发生弹性碰撞后向右运动,重力加速度g=10 m/s2。
下列说法正确的是A.小铁块B向左运动抵达竖直墙壁时的速度为2m/sB.小铁块B与墙壁碰撞进程中所受墙壁的冲量为C.小铁块B向左运动抵达竖直墙壁的进程中损失的机械能为4JD.小铁块B在平板小车A上运动的整个进程中系统损失的机械能为9 J【参考答案】BD4.一个人在地面上立定跳远的最好成绩是x,假设他站在船头要跳上距离为L远处的与船头在同一高度的平台上。
动量和能量的综合问题-解析版

专题:动量和能量的综合问题1.燃放爆竹是我国传统民俗.春节期间,某人斜向上抛出一个爆竹,到最高点时速度大小为v0,方向水平向东,并炸开成质量相等的三块碎片a、b、c,其中碎片a的速度方向水平向东,忽略空气阻力.以下说法正确的是()A.炸开时,若碎片b的速度方向水平向西,则碎片c的速度方向可能水平向南B.炸开时,若碎片b的速度为零,则碎片c的速度方向一定水平向西C.炸开时,若碎片b的速度方向水平向北,则三块碎片一定同时落地D.炸开时,若碎片a、b的速度等大反向,则碎片c落地时的速度可能等于3v0答案C解析到最高点时速度大小为v0,方向水平向东,则总动量向东;炸开时,若碎片b的速度方向水平向西,碎片c的速度方向水平向南,则违反动量守恒定律,A错误;炸开时,若碎片b的速度为零,根据动量守恒定律,碎片c的速度方向可能水平向东,B错误;三块碎片在竖直方向上均做自由落体运动,一定同时落地,C正确;炸开时,若碎片a、b的速度等大反向,根据动量守恒定律3m v0=m v c,解得v c=3v0,碎片c 落地时速度的水平分量等于3v0,其落地速度一定大于3v0,D错误.2.天问一号探测器由环绕器、着陆器和巡视器组成,总质量达到5×103kg,于2020年7月23日发射升空,2021年2月24日进入火星停泊轨道.在地火转移轨道飞行过程中天问一号进行了四次轨道修正和一次深空机动,2020年10月9日23时,在距离地球大约2.94×107千米的深空,天问一号探测器3000N主发动机点火工作约480秒,发动机向后喷射的气体速度约为3×103m/s,顺利完成深空机动,天问一号飞行轨道变为能够准确被火星捕获的、与火星精确相交的轨道.关于这次深空机动,下列说法正确的是()A.天问一号的速度变化量约为2.88×103m/sB.天问一号的速度变化量约为288m/sC.喷出气体的质量约为48kgD.喷出气体的质量约为240kg答案B解析根据动量定理有Ft=MΔvΔv=FtM=3000×4805×103m/s=288m/s,即天问一号的速度变化量Δv约为288m/s,可知A错误,B正确;设喷出气体的速度为v气,方向为正方向,质量为m,由动量守恒定律可知m v气-(M-m)Δv=0,解得喷出气体质量约为m=438kg,C、D错误.3.某人站在静止于水面的船上,从某时刻开始,人从船头走向船尾,水的阻力不计,下列说法不正确的是()A.人匀速运动,船则匀速后退,两者的速度大小与它们的质量成反比B.人走到船尾不再走动,船也停止不动C .不管人如何走动,人在行走的任意时刻人和船的速度方向总是相反,大小与它们的质量成反比D .船的运动情况与人行走的情况无关答案D解析人从船头走向船尾的过程中,人和船组成的系统动量守恒.设人的质量为m ,速度为v .船的质量为M ,速度为v ′.以人行走的速度方向为正方向,由动量守恒定律得0=m v +M v ′,解得vv ′=-M m可知,人匀速行走,v 不变,则v ′不变,船匀速后退,且两者速度大小与它们的质量成反比,故A 正确,与题意不符;人走到船尾不再走动,设整体速度为v ″,由动量守恒定律得0=(m +M )v ″,得v ″=0即船停止不动,故B 正确,与题意不符;由以上分析知v v ′=-Mm ,则不管人如何走动,人在行走的任意时刻人和船的速度方向总是相反,大小与它们的质量成反比,故C 正确,与题意不符;由以上分析知,船的运动情况与人行走的情况有关,人动船动,人停船停,故D 错误,与题意相符.4.(多选)倾角为θ的固定斜面底端安装一弹性挡板,P 、Q 两物块的质量分别为m 和4m ,Q 静止于斜面上A 处.某时刻,P 以沿斜面向上的速度v 0与Q 发生弹性碰撞.Q 与斜面间的动摩擦因数μ=tan θ,设最大静摩擦力等于滑动摩擦力.P 与斜面间无摩擦.斜面足够长,Q 的速度减为零之前P 不会再与之发生碰撞.重力加速度大小为g .关于P 、Q 运动的描述正确的是()A .P 与Q 第一次碰撞后P 的瞬时速度大小为v P 1=25v 0B .物块Q 从A 点上升的总高度v 029g C .物块P 第二次碰撞Q 前的速度为75v 0D .物块Q 从A 点上升的总高度v 0218g 答案CD解析P 与Q 的第一次碰撞,取P 的初速度方向为正,由动量守恒定律得m P v 0=m P v P 1+m Q v Q 1,由机械能守恒定律得12m P v 02=12m P v P 12+12m Q v Q 12,联立解得v P 1=-35v 0,A 错误;当P 与Q 达到H 高度时,两物块到此处的速度可视为零,对两物块运动全过程由动能定理得0-12m v 02=-(m +4m )gH -tan θ·4mg cos θ·Hsin θ,解得H =v 0218g,B 错误,D 正确;P 运动至与Q 刚要发生第二次碰撞前的位置时速度为v 02,第一次碰撞后至第二次碰撞前,对P 由动能定理得12m v 022-12m v P 12=-mgh 1,P 与Q 的第一次碰撞,取P 的初速度方向为正,由动量守恒定律得m v 0=m v P 1+4m v Q 1,由机械能守恒定律得12m v 02=12m v P 12+12·4m v Q 12,联立解得v 02=75v 0,C 正确.5.(多选)如图所示,一小车放在光滑的水平面上,小车AB 段是长为3m 的粗糙水平轨道,BC 段是光滑的、半径为0.2m 的四分之一圆弧轨道,两段轨道相切于B 点.一可视为质点、质量与小车相同的物块在小车左端A 点,随小车一起以4m/s 的速度水平向右匀速运动,一段时间后,小车与右侧墙壁发生碰撞,碰后小车速度立即减为零,但不与墙壁粘连.已知物块与小车AB 段之间的动摩擦因数为0.2,取重力加速度g =10m/s 2,则()A .物块到达C 点时对轨道的压力为0B .物块经过B 点时速度大小为1m/sC .物块最终距离小车A 端0.5mD .小车最终的速度大小为1m/s 答案AD解析对物块在AB 段分析,由牛顿第二定律可知F =ma代入数据解得a =μmg m =2m/s.根据运动学公式,物块在B 点的速度为-2ax =v B 2-v A 2,代入数据解得v B =2m/s从B 到C 的运动过程中,由动能定理可得-mgr =12m v C 2-12m v B 2,解得v C =0.根据向心力公式有F N =m v C 2r ,故物块到达C 点时对轨道的压力为0,A 正确;物块返回B 时,由于BC 是光滑的,有mgr =12m v B 2-12m v C 2,代入数据解得v B =2m/s ,B 错误;物块从B 到A ,以向左为正方向,由小车与物块的动量守恒,由动量守恒定律有m v B =(m +M )v ,解得v =1m/s ,整个过程由动能定理可得-mgx =12m v 2-12m v B 2,解得x =320m<3m ,不会从小车左端掉下来,符合题意,故物块最终距离A 端的距离为L =x AB -x =5720m ,C 错误,D 正确.6.如图所示,两平行光滑杆水平放置,两相同的小球M 、N 分别套在两杆上,并由轻弹簧拴接,弹簧与杆垂直。
高考物理专题冲刺集训第6讲动量和能量的综合应用含解析

第六讲动量和能量的综合应用一、单项选择题1.如图所示,运动员挥拍将质量为m的网球击出.如果网球被拍子击打前、后瞬间速度的大小分别为v1、v2,v1与v2方向相反,且v2>v1.重力影响可忽略,则此过程中拍子对网球作用力的冲量( )A.大小为m(v2+v1),方向与v1方向相同B.大小为m(v2-v1),方向与v1方向相同C.大小为m(v2+v1),方向与v2方向相同D.大小为m(v2-v1),方向与v2方向相同解析:选C.由动量定理知,拍子对网球作用力的冲量I合=Δmv=mv2-m(-v1)=m(v2+v1),方向与v2相同.故C对.2.如图甲所示,质量不计的弹簧竖直固定在水平面上,t=0时刻,将一金属小球从弹簧正上方某一高度处由静止释放,小球落到弹簧上压缩弹簧到最低点,然后又被弹起离开弹簧,上升到一定高度后再下落,如此反复.通过安装在弹簧下端的压力传感器,测出这一过程弹簧弹力F随时间t变化的图象如图乙所示,则( )A.t1时刻小球动能最大B.t2时刻小球动能最大C.t2~t3这段时间内,小球的动能先增加后减少D.t2~t3这段时间内,小球增加的动能等于弹簧减少的弹性势能解析:选C.0~t1时间内小球做自由落体运动,落到弹簧上并往下运动的过程中,小球重力与弹簧对小球弹力的合力方向先向下后向上,故小球先加速后减速,t2时刻到达最低点,动能为0,A、B错;t2~t3时间内小球向上运动,合力方向先向上后向下,小球先加速后减速,动能先增加后减少,C对;t2~t3时间内由能量守恒知小球增加的动能等于弹簧减少的弹性势能减去小球增加的重力势能,D错.3.如图所示,一个木箱原来静止在光滑水平面上,木箱内粗糙的底板上放着一个小木块.木箱和小木块都具有一定的质量.现使木箱获得一个向右的初速度v0,则下列说法正确的是( )A.小木块和木箱最终都将静止B.小木块最终将相对木箱静止,二者一起向右运动C.小木块在木箱内壁将始终来回往复碰撞,而木箱一直向右运动D.如果小木块与木箱的左壁碰撞后相对木箱静止,则二者将一起向左运动解析:选B.木箱和小木块具有向右的动量,并且在相互作用的过程中总动量守恒,A、D 错;由于木箱与底板间存在摩擦,小木块最终将相对木箱静止,B对、C错.4.在光滑水平面上,两球沿球心连线以相等速率相向而行,并发生碰撞,下列现象可能的是( )a.若两球质量相同,碰后以某一相等速率互相分开b.若两球质量相同,碰后以某一相等速率同向而行c.若两球质量不同,碰后以某一相等速率互相分开d.若两球质量不同,碰后以某一相等速率同向而行A.ac B.cdC.bc D.bd解析:选B.相互作用的过程中合外力为零,所以碰撞过程中动量守恒,设碰撞前动量分别为p1、p2,碰后两球动量分别为p3、p4,则有p1+p2=p3+p4,若m1=m2,碰前动量和为零碰后动量和必定为零,即p3与p4必定大小相等,方向相反,若m1≠m2,碰前动量和不为零,碰后两球的合动量必定与碰前总动量相等,所以碰后以某一相等速率互相分开是不可能的,而碰后以某一相等速率同向而行是可以的,故B正确.5.为了探究能量转化和守恒规律,小强将一个小铁块绑在橡皮筋中部,并让橡皮筋穿入铁罐,两端分别固定在罐盖和罐底上,如图所示,盖好盖后,让该装置从不太陡的粗糙斜面上的A处滚下,到斜面上的B处停下,发现橡皮筋被卷紧了,接着铁罐居然能从B处自动滚上去.关于该装置在上述过程中的能量转化,下列判断正确的是( )A .从A 处滚到B 处,由动能定理可知,系统的重力势能全部转化为橡皮筋的弹性势能B .从A 处滚到B 处,由于要转化为橡皮筋的弹性势能,故系统的重力做的功小于摩擦力做的功C .从B 处滚到最高处,橡皮筋的弹性势能转化为系统的重力势能和此过程产生的内能D .从B 处滚到最高处,橡皮筋的弹性势能转化为系统的重力势能和动能解析:选C.在铁罐滚动时,铁罐与斜面的接触点的瞬时速度为零,则斜面对铁罐的静摩擦力不做功,在从A 到B 的过程中橡皮筋发生了扭转形变,在获得弹性势能的同时也产生了内能,由能量守恒可知,系统减少的重力势能等于橡皮筋获得的弹性势能与产生的内能之和,故A 、B 皆错误.同理可知C 正确、D 错误.6.一个质量为m 的带电小球,在存在匀强电场的空间以某一水平初速度抛出,不计空气阻力,测得小球的加速度为g 3,方向竖直向下,则在小球下落h 高度的过程中,下列说法错误的是( ) A .小球的动能增加13mgh B .小球的电势能增加23mgh C .小球的重力势能减少13mgh D .小球的机械能减少23mgh 解析:选C.小球受到竖直向下的重力mg ,由小球的加速度为g 3、方向竖直向下,知电场力方向竖直向上、大小为23mg ,合力为13mg .由于在小球下落h 高度的过程中,重力做的功为mgh ,电场力做的功为-23mgh ,合力做的功为13mgh ,因此,小球的动能增加13mgh ,小球的电势能增加23mgh ,小球的重力势能减少mgh ,小球的机械能减少23mgh ,故选项A 、B 、D 正确,C 错误. 7.A 、B 两球在光滑水平面上沿同一直线运动,A 球动量为p A =5 kg ·m/s ,B 球动量为p B =7 kg ·m/s ,当A 球追上B 球时发生碰撞,则碰后A 、B 两球的动量可能是( )①p A =6 kg ·m/s 、p B =6 kg ·m/s②p A =3 kg ·m/s 、p B =9 kg ·m/s③p A =-2 kg ·m/s 、p B =14 kg ·m/s④p A =-5 kg ·m/s 、p B =17 kg ·m/sA .①②③B .①②④C .②③D .①④解析:选C.动量守恒四个选项都满足,那么第二个判断依据是速度情景:A 的动量不可能原方向增大,①错;第三个判断依据是能量关系:碰后系统总动能只能小于等于碰前总动能.计算得②、③正确④错.碰前总动能为E k =p 2A 2m A +p 2B 2m B,由于p A =m A v A =5 kg ·m/s ,p B =m B v B =7 kg ·m/s ,A 要追上B ,则有v A >v B ,即5m A >7m B ,m A <57m B .对②,有322m A +922m B ≤522m A +722m B,得m B =2m A ,满足m A <57m B ,②正确;对③,有-222m A +1422m B ≤522m A +722m B ,m B =14721mA =213mA ,同样满足m A <57m B ,③正确. 8. 在质量为M 的小车中挂有一单摆,摆的质量为m 0,小车和单摆以恒定的速度v 沿光滑水平地面向右运动,与位于正对面的质量为m 的静止木块发生碰撞,碰撞时间极短,如图所示.在此碰撞过程中,下列哪种说法是可能发生的( )A .小车、木块、摆球的速度都发生变化,分别变为v 1、v 2、v 3,满足(M +m 0)v =Mv 1+mv 2+m 0v 3B .摆球的速度不变,小车和木块的速度分别变为v 1和v 2,满足Mv =Mv 1+mv 2C .小车和摆球的速度都变为v 1,木块的速度变为v 2,满足(M +m 0)v =(M +m 0)v 1+mv 2D .以上说法都不对解析:选B.小车与物体碰撞过程中,小球的速度来不及变化,因为碰撞过程极短,小球在水平方向不受力,所以由于惯性小球在水平方向速度不变.只是M 与m 相互作用,碰撞过程中M 、m 速度发生变化,故B 可能发生.9. 如图所示,三小球a 、b 、c 的质量都是m ,都放于光滑的水平面上,小球b 、c 与轻弹簧相连且静止,小球a 以速度v 0冲向小球b ,碰后与小球b 粘在一起运动.在与小球b 粘在一起后的运动过程中,下列说法正确的是( )A .三小球与弹簧组成的系统总动量守恒,总机械能不守恒B .三小球与弹簧组成的系统总动量守恒,总机械能也守恒C .当小球b 、c 速度相等时,弹簧势能最小D .当弹簧恢复原长时,小球c 的动能一定最大,小球b 的动能一定为零解析:选B.a 、b 两小球相碰,动量守恒,机械能不守恒,之后系统动量守恒,机械能也守恒,因而A 错误,B 正确.由牛顿运动定律分析可知:小球b 、c 速度相等时,弹簧的压缩量最大,即弹簧势能最大,C 错误.当弹簧恢复原长时,将弹簧的弹性势能转化为三个小球的动能,由机械能守恒定律和动量守恒定律可知:D 错误.二、非选择题10.如图所示,小球A 系在细线的一端,线的另一端固定在O 点,O 点到水平面的距离为h .物块B 质量是小球的5倍,置于粗糙的水平面上且位于O 点正下方,物块与水平面间的动摩擦因数为μ.现拉动小球使线水平伸直,小球由静止开始释放,运动到最低点时与物块发生正碰(碰撞时间极短),反弹后上升至最高点时到水平面的距离为h 16.小球与物块均视为质点,不计空气阻力,重力加速度为g ,求物块在水平面上滑行的时间t .解析:设小球的质量为m ,运动到最低点与物块碰撞前的速度大小为v 1,取小球运动到最低点时重力势能为零,根据机械能守恒定律,有mgh =12mv 21① 得v 1=2gh设碰撞后小球反弹的速度大小为v ′1,同理有mg h 16=12mv ′21② 得v ′1= gh 8设碰后物块的速度大小为v 2,取水平向右为正方向,根据动量守恒定律,有mv 1=-mv ′1+5mv 2③得v 2= gh8④ 物块在水平面上滑行所受摩擦力的大小F f =5μmg ⑤设物块在水平面上滑行的时间为t ,根据动量定理,有-F f t =0-5mv 2⑥得t =2gh 4μg. 答案:2gh 4μg 11.如图所示,圆管构成的半圆形轨道竖直固定在水平地面上,轨道半径为R ,MN 为直径且与水平面垂直.直径略小于圆管内径的小球A 以某一速度冲进轨道,到达半圆轨道最高点M 时与静止于该处的质量与A 相同的小球B 发生碰撞,碰后两球粘在一起飞出轨道,落地点距N 为2R .重力加速度为g ,忽略圆管内径,空气阻力及各处摩擦均不计,求:(1)粘合后的两球从飞出轨道到落地的时间t ;(2)小球A 冲进轨道时速度v 的大小.解析:(1)粘合后的两球飞出轨道后做平抛运动,竖直方向的分运动为自由落体运动,有2R =12gt 2① 解得t =2R g② (2)设球A 的质量为m ,碰撞前速度大小为v 1,把球A 冲进轨道最低点时的重力势能定为0,由机械能守恒定律得12mv 2=12mv 21+2mgR ③ 设碰撞后粘合在一起的两球速度大小为v 2,由动量守恒定律得mv 1=2mv 2④飞出轨道后做平抛运动,水平方向的分运动为匀速直线运动,有2R =v 2t ⑤综合②③④⑤式得v =22gR答案:(1)2R g (2)22gR 12.如图所示,在倾角为θ=30°的光滑斜面的底端有一个固定挡板D ,小物体C 靠在挡板D 上,小物体B 与C 用轻质弹簧拴接.当弹簧处于自然长度时,B 在O 点;当B 静止时,B 在M 点,OM =l .在P 点还有一小物体A ,使A 从静止开始下滑,A 、B 相碰后一起压缩弹簧.A 第一次脱离B 后最高能上升到N 点,ON =,使C 物体刚好能脱离挡板D .A 、B 、C 的质量都是m .重力加速度为g .求 (1)弹簧的劲度系数;(2)弹簧第一次恢复到原长时B 速度的大小;(3)M 、P 之间的距离.解析:(1)B 静止时,弹簧形变量为l ,弹簧产生弹力F =kl ,B 物体受力如图所示,根据物体平衡条件得kl =mg sin θ得弹簧的劲度系数k =mg2l. (2)当弹簧第一次恢复原长时A 、B 恰好分离,设此时A 、B 速度的大小为v 3.对A 物体,从A 、B 分离到A 速度变为0的过程,根据机械能守恒定律得12mv 23=mg Δh 此过程中A 物体上升的高度Δh =1.5l sin θ得v 3= 32gl . (3)设与B 相碰前A 的速度的大小为v 1,与B 相碰后A 的速度的大小为v 2,M 、P 之间距离为x .对A 物体,从开始下滑到A 、B 相碰的过程,根据机械能守恒定律得mgx sin θ=12mv 21 A 与B 发生碰撞,根据动量守恒定律得mv 1=(m +m )v 2设B 静止时弹簧的弹性势能为E p ,从A 、B 开始压缩弹簧到弹簧第一次恢复原长的过程,根据机械能守恒定律得12(m +m )v 22+E p =12(m +m )v 23+(m +m )gl sin θ B 物体的速度变为0时,C 物体恰好离开挡板D ,此时弹簧的伸长量也为l ,弹簧的弹性势能也为E p .对B 物体和弹簧,从A 、B 分离到B 速度变为0的过程,根据机械能守恒定律得12mv 23=mgl sin θ+E p 联立以上各式解得x =9l .答案:(1)mg 2l (2) 32gl (3)9l。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高考冲刺专题训练——动量与动能综合1.从同一高度落下的鸡蛋掉在水泥地上易碎,掉在沙地上不易碎,这是因为鸡蛋落到水泥地上时()A.受到的冲量大B.动量变化率大C.动量改变量大D.动量大2.甲、乙两物体质量相等,并排静止在光滑的水平面上,现用一水平外力F推动甲物体,同时给乙一个与F同方向的瞬时冲量I,使两物体开始运动,当两物体重新相遇时,下列说法正确的是()A.甲的动量为I B.甲的动量为2IC.所经历的时间为2I/F D.所经历的时间为I/F3.在一种叫做“蹦极跳”的运动中,质量为m的游戏者身系一根长为L、弹性优良的轻质柔软的橡皮绳,从高处由静止开始下落1.5L时达到最低点,若不计空气阻力,则在弹性绳从原长达最低点的过程中,以下说法正确的是()A.速度先减小后增大B.加速度先减小后增大C.动能增加了mgL D.重力势能减少了mgL4.如图所示,材料不同,但是质量相等的A、B两个球,原来在光滑水平面上沿同一直线相向做匀速直线运动,A球的速度是6m/s,B球的速度是-2m/s,不久A、B两球发生了对心碰撞.对于该碰撞之后的A、B两球的速度可能值,某实验小组的同学们做了很多种猜测,下面的哪一种猜测结果一定无法实现( )A.v A/= -2m/s,v B/=6m/sB.v A/=2m/s,v B/=2m/sC.v A/=1m/s,v B/=3m/sD.v A/= -3m/s,v B/=7m/s5.在质量为M的小车中挂有一单摆,摆球的质量为m0,小车(和单摆)以恒定的速度v0 沿光滑水平地面运动,与位于正对面的质量为m的静止木块发生碰撞,碰撞的时间极短。
在此碰撞过程中,下列哪个或哪些说法是可能发生的()A.小车、木块、摆球的速度都发生变化,分别变为v1、v2、v3,满足(M+m0)v0=Mv1+mv2+m0v3B.摆球的速度不变,小车和木块的速度变为v1和v2,满足Mv0=M v1+mv2C.摆球的速度不变,小车和木块的速度都变为v,满足Mv0=(M+m)vD.小车和摆球的速度都变为v1,木块的速度变为v2,满足(M+m0)v0=(M+m0)v1 +6.质量为m1的物块以速度v运动,与质量为m2的静止物块正碰,碰撞后两者动量相等,两者质量之比m1/m2为( )A. 2 B.3 C.4 D.57.如图所示,分别用两个恒力F1和F2,先后两次将质量为m的物体从静止开始沿着同一a个粗糙的固定斜面由底端推到顶端。
第一次力F 1的方向沿斜面向上,第二次力F 2的方向沿水平向右,两次所用的时间相同。
在这两个过程中( )A .F 1和F 2所做的功相同B .物体机械能变化相同C .F 1和F 2对物体的冲量大小相同D .物体动量的变化量相同8.如图所示,光滑水平面上停着一辆小车,小车的固定支架左端用不计质量的细线系一个小铁球.开始将小铁球提起到图示位置,然后无初速释放.在小铁球来回摆动的过程中,下列说法中正确的是 ( )A .小车和小球系统动量守恒B .小球向右摆动过程小车一直向左加速运动C .小球摆到右方最高点时刻,由于惯性,小车仍在向左运动D .小球摆到最低点时,小车的速度最大9.如图所示,一根轻弹簧下端固定,竖立在水平面上.其正上方A静止开始下落,在B 位置接触弹簧的上端,在C 位置小球所受弹力大小等于重力,在D 位置小球速度减小到零,小球下降阶段下列说法中正确的是( )A .在B 位置小球动能最大B .在C 位置小球动能最大C .从A →C 位置小球重力势能的减少大于小球动能的增加D .从A →D 位置小球重力势能的减少等于弹簧弹性势能的增加 10.如图所示,a 、b 是两个带有同种电荷的小球,用绝缘细线系于同一点。
两球静止时它们在同一水平线上,与竖直方向的夹角依次为α、β,且α<β。
若同时剪断细线,不计空 气阻力,则下列说法中正确的是 ( )A . a 、b 两小球将同时落到同一水平地面上B .落地过程中a 小球水平飞行的距离比b 小球小C .落地过程中a 、b 小球受到的冲量大小相同D .落地瞬间a 小球重力的瞬时功率大于b 小球重力的瞬时功率11.如图所示,A 、B 两滑块的质量均为m ,分别穿在光滑的足够长的水平固定导杆上,两导 杆平行,间距为d 。
用自然长度也为d 的轻弹簧连接两滑块。
开始时两滑块均处于静止状态,今给滑块B 一个向右的瞬时冲量I ,则以后滑块A 的最大速度为 ( )A .mI 2 B .m I C . mI 4 D .m I 4312.如图所示,一粗糙的水平传送带以恒定的速度v 1沿顺时针方向运动,传送带的左、右两BA D C端皆有一与传送带等高的光滑水平面,一物体以恒定的速度v 2沿水平面分别从左、右两端滑上传送带,下列说法正确的是 ( )A .物体从右端滑到左端所须的时间一定大于物体从左端滑到右端的时间B .若v 2<v 1,物体从左端滑上传送带必然先做加速运动,再做匀速运动C .若v 2<v 1,物体从右端滑上传送带,则物体可能到达左端D .若v 2<v 1,物体从右端滑上传送带又回到右端,在此过程中物体必先做减速运动,再做加速运动13.如图所示,木块静止在光滑水平面上,子弹A 、B 从木块两侧同时水平射入木块,最终都停在木块中,这一过程中木块始终保持静止.现知道子弹A 射入的深度d A 大于子弹B 射入的深度d B .若用t A 、t B 表示它们在木块中运动的时间,用E kA 、E kB 表示它们的初动能,用v A 、v B 表示它们的初速度大小,用m A 、m B 表示它们的质量,则可判断 ( )A . t A >tB B . E kA >E kBC . v A >v BD . m A >m B14.如图所示,一轻弹簧左端固定在长木板M 的左端,右端与小木块m 连接,且m 、M 及M 与地面间摩擦不计.开始时,m 和M 均静止,现同时对m 、M 施加等大反向的水平恒力F 1和F 2,设两物体开始运动以后的整个运动过程中,弹簧形变不超过其弹性限度。
对于m 、M 和弹簧组成的系统 ( )A .由于F 1、F 2等大反向,故系统机械能守恒B .当弹簧弹力大小与F 1、F 2大小相等时,m 、M 各自的动能最大C .由于F 1、F 2大小不变,所以m 、M 各自一直做匀加速运动D .由于F 1、F 2等大反向,故系统的动量始终为零15.如图甲所示,一轻质弹簧的两端与质量分别为m 1和m 2的两物块A 、B 相连接,并静止在光滑的水平面上.现使A 瞬时获得水平向右的速度3m/s ,以此刻为计时起点,两物块的速度随时间变化的规律如图乙所示,从图象信息可得 ( )A .在t 1、t 3时刻两物块达到共同速度1m/s ,且弹簧都是处于压缩状态B .从t 3到t 4时刻弹簧由压缩状态恢复到原长C .两物体的质量之比为m 1:m 2=1:2D .在t 2时刻A 和B 的动能之比为E k1: E k2=1甲 -16.如图所示,质量为3.0kg 的小车在光滑水平轨道上以2.0m/s 速度向右运动.一股水流以2.4m/s 的水平速度自右向左射向小车后壁,已知水流流量为5100.5-⨯m 3/s ,射到车壁的水全部流入车厢内.那么,经多长时间可使小车开始反向运动?(水的密度为3100.1⨯kg/m 3)17.如图所示,有两个物体A ,B ,紧靠着放在光滑水平桌面上,A 的质量为2kg ,B 的质量为3kg 。
有一颗质量为100g 的子弹以800m/s 的水平速度射入A ,经过0.01s 又射入物体B ,最后停在B 中,A 对子弹的阻力为3×103N ,求A ,B 最终的速度。
18.如图所示,在小车的一端高h 的支架上固定着一个半径为R 的1/4圆弧光滑导轨,一质量为m =0.2kg 的物体从圆弧的顶端无摩擦地滑下,离开圆弧后刚好从车的另一端擦过落到水平地面,车的质量M =2kg ,车身长L =0.22m ,车与水平地面间摩擦不计,图中h =0.20m ,重力加速度g =10m/s 2,求R .19.如图所示,光滑轨道的DP 段为水平直轨道,PQ 段为半径是R 的竖直半圆轨道,半圆轨道的下端与水平轨道的右端相切于P 点.一轻质弹簧两端分别固定质量为2m 的小球A 和质量为m 的小球B ,质量为m 的小球C 靠在B 球的右侧.现用外力作用在A 和C 上,弹簧被压缩(弹簧仍在弹性限度内),这时三个小球均静止于距离P 端足够远的水平轨道上.若撤去外力,C 球恰好可运动到轨道的最高点Q .已知重力加速度为g ,求撤去外力前的瞬间,弹簧的弹性势能E 是多大?P20.如图所示,A 、B 两物体与一轻质弹簧相连,静止在地面上.有一个小物体C 从距A 物体h 高度处由静止释放,当下落至与A 相碰后立即粘在一起向下运动,以后不再分开,当A 和C 运动到最高点时,物体B 对地面恰好无压力.设A 、B 、C 三物体的质量均为m ,弹簧的劲度系数为k ,不计空气阻力,且弹簧始终处于弹性限度内.若弹簧的弹性势能由劲度系数和形变量决定,求C 物体下落时的高度h .21.如图所示,质量为M =4kg 的木板长L =1.4m ,静止在光滑的水平地面上,其上端右侧静置一个质量为m =1kg 的小滑块,小滑块与木板间的动摩擦因数为μ=0.4.今用一水平力F =28N 向右拉木板,要使小滑块从木板上掉下来,求此力至少作用多长时间?(重力加速度g 取10m/s 2)22.如图所示,AB 为一光滑水平横杆,杆上套一质量为M 的小圆环,环上系一长为L 质量不计的细绳,绳的另一端拴一质量为m 的小球,现将绳拉直,且与AB 平行,由静止释放小球,则当线绳与A B 成θ角时,圆环移动的距离是多少?23.如图所示,一质量为M 的平板车B 放在光滑水平面上,在其右端放一质量为m 的小木块A ,m <M ,A 、B 间动摩擦因数为μ,现给A 和B 以大小相等、方向相反的初速度v 0,使A 开始向左运动,B 开始向右运动,最后A 不会滑离B ,求:(1)A 、B 最后的速度大小和方向。
(2)从地面上看,小木块向左运动到离出发点最远处时,平板车向右运动的位移大小。
24.如图所示,甲、乙两小孩各乘一辆冰车在水平冰面上游戏。
甲和他的冰车总质量共为30kg,乙和他的冰车总质量也是30kg。
游戏时,甲推着一个质量为15kg的箱子和他一起以2m/s的速度滑行,乙以同样大小的速度迎面滑来。
为了避免相撞,甲突然将箱子滑冰面推给乙,箱子滑到乙处,乙迅速抓住。
若不计冰面摩擦,求甲至少以多大速度(相对地)将箱子推出,才能避免与乙相撞?25.如图所示,在光滑水平面上有一辆质量M=4kg的平板小车,车上的质量为m=1.96kg的木块,木块与小车平板间的动摩擦因数μ=0.2,木块距小车左端 1.5m,车与木块一起以V=0.4m/s的速度向右行驶。