2020年高考物理考点题型归纳与训练专题十四 动量守恒定律及其应用(含解析)
高考物理动量守恒定律及其解题技巧及练习题(含答案)含解析

高考物理动量守恒定律及其解题技巧及练习题(含答案)含解析一、高考物理精讲专题动量守恒定律1.运载火箭是人类进行太空探索的重要工具,一般采用多级发射的设计结构来提高其运载能力。
某兴趣小组制作了两种火箭模型来探究多级结构的优越性,模型甲内部装有△m=100 g 的压缩气体,总质量为M=l kg ,点火后全部压缩气体以v o =570 m/s 的速度从底部喷口在极短的时间内竖直向下喷出;模型乙分为两级,每级内部各装有2m∆ 的压缩气体,每级总质量均为2M,点火后模型后部第一级内的全部压缩气体以速度v o 从底部喷口在极短时间内竖直向下喷出,喷出后经过2s 时第一级脱离,同时第二级内全部压缩气体仍以速度v o 从第二级底部在极短时间内竖直向下喷出。
喷气过程中的重力和整个过程中的空气阻力忽略不计,g 取10 m /s 2,求两种模型上升的最大高度之差。
【答案】116.54m【解析】对模型甲: ()00M m v mv =-∆-∆甲21085=200.5629v h m m g =≈甲甲对模型乙第一级喷气: 10022m mM v v ∆∆⎛⎫=-- ⎪⎝⎭乙 解得: 130m v s=乙2s 末: ‘11=10m v v gt s-=乙乙22111'=402v v h m g-=乙乙乙对模型乙第一级喷气:‘120=)2222M M m m v v v ∆∆--乙乙( 解得: 2670=9mv s 乙 22222445=277.10281v h m m g =≈乙乙可得: 129440+=116.5481h h h h m m ∆=-≈乙乙甲。
2.在相互平行且足够长的两根水平光滑的硬杆上,穿着三个半径相同的刚性球A 、B 、C ,三球的质量分别为m A =1kg 、m B =2kg 、m C =6kg ,初状态BC 球之间连着一根轻质弹簧并处于静止,B 、C 连线与杆垂直并且弹簧刚好处于原长状态,A 球以v 0=9m/s 的速度向左运动,与同一杆上的B 球发生完全非弹性碰撞(碰撞时间极短),求:(1)A球与B球碰撞中损耗的机械能;(2)在以后的运动过程中弹簧的最大弹性势能;(3)在以后的运动过程中B球的最小速度.【答案】(1);(2);(3)零.【解析】试题分析:(1)A、B发生完全非弹性碰撞,根据动量守恒定律有:碰后A、B的共同速度损失的机械能(2)A、B、C系统所受合外力为零,动量守恒,机械能守恒,三者速度相同时,弹簧的弹性势能最大根据动量守恒定律有:三者共同速度最大弹性势能(3)三者第一次有共同速度时,弹簧处于伸长状态,A、B在前,C在后.此后C向左加速,A、B的加速度沿杆向右,直到弹簧恢复原长,故A、B继续向左减速,若能减速到零则再向右加速.弹簧第一次恢复原长时,取向左为正方向,根据动量守恒定律有:根据机械能守恒定律:此时A、B的速度,C的速度可知碰后A、B已由向左的共同速度减小到零后反向加速到向右的,故B 的最小速度为零.考点:动量守恒定律的应用,弹性碰撞和完全非弹性碰撞.【名师点睛】A、B发生弹性碰撞,碰撞的过程中动量守恒、机械能守恒,结合动量守恒定律和机械能守恒定律求出A球与B球碰撞中损耗的机械能.当B、C速度相等时,弹簧伸长量最大,弹性势能最大,结合B、C在水平方向上动量守恒、能量守恒求出最大的弹性势能.弹簧第一次恢复原长时,由系统的动量守恒和能量守恒结合解答3.如图甲所示,物块A、B的质量分别是m A=4.0kg和m B=3.0kg.用轻弹簧拴接,放在光滑的水平地面上,物块B右侧与竖直墙相接触.另有一物块C从t=0时以一定速度向右运动,在t=4s时与物块A相碰,并立即与A粘在一起不再分开,物块C的v-t图象如图乙所示.求:①物块C的质量?②B离开墙后的运动过程中弹簧具有的最大弹性势能E P?【答案】(1)2kg(2)9J【解析】试题分析:①由图知,C与A碰前速度为v1=9 m/s,碰后速度为v2=3 m/s,C与A碰撞过程动量守恒.m c v1=(m A+m C)v2即m c=2 kg②12 s时B离开墙壁,之后A、B、C及弹簧组成的系统动量和机械能守恒,且当A、C与B的速度相等时,弹簧弹性势能最大(m A+m C)v3=(m A+m B+m C)v4得E p=9 J考点:考查了动量守恒定律,机械能守恒定律的应用【名师点睛】分析清楚物体的运动过程、正确选择研究对象是正确解题的关键,应用动量守恒定律、能量守恒定律、动量定理即可正确解题.4.如图所示,光滑水平面上有两辆车,甲车上面有发射装置,甲车连同发射装置质量M1=1 kg,车上另有一个质量为m=0.2 kg的小球,甲车静止在水平面上,乙车以v0=8 m/s 的速度向甲车运动,乙车上有接收装置,总质量M2=2 kg,问:甲车至少以多大的水平速度将小球发射到乙车上,两车才不会相撞?(球最终停在乙车上)【答案】25m/s【解析】试题分析:要使两车恰好不相撞,则两车速度相等. 以M 1、M 2、m 组成的系统为研究对象,水平方向动量守恒:()20120M v M m M v +=++共,解得5m /s v =共以小球与乙车组成的系统,水平方向动量守恒: ()202M v mv m M v -=+共,解得25m /s v =考点:考查了动量守恒定律的应用【名师点睛】要使两车不相撞,甲车以最小的水平速度将小球发射到乙车上的临界条件是两车速度相同,以甲车、球与乙车为系统,由系统动量守恒列出等式,再以球与乙车为系统,由系统动量守恒列出等式,联立求解5.冰球运动员甲的质量为80.0kg 。
高考物理动量守恒定律技巧和方法完整版及练习题含解析

高考物理动量守恒定律技巧和方法完整版及练习题含解析一、高考物理精讲专题动量守恒定律1.水平放置长为L=4.5m 的传送带顺时针转动,速度为v =3m/s ,质量为m 2=3kg 的小球被长为1l m =的轻质细线悬挂在O 点,球的左边缘恰于传送带右端B 对齐;质量为m 1=1kg 的物块自传送带上的左端A 点以初速度v 0=5m/s 的速度水平向右运动,运动至B 点与球m 2发生碰撞,在极短的时间内以碰撞前速率的12反弹,小球向右摆动一个小角度即被取走。
已知物块与传送带间的滑动摩擦因数为μ=0.1,取重力加速度210m/s g =。
求:(1)碰撞后瞬间,小球受到的拉力是多大?(2)物块在传送带上运动的整个过程中,与传送带间摩擦而产生的内能是多少? 【答案】(1)42N (2)13.5J 【解析】 【详解】解:设滑块m1与小球碰撞前一直做匀减速运动,根据动能定理:221111011=22m gL m v m v μ--解之可得:1=4m/s v 因为1v v <,说明假设合理滑块与小球碰撞,由动量守恒定律:21111221=+2m v m v m v - 解之得:2=2m/s v碰后,对小球,根据牛顿第二定律:2222m v F m g l-=小球受到的拉力:42N F =(2)设滑块与小球碰撞前的运动时间为1t ,则()01112L v v t =+ 解之得:11s t =在这过程中,传送带运行距离为:113S vt m == 滑块与传送带的相对路程为:11 1.5X L X m ∆=-=设滑块与小球碰撞后不能回到传送带左端,向左运动最大时间为2t 则根据动量定理:121112m gt m v μ⎛⎫-=-⋅⎪⎝⎭解之得:22s t =滑块向左运动最大位移:121122m x v t ⎛⎫=⋅⋅ ⎪⎝⎭=2m 因为m x L <,说明假设成立,即滑块最终从传送带的右端离开传送带 再考虑到滑块与小球碰后的速度112v <v , 说明滑块与小球碰后在传送带上的总时间为22t在滑块与传送带碰撞后的时间内,传送带与滑块间的相对路程22212X vt m ∆==因此,整个过程中,因摩擦而产生的内能是()112Q m g x x μ=∆+∆=13.5J2.如图:竖直面内固定的绝缘轨道abc ,由半径R =3 m 的光滑圆弧段bc 与长l =1.5 m 的粗糙水平段ab 在b 点相切而构成,O 点是圆弧段的圆心,Oc 与Ob 的夹角θ=37°;过f 点的竖直虚线左侧有方向竖直向上、场强大小E =10 N/C 的匀强电场,Ocb 的外侧有一长度足够长、宽度d =1.6 m 的矩形区域efgh ,ef 与Oc 交于c 点,ecf 与水平向右的方向所成的夹角为β(53°≤β≤147°),矩形区域内有方向水平向里的匀强磁场.质量m 2=3×10-3 kg 、电荷量q =3×l0-3 C 的带正电小物体Q 静止在圆弧轨道上b 点,质量m 1=1.5×10-3 kg 的不带电小物体P 从轨道右端a 以v 0=8 m/s 的水平速度向左运动,P 、Q 碰撞时间极短,碰后P 以1 m/s 的速度水平向右弹回.已知P 与ab 间的动摩擦因数μ=0.5,A 、B 均可视为质点,Q 的电荷量始终不变,忽略空气阻力,sin37°=0.6,cos37°=0.8,重力加速度大小g =10 m/s 2.求:(1)碰后瞬间,圆弧轨道对物体Q 的弹力大小F N ;(2)当β=53°时,物体Q 刚好不从gh 边穿出磁场,求区域efgh 内所加磁场的磁感应强度大小B 1;(3)当区域efgh 内所加磁场的磁感应强度为B 2=2T 时,要让物体Q 从gh 边穿出磁场且在磁场中运动的时间最长,求此最长时间t 及对应的β值.【答案】(1)24.610N F N -=⨯ (2)1 1.25B T = (3)127s 360t π=,001290143ββ==和【解析】 【详解】解:(1)设P 碰撞前后的速度分别为1v 和1v ',Q 碰后的速度为2v 从a 到b ,对P ,由动能定理得:221011111-22m gl m v m v μ=- 解得:17m/s v =碰撞过程中,对P ,Q 系统:由动量守恒定律:111122m v m v m v '=+取向左为正方向,由题意11m/s v =-', 解得:24m/s v =b 点:对Q ,由牛顿第二定律得:2222N v F m g m R-=解得:24.610N N F -=⨯(2)设Q 在c 点的速度为c v ,在b 到c 点,由机械能守恒定律:22222211(1cos )22c m gR m v m v θ-+=解得:2m/s c v =进入磁场后:Q 所受电场力22310N F qE m g -==⨯= ,Q 在磁场做匀速率圆周运动由牛顿第二定律得:2211c c m v qv B r =Q 刚好不从gh 边穿出磁场,由几何关系:1 1.6m r d == 解得:1 1.25T B = (3)当所加磁场22T B =,2221m cm v r qB == 要让Q 从gh 边穿出磁场且在磁场中运动的时间最长,则Q 在磁场中运动轨迹对应的圆心角最大,则当gh 边或ef 边与圆轨迹相切,轨迹如图所示:设最大圆心角为α,由几何关系得:22cos(180)d r r α-︒-= 解得:127α=︒ 运动周期:222m T qB π=则Q 在磁场中运动的最长时间:222127127•s 360360360m t T qB παπ===︒此时对应的β角:190β=︒和2143β=︒3.两个质量分别为0.3A m kg =、0.1B m kg =的小滑块A 、B 和一根轻质短弹簧,弹簧的一端与小滑块A 粘连,另一端与小滑块B 接触而不粘连.现使小滑块A 和B 之间夹着被压缩的轻质弹簧,处于锁定状态,一起以速度03/v m s =在水平面上做匀速直线运动,如题8图所示.一段时间后,突然解除锁定(解除锁定没有机械能损失),两滑块仍沿水平面做直线运动,两滑块在水平面分离后,小滑块B 冲上斜面的高度为 1.5h m =.斜面倾角o 37θ=,小滑块与斜面间的动摩擦因数为0.15μ=,水平面与斜面圆滑连接.重力加速度g 取210/m s .求:(提示:o sin 370.6=,o cos370.8=)(1)A 、B 滑块分离时,B 滑块的速度大小. (2)解除锁定前弹簧的弹性势能.【答案】(1)6/B v m s = (2)0.6P E J = 【解析】试题分析:(1)设分离时A 、B 的速度分别为A v 、B v , 小滑块B 冲上斜面轨道过程中,由动能定理有:2cos 1sin 2B B B Bm gh m gh m v θμθ+⋅= ① (3分)代入已知数据解得:6/B v m s = ② (2分)(2)由动量守恒定律得:0()A B A A B B m m v m v m v +=+ ③ (3分) 解得:2/A v m s = (2分) 由能量守恒得:2220111()222A B P A A B Bm m v E m v m v ++=+ ④ (4分) 解得:0.6P E J = ⑤ (2分)考点:本题考查了动能定理、动量守恒定律、能量守恒定律.4.如图所示,两块相同平板P 1、P 2置于光滑水平面上,质量均为m 。
高考物理动量守恒定律的应用及其解题技巧及练习题(含答案)

高考物理动量守恒定律的应用及其解题技巧及练习题 (含答案)一、高考物理精讲专题动量守恒定律的应用1.竖直平面内存在着如图甲所示管道,虚线左侧管道水平,虚线右侧管道是半径R=1m 的半圆形,管道截面是不闭合的圆,管道半圆形部分处在竖直向上的匀强电场中,电场强度 E=4X 10/m .小球a 、b 、c 的半径略小于管道内径, b 、c 球用长L 2m 的绝缘细轻杆连接,开始时c 静止于管道水平部分右端P 点处,在M 点处的a 球在水平推力F 的作用下由静止向右运动,当 F 减到零时恰好与b 发生了弹性碰撞,F-t 的变化图像如图乙所示,且满足F 2 t 2 —.已知三个小球均可看做质点且 m a =0.25kg , m b =0.2kg , m c =0.05kg ,小球 (1) 小球a 与b 发生碰撞时的速度 v o ; (2) 小球c 运动到Q 点时的速度v ;(3) 从小球c 开始运动到速度减为零的过程中,小球 c 电势能的增加量.【答案】(1) V 4m/s (2) v=2m/s (3) E p 3.2J 【解析】【分析】对小球 a ,由动量定理可得小球 a 与b 发生碰撞时的速度;小球a 与小球b 、c 组 成的系统发生弹性碰撞由动量守恒和机械能守恒可列式,小球c 运动到Q 点时,小球b 恰好运动到P 点,由动能定理可得小球 c 运动到Q 点时的速度;由于b 、c 两球转动的角速 度和半径都相同,故两球的线速度大小始终相等,从c 球运动到Q 点到减速到零的过程列能量守恒可得; 解:⑴对小球a ,由动量定理可得I m a V 。
0 由题意可知,F-图像所围的图形为四分之一圆弧 ,面积为拉力F 的冲量,由圆方程可知S 1m 2 代入数据可得:v 0 4m/s(2)小球a 与小球b 、c 组成的系统发生弹性碰撞 , 由动量守恒可得 m a V 0 m a V | (m b m c )v 21 2 1 2 12由机械能守恒可得 m a v 0m a v 1 (m b m c )v 222 2解得 V 1 0, V 2 4m/ sA E阳1r c 带q=5 x 1'0)C 的正电荷,其他小球不带电,不计一切摩擦, g=10m/s 2,求小球c运动到Q点时,小球b恰好运动到P点,由动能定理1 2 1 2 m c gR qER ㊁血 mjv ㊁血 mjv ?代入数据可得v 2m/ s⑶由于b 、c 两球转动的角速度和半径都相同,故两球的线速度大小始终相等,假设当两球速度减到零时,设b 球与O 点连线与竖直方向的夹角为 从c 球运动到Q 点到减速到零的过程列能量守恒可得:1 2(m b m c )v qERsin 22.如图所示,小明参加户外竞技活动,站在平台边缘抓住轻绳一端,轻绳另一端固定在 '点,绳子刚好被拉直且偏离竖直方向的角度0 =60.小明从A 点由静止往下摆,达到 O 点正下方B 点突然松手,顺利落到静止在水平平台的平板车上,然后随平板车一起向右运 动•到达C 点,小明跳离平板车(近似认为水平跳离),安全落到漂浮在水池中的圆形浮漂 上•绳长L=1.6m ,浮漂圆心与 C 点的水平距离x=2.7m 、竖直高度y=1.8m ,浮漂半径 R=0.3m 、不计厚度,小明的质量m=60kg ,平板车的质量 m=20kg ,人与平板车均可视为质点,不计平板车与平台之间的摩擦.重力加速度g=10m/s 2,求:_*』吩(1) 轻绳能承受最大拉力不得小于多少? (2) 小明跳离平板车时的速度在什么范围?(3) 若小明跳离平板车后恰好落到浮漂最右端,他在跳离过程中做了多少功 ?【答案】(1) 1200N (2) 4m/s Wv< 5m/s( 3) 480J 【解析】 【分析】(1)首先根据机械能守恒可以计算到达B 点的速度,再根据圆周运动知识计算拉力大小.(2)由平抛运动规律,按照位移大小可以计算速度范围( 3)由动量守恒和能量守恒规律计算即可. 【详解】解(I)从A 到B .由功能关系可得1 2 mgL(1 cos ) mv ①2代人数据求得v=4 m/s ②m b gR(1cos ) m c gRsin 解得sin0637因此小球c 电势能的增加量: E p qER(1 sin ) 3.2J2在最低点B处,T mg mv③联立①②解得,轻绳能承受最大拉力不得小于T=1200N(2) 小明离开滑板后可认为做平抛运动1 2竖直位移y gt1 2 3④2离C点水平位移最小位移x R v min t⑤离C点水平位移最大为X R V min t⑥联立④⑤⑥解得小明跳离滑板时的速度 4 m/s Wvw 5 m/s(3) 小明落上滑板时,动量守恒mv (m m0)V| ⑦代人数据求得V i=3 m/s⑧离开滑板时,动量守恒(m m0)v| mv C m o V2⑨将⑧代人⑨得V2=-3 m/s由功能关系可得1 2 1 2 1 2 W ( — mv C m0v2) m m0 v1⑩.2 2 2解得W=480 J3. 某种弹射装置的示意图如图所示,光滑的水平导轨MN右端N处于倾斜传送带理想连接,传送带长度L=15.0m,皮带以恒定速率v=5m/s顺时针转动,三个质量均为m=1.0kg的滑块A、B C置于水平导轨上, B C之间有一段轻弹簧刚好处于原长,滑块B与轻弹簧连接,C未连接弹簧,B C处于静止状态且离N点足够远,现让滑块A以初速度V0=6m/s 沿B、C 连线方向向B运动,A与B碰撞后粘合在一起•碰撞时间极短,滑块C脱离弹簧后滑上倾角0 =37的传送带,并从顶端沿传送带方向滑出斜抛落至地面上,已知滑块C与传送带之间的动摩擦因数卩=0.8重力加速度g=10m/s2, sin37=0.6, cos37°0.8.1滑块A、B碰撞时损失的机械能;2滑块C在传送带上因摩擦产生的热量Q;3若每次实验开始时滑块A的初速度V。
高考物理动量守恒定律技巧小结及练习题含解析

高考物理动量守恒定律技巧小结及练习题含解析一、高考物理精讲专题动量守恒定律1.两个质量分别为0.3A m kg =、0.1B m kg =的小滑块A 、B 和一根轻质短弹簧,弹簧的一端与小滑块A 粘连,另一端与小滑块B 接触而不粘连.现使小滑块A 和B 之间夹着被压缩的轻质弹簧,处于锁定状态,一起以速度03/v m s =在水平面上做匀速直线运动,如题8图所示.一段时间后,突然解除锁定(解除锁定没有机械能损失),两滑块仍沿水平面做直线运动,两滑块在水平面分离后,小滑块B 冲上斜面的高度为 1.5h m =.斜面倾角o 37θ=,小滑块与斜面间的动摩擦因数为0.15μ=,水平面与斜面圆滑连接.重力加速度g 取210/m s .求:(提示:o sin 370.6=,o cos370.8=)(1)A 、B 滑块分离时,B 滑块的速度大小. (2)解除锁定前弹簧的弹性势能.【答案】(1)6/B v m s = (2)0.6P E J = 【解析】试题分析:(1)设分离时A 、B 的速度分别为A v 、B v , 小滑块B 冲上斜面轨道过程中,由动能定理有:2cos 1sin 2BB B Bm gh m gh m v θμθ+⋅= ① (3分)代入已知数据解得:6/B v m s = ② (2分)(2)由动量守恒定律得:0()A B A A B B m m v m v m v +=+ ③ (3分) 解得:2/A v m s = (2分) 由能量守恒得:2220111()222A B P A A B Bm m v E m v m v ++=+ ④ (4分) 解得:0.6P E J = ⑤ (2分)考点:本题考查了动能定理、动量守恒定律、能量守恒定律.2.如图所示,在倾角30°的斜面上放置一个凹撸B,B 与斜面间的动摩擦因数3μ=;槽内靠近右侧壁处有一小物块A(可视为质点),它到凹槽左侧壁的距离d =0.1m ,A 、B 的质量都为m=2kg ,B 与斜面间的最大静摩擦力可认为等于滑动摩摞力,不计A 、B 之间的摩擦,斜面足够长.现同时由静止释放A 、B,经过一段时间,A 与B 的侧壁发生碰撞,碰撞过程不计机械能损失,碰撞时间极短,g 取210/m s .求:(1)释放后物块A 和凹槽B 的加速度分别是多大?(2)物块A 与凹槽B 的左侧壁第一次碰撞后瞬间A 、B 的速度大小;(3)从初始位置到物块A 与凹糟B 的左侧壁发生第三次碰撞时B 的位移大小. 【答案】(1)(2)v An =(n-1)m∙s -1,v Bn ="n" m∙s -1(3)x n 总=0.2n 2m 【解析】 【分析】 【详解】(1)设物块A 的加速度为a 1,则有m A gsin θ=ma 1, 解得a 1=5m/s 2凹槽B 运动时受到的摩擦力f=μ×3mgcos θ=mg 方向沿斜面向上; 凹槽B 所受重力沿斜面的分力G 1=2mgsin θ=mg 方向沿斜面向下; 因为G 1=f ,则凹槽B 受力平衡,保持静止,凹槽B 的加速度为a 2=0 (2)设A 与B 的左壁第一次碰撞前的速度为v A0,根据运动公式:v 2A0=2a 1d 解得v A0=3m/s ;AB 发生弹性碰撞,设A 与B 第一次碰撞后瞬间A 的速度大小为v A1,B 的速度为v B1,则由动量守恒定律:0112A A B mv mv mv =+ ;由能量关系:2220111112222A AB mv mv mv =+⨯ 解得v A1=-1m/s(负号表示方向),v B1=2m/s3.如图所示,一小车置于光滑水平面上,轻质弹簧右端固定,左端栓连物块b ,小车质量M =3kg ,AO 部分粗糙且长L =2m ,动摩擦因数μ=0.3,OB 部分光滑.另一小物块a .放在车的最左端,和车一起以v 0=4m/s 的速度向右匀速运动,车撞到固定挡板后瞬间速度变为零,但不与挡板粘连.已知车OB 部分的长度大于弹簧的自然长度,弹簧始终处于弹性限度内.a 、b 两物块视为质点质量均为m =1kg ,碰撞时间极短且不粘连,碰后一起向右运动.(取g =10m/s 2)求:(1)物块a 与b 碰后的速度大小;(2)当物块a 相对小车静止时小车右端B 到挡板的距离; (3)当物块a 相对小车静止时在小车上的位置到O 点的距离.【答案】(1)1m/s (2) (3) x=0.125m【解析】试题分析:(1)对物块a,由动能定理得:代入数据解得a与b碰前速度:;a、b碰撞过程系统动量守恒,以a的初速度方向为正方向,由动量守恒定律得:,代入数据解得:;(2)当弹簧恢复到原长时两物块分离,a以在小车上向左滑动,当与车同速时,以向左为正方向,由动量守恒定律得:,代入数据解得:,对小车,由动能定理得:,代入数据解得,同速时车B端距挡板的距离:;(3)由能量守恒得:,解得滑块a与车相对静止时与O点距离:;考点:动量守恒定律、动能定理。
高考物理动量守恒定律及其解题技巧及练习题(含答案)及解析

高考物理动量守恒定律及其解题技巧及练习题(含答案)及解析一、高考物理精讲专题动量守恒定律1.如图所示,两块相同平板P 1、P 2置于光滑水平面上,质量均为m 。
P 2的右端固定一轻质弹簧,左端A 与弹簧的自由端B 相距L 。
物体P 置于P 1的最右端,质量为2m 且可以看作质点。
P 1与P 以共同速度v 0向右运动,与静止的P 2发生碰撞,碰撞时间极短,碰撞后P 1与P 2粘连在一起,P 压缩弹簧后被弹回并停在A 点(弹簧始终在弹性限度内)。
P 与P 2之间的动摩擦因数为μ,求:(1)P 1、P 2刚碰完时的共同速度v 1和P 的最终速度v 2; (2)此过程中弹簧最大压缩量x 和相应的弹性势能E p 。
【答案】(1) 201v v =,4302v v = (2)L g v x -=μ3220,1620p mv E = 【解析】(1) P 1、P 2碰撞过程,动量守恒,102mv mv =,解得21v v =。
对P 1、P 2、P 组成的系统,由动量守恒定律 ,204)2(mv v m m =+,解得4302v v =(2)当弹簧压缩最大时,P 1、P 2、P 三者具有共同速度v 2,对P 1、P 2、P 组成的系统,从P 1、P 2碰撞结束到P 压缩弹簧后被弹回并停在A 点,用能量守恒定律)(2)2()2(21221221222021x L mg u v m m m mv mv ++++=⨯+⨯ 解得L gv x -=μ3220 对P 1、P 2、P 系统从P 1、P 2碰撞结束到弹簧压缩量最大,用能量守恒定律p 222021))(2()2(21221221E x L mg u v m m m mv mv +++++=+ 最大弹性势能162P mv E =注意三个易错点:碰撞只是P 1、P 2参与;碰撞过程有热量产生;P 所受摩擦力,其正压力为2mg【考点定位】碰撞模型、动量守恒定律、能量守恒定律、弹性势能、摩擦生热。
高考物理动量守恒定律练习题及解析.docx

高考物理动量守恒定律练习题及解析一、高考物理精讲专题动量守恒定律1. 如图所示,小明站在静止在光滑水平面上的小车上用力向右推静止的木箱,木箱最终以速度 v 向右匀速运动.已知木箱的质量为m ,人与车的总质量为2m ,木箱运动一段时间后与竖直墙壁发生无机械能损失的碰撞,反弹回来后被小明接住.求:(1)推出木箱后小明和小车一起运动的速度 v 1 的大小;(2)小明接住木箱后三者一起运动的速度 v 2 的大小.【答案】 ① v ; ②2v23【解析】试题分析: ① 取向左为正方向,由动量守恒定律有:0=2mv 1-mv得 v 1 v2② 小明接木箱的过程中动量守恒,有 mv+2mv 1 =(m+2m ) v 2解得 v 22v 3考点:动量守恒定律2. 如图所示,质量为 M=1kg 上表面为一段圆弧的大滑块放在水平面上,圆弧面的最底端 刚好与水平面相切于水平面上的B 点, B 点左侧水平面粗糙、右侧水平面光滑,质量为m=0.5kg 的小物块放在水平而上的 A 点,现给小物块一个向右的水平初速度v 0=4m/s ,小物块刚好能滑到圆弧面上最高点C 点,已知圆弧所对的圆心角为 53°, A 、B 两点间的距离为L=1m ,小物块与水平面间的动摩擦因数为μ =0.,2重力加速度为g=10m/s 2.求:(1)圆弧所对圆的半径R ;(2)若 AB 间水平面光滑,将大滑块固定,小物块仍以v 0=4m/s 的初速度向右运动,则小物块从C 点抛出后,经多长时间落地?【答案】 (1) 1m ( 2) t4 282 s25【解析】 【分析】根据动能定理得小物块在 B 点时的速度大小 ;物块从 B 点滑到圆弧面上最高点 C 点的过程,小物块与大滑块组成的系统水平方向动量守恒,根据动量守恒和系统机械能守恒求出圆弧所对圆的半径;,根据机械能守恒求出物块冲上圆弧面的速度,物块从 C 抛出后,根据运动的合成与分解求落地时间;【详解】解: (1)设小物块在 B 点时的速度大小为v1,根据动能定理得:mgL1mv021mv1222设小物块在 B 点时的速度大小为v2,物块从B点滑到圆弧面上最高点 C 点的过程,小物块与大滑块组成的系统水平方向动量守恒,根据动量守恒则有:mv1 (m M )v2根据系统机械能守恒有:1mv121(m M )v22mg ( R R cos530 ) 22联立解得: R1m(2)若整个水平面光滑,物块以v0的速度冲上圆弧面,根据机械能守恒有:1mv021mv32mg ( R R cos530 )22解得:v3 2 2m / s物块从 C 抛出后,在竖直方向的分速度为:v y v3 sin 5382m / s 5这时离体面的高度为: h R R cos530.4mh v y t 1 gt22解得:t 4 282 s253.在图所示足够长的光滑水平面上,用质量分别为3kg 和1kg 的甲、乙两滑块,将仅与甲拴接的轻弹簧压紧后处于静止状态.乙的右侧有一挡板P.现将两滑块由静止释放,当弹簧恢复原长时,甲的速度大小为2m/s ,此时乙尚未与P 相撞.①求弹簧恢复原长时乙的速度大小;②若乙与挡板P 碰撞反弹后,不能再与弹簧发生碰撞.求挡板P 对乙的冲量的最大值.【答案】 v 乙=6m/s.I =8N【解析】【详解】1左的方向为正方向,由动量守恒定律可得:又知联立以上方程可得,方向向右。
最新高考物理二轮复习题型归纳与训练专题十四 动量守恒定律及其应用(含答案解析)

第 1 页 共 14 页最新高考物理二轮复习题型归纳与训练专题十四 动量守恒定律及其应用题型一、动量定理的理解与应用【典例1】(2019·武汉高三下学期2月调考)运动员在水上做飞行运动表演。
他操控喷射式悬浮飞行器将水带竖直送上来的水反转180°后向下喷出,令自己悬停在空中,如图所示。
已知运动员与装备的总质量为90 kg ,两个喷嘴的直径均为10 cm ,已知重力加速度大小g =10 m/s 2,水的密度ρ=1.0×103 kg/m 3,则喷嘴处喷水的速度大约为( )A .2.7 m/sB .5.4 m/sC .7.6 m/sD .10.8 m/s【答案】 C【解析】 设Δt 时间内有质量为m 的水射出,忽略重力冲量,对这部分水由动量定理得F Δt=2mv ,m =ρv Δt ·πd 24,设运动员与装备的总质量为M ,运动员悬停在空中,所以F ′=Mg ,由牛顿第三定律得F ′=F ,联立解得v ≈7.6 m/s ,C 正确。
题型二、动量守恒定律的应用【规律方法】动量守恒定律解题的基本步骤1.明确研究对象,确定系统的组成(系统包括哪几个物体及研究的过程);2.进行受力分析,判断系统动量是否守恒(或某一方向上动量是否守恒);3.规定正方向,确定初、末状态动量;4.由动量守恒定律列出方程;5.代入数据,求出结果,必要时讨论说明.【典例2】如图所示,甲、乙两小孩各乘一辆冰车在水平冰面上玩耍.甲和他的冰车的总质量为M=30 kg,乙和他的冰车的总质量也是M=30 kg.甲推着一个质量为m=15 kg的箱子和他一起以2 m/s的速度滑行,乙以同样大小的速度迎面滑来.为了避免相撞,甲突然将箱子沿冰面推给乙,箱子滑到乙处时,乙迅速抓住.若不计冰面摩擦,求甲至少以多大速度(相对地)将箱子推出,才能避免与乙相撞?【解析】要想刚好避免相撞,要求乙抓住箱子后与甲的速度正好相等,设甲推出箱子后的速度为v1,箱子的速度为v,乙抓住箱子后的速度为v2.对甲和箱子,推箱子前后动量守恒,以甲初速度方向为正方向,由动量守恒定律有(M+m)v0=mv+Mv1①对乙和箱子,抓住箱子前后动量守恒,以箱子初速度方向为正方向,由动量守恒定律有mv-Mv0=(m+M)v2①甲与乙刚好不相撞的条件是v1=v2①联立①①①解得v=5.2 m/s,方向与甲和箱子初速度方向一致.【答案】 5.2 m/s题型三、碰撞模型的规律及应用【典例3】.(多选)(2019·山东济南高三第二次联考)如图甲所示,光滑水平面上有a、b两个小球,a球向b球运动并与b球发生正碰后粘合在一起共同运动,其碰前和碰后的s t图象如图乙所示,已知m a=5 kg.若b球的质量为m b,两球因碰撞而损失的机械能为ΔE,则()第2页共14页第 3 页 共 14 页A .m b =1 kgB .m b =2 kgC .ΔE =15 JD .ΔE =35 J【解析】:在s t 图象中图线的斜率表示小球运动的速度大小,所以v a =61m/s =6 m/s ,碰后粘合在一起共同运动的速度为v =51m/s =5 m/s ,碰撞过程动量守恒,得m a v a =(m a +m b )v ,解得m b =1 kg ,故A 正确,B 错误;根据功能关系得ΔE =12m a v 2a -12(m a +m b )v 2=15 J ,故C 正确,D 错误.【答案】:AC题型四、动量与能量的综合应用【规律方法】利用动量和能量观点解题的技巧(1)若研究对象为一个系统,应优先考虑应用动量守恒定律和能量守恒定律.(2)动量守恒定律和能量守恒定律都只考查一个物理过程的初、末两个状态,对过程的细节不予追究.(3)注意挖掘隐含条件,根据选取的对象和过程判断动量和能量是否守恒.【典例4】(2019·湖北孝感高三上学期期末八校联考)如图所示,水平轨道OBC 与一半径为R =0.5 m 的竖直光滑半圆形轨道CD 相切于C 点,其中AB 部分粗糙,其他部分光滑。
动量守恒定律练习题含答案及解析.doc

动量守恒定律练习题含答案及解析一、高考物理精讲专题动量守恒定律1. 水平放置长为 L=4.5m 的传送带顺时针转动,速度为v=3m/s ,质量为 m 2=3kg 的小球被长为 l 1m 的轻质细线悬挂在 O 点,球的左边缘恰于传送带右端 B 对齐;质量为 m 1=1kg的物块自传送带上的左端A 点以初速度 v 0=5m/s 的速度水平向右运动,运动至B 点与球 m 2发生碰撞,在极短的时间内以碰撞前速率的1反弹,小球向右摆动一个小角度即被取走。
2已知物块与传送带间的滑动摩擦因数为μ=0.1,取重力加速度 g 10m/s 2。
求:( 1)碰撞后瞬间,小球受到的拉力是多大?( 2)物块在传送带上运动的整个过程中,与传送带间摩擦而产生的内能是多少?【答案】( 1) 42N ( 2) 13.5J【解析】【详解】解:设滑块 m1与小球碰撞前一直做匀减速运动,根据动能定理:m gL = 1mv 2 1 m v 2121 121 0解之可得: v 1 =4m/s因为 v 1 v ,说明假设合理m 1v 1 = 1 2滑块与小球碰撞,由动量守恒定律: 2m 1v 1+m 2v 2解之得: v 2 =2m/s碰后,对小球,根据牛顿第二定律:F m 2 gm 2 v 22l小球受到的拉力:F 42N(2)设滑块与小球碰撞前的运动时间为t 1 ,则 L1v 0 v 1 t 12解之得: t 1 1s在这过程中,传送带运行距离为: S 1 vt 1 3m 滑块与传送带的相对路程为:X 1L X 1 1.5m设滑块与小球碰撞后不能回到传送带左端,向左运动最大时间为 t 2则根据动量定理:m 1 gt 2m 11v 12解之得: t2 2s滑块向左运动最大位移: x m 1 1v1 t 2=2m2 2因为 x m L ,说明假设成立,即滑块最终从传送带的右端离开传送带1再考虑到滑块与小球碰后的速度2 v1< v ,说明滑块与小球碰后在传送带上的总时间为2t2在滑块与传送带碰撞后的时间内,传送带与滑块间的相对路程X 22vt212m因此,整个过程中,因摩擦而产生的内能是Q m1 g x1 x2=13.5J2.如图:竖直面内固定的绝缘轨道abc R=3 m的光滑圆弧段bc与长l=1.5 m的粗,由半径糙水平段 ab 在 b 点相切而构成, O 点是圆弧段的圆心,Oc 与 Ob 的夹角θ=37°;过 f 点的竖直虚线左侧有方向竖直向上、场强大小E=10 N/C 的匀强电场, Ocb 的外侧有一长度足够长、宽度 d =1.6 m 的矩形区域 efgh, ef 与 Oc 交于 c 点, ecf 与水平向右的方向所成的夹角为β(53 °≤β≤147°),矩形区域内有方向水平向里的匀强磁场.质量m2=3× 10-3 kg、电荷量 q=3× l0-3 C 的带正电小物体Q 静止在圆弧轨道上 b 点,质量 m1=1.5× 10-3 kg 的不带电小物体 P 从轨道右端 a 以 v0=8 m/s 的水平速度向左运动,P、 Q 碰撞时间极短,碰后 P 以 1 m/s 的速度水平向右弹回.已知P 与 ab 间的动摩擦因数μ=0.5,A、B均可视为质点,Q 的电荷量始终不变,忽略空气阻力,sin37° =0.6, cos37° =0.8,重力加速度大小g=10m/s 2.求:(1)碰后瞬间,圆弧轨道对物体Q 的弹力大小F N;(2)当β=53°时,物体Q 刚好不从gh 边穿出磁场,求区域efgh 内所加磁场的磁感应强度大小 B1;(3)当区域 efgh 内所加磁场的磁感应强度为B2 =2T 时,要让物体Q 从 gh 边穿出磁场且在磁场中运动的时间最长,求此最长时间t 及对应的β值.【答案】 (1) F N 4.6 10 2 N (2) B1 1.25T(3) t 127s ,1900和21430 360【解析】【详解】解: (1)设 P 碰撞前后的速度分别为 v 1 和 v 1 , Q 碰后的速度为 v 2 从 a 到 b ,对,由动能定理得: 1212P- m 1gl2 m 1v 12m 1v解得: v 1 7m/s碰撞过程中,对 P , Q 系统:由动量守恒定律: m 1v 1 m 1v 1 m 2v 2取向左为正方向,由题意 v 11m/s,解得: v 24m/sb 点:对 Q ,由牛顿第二定律得: F Nm 2 g m 2 v 2 2R解得 : F N 4.6 10 2 N(2)设 Q 在 c 点的速度为 v c ,在 b 到 c 点,由机械能守恒定律:m 2 gR(1 cos )1m 2v c21m 2v 2 22 2解得: v c 2m/s进入磁场后: Q 所受电场力 F qE 3 10 2Nm 2 g ,Q在磁场做匀速率圆周运动由牛顿第二定律得:qv c B 1m 2v c2r 1Q 刚好不从 gh 边穿出磁场,由几何关系: r 1 d 1.6m解得: B 11.25T(3)当所加磁场 B 22T ,r2m 2v c1mqB 2要让 Q 从 gh 边穿出磁场且在磁场中运动的时间最长,则 Q 在磁场中运动轨迹对应的圆心角最大,则当 gh 边或 ef 边与圆轨迹相切,轨迹如图所示:d r2 设最大圆心角为,由几何关系得:cos(180)r2 解得:1272 m2运动周期: TqB2则 Q 在磁场中运动的最长时间:t T 127?2 m2 127 s360 360 qB2 360此时对应的角: 1 90 和2 1433.如图甲所示,物块A、 B 的质量分别是m A B=4.0kg 和 m =3.0kg.用轻弹簧拴接,放在光滑的水平地面上,物块 B 右侧与竖直墙相接触.另有一物块 C 从 t=0 时以一定速度向右运动,在 t=4s 时与物块 A 相碰,并立即与 A 粘在一起不再分开,物块 C 的 v-t 图象如图乙所示.求:①物块 C 的质量?②B 离开墙后的运动过程中弹簧具有的最大弹性势能E P?【答案】(1) 2kg( 2) 9J【解析】试题分析:①由图知, C 与 A 碰前速度为 v1= 9 m/s,碰后速度为v2= 3 m/s , C 与 A 碰撞过程动量守恒. m c 1 AC2v =( m + m ) v即 m c= 2 kg② 12 s 时 B 离开墙壁,之后A、 B、C 及弹簧组成的系统动量和机械能守恒,且当A、 C 与B的速度相等时,弹簧弹性势能最大(m A+ m C) v3=( m A+ m B+ m C) v4得E p= 9 J考点:考查了动量守恒定律,机械能守恒定律的应用【名师点睛】分析清楚物体的运动过程、正确选择研究对象是正确解题的关键,应用动量守恒定律、能量守恒定律、动量定理即可正确解题.4.如图所示,质量分别为m1和m2的两个小球在光滑水平面上分别以速度v1、 v2同向运动,并发生对心碰撞,碰后 m2被右侧墙壁原速弹回,又与 m1碰撞,再一次碰撞后两球都静止.求第一次碰后 m1球速度的大小 .【答案】 【解析】设两个小球第一次碰后 m 1 和 m 2 速度的大小分别为和 ,由动量守恒定律得:( 4 分)两个小球再一次碰撞, (4 分)得:( 4 分)本题考查碰撞过程中动量守恒的应用,设小球碰撞后的速度,找到初末状态根据动量守恒的公式列式可得5. 如图所示,一辆质量M=3 kg 的小车 A 静止在光滑的水平面上,小车上有一质量 m=l kg的光滑小球 B ,将一轻质弹簧压缩并锁定,此时弹簧的弹性势能为E p =6J ,小球与小车右壁距离为 L=0.4m ,解除锁定,小球脱离弹簧后与小车右壁的油灰阻挡层碰撞并被粘住,求:①小球脱离弹簧时的速度大小;②在整个过程中,小车移动的距离。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020高考物理二轮复习题型归纳与训练专题十四 动量守恒定律及其应用题型一、动量定理的理解与应用【典例1】(2019·武汉高三下学期2月调考)运动员在水上做飞行运动表演。
他操控喷射式悬浮飞行器将水带竖直送上来的水反转180°后向下喷出,令自己悬停在空中,如图所示。
已知运动员与装备的总质量为90 kg ,两个喷嘴的直径均为10 cm ,已知重力加速度大小g =10 m/s 2,水的密度ρ=1.0×103 kg/m 3,则喷嘴处喷水的速度大约为( )A .2.7 m/sB .5.4 m/sC .7.6 m/sD .10.8 m/s【答案】 C【解析】 设Δt 时间内有质量为m 的水射出,忽略重力冲量,对这部分水由动量定理得F Δt=2mv ,m =ρv Δt ·πd 24,设运动员与装备的总质量为M ,运动员悬停在空中,所以F ′=Mg ,由牛顿第三定律得F ′=F ,联立解得v ≈7.6 m/s ,C 正确。
题型二、动量守恒定律的应用【规律方法】动量守恒定律解题的基本步骤1.明确研究对象,确定系统的组成(系统包括哪几个物体及研究的过程);2.进行受力分析,判断系统动量是否守恒(或某一方向上动量是否守恒);3.规定正方向,确定初、末状态动量;4.由动量守恒定律列出方程;5.代入数据,求出结果,必要时讨论说明.【典例2】如图所示,甲、乙两小孩各乘一辆冰车在水平冰面上玩耍.甲和他的冰车的总质量为M=30 kg,乙和他的冰车的总质量也是M=30 kg.甲推着一个质量为m=15 kg的箱子和他一起以2 m/s的速度滑行,乙以同样大小的速度迎面滑来.为了避免相撞,甲突然将箱子沿冰面推给乙,箱子滑到乙处时,乙迅速抓住.若不计冰面摩擦,求甲至少以多大速度(相对地)将箱子推出,才能避免与乙相撞?【解析】要想刚好避免相撞,要求乙抓住箱子后与甲的速度正好相等,设甲推出箱子后的速度为v1,箱子的速度为v,乙抓住箱子后的速度为v2.对甲和箱子,推箱子前后动量守恒,以甲初速度方向为正方向,由动量守恒定律有(M+m)v0=mv+Mv1①对乙和箱子,抓住箱子前后动量守恒,以箱子初速度方向为正方向,由动量守恒定律有mv-Mv0=(m+M)v2②甲与乙刚好不相撞的条件是v1=v2③联立①②③解得v=5.2 m/s,方向与甲和箱子初速度方向一致.【答案】 5.2 m/s题型三、碰撞模型的规律及应用【典例3】.(多选)(2019·山东济南高三第二次联考)如图甲所示,光滑水平面上有a、b两个小球,a球向b球运动并与b球发生正碰后粘合在一起共同运动,其碰前和碰后的s -t图象如图乙所示,已知m a=5 kg.若b球的质量为m b,两球因碰撞而损失的机械能为ΔE,则()A.m b=1 kg B.m b=2 kgC .ΔE =15 JD .ΔE =35 J【解析】:在s -t 图象中图线的斜率表示小球运动的速度大小,所以v a =61m/s =6 m/s ,碰后粘合在一起共同运动的速度为v =51m/s =5 m/s ,碰撞过程动量守恒,得m a v a =(m a +m b )v ,解得m b =1 kg ,故A 正确,B 错误;根据功能关系得ΔE =12m a v 2a -12(m a +m b )v 2=15 J ,故C 正确,D 错误.【答案】:AC题型四、动量与能量的综合应用【规律方法】利用动量和能量观点解题的技巧(1)若研究对象为一个系统,应优先考虑应用动量守恒定律和能量守恒定律.(2)动量守恒定律和能量守恒定律都只考查一个物理过程的初、末两个状态,对过程的细节不予追究.(3)注意挖掘隐含条件,根据选取的对象和过程判断动量和能量是否守恒.【典例4】(2019·湖北孝感高三上学期期末八校联考)如图所示,水平轨道OBC 与一半径为R =0.5 m 的竖直光滑半圆形轨道CD 相切于C 点,其中AB 部分粗糙,其他部分光滑。
质量分别为1 kg 和2 kg 且外形相同的甲、乙两物块放在水平轨道上,物块甲被一处于压缩状态的轻弹簧水平锁定于A 点左侧某处(图中未画出),其与轨道AB 间的动摩擦因数为μ=0.2,AB 间的距离L AB =7.75 m ,物块乙位于轨道BC 上。
现释放物块甲,使其从A 点弹出,并与物块乙相撞。
已知两物块撞后粘在一起向右运动,两物块恰好能运动到半圆轨道的最高点D ,重力加速度g 取10 m/s 2。
求:(1)弹簧对物块甲的冲量;(2)从物块甲被弹出至滑到D 点的过程中,甲、乙整体损失的机械能ΔE 。
【答案】 (1)16 N·s (2)90.5 J【解析】 (1)甲、乙两物块碰后恰能到达竖直半圆轨道的最高点,由牛顿第二定律得(M 甲+M 乙)g =(M 甲+M 乙)v 2D R在甲、乙两物块从碰后到上滑到最高点的过程中,由机械能守恒定律有12(M 甲+M 乙)v 2D +2(M 甲+M 乙)gR =12(M 甲+M 乙)v 2共 在甲、乙碰撞的过程中,由动量守恒定律有M 甲v 甲=(M 甲+M 乙)v 共在物块甲由A 到B 的过程中,由运动学知识有v 2甲-v 20=-2μgL AB联立以上各式解得v 共=5 m/s ,v 0=16 m/s在弹簧与物块甲相互作用的过程中,对物块甲应用动量定理有I =M 甲v 0=16 N·s 。
(2)从物块甲被弹出至滑到D 点的过程中,甲、乙整体损失的机械能为ΔE =12M 甲v 20-12(M 甲+M 乙)v 2共=90.5 J 。
【强化训练】1.(2019·湖南株洲高三年级教学检测)高空坠物伤人事件常有发生.一身高为1.75 m 的同学被一根从6.75 m高处竖直落下的枯树枝砸正头顶,设枯枝质量为2 kg,与头部作用时间为0.02 s,那么()A.枯枝对人的头部产生的冲击力约20 NB.枯枝对人的头部产生的冲击力约1 000 NC.保持其他条件不变,身高更高的同学,头部受到枯枝的冲击力会更大D.保持其他条件不变,身高更矮的同学,头部受到枯枝的冲击力会更小2.(多选)(2019·黑龙江哈尔滨4月理综检测)水平推力F1和F2分别作用于置于水平面上的等质量的a、b两物块上,作用一段时间后撤去推力,两物块在水平面上继续运动一段时间停下来.两物块运动的v -t图象如图所示,图中AB∥CD,则下列说法正确的是()A.两物块所受摩擦力大小相等B.两物块所受摩擦力冲量大小相等C.F1的冲量大于F2的冲量D.F1的冲量小于F2的冲量3.(2019·陕西西安高考模拟)如图所示,一物体分别沿三个倾角不同的光滑斜面由静止开始从顶端下滑到底端C、D、E处,三个过程中动能变化量的大小依次为ΔE1、ΔE2、ΔE3,动量变化量的大小依次为Δp1、Δp2、Δp3,则有()A.ΔE1<ΔE2<ΔE3,Δp1<Δp2<Δp3B.ΔE1<ΔE2<ΔE3,Δp1=Δp2=Δp3C.ΔE1=ΔE2=ΔE3,Δp1<Δp2<Δp3D.ΔE1=ΔE2=ΔE3,Δp1=Δp2=Δp34.(2019·湖南娄底高三教学质量检测)质量为M 的气球上有一个质量为m 的人,气球和人在静止的空气中共同静止于离地h 高处,如果从气球上逐渐放下一个质量不计的软梯,让人沿软梯降到地面,则软梯长至少应为( )A.m m +Mh B.M m +M h C.M +m M h D.M +m mh 5.(2019·湖南长沙高三期末)如图所示,质量为m 的A 球以速度v 0在光滑水平面上运动,与原静止的质量为4m 的B 球碰撞,碰撞后A 球以v =av 0(待定系数a <1)的速率弹回,并与挡板P 发生完全弹性碰撞,若要使A 球能追上B 球再相撞,则a 的取值范围为( )A.15<a <13B.13<a <23C.13<a ≤25D.13<a ≤356.(多选)一质量m =0.10 kg 的小钢球以大小为v 0=10 m/s 的速度水平抛出,下落h =5.0 m 时撞击一钢板,撞后速度恰好反向,且速度大小不变.已知小钢球与钢板的作用时间极短,g 取10 m/s 2,则( )A .钢板与水平面的夹角θ=60°B .小钢球从水平抛出到刚要撞击钢板的过程中重力的冲量大小为1 N·sC .小钢球撞击钢板的过程中其动量的变化量的大小为 10 2 kg·m/sD .钢板对小钢球的冲量大小为 2 2 N·s7.(多选)(2019·河南驻马店高三期末)如图所示,光滑水平直轨道上有三个质量均为m =3 kg 的物块A 、B 、C ,物块B 的左侧固定一轻弹簧(弹簧左侧的挡板质量不计).设A 以v 0=4 m/s 的速度朝B 开始运动,压缩弹簧;当A 、B 速度相等时,B 与C 恰好相碰并粘接在一起,然后继续运动.假设B 和C 碰撞过程时间极短,则以下说法正确的是( )A.从开始到弹簧最短时物块C受到的冲量大小为1 N·sB.从开始到弹簧最短时物块C受到的冲量大小为4 N·sC.从开始到A与弹簧分离的过程中整个系统损失的机械能为3 JD.从开始到A与弹簧分离的过程中整个系统损失的机械能为9 J8.(2019·云南二模)如图所示,木块静止在光滑水平面上,两颗不同的子弹A、B从木块两侧同时射入木块,最终都停在木块内,这一过程中木块始终保持静止。
若子弹A射入的深度大于子弹B射入的深度,则()A.子弹A的质量一定比子弹B的质量大B.入射过程中子弹A受到的阻力比子弹B受到的阻力大C.子弹A在木块中运动的时间比子弹B在木块中运动的时间长D.子弹A射入木块时的初动能一定比子弹B射入木块时的初动能大9.如图,光滑的水平地面上停着一个木箱和小车,木箱质量为m,小车和人的总质量为M=4m,人以对地速率v将木箱水平推出,木箱碰墙后等速反弹回来,人接住木箱后再以同样大小的速率v第二次推出木箱,木箱碰墙后又等速反弹回来……多次往复后,人将接不到木箱.求从开始推木箱到接不到木箱的整个过程,人所做的功.10.(2019·江西吉安高三上学期五校联考)平板车上的跨栏运动如图所示,光滑水平地面上人与滑板A一起以v0=0.5 m/s的速度前进,正前方不远处有一距离轨道高h=0.7875 m的(不考虑滑板的高度)横杆,横杆另一侧有一静止滑板B,当人与A行至横杆前时,人相对滑板竖直向上起跳越过横杆,A从横杆下方通过并与B发生弹性碰撞,之后人刚好落到B上,不计空气阻力,已知m人=40 kg,m A=5 kg,m B=10 kg,g取10 m/s2。