高中物理-电学中的动量和能量问题专题训练与解析
2020年高考物理复习:动量与能量综合 专项练习题(含答案解析)

2020年高考物理复习:动量与能量综合专项练习题1.如图所示,在平直轨道上P点静止放置一个质量为2m的物体A,P点左侧粗糙,右侧光滑。
现有一颗质量为m 的子弹以v0的水平速度射入物体A并和物体A一起滑上光滑平面,与前方静止物体B发生弹性正碰后返回,在粗糙面滑行距离d停下。
已知物体A与粗糙面之间的动摩擦因数为μ=v2072gd,求:(1)子弹与物体A碰撞过程中损失的机械能;(2)B物体的质量。
2.如图所示,水平光滑地面的右端与一半径R=0.2 m的竖直半圆形光滑轨道相连,某时刻起质量m2=2 kg的小球在水平恒力F的作用下由静止向左运动,经时间t=1 s 撤去力F,接着与质量m1=4 kg以速度v1=5 m/s向右运动的小球碰撞,碰后质量为m1的小球停下来,质量为m2的小球反向运动,然后与停在半圆形轨道底端A点的质量m3=1 kg的小球碰撞,碰后两小球粘在一起沿半圆形轨道运动,离开B点后,落在离A点0.8 m的位置,求恒力F 的大小。
(g取10 m/s2)3.如图所示,半径为R的四分之三光滑圆轨道竖直放置,CB是竖直直径,A点与圆心等高,有小球b静止在轨道底部,小球a自轨道上方某一高度处由静止释放自A点与轨道相切进入竖直圆轨道,a、b小球直径相等、质量之比为3∶1,两小球在轨道底部发生弹性正碰后小球b经过C点水平抛出落在离C点水平距离为22R的地面上,重力加速度为g,小球均可视为质点。
求(1)小球b碰后瞬间的速度;(2)小球a 碰后在轨道中能上升的最大高度。
4.如图所示,一对杂技演员(都视为质点)荡秋千(秋千绳处于水平位置),从A 点由静止出发绕O 点下摆,当摆到最低点B 时,女演员在极短时间内将男演员沿水平方向推出,然后自己刚好能回到高处A .已知男演员质量为2m 和女演员质量为m ,秋千的质量不计,秋千的摆长为R ,C 点比O 点低5R .不计空气阻力,求:(1)摆到最低点B ,女演员未推男演员时秋千绳的拉力;(2)推开过程中,女演员对男演员做的功;(3)男演员落地点C 与O 点的水平距离s .5.如图所示,光滑水平面上放着质量都为m 的物块A 和B ,A 紧靠着固定的竖直挡板,A 、B 间夹一个被压缩的轻弹簧(弹簧与A 、B 均不拴接),用手挡住B 不动,此时弹簧弹性势能为92mv 20,在A 、B 间系一轻质细绳,细绳的长略大于弹簧的自然长度。
动量与能量综合专题

动量与能量综合专题一、动量守恒定律动量守恒定律是物理学中的一个重要定律,它表述的是物体动量的变化遵循一定的规律。
当两个或多个物体相互作用时,它们的总动量保持不变。
这个定律的适用范围非常广泛,从微观粒子到宏观宇宙,只要有物体之间的相互作用,就可以应用动量守恒定律来描述。
在理解动量守恒定律时,需要注意以下几点:1、系统:动量守恒定律适用于封闭的系统,即系统内的物体之间相互作用,不受外界的影响。
2、总动量:动量的变化是指物体之间的总动量的变化,而不是单个物体的动量变化。
3、方向:动量是矢量,具有方向性。
在计算动量的变化时,需要考虑动量的方向。
二、能量守恒定律能量守恒定律是物理学中的另一个重要定律,它表述的是能量不能被创造或消灭,只能从一种形式转化为另一种形式。
这个定律的适用范围同样非常广泛,从微观粒子到宏观宇宙,只要有能量的转化和转移,就可以应用能量守恒定律来描述。
在理解能量守恒定律时,需要注意以下几点:1、封闭系统:能量守恒定律适用于封闭的系统,即系统内的能量之间相互转化和转移,不受外界的影响。
2、转化与转移:能量的转化和转移是不同的。
转化是指一种形式的能量转化为另一种形式的能量,而转移是指能量从一个物体转移到另一个物体。
3、方向:能量的转化和转移是有方向的。
在计算能量的变化时,需要考虑能量的方向。
三、动量与能量的综合应用在实际问题中,动量和能量往往是相互的。
当一个物体受到力的作用时,不仅会引起物体的运动状态的变化,还会引起物体能量的变化。
因此,在解决复杂问题时,需要综合考虑动量和能量的因素。
例如,在碰撞问题中,两个物体相互作用后可能会发生弹射、粘合、破碎等情况。
这些情况的发生不仅与物体的动量有关,还与物体的能量有关。
如果两个物体的总动量不为零,它们将会继续运动;如果两个物体的总能量不为零,它们将会继续发生能量的转化和转移。
因此,在解决碰撞问题时,需要综合考虑物体的动量和能量因素。
四、总结动量守恒定律和能量守恒定律是物理学中的两个重要定律,它们分别描述了物体动量的变化和能量的转化和转移遵循的规律。
17物理大题:电感感应中动量、能量问题

专题17电感感应中动量、能量问题【例题】(2023·福建漳州·统考二模)如图甲,abcd和a′b′c′d′为在同一水平面内的固定光滑平行金属导轨,ab段和a′b′段间距为2L,cd段和c′d′段间距为L、整个导轨处于方向竖直向下的匀强磁场中,bcc′b′左侧导轨间的磁感应强度大小为B0,bcc′b′右侧导轨间的磁感应强度大小按图乙规律变化,图中t0为已知量,两根相同金属杆M、N分别垂直两侧导轨放置,N杆与cc′之间恰好围成一个边长为L的正方形,M杆中点用一不可伸长绝缘细线通过轻质定滑轮与一重物相连,重物离地面的高度为L,细绳处于伸直状态且与M杆垂直,t=0时刻释放重物,同时在N杆中点处施加一水平拉力,使两杆在0~t0时间内均处于静止状态。
已知M、N杆和重物的质量都为m,不计导轨电阻,重力加速度为g。
(1)求0~t0时间内回路的感应电动势E;(2)求0~t0时间内,施加在N杆上的拉力F随时间t变化的函数关系式;(3)从t0时刻开始,保持拉力F不变,若重物下落的过程中,回路产生的总热量为Q,求重物落地时N杆的速度大小v。
“双轨+双杆”模型如图,方向竖直向下的匀强磁场中有两根位于同一水平面内的足够长的平行金属导轨,两相同的光滑导体棒ab、cd静止在导轨上.t=0时,ab棒以初速度v0向右滑动.运动过程中,ab、cd棒始终与导轨垂直并接触良好.模型分析:双轨和两导体棒组成闭合回路,通过两导体棒的感应电流相等,所受安培力大小也相等,ab棒受到水平向左的安培力,向右减速;cd棒受到水平向右的安培力,向右加速,最终导体棒ab、cd共速,感应电流消失,一起向右做匀速直线运动,该过程导体棒ab、cd组成的系统所受合外力为零,动量守恒:m ab v0=(m ab+m cd)v共,若ab棒、cd棒所在导轨不等间距,则动量不守恒,可考虑运用动量定理求解.【特别提醒】等距导轨上的双棒模型常见情景(以水平光滑导轨为例)过程分析动量观点的应用双棒切割式棒MN 做变减速运动,棒PQ 做变加速运动,稳定时,两棒的加速度均为零,以相同的速度匀速运动等长双棒所受的合外力为零,系统利用动量守恒定律求末速度,单棒利用动量定理求电荷量、相对位移题型二动量定理在电磁感应中的应用关于电磁感应的一些问题中,物体做变加速运动,无法直接应用运动学公式或动能定理求解时,特别是涉及到求电荷量,变加速运动的时间、位移时,可用动量定理解决.练后反馈1、单棒+电阻模型2、不等距导轨上的双棒模型常见情景(以水平光滑导轨为例)过程分析动量观点的应用不等距导轨棒MN 做变减速运动,棒PQ 做变加速运动,稳定时,两棒的加速度均为零,两棒以不同的速度做匀速运动,所围的面积不变,末速度满足关系式v 1L 1=v 2L 2双棒所受的合外力不为零,系统动量不守恒,对每个棒分别用动量定理列式,联立末速度关系求末速度3、棒+电容器模型(电阻阻值为R,电容器电容为无外力,电容器放电(电源电动势为计,电容器电容为导体棒相当于电源,电容器被充电电容器放电,相当于电源;体棒受安培力而运动安培力为阻力,棒减速,BLv-U CR,电容器被充电=U C时,I=0,电容器放电时,导体棒在安培力作用下开始运动,放电,导致电流减小,流为零,此时U Ca减小的减速运动,时I=0,但电容器带电荷量不为零a减小的加速运动,最终匀速运动,I=0电容器充的电荷量:最终电容器两端电压【变式训练】(2023·福建厦门·统考二模)如图所示,间距均为L的光滑平行倾斜导轨与光滑平行水平导轨在M、N处平滑连接,虚线MN右侧存在方向竖直向下、磁感应强度为B的匀强磁场。
动量与能量部分习题分析与解答共23页

26、要使整个人生都过得舒适、愉快,这是不可能的,因为人类必须具备一种能应付逆境的态度。——卢梭
▪
27、只有把抱怨环境的心情,化为上进的力量,才是成功的保证。——罗曼·罗兰
▪
28、知之者不如好之者,好之者不如乐之者。——孔子
▪
29、勇猛、大胆和坚定的决心能够抵得上武器的精良。——达·芬奇
▪
30、意志是一个强壮的盲人,倚靠在明眼的跛子肩上。——叔本华
13、遵守纪律的风气的培养,只有领 导者本 身在这 方面以 身作则 才能收 到成效 。—— 马卡连 柯 14、劳动者的组织性、纪律性、坚毅 精神以 及同全 世界劳 动者的 团结一 致,是 取得最 后胜利 的保证 。—— 列宁 摘自名言网
15、机会是不守纪律的。量与能量部分习题分析与解 答
11、战争满足了,或曾经满足过人的 好斗的 本能, 但它同 时还满 足了人 对掠夺 ,破坏 以及残 酷的纪 律和专 制力的 欲望。 ——查·埃利奥 特 12、不应把纪律仅仅看成教育的手段 。纪律 是教育 过程的 结果, 首先是 学生集 体表现 在一切 生活领 域—— 生产、 日常生 活、学 校、文 化等领 域中努 力的结 果。— —马卡 连柯(名 言网)
高中物理-力学中的动量和能量问题专题训练与解析

第1课时力学中的动量和能量问题高考命题点命题轨迹情境图动量定理和动量守恒定律的应用20161卷35(2)17(3)20题20172卷15,3卷2020191卷16“碰撞模型”问题20151卷35(2),2卷35(2)15(1)35(2)题15(2)35(2)题16(3)35(2)题18(2)24题19(1)25题20163卷35(2)20182卷15、2420191卷25“爆炸模型”和“反冲模20171卷1420181卷24型”问题19(3)25题20193卷25“板块模型”问题20162卷35(2)16(2)35(2)题1.动量定理(1)公式:Ft=p′-p,除表明等号两边大小、方向的关系外,还说明了两边的因果关系,即合外力的冲量是动量变化的原因.(2)意义:动量定理说明的是合外力的冲量与动量变化的关系,反映了力对时间的累积效果,与物体的初、末动量无必然联系.动量变化的方向与合外力的冲量方向相同,而物体在某一时刻的动量方向跟合外力的冲量方向无必然联系.2.动量守恒定律(1)内容:如果一个系统不受外力,或者所受外力的矢量和为零,这个系统的总动量保持不变.(2)表达式:m1v1+m2v2=m1v1′+m2v2′或p=p′(系统相互作用前总动量p等于相互作用后总动量p′),或Δp=0(系统总动量的变化量为零),或Δp1=-Δp2(相互作用的两个物体组成的系统,两物体动量的变化量大小相等、方向相反).(3)守恒条件①系统不受外力或系统虽受外力但所受外力的合力为零.②系统所受外力的合力不为零,但在某一方向上系统受到的合力为零,则系统在该方向上动量守恒.③系统虽受外力,但外力远小于内力且作用时间极短,如碰撞、爆炸过程.3.解决力学问题的三大观点(1)力的观点:主要是牛顿运动定律和运动学公式相结合,常涉及物体的受力、加速度或匀变速运动的问题.(2)动量的观点:主要应用动量定理或动量守恒定律求解,常涉及物体的受力和时间问题,以及相互作用物体的问题.(3)能量的观点:在涉及单个物体的受力和位移问题时,常用动能定理分析;在涉及系统内能量的转化问题时,常用能量守恒定律.1.力学规律的选用原则(1)单个物体:宜选用动量定理、动能定理和牛顿运动定律.若其中涉及时间的问题,应选用动量定理;若涉及位移的问题,应选用动能定理;若涉及加速度的问题,只能选用牛顿第二定律.(2)多个物体组成的系统:优先考虑两个守恒定律,若涉及碰撞、爆炸、反冲等问题,应选用动量守恒定律,然后再根据能量关系分析解决.2.系统化思维方法(1)对多个物理过程进行整体分析,即把几个过程合为一个过程来处理,如用动量守恒定律解决比较复杂的运动.(2)对多个研究对象进行整体分析,即把两个或两个以上的独立物体合为一个整体进行考虑,如应用动量守恒定律时,就是把多个物体看成一个整体(或系统).类型1动量定理的应用例1(2019·全国卷Ⅰ·16)最近,我国为“长征九号”研制的大推力新型火箭发动机联试成功,这标志着我国重型运载火箭的研发取得突破性进展.若某次实验中该发动机向后喷射的气体速度约为3km/s,产生的推力约为4.8×106N,则它在1s时间内喷射的气体质量约为()A .1.6×102kgB .1.6×103kgC .1.6×105kgD .1.6×106kg 答案B解析设1s 时间内喷出的气体的质量为m ,喷出的气体与该发动机的相互作用力为F ,由动量定理有Ft =m v -0,则m =Ft v =4.8×106×13×103kg =1.6×103kg ,选项B 正确.拓展训练1(2019·湖北武汉市二月调研)运动员在水上做飞行运动表演,他操控喷射式悬浮飞行器将水带竖直送上来的水反转180°后向下喷出,令自己悬停在空中,如图1所示.已知运动员与装备的总质量为90kg ,两个喷嘴的直径均为10cm ,已知重力加速度大小g =10m /s 2,水的密度ρ=1.0×103kg/m 3,则喷嘴处喷水的速度大约为()图1A .2.7m /sB .5.4m/sC .7.6m /sD .10.8m/s答案C解析设Δt 时间内一个喷嘴中有质量为m 的水喷出,忽略水的重力冲量,对两个喷嘴喷出的水由动量定理得:F Δt =2m vm =ρv Δt ·πd 24因运动员悬停在空中,则F =Mg 联立代入数据解得:v ≈7.6m/s ,故C 正确.类型2动量定理和动量守恒定律的应用例2(2019·河北省“五个一名校联盟”第一次诊断)观赏“烟火”表演是每年“春节”庆祝活动的压轴大餐.某型“礼花”底座仅用0.2s 的发射时间,就能将5kg 的礼花弹竖直抛上180m 的高空.(忽略发射底座高度,不计空气阻力,g 取10m/s 2).(1)“礼花”发射时燃烧的火药对礼花弹的作用力约是多少?(2)某次试射,当礼花弹到达最高点180m 的高空时爆炸为沿水平方向运动的两块(爆炸时炸药质量忽略不计),测得两块落地点间的距离s =900m ,落地时两者的速度相互垂直,则两块的质量各为多少?答案见解析解析(1)设礼花弹竖直抛上180m 高空用时为t ,由竖直上抛运动的对称性知:h =12gt 2代入数据解得:t =6s设发射时间为t 1,火药对礼花弹的作用力为F ,对礼花弹发射到180m 高空运用动量定理有:Ft 1-mg (t +t 1)=0代入数据解得:F =1550N ;(2)设礼花弹在180m 高空爆炸时分裂为质量为m 1、m 2的两块,对应水平速度大小为v 1、v 2,方向相反,礼花弹爆炸时该水平方向合外力为零,由动量守恒定律有:m 1v 1-m 2v 2=0且有:m 1+m 2=m由平抛运动的规律和题目落地的距离条件有:(v 1+v 2)t =s设落地时竖直速度为v y ,落地时两块的速度相互垂直,如图所示,有:tan θ=v y v 1=v 2v y又v y =gt1=1kg2=4kg 1=4kg2=1kg拓展训练2(多选)(2019·福建厦门市上学期期末质检)如图2所示,一质量M =2.0kg 的长木板B 放在光滑水平地面上,在其右端放一个质量m =1.0kg 的小物块A .给A 和B 以大小均为3.0m/s 、方向相反的初速度,使A 开始向左运动,B 开始向右运动,A 始终没有滑离B 板.下列说法正确的是()图2A .A 、B 共速时的速度大小为1m/sB .在小物块A 做加速运动的时间内,木板B 速度大小可能是2m/sC .从A 开始运动到A 、B 共速的过程中,木板B 对小物块A 的水平冲量大小为2N·sD .从A 开始运动到A 、B 共速的过程中,小物块A 对木板B 的水平冲量方向向左答案AD 解析设水平向右为正方向,根据动量守恒定律得:M v -m v =(M +m )v 共,解得v 共=1m /s ,A 正确;在小物块向左减速到速度为零时,设长木板速度大小为v 1,根据动量守恒定律:Mv -m v =M v 1,解得:v 1=1.5m/s ,所以当小物块反向加速的过程中,木板继续减速,木板的速度必然小于1.5m/s ,所以B 错误;根据动量定理,A 、B 相互作用的过程中,木板B 对小物块A 的水平冲量大小为I =m v 共+m v =4N·s ,故C 错误;根据动量定理,A 对B 的水平冲量I ′=M v 共-M v =-4N·s ,负号代表与正方向相反,即向左,故D 正确.1.模型介绍碰撞模型主要是从运动情景和解题方法高度相似角度进行归类.模型具体有以下几种情况:(水平面均光滑)①物体与物体的碰撞;②子弹打木块;③两个物体压缩弹簧;④两个带电体在光滑绝缘水平面上的运动等.2.基本思路(1)弄清有几个物体参与运动,并分析清楚物体的运动过程.(2)进行正确的受力分析,明确各过程的运动特点.(3)光滑的平面或曲面(仅有重力做功),不计阻力的抛体运动,机械能一定守恒;碰撞过程、子弹打木块、不受其他外力作用的两物体相互作用问题,一般考虑用动量守恒定律分析.3.方法选择(1)若是多个物体组成的系统,优先考虑使用两个守恒定律.(2)若物体(或系统)涉及位移和时间,且受到恒力作用,应使用牛顿运动定律.(3)若物体(或系统)涉及位移和速度,应考虑使用动能定理,运用动能定理解决曲线运动和变加速运动问题特别方便.(4)若物体(或系统)涉及速度和时间,应考虑使用动量定理.例3(2019·山东日照市3月模拟)A 、B 两小球静止在光滑水平面上,用水平轻弹簧相连接,A 、B 两球的质量分别为m 和M (m <M ).若使A 球获得瞬时速度v (如图3甲),弹簧压缩到最短时的长度为L 1;若使B 球获得瞬时速度v (如图乙),弹簧压缩到最短时的长度为L 2,则L 1与L 2的大小关系为()图3A .L 1>L 2B .L 1<L 2C .L 1=L 2D .不能确定答案C解析当弹簧压缩到最短时,两球的速度相同,对题图甲取A 的初速度方向为正方向,由动量守恒定律得:m v =(m +M )v ′由机械能守恒定律得:E p =12m v 2-12(m +M )v ′2联立解得弹簧压缩到最短时有:E p =mM v 22(m +M )同理:对题图乙取B 的初速度方向为正方向,当弹簧压缩到最短时有:E p =mM v 22(m +M )故弹性势能相等,则有:L 1=L 2,故A 、B 、D 错误,C 正确.拓展训练3(2019·四川省第二次诊断)如图4甲所示,一块长度为L 、质量为m 的木块静止在光滑水平面上.一颗质量也为m 的子弹以水平速度v 0射入木块.当子弹刚射穿木块时,木块向前移动的距离为s ,如图乙所示.设子弹穿过木块的过程中受到的阻力恒定不变,子弹可视为质点.则子弹穿过木块的时间为()图4A.1v 0(s +L ) B.1v 0(s +2L )C.12v 0(s +L ) D.1v 0(L +2s )答案D解析子弹穿过木块过程,对子弹和木块组成的系统,外力之和为零,动量守恒,以v 0的方向为正方向,有:m v 0=m v 1+m v 2,设子弹穿过木块的过程所受阻力为F f ,对子弹由动能定理:-F f (s +L )=12m v 12-12m v 02,由动量定理:-F f t =m v 1-m v 0,对木块由动能定理:F f s =12m v 22,由动量定理:F f t =m v 2,联立解得:t =1v 0(L +2s ),故选D.例4(2019·全国卷Ⅰ·25)竖直面内一倾斜轨道与一足够长的水平轨道通过一小段光滑圆弧平滑连接,小物块B 静止于水平轨道的最左端,如图5(a)所示.t =0时刻,小物块A 在倾斜轨道上从静止开始下滑,一段时间后与B 发生弹性碰撞(碰撞时间极短);当A 返回到倾斜轨道上的P 点(图中未标出)时,速度减为0,此时对其施加一外力,使其在倾斜轨道上保持静止.物块A 运动的v -t 图象如图(b)所示,图中的v 1和t 1均为未知量.已知A 的质量为m ,初始时A 与B 的高度差为H ,重力加速度大小为g ,不计空气阻力.图5(1)求物块B 的质量;(2)在图(b)所描述的整个运动过程中,求物块A 克服摩擦力所做的功;(3)已知两物块与轨道间的动摩擦因数均相等.在物块B 停止运动后,改变物块与轨道间的动摩擦因数,然后将A 从P 点释放,一段时间后A 刚好能与B 再次碰上.求改变前后动摩擦因数的比值.答案(1)3m (2)215mgH (3)119解析(1)根据题图(b),v 1为物块A 在碰撞前瞬间速度的大小,v 12为其碰撞后瞬间速度的大小.设物块B 的质量为m ′,碰撞后瞬间的速度大小为v ′.由动量守恒定律和机械能守恒定律有m v 1=m ′v ′①12m v 12=12m -12v +12m ′v ′2②联立①②式得m ′=3m ;③(2)在题图(b)所描述的运动中,设物块A 与轨道间的滑动摩擦力大小为F f ,下滑过程中所经过的路程为s 1,返回过程中所经过的路程为s 2,P 与B 的高度差为h ,整个过程中克服摩擦力所做的功为W .由动能定理有mgH -F f s 1=12m v 12-0④-(F f s 2+mgh )=0-12m ⑤从题图(b)所给出的v -t 图线可知s 1=12v 1t 1⑥s 2=12·v 12·(1.4t 1-t 1)⑦由几何关系得:s 2s 1=hH⑧物块A 在整个运动过程中克服摩擦力所做的功为W =F f s 1+F f s 2⑨联立④⑤⑥⑦⑧⑨式可得W =215mgH ;⑩(3)设倾斜轨道倾角为θ,物块与轨道间的动摩擦因数在改变前为μ,有W =μmg cos θ·H +hsin θ⑪设物块B 在水平轨道上能够滑行的距离为s ′,由动能定理有-μm ′gs ′=0-12m ′v ′2⑫设改变后的动摩擦因数为μ′,由动能定理有mgh -μ′mg cos θ·hsin θ-μ′mgs ′=0⑬联立①③④⑤⑥⑦⑧⑩⑪⑫⑬式可得μμ′=119.⑭拓展训练4(2019·福建泉州市质量检查)在游乐场中,父子两人各自乘坐的碰碰车沿同一直线相向而行,在碰前瞬间双方都关闭了动力,此时父亲的速度大小为v ,儿子的速度大小为2v .两车瞬间碰撞后儿子沿反方向滑行,父亲运动的方向不变且经过时间t 停止运动.已知父亲和车的总质量为3m ,儿子和车的总质量为m ,两车与地面之间的动摩擦因数均为μ,重力加速度大小为g ,求:(1)碰后瞬间父亲的速度大小和此后父亲能滑行的最大距离;(2)碰撞过程父亲坐的车对儿子坐的车的冲量大小.答案(1)μgt 12μgt 2(2)3m v -3μmgt解析(1)设碰后瞬间父亲的速度大小为v 1,由动量定理可得-μ·3mgt =0-3m v 1得v 1=μgt设此后父亲能滑行的最大距离为s ,由动能定理可得-μ·3mgs =0-12×3m v 12得s =12μgt 2(2)设碰后瞬间儿子的速度大小为v 2,取父亲的运动方向为正方向,由动量守恒定律可得3m v -m ·2v =3m v 1+m v 2设碰撞过程父亲坐的车对儿子坐的车的冲量大小为I ,由动量定理可得I =m v 2-(-m ·2v )解得I =3m v -3μmgt例5(2019·全国卷Ⅲ·25)静止在水平地面上的两小物块A 、B ,质量分别为m A =1.0kg ,m B =4.0kg ;两者之间有一被压缩的微型弹簧,A 与其右侧的竖直墙壁距离l =1.0m ,如图6所示.某时刻,将压缩的微型弹簧释放,使A 、B 瞬间分离,两物块获得的动能之和为E k =10.0J .释放后,A 沿着与墙壁垂直的方向向右运动.A 、B 与地面之间的动摩擦因数均为μ=0.20.重力加速度取g =10m/s 2.A 、B 运动过程中所涉及的碰撞均为弹性碰撞且碰撞时间极短.图6(1)求弹簧释放后瞬间A 、B 速度的大小;(2)物块A 、B 中的哪一个先停止?该物块刚停止时A 与B 之间的距离是多少?(3)A 和B 都停止后,A 与B 之间的距离是多少?答案(1)4.0m /s 1.0m/s (2)物块B 先停止0.50m (3)0.91m解析(1)设弹簧释放瞬间A 和B 的速度大小分别为v A 、v B ,以向右为正方向,由动量守恒定律和题给条件有0=m A v A -m B v B ①E k =12m A v A 2+12m B v B 2②联立①②式并代入题给数据得v A =4.0m/s ,v B =1.0m/s ③(2)A 、B 两物块与地面间的动摩擦因数相等,因而两者滑动时加速度大小相等,设为a .假设A 和B 发生碰撞前,已经有一个物块停止,此物块应为弹簧释放后速度较小的B .设从弹簧释放到B 停止所需时间为t ,B 向左运动的路程为s B ,则有m B a =μm B g ④s B =v B t -12at 2⑤v B -at =0⑥在时间t 内,A 可能与墙发生弹性碰撞,碰撞后A 将向左运动,碰撞并不改变A 的速度大小,所以无论此碰撞是否发生,A 在时间t 内的路程s A 都可表示为s A =v A t -12at 2⑦联立③④⑤⑥⑦式并代入题给数据得s A =1.75m ,s B =0.25m ⑧这表明在时间t 内A 已与墙壁发生碰撞,但没有与B 发生碰撞,此时A 位于出发点右边0.25m 处.B 位于出发点左边0.25m 处,两物块之间的距离s 为s =0.25m +0.25m =0.50m ⑨(3)t 时刻后A 将继续向左运动,假设它能与静止的B 碰撞,碰撞时速度的大小为v A ′,由动能定理有12m A v A ′2-12m A v A 2=-μm A g (2l +s B )⑩联立③⑧⑩式并代入题给数据得v A ′=7m/s ⑪故A 与B 将发生碰撞.设碰撞后A 、B 的速度分别为v A ″和v B ″,由动量守恒定律与机械能守恒定律有m A (-v A ′)=m A v A ″+m B v B ″⑫12m A v A ′2=12m A v A ″2+12m B v B ″2⑬联立⑪⑫⑬式并代入题给数据得v A ″=375m/s ,v B ″=-275m/s ⑭这表明碰撞后A 将向右运动,B 继续向左运动.设碰撞后A 向右运动距离为s A ′时停止,B 向左运动距离为s B ′时停止,由运动学公式2as A ′=v A ″2,2as B ′=v B ″2⑮由④⑭⑮式及题给数据得s A ′=0.63m ,s B ′=0.28m ⑯s A ′小于碰撞处到墙壁的距离.由上式可得两物块停止后的距离s ′=s A ′+s B ′=0.91m拓展训练5(2019·云南昆明市4月质检)科研人员乘热气球进行科学考察,气球、座舱、压舱物和科研人员的总质量为M =200kg.热气球在空中以v 0=0.1m /s 的速度匀速下降,距离水平地面高度h =186m 时科研人员将质量m =20k g 的压舱物竖直向下抛出,抛出后6s 压舱物落地.此过程中压舱物所受空气阻力可忽略不计,热气球所受浮力不变,重力加速度取g =10m/s 2,求:(1)压舱物刚被抛出时的速度大小;(2)压舱物落地时热气球距离水平地面的高度.答案(1)1m/s (2)206m 解析(1)设压舱物抛出时的速度为v 1,热气球的速度为v 2压舱物抛出后做竖直下抛运动,由运动学规律有:h =v 1t +12gt 2代入数据得到:v 1=1m/s(2)热气球和压舱物组成的系统动量守恒,以v 0的方向为正方向,M v 0=m v 1+(M -m )v 2代入数据得到:v 2=0设热气球所受浮力为F ,则F =Mg压舱物抛出后对热气球进行受力分析,由牛顿第二定律有:F -(M -m )g =(M -m )a代入数据得到:a =109m/s 2热气球6s 上升的高度为:h 2=v 2t +12at 2代入数据得到:h 2=20m 则H =h 1+h 2=206m.例6(2019·河南省九师联盟质检)如图7所示,在光滑水平面上有B 、C 两个木板,B 的上表面光滑,C 的上表面粗糙,B 上有一个可视为质点的物块A ,A 、B 、C 的质量分别为3m 、2m 、m .A 、B 以相同的初速度v 向右运动,C 以速度v 向左运动.B 、C 的上表面等高,二者发生完全非弹性碰撞但并不粘连,碰撞时间很短.A 滑上C 后恰好能到达C 的中间位置,C 的长度为L ,不计空气阻力.求:图7(1)木板C 的最终速度大小;(2)木板C 与物块A 之间的摩擦力F f 大小;(3)物块A 滑上木板C 之后,在木板C 上做减速运动的时间t .答案(1)56v (2)m v 23L(3)3L 2v解析(1)设水平向右为正方向,B 、C 碰撞过程中动量守恒:2m v -m v =(2m +m )v 1解得v 1=v3A 滑到C 上,A 、C 动量守恒:3m v +m v 1=(3m +m )v 2解得v 2=56v ;(2)根据能量关系可知,在A 、C 相互作用过程中,木板C 与物块A 之间因摩擦产生的热量为Q =12(3m )v 2+12m v 12-12(3m +m )v 22Q =F f ·L 2联立解得F f =m v 23L;(3)在A 、C 相互作用过程中,以C 为研究对象,由动量定理得F f t =m v 2-m v 1解得t =3L2v.拓展训练6(2019·四川攀枝花市第二次统考)如图8所示,质量m =1kg 的小物块静止放置在固定水平台的最左端,质量M =2kg 的小车左端紧靠平台静置在光滑水平地面上,平台、小车的长度l 均为0.6m .现对小物块施加一水平向右的恒力F ,使小物块开始运动,当小物块到达平台最右端时撤去恒力F ,小物块刚好能够到达小车的右端.小物块大小不计,与平台间、小车间的动摩擦因数μ均为0.5,重力加速度g 取10m/s 2,求:图8(1)小物块离开平台时速度的大小;(2)水平恒力F 对小物块冲量的大小.答案(1)3m/s (2)5N·s 解析(1)设撤去水平向右的恒力F 时小物块的速度大小为v 0,小物块和小车的共同速度大小为v 1.从撤去恒力到小物块到达小车右端过程,以v 0的方向为正方向,对小物块和小车组成的系统:由动量守恒:m v 0=(m +M )v 1由能量守恒:12m v 02=12(m +M )v 12+μmgl联立以上两式并代入数据得:v 0=3m/s(2)设水平恒力F 对小物块冲量的大小为I ,小物块在平台上运动的时间为t .小物块在平台上运动的过程,对小物块:由动量定理:I -μmgt =m v 0-0由运动学规律:l =v 02·t联立并代入数据得:I =5N·s.专题强化练(限时45分钟)1.(多选)(2019·安徽宣城市第二次模拟)如图1,弹簧的一端固定在竖直墙上,质量为m 的光滑弧形槽静止在光滑水平面上,底部与水平面平滑连接,一个质量也为m 的小球从槽上高h 处由静止开始自由下滑,则()图1A .在小球下滑的过程中,小球和槽组成的系统水平方向动量守恒B .在小球下滑的过程中,小球和槽之间的相互作用力对槽不做功C .被弹簧反弹后,小球能回到槽上高h 处D .被弹簧反弹后,小球和槽都做速率不变的直线运动答案AD解析在小球下滑的过程中,小球和槽组成的系统,在水平方向上不受力,则水平方向上动量守恒,故A 正确;在小球下滑过程中,槽向左滑动,根据动能定理知,槽的速度增大,则小球对槽的作用力做正功,故B 错误;小球和槽组成的系统水平方向上动量守恒,开始总动量为零,小球离开槽时,小球和槽的动量大小相等,方向相反,由于质量相等,则速度大小相等,方向相反,然后小球与弹簧接触,被弹簧反弹后的速度与接触弹簧时的速度大小相等,可知反弹后,小球和槽都做速率不变的直线运动,且速度大小相等,则小球不会回到槽上高h 处,故D 正确,C 错误.2.(多选)(2019·辽宁葫芦岛市一模)一个静止的质点在t =0到t =4s 这段时间,仅受到力F 的作用,F 的方向始终在同一直线上,F 随时间t 的变化关系如图2所示.下列说法中正确的是()图2A .在t =0到t =4s 这段时间,质点做往复直线运动B .在t =1s 时,质点的动量大小为1kg·m/sC .在t =2s 时,质点的动能最大D .在t =1s 到t =3s 这段时间,力F 的冲量为零答案CD3.(2019·广东省“六校”第三次联考)开学了,想到又能够回到校园为梦想而拼搏,小明同学开心得跳了起来.假设小明质量为m ,从开始蹬地到离开地面用时为t ,离地后小明重心最大升高h ,重力加速度为g ,忽略空气阻力.以下说法正确的是()A .从开始蹬地到到达最高点的过程中,小明始终处于失重状态B .在t 时间内,小明机械能增加了mghC .在t 时间内,地面给小明的平均支持力为F =m 2gh tD .在t 时间内,地面对小明做功mgh答案B解析从开始蹬地到到达最高点的过程中,经历了向上加速和减速的过程,所以小明是先超重后失重,故A 错误;小明离开地面后,只受重力作用,机械能守恒,重心最大升高h ,可知小明离开地面时的机械能为mgh ,这是在蹬地的时间t 中,其他外力做功转化的,故B 正确;在时间t 内,由动量定理得:F t -mgt =m v -0,离开地面到最高点有:mgh =12m v 2,联立解得:F =m 2gh t+mg ,故C 错误;在时间t 内,地面对小明的支持力并没有在力的方向上发生位移,做功为0,故D 错误.4.(2019·陕西榆林市第三次测试)如图3甲所示,物块A 、B 的质量分别是m A =4.0kg 和m B =3.0kg ,两物块之间用轻弹簧拴接,放在光滑的水平地面上,物块B 右侧与竖直墙壁相接触,另有一物块C 从t =0时,以一定速度向右运动.在t =4s 时与物块A 相碰,并立即与A 粘在一起不再分开,物块C 的v -t 图象如图乙所示,墙壁对物块B 的弹力在4s 到12s 的时间内对B 的冲量I 的大小为()图3A .9N·sB .18N·sC .36N·sD .72N·s 答案C解析由题图乙知,C 与A 碰前速度为:v 1=9m /s ,碰后瞬间C 的速度为:v 2=3m/s ,C 与A 碰撞过程动量守恒,以C 的初速度方向为正方向,由动量守恒定律得:m C v 1=(m A +m C )v 2,代入数据解得m C =2kg,12s 末A 和C 的速度为:v 3=-3m/s,4s 到12s ,墙对B 的冲量为:I =(m A +m C )v 3-(m A +m C )v 2,代入数据解得:I =-36N·s ,方向向左,故C 正确,A 、B 、D 错误.5.(2019·陕西省第二次质检)核桃是“四大坚果”之一,核桃仁具有丰富的营养价值,但核桃壳十分坚硬,不借助专用工具不易剥开.小悠同学发现了一个开核窍门:把核桃竖直上抛落回与坚硬地面撞击后就能开裂.抛出点距离地面的高度为H ,上抛后达到的最高点与抛出点的距离为h .已知重力加速度为g ,空气阻力不计.(1)求核桃落回地面的速度大小v ;(2)已知核桃质量为m ,与地面撞击作用时间为Δt ,撞击后竖直反弹h 1高度,求核桃与地面之间的平均作用力F .答案(1)2g (H +h )(2)m [2gh 1+2g (H +h )]Δt+mg ,方向竖直向上解析(1)核桃竖直上抛到最高点后做自由落体运动,则有:v 2=2g (H +h )则落回地面的速度:v =2g (H +h )(2)设核桃反弹速度为v 1,则有:v 12=2gh 1以竖直向上为正方向,核桃与地面作用的过程:(F -mg )Δt =m v 1-m (-v )解得:F =m [2gh 1+2g (H +h )]Δt +mg ,方向竖直向上.6.(2019·河南南阳市上学期期末)如图4所示,水平光滑地面上有两个静止的小物块A 和B (可视为质点),A 的质量m =1.0kg ,B 的质量M =4.0kg ,A 、B 之间有一轻质压缩弹簧,且A 、B 间用细线相连(图中未画出),弹簧的弹性势能E p =40J ,弹簧的两端与物块接触而不固定连接.水平面的左侧有一竖直墙壁,右侧与倾角为30°的光滑斜面平滑连接.将细线剪断,A 、B 分离后立即撤去弹簧,物块A 与墙壁发生弹性碰撞后,A 在B 未到达斜面前追上B ,并与B 相碰后结合在一起向右运动,g 取10m/s 2,求:图4(1)A 与弹簧分离时的速度大小;(2)A 、B 沿斜面上升的最大距离.答案(1)8m/s (2)1.024m解析(1)设A 、B 与弹簧分离时的速度大小分别为v 1、v 2,系统动量守恒:0=m v 1-M v 2系统能量守恒:E p =12m v 12+12M v 22解得v 1=8m/s ,v 2=2m/s ;(2)A 与墙壁碰后速度大小不变,设A 与B 相碰后,A 与B 的速度大小为v ,对A 、B 系统动量守恒:m v 1+M v 2=(m +M )v 解得v =3.2m/s对A 、B 整体,由动能定理:-(m +M )gL sin 30°=0-12(m +M )v 2解得L =1.024m.7.(2019·河南郑州市第二次质量预测)如图5甲所示,半径为R =0.8m 的四分之一光滑圆弧轨道固定在竖直平面内,A 为轨道最高点,与圆心O 等高;B 为轨道最低点.在光滑水平面上紧挨B 点有一静止的平板车,其质量M =3kg ,小车足够长,车的上表面与B 点等高,平板车上表面涂有一种特殊材料,物块在上面滑动时,动摩擦因数随物块相对小车左端位移的变化图象如图乙所示.物块(可视为质点)从圆弧轨道最高点A 由静止释放,其质量m =1kg ,g 取10m/s 2.图5(1)求物块滑到B 点时对轨道压力的大小;(2)物块相对小车静止时距小车左端多远?答案(1)30N (2)1.75m解析(1)物块从光滑圆弧轨道A 点滑到B 点的过程中,只有重力做功,由机械能守恒定律得:mgR =12m v B 2代入数据解得v B =4m/s在B 点,由牛顿第二定律得F N -mg =m v B 2R代入数据解得F N =30N由牛顿第三定律可知,物块滑到B 点时对轨道的压力大小:F N ′=F N =30N (2)物块滑上小车后,由于水平地面光滑,系统的合外力为零,所以系统的动量守恒.以向右为正方向,由动量守恒定律得m v B =(m +M )v代入数据解得v =1m/s由能量关系得系统生热Q =12m v B 2-12(m +M )v 2解得Q =6J由功能关系知Q =12μ1mgx 1+μ1mg (x -x 1)将μ1=0.4,x 1=0.5m 代入可解得x =1.75m.。
高中物理-动量和能量专题训练与解析(一)

动量和能量专题限时训练1建议用时40分钟,实际用时________1.如图,长度x =5m 的粗糙水平面PQ 的左端固定一竖直挡板,右端Q 处与水平传送带平滑连接,传送带以一定速率v 逆时针转动,其上表面QM 间距离为L =4m ,MN 无限长,M 端与传送带平滑连接.物块A 和B 可视为质点,A 的质量m =1.5kg,B 的质量M =5.5kg.开始A 静止在P 处,B 静止在Q 处,现给A 一个向右的初速度v 0=8m/s ,A 运动一段时间后与B 发生弹性碰撞,设A 、B 与传送带和水平面PQ 、MN 间的动摩擦因数均为μ=0.15,A 与挡板的碰撞也无机械能损失.取重力加速度g =10m/s 2,求:(1)A 、B 碰撞后瞬间的速度大小;(2)若传送带的速率为v =4m/s ,试判断A 、B 能否再相遇,若能相遇,求出相遇的位置;若不能相遇,求它们最终相距多远.解析:(1)设A 与B 碰撞前的速度为v A ,由P 到Q 过程,由动能定理得:-μmgx =12mv 2A -12mv 20①A 与B 碰撞前后动量守恒,有mv A =mv A ′+Mv B ′②由能量守恒定律得:12mv 2A =12mv A ′2+12Mv B ′2③联立①②③式得v A ′=-4m/s ,v B ′=3m/s碰后A 、B 的速度大小分别为4m/s 、3m/s(2)设A 碰撞后运动的路程为s A ,由动能定理得:-μmgs A =0-12mv A ′2④s A =163m 所以A 与挡板碰撞后再运动s A ′=s A -x =13m ⑤设B 碰撞后向右运动的距离为s B ,则-μMgs B =0-12Mv B ′2⑥解得s B =3m<L ⑦故物块B 碰后不能滑上MN ,当速度减为0后,B 将在传送带的作用下反向加速运动,B 再次到达Q 处时的速度大小为3m/s.在水平面PQ 上,B 再运动s B ′=s B =3m 停止,s B ′+s A ′<5m ,所以A 、B 不能再次相遇.最终A 、B 的距离s AB =x -s A ′-s B ′=53m.答案:(1)4m/s 3m/s (2)不能相遇53m 2.如图所示,质量为6m 、长为L 的薄木板AB 放在光滑的平台上,木板B 端与台面右边缘齐平.B 端上放有质量为3m 且可视为质点的滑块C ,C 与木板之间的动摩擦因数为μ=13,质量为m 的小球用长为L 的细绳悬挂在平台右边缘正上方的O 点,细绳竖直时小球恰好与C 接触.现将小球向右拉至细绳水平并由静止释放,小球运动到最低点时细绳恰好断裂,小球与C 碰撞后反弹速率为碰前的一半.(1)求细绳能够承受的最大拉力;(2)若要使小球落在释放点的正下方P 点,平台高度应为多大;(3)通过计算判断C 能否从木板上掉下来.解析:(1)设小球运动到最低点的速率为v 0,小球向下摆动过程,由动能定理mgL =12mv 20得,v 0=2gL 小球在圆周最低点时拉力最大,由牛顿第二定律得:F T -mg =m v 20R解得:F T =3mg由牛顿第三定律可知,小球对细绳的拉力:F T ′=F T即细绳能够承受的最大拉力为:F T ′=3mg (2)小球碰撞后做平抛运动:竖直位移h =12gt 2水平分位移:L =v 02t 解得:h =L(3)小球与滑块C C 组成的系统动量守恒,设C 碰后速率为v 1,依题意有mv 0=m -v 023mv 1假设木板足够长,在C 与木板相对滑动直到相对静止过程中,设两者最终共同速率为v 2,由动量守恒得:3mv 1=(3m +6m )v 2由能量守恒得:12·3mv 21=12(3m +6m )v 22+μ·3mgs 联立解得:s =L 2由s <L 知,滑块C 不会从木板上掉下来.答案:(1)3mg (2)h =L (3)不能3.光滑水平面上有一质量m 车=1.0kg 的平板小车,车上静置A 、B 两物块。
专题(05)电学中的动量和能量问题(解析版)

专题(05)电学中的动量和能量问题(解析版)【专题考向】动量与能量在电学中应用,主要是动力学知识和功能关系解决力电综合问题,在高考中常以压轴题的形式出现,题目综合性强,分值高,难度大。
考查重点:(1)电场和磁场中的动量和能量问题;(2)电磁感应中的动量和能量问题。
【知识、方法梳理】【热点训练】1、(多选)图中虚线a、b、c、d、f代表匀强电场内间距相等的一组等势面,已知平面b上的电势为2 V。
一电子经过a时的动能为10 eV,从a到d的过程中克服电场力所做的功为6 eV。
下列说法正确的是()A.平面c上的电势为零B.该电子可能到达不了平面fC.该电子经过平面d时,其电势能为4 eVD.该电子经过平面b时的速率是经过d时的2倍解析:因等势面间距相等,由U=Ed得相邻虚线之间电势差相等,由a到d,-eU ad=-6 eV,故U ad=6 V;各虚线电势如图所示,因电场力做负功,故电场方向向右,沿电场线方向电势降低,φc=0,A项正确;因电子的速度方向未知,若不垂直于等势面,如图中实曲线所示,电子可能到达不了平面f,B项正确;经过d时,电势能E p=-eφd=2 eV,C项错误;由a到b,W ab=E kb-E ka=-2 eV,所以E kb=8 eV;由a到d,W ad=E kd-E ka=-6 eV,所以E kd=4 eV;则E kb=2E kd,根据E k=12mv 2知v b =2v d ,D 项错误。
【答案】AB2、如图所示,间距为L 的足够长光滑平行金属导轨固定在同一水平面内,虚线MN 右侧区域存在磁感应强度为B 、方向竖直向下的匀强磁场。
质量均为m 、长度均为L 、电阻均为R 的导体棒a 、b ,垂直导轨放置且保持与导轨接触良好.开始导体棒b 静止于与MN 相距为x 0处,导体棒a 以水平速度v 0从MN 处进入磁场。
不计导轨电阻,忽略因电流变化产生的电磁辐射,运动过程中导体棒a 、b 没有发生碰撞。
高三物理动量、能量计算题专题训练

动量、能量计算题专题训练1.(19分)如图所示,光滑水平面上有一质量M=4.0kg 的带有圆弧轨道的平板车,车的上表面是一段长L=1.5m 的粗糙水平轨道,水平轨道左侧连一半径R=0.25m 的41光滑圆弧轨道,圆弧轨道与水平轨道在O ′点相切。
现将一质量m=1.0kg 的小物块(可视为质点)从平板车的右端以水平向左的初速度v 0滑上平板车,小物块与水平轨道间的动摩擦因数μ=0.5。
小物块恰能到达圆弧轨道的最高点A 。
取g=10m/2,求:(1)小物块滑上平板车的初速度v 0的大小。
(2)小物块与车最终相对静止时,它距O ′点的距离。
(3)若要使小物块最终能到达小车的最右端,则v 0要增大到多大?2.(19分)质量m A =3.0kg .长度L =0.70m .电量q =+4.0×10-5C 的导体板A 在足够大的绝缘水平面上,质量m B =1.0kg 可视为质点的绝缘物块B 在导体板A 的左端,开始时A 、B 保持相对静止一起向右滑动,当它们的速度减小到0v =3.0m/s 时,立即施加一个方向水平向左.场强大小E =1.0×105N/C 的匀强电场,此时A 的右端到竖直绝缘挡板的距离为S =2m ,此后A 、B 始终处在匀强电场中,如图所示.假定A 与挡板碰撞时间极短且无机械能损失,A 与B 之间(动摩擦因数1μ=0.25)及A 与地面之间(动摩擦因数2μ=0.10)的最大静摩擦力均可认为等于其滑动摩擦力,g 取10m/s 2(不计空气的阻力)求:(1)刚施加匀强电场时,物块B 的加速度的大小?(2)导体板A 刚离开挡板时,A 的速度大小?(3)B 能否离开A ,若能,求B 刚离开A 时,B 的速度大小;若不能,求B 距A 左端的最大距离。
3.(19分)如图所示,一个质量为M 的绝缘小车,静止在光滑的水平面上,在小车的光滑板面上放一质量为m 、带电荷量为q 的小物块(可以视为质点),小车的质量与物块的质量之比为M :m=7:1,物块距小车右端挡板距离为L ,小车的车长为L 0=1.5L ,现沿平行车身的方向加一电场强度为E 的水平向右的匀强电场,带电小物块由静止开始向右运动,而后与小车右端挡板相碰,若碰碰后小车速度的大小是滑块碰前速度大小的14,设小物块其与小车相碰过程中所带的电荷量不变。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第2课时电学中的动量和能量问题
高考命题点命题轨迹情境图
电场和磁场中的动量
20183卷21
和能量问题
18(3)21题电磁感应中的动量和
能量问题
例1(2019·湖北省4月份调研)如图1,在高度为H的竖直区域内分布着互相垂直的匀强电场和匀强磁场,电场方向水平向左;磁感应强度大小为B,方向垂直纸面向里.在该区域上方的某点A,将质量为m、电荷量为+q的小球,以某一初速度水平抛出,小球恰好在该区域做直线运动.已知重力加速度为g.
图1
(1)求小球平抛的初速度v0的大小;
(2)若电场强度大小为E,求A点距该区域上边界的高度h;
(3)若电场强度大小为E,令该小球所带电荷量为-q,以相同的初速度将其水平抛出,小球离开该区域时,速度方向竖直向下,求小球穿越该区域的时间.
拓展训练1(2019·云南昭通市上学期期末)真空中存在电场强度为E1的匀强电场(未知),一质量为m、带正电的油滴,电荷量为q,在该电场中竖直向下做匀速直线运动,速度大小为v0,在油滴处于位置A时,将电场强度的大小突然增大到某值,但保持其方向不变,持续一段时间t1后,又突然将电场反向,但保持其大小不变;再持续同样一段时间后,油滴运动到B点,重力加速度大小为g,求:
(1)电场强度E1的大小和方向;
(2)油滴运动到B点时的速度大小.
拓展训练2(2019·江西上饶市重点中学六校第一次联考)如图2所示,在足够大的空间范围内,同时存在着竖直向上的匀强电场和垂直纸面向里的水平匀强磁场,磁感应强度B=2 T.小球1带正电,小球2不带电,静止放置于固定的水平悬空支架上.小球1向右以v1=12m/s的水平速度与小球2正碰,碰后两小球粘在一起在竖直平面内做匀速圆周运动,两小球速度水平向左时离碰撞点的距离为2m.碰后两小球的比荷为4C/kg.(取g=10m/s2)
图2
(1)电场强度E的大小是多少?
(2)两小球的质量之比m2
m1是多少?
例2(2019·山东泰安市第二轮复习质量检测)如图3所示,间距为L的足够长光滑平行金属导轨固定在同一水平面内,虚线MN右侧区域存在磁感应强度为B、方向竖直向下的匀强磁场.质量均为m、长度均为L、电阻均为R的导体棒a、b,垂直导轨放置且保持与导轨接触良好.开始导体棒b静止于与MN相距为x0处,导体棒a以水平速度v0从MN处进入磁场.不计导轨电阻,忽略因电流变化产生的电磁辐射,运动过程中导体棒a、b没有发生碰撞.求:
图3
(1)导体棒b中产生的内能;
(2)导体棒a、b间的最小距离.
拓展训练3(2019·福建龙岩市5月模拟)如图4为电磁驱动与阻尼模型,在水平面上有两根足够长的平行轨道PQ和MN,左端接有阻值为R的定值电阻,其间有垂直轨道平面的磁感应强度为B的匀强磁场,两轨道间距及磁场宽度均为L.质量为m的金属棒ab静置于导轨上,当磁场沿轨道向右运动的速度为v时,棒ab恰好滑动.棒运动过程始终在磁场范围内,并与轨道垂直且接触良好,轨道和棒电阻均不计,最大静摩擦力等于滑动摩擦力.
图4
(1)判断棒ab刚要滑动时棒中的感应电流方向,并求此时棒所受的摩擦力F f大小;
(2)若磁场不动,将棒ab以水平初速度2v运动,经过时间t=mR
B2L2停止运动,求棒ab运动位移x及回路中产生的焦耳热Q;
(3)若t=0时棒ab静止,而磁场从静止开始以加速度a做匀加速运动,图5中关于棒ab运动的速度-时间图象哪个可能是正确的?请分析说明棒各阶段的运动情况.
图5
拓展训练4(2019·安徽蚌埠市第二次质检)如图6所示,质量M=1kg的半圆弧形绝缘凹槽放置在光滑的水平面上,凹槽部分嵌有cd和ef两个光滑半圆形导轨,c与e端由导线连接,一质量m=1kg的导体棒自ce端的正上方h=2m处平行ce由静止下落,并恰好从ce端进入凹槽,整个装置处于范围足够大的竖直方向的匀强磁场中,导体棒在槽内运动过程中与导轨接触良好.已知磁场的磁感应强度B=0.5T,导轨的间距与导体棒的长度均为L=0.5m,导轨的半径r=0.5m,导体棒的电阻R=1Ω,其余电阻均不计,重力加速度g=10m/s2,不计空气阻力.
图6
(1)求导体棒刚进入凹槽时的速度大小;
(2)求导体棒从开始下落到最终静止的过程中系统产生的热量;
(3)若导体棒从开始下落到第一次通过导轨最低点的过程中产生的热量为16J,求导体棒第一次通过最低点时回路中的电功率.
专题强化练
(限时45分钟)
1.(2019·陕西省第二次质检)如图1所示,一竖直放置的足够大金属板正前方O点固定一正点电荷Q,一表面绝缘的带正电小球(可视为质点且不影响Q的电场)从金属板的上端释放,由静止开始沿金属板下落先后运动到板面的A、B两位置,OB垂直于金属板,已知小球的质量不可忽略,金属板表面粗糙,则小球在运动过程中()
图1
A.小球可能一直做加速运动
B.小球在A、B两点的电势能大小E p B>E p A
C.小球在A、B两点的电场强度大小E B<E A
D.小球受到合力的冲量一定为0
2.(2019·贵州省部分重点中学3月联考)如图2所示,正方形区域ABCD中有垂直于纸面向里的匀强磁场,M、N分别为AB、AD边的中点,一带正电的粒子(不计重力)以某一速度从M 点平行于AD边垂直磁场方向射入,并恰好从A点射出.现仅将磁场的磁感应强度大小变为
原来的1
2,下列判断正确的是()
图2
A.粒子将从D点射出磁场
B.粒子在磁场中运动的时间将变为原来的2倍
C.磁场的磁感应强度变化前后,粒子在磁场中运动过程的动量变化大小之比为2∶1 D.若其他条件不变,继续减小磁场的磁感应强度,粒子可能从C点射出
3.(多选)(2019·江西宜春市第一学期期末)如图3所示,固定的水平放置的平行导轨CD、EH 足够长,在导轨的左端用导线连接一电阻R,导轨间距为L,一质量为M、长为2L的金属棒放在导轨上,在平行于导轨的水平力F作用下以速度v向右匀速运动,运动过程中金属棒与导轨保持垂直,金属棒与导轨间的动摩擦因数为μ,整个装置处于竖直向下的匀强磁场中(图中未画出),磁场的磁感应强度大小为B,导轨单位长度的电阻为r,其余电阻不计,重力加速度为g.若在0时刻水平力的大小为F0,则在0~t时间内,以下说法正确的有()
图3
A.水平力F对金属棒的冲量大小F0t
B.水平力和摩擦力的合力对金属棒的冲量为零
C.合力对金属棒做的功为零
D.若某时刻通过电阻R的电流为I,则此时水平力F的功率为(BIL+μMg)v 4.(2019·福建福州市期末)如图4所示,竖直平面MN的右侧空间存在着相互垂直水平向左的匀强电场和垂直纸面向里的匀强磁场,MN左侧的绝缘水平面光滑,右侧的绝缘水平面粗糙.质量为m的小物体A静止在MN左侧的水平面上,该小物体带负电,电荷量为-q(q> 0).质量为1
3
的不带电的小物体B以速度v0冲向小物体A并发生弹性正碰,碰撞前后小物体A的电荷量保持不变.
图4
(1)求碰撞后小物体A的速度大小;
(2)若小物体A与水平面间的动摩擦因数为μ,重力加速度为g,磁感应强度为B=3mg
q v0
,电场
强度为E=7μmg
q
.小物体A从MN开始向右运动距离为L时速度达到最大.求小物体A的最
大速度v m和此过程克服摩擦力所做的功W.
5.(2019·湖南长沙、望城、浏阳、宁乡四个县市区3月调研)如图5所示,P1P2P3和Q1Q2Q3是相互平行且相距为d的光滑固定金属导轨,P1Q1为不计电阻的直导线且P1Q1⊥Q1Q2.P1P2、Q1Q2的倾角均为θ,P2P3、Q2Q3在同一水平面上,P2Q2⊥P2P3,整个轨道在方向竖直向上、
磁感应强度大小为B的匀强磁场中,质量为m、接入电路的电阻为R的金属杆CD从斜轨道上某处静止释放,然后沿水平导轨滑动一段距离后停下.杆CD始终垂直导轨并与导轨保持良好接触,导轨电阻和空气阻力均不计,重力加速度大小为g,轨道倾斜段和水平段平滑连接且都足够长,求:
图5
(1)杆CD达到的最大速度大小;
(2)杆CD在距P2Q2距离L处释放,滑到P2Q2处恰达到最大速度,则沿倾斜导轨下滑的时间Δt1及在水平轨道上滑行的最大距离s.
6.(2019·湖南衡阳市第一次联考)如图6所示,ab、ef是固定在绝缘水平桌面上的平行光滑金属导轨,导轨足够长,导轨间距为d.在导轨ab、ef间放置一个阻值为R的金属导体棒PQ,其质量为m、长度恰好为d.另一质量为3m、长为d的金属棒MN也恰好能和导轨良好接触,起初金属棒MN静止于PQ棒右侧某位置,整个装置处于方向垂直桌面向下、磁感应强度大小为B的匀强磁场中.现有一质量为m、带电荷量为q的光滑绝缘小球在桌面上从O点(O 为导轨上的一点)以与导轨ef成60°角的方向斜向右方进入磁场,随后小球垂直地打在金属棒MN的中点,小球与金属棒MN的碰撞过程中无机械能损失,不计导轨间电场的影响,不计导轨和金属棒MN的电阻,两棒运动过程中不相碰,求:
图6
(1)小球在O点射入磁场时的初速度v0的大小;
(2)金属棒PQ上产生的热量E和通过的电荷量Q;
(3)在整个过程中金属棒MN比金属棒PQ多滑动的距离;
(4)请通过计算说明小球不会与MN棒发生第二次碰撞.。