初中数学竞赛试题及答案解析

合集下载

初二数学竞赛试题7套整理版(含答案)

初二数学竞赛试题7套整理版(含答案)

初二数学竞赛试题7套整理版(含答案)初二数学竞赛试题7套整理版(含答案)第一套试题1. 某数与它的四分之一之和的和是28,求这个数是多少?解:设这个数为x,根据题意可得方程 x + (1/4)x + x = 28,化简得9/4x = 28,解得 x = 44.2. 有一个矩形,长是宽的3倍,如果长再加上宽再加上1的和等于50,求矩形的长和宽各是多少?解:设矩形的宽为x,则长为3x,根据题意可得方程 3x + x + 1 = 50,化简得 4x + 1 = 50,解得 x = 12,所以长为3 * 12 = 36,宽为12.3. 某个数的三次方减去它自身等于608,求这个数是多少?解:设这个数为x,根据题意可得方程 x^3 - x = 608,化简得 x^3 - x - 608 = 0,因此需求解该方程的解x.4. 甲数和乙数之和是300,甲数比乙数大30,求甲数和乙数各是多少?解:设甲数为x,乙数为y,根据题意可得方程 x + y = 300,x - y = 30,联立这两个方程可以解得甲数x和乙数y.5. 家长购买某品牌的饮料,每瓶售价为5元,如果购买10瓶,优惠50%,那么需要支付的价格是多少?解:购买10瓶优惠50%,相当于购买5瓶的价格,所以需要支付 5 * 10 * (1 - 50%) = 25元.第二套试题1. 学校图书馆购买300本新书,若图书馆中已有书籍500本,现将这些书按每排放10本的方式摆放,共需要多少排?解:新书300本加上原有书籍500本,共计800本书,每排放10本,所以需要 800 / 10 = 80排.2. 小明每天早上跑步30分钟,下午骑自行车25分钟,晚上游泳40分钟,求他一天中运动的总时长是多少分钟?解:小明一天早上跑步30分钟,下午骑自行车25分钟,晚上游泳40分钟,总时长为 30 + 25 + 40 = 95分钟.3. 甲、乙两人开始一起钓鱼,甲每分钟能钓2条鱼,乙每分钟能钓1条鱼,如果他们一起钓了45分钟,那么他们一共钓到了多少条鱼?解:甲每分钟能钓2条鱼,乙每分钟能钓1条鱼,他们一起钓了45分钟,所以甲和乙一共钓到了 2 * 45 + 1 * 45 = 135 条鱼.4. 某商品原价100元,现在打8折,过了一段时间后再降价,降到原价的85%,现在这个商品的售价是多少?解:原价100元,打8折后为 100 * (1 - 80%) = 80元,再降到原价的85%为 80 * 85% = 68元.5. 某人的年收入为12000元,每月生活费占月收入的1/5,那么这个人每月的生活费用是多少元?解:年收入12000元,月收入为 12000 / 12 = 1000元,生活费占收入的1/5,所以生活费用为 1000 * 1/5 = 200元.第三套试题1. 甲、乙两个人合作修一个房子,甲一个人修需要8天,乙一个人修需要12天,问他们一起修需要多少天?解:甲一个人修需要8天,乙一个人修需要12天,他们一起修需要的时间为 1/(1/8 + 1/12) = 4.8天.2. 甲购买一本书花费了原价的3/4,折后价格为60元,问这本书的原价是多少?解:折后价格为60元,花费原价的3/4,所以原价为 60 / (3/4) = 80元.3. 甲、乙两人比赛,甲第一轮跑步用时1分钟,第二轮用时50秒,第三轮用时40秒;乙第一轮跑步用时55秒,第二轮用时45秒,第三轮用时35秒,问谁的平均速度更快?解:甲第一轮跑步用时1分钟,第二轮用时50秒,第三轮用时40秒,平均速度为 (60 + 50 + 40) / 3 = 50 秒/轮;乙第一轮跑步用时55秒,第二轮用时45秒,第三轮用时35秒,平均速度为 (55 + 45 + 35) / 3 = 45 秒/轮;所以甲的平均速度更快.4. 一只小狗每小时能跑5公里,一只小猫每小时能跑8公里,如果它们从同一地点同时出发并分别向东和西跑,4小时后它们相距了多少公里?解:小狗每小时能跑5公里,4小时后跑了5 * 4 = 20公里,小猫每小时能跑8公里,4小时后跑了8 * 4 = 32公里,所以它们相距了 32 -20 = 12 公里.5. 三个连续的偶数相加的和是60,求这三个数分别是多少?解:设第一个偶数为x,那么第二个偶数为x + 2,第三个偶数为x+ 4,根据题意可得方程 x + (x + 2) + (x + 4) = 60,求解该方程可得x及其对应的三个连续偶数.第四套试题1. 一个数的2倍加上5等于13,求这个数是多少?解:设这个数为x,根据题意可得方程 2x + 5 = 13,解得 x = 4.2. 甲乙两数相差22,乙数的2倍与甲数的3倍之和等于70,求甲、乙两数各是多少?解:设甲数为x,乙数为y,根据题意可得方程 y - x = 22,2y + 3x= 70,联立这两个方程可以解得甲数x和乙数y.3. 一辆汽车以每小时80千米的速度行驶,行驶了1小时20分钟后停下来休息,求这段时间内汽车行驶的路程?解:汽车以每小时80千米的速度行驶,1小时20分钟共1.33 小时,所以汽车行驶的路程为 80 * 1.33 = 106.4 千米.4. 甲、乙两个人一起做一件工作,甲单独完成需要4小时,乙单独完成需要6小时,他们一起完成这件工作需要多少小时?解:甲单独完成需要4小时,乙单独完成需要6小时,他们一起完成需要的时间为 1/(1/4 + 1/6) = 2.4小时.5. 一个数加上它的四分之一之和的和是28,求这个数是多少?解:设这个数为x,根据题意可得方程 x + (1/4)x + x = 28,化简得9/4x = 28,解得 x = 44.第五套试题1. 一条宽10米的路,两边分别种植了向阳向每排7棵树或9棵树,每棵树之间距离相等,而且与路两边相邻树之间距离也相等,问道路中间最宽的地方有多宽?解:分别种植7棵树和9棵树,每棵树之间距离相等,所以道路中间最宽的地方为两排树之间的距离.2. 一个数与4的乘积减去2等于18,求这个数是多少?解:设这个数为x,根据题意可得方程 4x - 2 = 18,解得 x = 5.3. 甲、乙、丙三人合作种田,甲一个人种地需要10天,乙一个人种地需要12天,丙一个人种地需要15天,问他们三个人一起种地需要多少天?解:甲一个人种地需要10天,乙一个人种地需要12天,丙一个人种地需要15天,他们一起种地需要的时间为 1/(1/10 + 1/12 + 1/15) =4.8天.4. 某人共有100元,买了一本书花掉了原价的3/5,剩下的钱还能买另一本原价为80元的书吗?解:100元买了一本书花掉了原价的3/5,剩下的钱为 100 * (1 - 3/5) = 40元,剩下的钱不足以购买另一本80元的书.5. 一团面粉重800克,其中水分为15%,求这团面粉中水分的重量是多少克?解:面粉重800克,其中水分为15%,所以水分的重量为800 * 15% = 120克.第六套试题1. 一个数与它的五分之一之和的和是40,求这个数是多少?解:设这个数为x,根据题意可得方程 x + (1/5)x + x = 40,化简得7/5x = 40,解得 x = 28.57.2. 甲、乙两个人分别完成一项工作需要的时间比为2:5,如果他们一起完成这项工作需要3小时,求乙单独完成这项工作需要多少时间?解:甲、乙两个人分别完成一项工作需要的时间比为2:5,设甲单独完成需要的时间为x,乙单独完成需要的时间为y,根据题意可得方程 2x + 5x = 3,解得 y = 7.5.3. 有两个相交的圆,圆心之间的距离为8,两圆的半径分别为5和3,求两圆相交的弦的长度是多少?解:两个圆的半径分别为5和3,圆心之间的距离为8,利用勾股定理可以求得两圆相交的弦的长度.4. 甲乙两个人一起做一件工作,甲单独完成需要10小时,乙单独完成需要15小时,他们一起完成这件工作需要多少小时?解:甲单独完成需要10小时,乙单独完成需要15小时,他们一起完成需要的时间为 1/(1/10 + 1/15) = 6小时.5. 甲给乙20元,乙给丙30元,丙给甲10元,这三个人一共交易了多少元?解:甲给乙20元,乙给丙30元,丙给甲10元,所以一共交易了20 + 30 + 10 = 60元.第七套试题1. 某数比它的2/3小12,求这个数是多少?解:设这个数为x,根据题意可得方程 x - (2/3)x = 12,化简得 1/3x = 12,解得 x = 36.2. 甲、乙两个人一起修一条路,甲单独修需要8小时,乙单独修需要12小时,也有可能甲的速度是乙的倍数,问他们一起修需要多少小时?解:甲单独修需要8小时,乙单独修需要12小时,他们一起修需要的时间为 1/(1/8 + 1/12) = 4.8小时.3. 某品牌的衣服原价为200元,现在打折8折,过了一段时间后再降价,降到原价的85%,现在这件衣服的售价是多少?解:原价200元,打8折后为 200 * (1 - 80%) = 160元,再降到原价的85%为 160 * 85% = 136元.4. 甲、乙两个人一起做工,甲一个小时能做1/3的工作量,乙一个小时能做1/4的工作量,问他们一起做一份工作需要多少时间?解:甲一个小时能做1/3的工作量,乙一个小时能做1/4的工作量,他们一起做一份工作需要的时间为 1/(1/3 + 1/4) = 12/7小时.5. 某人的年收入为12000元,每月花销占收入的1/4,那么这个人每月的花销是多少元?解:年收入12000元,。

初中数学竞赛决赛试题分析及答案

初中数学竞赛决赛试题分析及答案

初中数学竞赛决赛试题分析及答案试题一:几何问题题目:在一个直角三角形ABC中,已知∠C=90°,AB为斜边,AC=5cm,BC=12cm,求斜边AB的长度。

分析:此题考查了勾股定理的应用。

根据勾股定理,直角三角形的斜边的平方等于两直角边的平方和。

解答:根据勾股定理,AB² = AC² + BC²。

将已知数值代入公式,得到AB² = 5² + 12² = 25 + 144 = 169。

因此,AB = √169 =13cm。

试题二:代数问题题目:若x² - 5x + 6 = 0,求x的值。

分析:此题考查了解一元二次方程的能力。

可以通过因式分解法求解。

解答:首先对方程进行因式分解,得到(x - 2)(x - 3) = 0。

由此可知,x的值为2或3。

试题三:数列问题题目:一个等差数列的前三项分别为2, 5, 8,求这个数列的第10项。

分析:此题考查了等差数列的通项公式。

已知数列的前三项,可以求出公差,进而求出第10项。

解答:首先求出公差d,d = 5 - 2 = 3。

根据等差数列的通项公式,an = a1 + (n - 1)d,其中a1为首项,an为第n项。

将已知数值代入公式,得到a10 = 2 + (10 - 1) * 3 = 2 + 27 = 29。

试题四:组合问题题目:从5个不同的球中选出3个,有多少种不同的选法?分析:此题考查了组合数的计算。

从n个不同元素中选出m个元素的组合数可以用公式C(n, m) = n! / [m! * (n - m)!]来计算。

解答:根据组合数公式,C(5, 3) = 5! / [3! * (5 - 3)!] = (5 * 4 * 3 * 2 * 1) / [(3 * 2 * 1) * (2 * 1)] = 10。

试题五:概率问题题目:一个袋子里有3个红球和5个蓝球,随机取出2个球,求取出的两个球都是红球的概率。

初中数学奥林匹克竞赛全真试题(全国联赛卷)(详解版)

初中数学奥林匹克竞赛全真试题(全国联赛卷)(详解版)

初中数学奥林匹克竞赛全真试题(全国联赛卷)(详解版)初中数学奥林匹克竞赛全真试题(全国联赛卷)(详解版)一、填空题1. 如果函数 f(x)=x^2-2x+1的根为 a,b,那么a + b 等于_____.答案:-12. 已知正整数 m、n 满足 mx+ny=1(m、n 都不为 0),若 m + n 等于 8,则 m - n 等于_____.答案:73. 若等差数列{an}的前 n 项和为 Sn,且 a1=3,Sn=15,则 n 的值是_____.答案:64. 在△ABC 中,已知 a=4,b=4,c=8,若 AB+AC=9,则∠B =_____.答案:45°二、选择题5. 已知 A、B 两点的坐标分别为(3,1)、(5,-1),则 AB 是_______.A. 水平的直线B. 斜率为 1 的直线C. 斜率为 -1/3 的直线D. 竖直的直线答案:B6. 若正方形的边长为 x,周长为 5x,则 x 的值等于_______.A. 4B. 5C. 8D. 10答案:A7. 已知tanα=2,cotβ=-3,则 tan(α-β)等于_______.A. 5B. -5C. -1/5D. 1/5答案:B8. 把一个正整数分成 K 份,第一份的数量是剩下的 K-1 份的总和的()A. 1/2B. 3/2C. 2/3D. 3/4答案:B三、解答题9. 已知函数 f(x)=2x+1,若直线 4x+3y=37 与曲线 f(x) 相切,求该曲线上点 P 的坐标答:设点 P 的坐标为 (x,y),因为直线 4x+3y=37 与曲线 f(x) 相切,所以曲线上点 P 的 y 值可由 4x+3y=37 中求得,即 y=12-4/3x,由函数 f(x)可得 12-4/3x=2x+1,故 x=7,代入 y=12-4/3x 可得 y=12-4/3(7)=8。

点 P的坐标即为 (7, 8)。

10. 已知△ABC 中,a=3,b=3,∠A=120°,求 B 的坐标答:由△ABC 中 A 的坐标为(0,0),a=3,b=3 可知 C 的坐标为(3,0),∠A=120°,∠C=60°,因为∠B=60,则以 C 为外接圆圆心,半径为3 的圆○上可得点B,即B(√3,1),综上所述,点B 的坐标为(√3,1)。

全国初中数学竞赛试题及解答

全国初中数学竞赛试题及解答

ABCD全国初中数学竞赛试卷及解析一、选择题(本题共6小题,每小题5分,满分30分.每小题均给出了代号为A ,B ,C ,D 的四个结论,其中只有一个是正确的。

请将正确答案的代号填在题后的括号里)1、设a ,b ,c 的平均数为M ,a ,b 的平均数为N ,N ,c 的平均数为P ,若c b a ,则M 与P 的大小关系是( )A 、P MB 、P MC 、P MD 、不确定 答案:B 解析:∵3c b a M ,2b a N ,222c b a c N P ,122cb a P M ∵c b a ∴0122122c c c c b a P M ,即0 P M ,即P M 2、某人骑车沿直线旅行,先前进了a 千米,休息了一段时间,又原路返回b 千米(a b ),再前进c 千米,则此人离起点的距离S 与时间t 的关系示意图是( )答案:C解析:因为图(A )中没有反映休息所消耗的时间;图(B )虽表明折返后S 的变化,但没有表示消耗的时间;图(D )中没有反映沿原始返回的一段路程,唯图(C )正确地表述了题意。

3、甲是乙现在的年龄时,乙10岁;乙是甲现在的年龄时,甲25岁,那么( ) A 、甲比乙大5岁 B 、甲比乙大10岁 C 、乙比甲大10岁 D 、乙比甲大5岁 答案:A解析:由题意知3×(甲-乙)151025 ∴甲-乙=5。

4、一个一次函数图象与直线49545x y 平行,与x 轴、y 轴的交点分别为A 、B ,并且过点(-1,-25),则在线段AB 上(包括端点A 、B ),横、纵坐标都是整数的点有( )A 、4个B 、5个C 、6个D 、7个 答案:B解析:在直线AB 上,横、纵坐标都是整数的点的坐标是N x 41 ,N y 525 ,(N 是整数).在线段AB 上这样的点应满足041 N ,且0525 N ,∴541N ,即1 N ,2,3,4,55、设a ,b ,c 分别是ABC 的三边的长,且cb a ba b a,则它的内角A 、B 的关系是( )A 、AB 2 B 、A B 2C 、A B 2D 、不确定 答案:B解析:由c b a b a b a得c a bb a ,延长CB 至D ,使AB BD ,于是c a CD 在ABC 与DAC 中,C C ,且DC ACAC BC∴ABC ∽DAC ,D BAC ∵D BAD∴BAC D BAD D ABC 226、已知ABC 的三边长分别为a ,b ,c ,面积为S ,111C B A 的三边长分别为1a ,1b ,1c ,面积为1S ,且1a a ,1b b ,1c c ,则S 与1S 的大小关系一定是( )A 、1S SB 、1S SC 、1S SD 、不确定 答案:D解析:分别构造ABC 与111C B A 如下:①作ABC ∽111C B A ,显然1211a a S S ,即1S S ;②设101b a ,20c ,则1 c h ,10 S ,10111 c b a ,则10100431S ,即1S S ;③设101 b a ,20 c ,则1 c h ,10 S ,2911 b a ,101 c ,则2 c h ,101 S ,即1S S ;因此,S 与1S 的大小关系不确定。

数学竞赛初中组试题及答案

数学竞赛初中组试题及答案

数学竞赛初中组试题及答案一、选择题(每题3分,共15分)1. 下列哪个数是最小的正整数?A. 0B. 1C. -1D. 2答案:B2. 如果一个数的立方等于它本身,那么这个数可能是:A. 1B. -1C. 0D. 1和-1答案:D3. 一个直角三角形的两条直角边分别为3和4,那么斜边的长度是:A. 5B. 6C. 7D. 8答案:A4. 一个数的平方根是它本身,这个数可能是:A. 1B. -1C. 0D. 1和0答案:D5. 一个数的倒数是它本身,这个数可能是:A. 1B. -1C. 0D. 1/2答案:A二、填空题(每题2分,共10分)6. 一个数的绝对值是它本身,这个数是______。

答案:非负数7. 一个数的相反数是它本身,这个数是______。

答案:08. 如果a和b互为倒数,那么ab=______。

答案:19. 一个数的平方等于16,这个数可能是______。

答案:±410. 一个数的立方等于8,这个数是______。

答案:2三、简答题(每题5分,共20分)11. 证明:对于任意实数x,都有(x+1)^2 ≥ 2x。

答案:展开(x+1)^2得x^2+2x+1,因为x^2总是非负的,所以(x+1)^2 ≥ 2x。

12. 一个数列的前三项是1, 2, 3,如果每一项都是前一项的两倍,求第10项的值。

答案:这是一个等比数列,首项a1=1,公比r=2。

根据等比数列的通项公式an=a1*r^(n-1),第10项a10=1*2^(10-1)=2^9。

13. 一个圆的半径为5,求圆的周长。

答案:圆的周长公式为C=2πr,代入半径r=5,得C=2*π*5=10π。

14. 一个长方体的长宽高分别为2, 3, 4,求其体积。

答案:长方体的体积公式为V=lwh,代入长l=2,宽w=3,高h=4,得V=2*3*4=24。

四、解答题(每题10分,共30分)15. 某班有40名学生,其中1/4的学生数学成绩优秀,1/3的学生英语成绩优秀,求至少有1门成绩优秀的学生人数。

初中数学竞赛试题及答案解析

初中数学竞赛试题及答案解析

初中数学竞赛试题二、填空题1、 41-的负倒数与4-的倒数之和等于 . 2、 甲、乙、丙、丁四个数之和等于90-.甲数减4-,乙数加4-,丙数乘4-,丁数除以4-彼此相等.则四个数中的最大的一个数比最小的一个数大 .3、 已知a 1999=,则=-+---+-200133314232323a a a a a a .4、 填数计算:〇中填入的最小的自然数.△中填入最小的非负数.□中填入不小于5-且小于3的整数的个数.将下式的计算结果写在等号右边的横线上.(〇+□)⨯△= .5、 从集合}5,4,1,2,3{---中取出三个不同的数,可能得到的最大乘积填在□中,可能得到的最小乘积填在〇中,并将下式计算的结果写在等号右边的横线上.-(-□)÷〇= .6、 计算:=------------)4151()3141()2131(1)4151()3141()2131(1 . 7、 x 是有理数,则22195221100++-x x 的最小值是 . 8、 如图,C 是线段AB 的中点,D 是线段AC 的中点.已知图中所有线段的长度之和为23,则线段AC 的长度为.9、 在1000到5000之间同时被24,36,30整除的最小整数是_________,最大整数是__________.10、 一个有理数的倒数的相反数的3倍是31,那么这个有理数是 . 11、 一个有理数的二次幂大于这个有理数,那么这样的有理数的取值范围是 .12、 若8919+=+=+c b a ,则=-+-+-222)()()(a c c b b a .13、 a 1的倒数是51-,那么=a _____. 14、 小丽写出三个有理数,其中每两个有理数的平均值分别是326,217,7,那么这三个有理数的平均值是 .15、 计算:=--+-)36173)(72.0()722(125.11.16、 m ,y 互为相反数,n 和y 互为倒数,则5)(y my n -的值是_____.17、 已知1171=x ,则3)114(3)711)(1(2++--x x x 的值是 . 18、 已知52,32<-<-b a a b .则化简98272-+++-----b a a b a b 所得的结果是 .19、 m ,n 是正整数,mn =120,则m +n 可能取到的最小值是_____.20、 若a=1997,则7122----+a a a a 的值是 .21、 若x = -0.239,则199********-------++-+-x x x x x x 的值等于_____.参考答案二、填空题1、 417- 解:41-的负倒数为411--,4-的倒数为41-, 二者之和为:411--+41-417414-=--=.2、 204解:设等数为a ,则 90)4()4()]4([)]4([-=-⨯+-+--+-+a a a a 即90412-=-a ,∴ a =40, 因此,甲数为36,乙数为44,丙数为-10,丁数为-160,其中,最大数-最小数=44-(-160)=204.3、 4000000 解:当a 1999=时,142314232323-+-=-+-a a a a a a=-+-200133323a a a 200133323-+-a a a ,所以,原式=142323-+-a a a )2001333(23-+--a a a2000200019992000)1(20002+⨯=++=++=a a a a400000020002000=⨯=.4、 0解:〇中填1,△中0,□填8. []⎣⎦⎡⎤00)81(=⨯+.5、 ⎣⎦⎡⎤2160)30(-=÷-- 解:由-3,-2,-1,4,5中任取三个相乘可得10种不同的乘积,它们是:124)1)(3(,205)2)(3(,244)2)(3(,6)1)(2)(3(=⋅--=⋅--=⋅--=---,105)1)(2(,84)1)(2(,6054)3(,155)1)(3(=⋅--=⋅---=⋅⋅-=⋅--,2054)1(,4054)2(-=⋅⋅--=⋅⋅-,最大乘积是30,最小的乘积是-60.∴ ⎣⎦⎡⎤2160)30(-=÷--.6、 137 解:)4151()3141()2131(1)4151()3141()2131(1------------ )4151()3141()2131(1)]4151([)]3141([)]2131([1---------------= )4151()3141()2131(1)4151()3141()2131(1-------+-+-+= 41513141213114151314121311+-+-+--+-+-+= 13710131075121151211==-++-=.7、 1715 解:一般解法是分三种情况讨论:(1)当22195-<x 时 ,,(2)当22110022195≤≤-x 时 ,,(3)当221100>x 时 ,.综合(1),(2),(3)可得,最小值是1715.最简单的解法是:根据绝对值的几何意义,22195221100++-x x 表示数轴上x 对应的点P 到22195-对应的点A 和221100对应的点B 的距离之和,易知当P 在线段AB 上时,P A +PB 最小值为2211001715)22195(=--.8、 1373 解:设线段AC 的长度为x ,则AD =2x ,则AB =2x ,DC =2x ,DB =x 23,CB =x ,所以 232321221=+++++x x x x x x ,即23213=x .∴13731346==x .即AB 长度为1373.9、 4680解:24,30,36三个数的最小公倍数是360,10803360=⨯,∴大于10000且能被24,30,36整除的最小整数是1080,又36010805000⋅+>n ,其中n 为自然数,解得9810<n .∴取10=n ,得4680360101080=⋅+.∴具有这种性质的最大整数是4680.10、 -9解:利用还原算法:某数a 的3倍是31,显然91=a ,而91应是一个有理数倒数的相反数,所以这个有理数的倒数为91-,故这个有理数是-9.11、 大于1的有理数和负有理数解:画出数轴如图.大于1的有理数的二次幂大于它自身;1的二次幂等于1;大于0且小于1的有理数的二次幂小于它本身;0的二次幂是0;负有理数的二次幂是正数,大于它自身.综上可知,二次幂大于其自身的有理数的范围,是大于1的有理数和负有理数.12、 222解:由8919+=+=+c b a 得:11,1,10=--=--=-a c c b b a .∴+-+-22)()(c b b a =-2)(a c 222121110011)1()10(222=++=+-+-.13、 51- 解:a 1的倒数是51-,那么a 1=-5,51-=a .14、 1817 解:设小丽写出的三个有理数为x ,y ,z ,则3262,2172,72=+=+=+z y z x y x , 所以15,340,14=+=+=+x z z y y x ,三式相加,3127)(2=++z y x , 则1817181273==++z y x .15、 -14 解:因为2179167212518511.125(2)(0.72)(3)73687100367214-+--=-+=-+=-. 所以原分式的值为-14.16、 0解:由m 和y 互为相反数,知m = -y ,由n 和y 互为倒数,知道0,0≠≠y n 且yn 1= ∴0=-=-y y y y y m y n ,故5)(ym y n -=0. ∴17、 38 解:由1171=x ,可知2114,1171=+=-x x ,所以原式= 37772(1117)322113838111111-+=+=.18、 -6解:由32<-a b ,得03272<--<--a b a b .由52<-b a ,得052>+-a b ,得 05282>+->+-a b a b .而853)2()2(=+<-+-=+b a a b a b . 089<-+<-+∴a b b a98272-+++-----b a a b a b9)()82()72(-+-+----=b a a b a b987+--=6-=.19、 22解:由222)(1204)(4)(n m n m mn n m -+⋅=-+=+当2)(n m -愈小时,2)(n m +越小,从而m +n 也愈小,m 、n 为120的约数,且n m -要最小,由53222120⋅⋅⋅⋅==mn所以,当m =12,n =10时,m +n =22为最小值.20、 4000解:当a =1997时,0719971997,011997199722>-->-+7122----+a a a a)7()1(22----+=a a a a7122++--+=a a a a62+=a4000619972=+⋅=.21、 999解:由b a x <≤,可得a b a x b x -=---,则原式)19961997()23()1(---++---+--=x x x x x x)19961997()23()01(-++-+-=个99921998111=÷+++= 999=.。

初中奥林匹克数学竞赛试题

初中奥林匹克数学竞赛试题一、选择题(每题3分,共30分)1. 若实数a,b满足 a + 2 +(b - 4)² = 0,则a + b的值为()。

A. - 2B. 2C. 6D. - 6答案:B。

解析:因为绝对值是非负的,一个数的平方也是非负的,要使 a + 2 +(b - 4)² = 0,那么a+2 = 0且b - 4 = 0,解得a=-2,b = 4,所以a + b=2。

2. 把多项式x² - 4x+4分解因式,结果正确的是()。

A. (x - 2)²B. (x+2)²C. (x - 4)²D. (x+4)²答案:A。

解析:x²- 4x + 4符合完全平方公式a²- 2ab+b²=(a - b)²的形式,这里a=x,b = 2,所以分解因式结果为(x - 2)²。

3. 已知一元二次方程x² - 3x - 2 = 0的两个实数根为x1,x2,则(x1 - 1)(x2 - 1)的值是()。

A. - 4B. - 2C. 0D. 2答案:C。

解析:根据韦达定理,对于一元二次方程ax²+bx + c = 0(a≠0),x1+x2=-b/a,x1x2=c/a。

在方程x² - 3x - 2 = 0中,a = 1,b=-3,c = - 2,所以x1+x2 = 3,x1x2=-2。

(x1 - 1)(x2 - 1)=x1x2-(x1+x2)+1=-2 - 3+1 = 0。

4. 一个三角形的三个内角之比为1:2:3,则这个三角形是()。

A. 锐角三角形B. 直角三角形C. 钝角三角形D. 等腰三角形答案:B。

解析:设三个内角分别为x,2x,3x,因为三角形内角和为180°,所以x+2x+3x = 180°,解得x = 30°,那么三个角分别为30°,60°,90°,所以是直角三角形。

全国初中数学联合 竞赛试题及详细解答(含一试二试)

全国初中数学联合竞赛试题第一试一、选择题:(本题满分42分,每小题7分)1. 若,,a b c 均为整数且满足1010()()1a b a c -+-=,则||||||a b b c c a -+-+-= ( ) A .1. B .2. C .3. D .4..2.若实数,,a b c 满足等式23||6a b +=,49||6a b c -=,则c 可能取的最大值为 ( ) A .0. B .1. C .2. D .3.3.若b a ,是两个正数,且 ,0111=+-+-ab b a 则 ( )4.若方程2310x x --=的两根也是方程420x ax bx c +++=的根,则2a b c +-的值为 ( ) A .-13. B .-9. C .6. D . 0.5.在△ABC 中,已知︒=∠60CAB ,D ,E 分别是边AB ,AC 上的点,且︒=∠60AED ,CE DB ED =+,CDE CDB ∠=∠2,则=∠DCB ( )A .15°.B .20°.C .25°.D .30°.6.对于自然数n ,将其各位数字之和记为n a ,如2009200911a =+++=,201020103a =+++=,则12320092010a a a a a +++++= ( )A .28062.B .28065.C .28067.D .28068.二、填空题:(本题满分28分,每小题7分)1.已知实数,x y 满足方程组3319,1,x y x y ⎧+=⎨+=⎩则22x y += .2.二次函数c bx x y ++=2的图象与x 轴正方向交于A ,B 两点,与y 轴正方向交于点C .已知AC AB 3=,︒=∠30CAO ,则c = .3.在等腰直角△ABC 中,AB =BC =5,P 是△ABC 内一点,且PA 5PC =5,则PB =______.4.将若干个红、黑两种颜色的球摆成一行,要求两种颜色的球都要出现,且任意中间夹有5个或10个球的两个球必为同一种颜色的球.按这种要求摆放,最多可以摆放_______个球.第二试 (A )一.(本题满分20分)设整数,,a b c (a b c ≥≥)为三角形的三边长,满足22213a b c ab ac bc ++---=,___P_A_C_B求符合条件且周长不超过30的三角形的个数.二.(本题满分25分)已知等腰三角形△ABC 中,AB =AC ,∠C 的平分线与AB 边交于点P ,M 为△ABC 的内切圆⊙I 与BC 边的切点,作MD//AC ,交⊙I 于点D.证明:PD 是⊙I 的切线.三.(本题满分25分)已知二次函数2y x bx c =+-的图象经过两点P (1,)a ,Q (2,10)a . (1)如果,,a b c 都是整数,且8c b a <<,求,,a b c 的值.(2)设二次函数2y x bx c =+-的图象与x 轴的交点为A 、B ,与y 轴的交点为 C.如果关于x 的方程20x bx c +-=的两个根都是整数,求△ABC 的面积._ Q_I _ P_ C_ A_M_B第二试 (B )一.(本题满分20分)设整数,,a b c 为三角形的三边长,满足22213a b c ab ac bc ++---=,求符合条件且周长不超过30的三角形的个数(全等的三角形只计算1次).二.(本题满分25分)题目和解答与(A )卷第二题相同. 三.(本题满分25分)题目和解答与(A )卷第三题相同.第二试 (C )一.(本题满分20分)题目和解答与(B )卷第一题相同. 二.(本题满分25分)题目和解答与(A )卷第二题相同.三.(本题满分25分)设p 是大于2的质数,k 为正整数.若函数4)1(2-+++=p k px x y 的图象与x 轴的两个交点的横坐标至少有一个为整数,求k 的值.全国初中数学联合竞赛试题及详解第一试一、选择题:(本题满分42分,每小题7分)1. 若,,a b c 均为整数且满足1010()()1a b a c -+-=,则||||||a b b c c a -+-+-= ( B ) A .1. B .2. C .3. D .4. 解: 由已知可推得011a b b c a c -=⎧⇒-=±⎨-=±⎩ 或110a b b c a c -=±⎧⇒-=±⎨-=⎩,分别代入即得。

2024全国初中数学重点高中自招竞赛试题精选精编(解析版)

专题分式学校:___________姓名:___________班级:___________考号:___________一、填空题1(2024·全国·八年级竞赛)如图,已知在△ABC 中,点D 、E 、F 分别为边AB 、BC 、AC 上的点,且AE 、BF 、CD 相交于点G ,如果AG GE +BG GF +CG GD =2014,那么AG GE ⋅BG GF ⋅CGGD的值为.【答案】2016【分析】本题主要考查了三角形面积的计算,分式化简求值,解题的关键是设S △ABG =a ,S △ACG =b ,S △BCG =c ,得出AG GE =a +b c ,BG GF =a +c b ,CG DG =b +c a ,根据AG GE +BG GF +CG GD=2014,得出a +b c +a +cb +b +c a =2014,将a +b c ⋅a +c b ⋅b +c a 化简为a +b c +a +c b +a +b c +2即可得出答案.【详解】解:设S △ABG =a ,S △ACG =b ,S △BCG =c ,则AG GE=S △ABG S △BEG =S △ACG S △CEG =S △ABG +S △ACG S △BEG +S △CEG =S △ABG +S △ACG S △BCG =a +bc ,同理可得:BG GF =a +c b ,CG DG=b +ca ,∵AG GE +BG GF +CG GD =2014,∴a +b c +a +c b +b +c a =2014,∴AG GE ⋅BG GF ⋅CG GD =a +b c ⋅a +c b⋅b +c a =a +b a +c b +c abc=a 2b +a 2c +abc +ac 2+ab 2+abc +b 2c +bc 2abc=a +b c +a +c b +a +b c +2=2014+2=2016.故答案为:2016.2(2024·全国·八年级竞赛)设a 、b 、c 是互不相等的实数,且a +4b=b +4c =c +4a ,则abc =.【答案】±8【分析】本题考查分式的化简求值,由a +4b =b +4c 可得bc =4b -c a -b ,同理可得ac =4c -a b -c,ab =4a -bc -a,由此三式相乘即可解答.【详解】解:∵a +4b=b +4c =c +4a ,∴a -b =4c -4b =4b -c bc ,b -c =4a -4c =4c -a ac ,c -a =4b -4a =4a -b ab ,∴bc =4b -c a -b ,ac =4c -a b -c,ab =4a -bc -a ,∴a 2b 2c 2=4(b -c )a -b ⋅4(c -a )b -c.4(a -b )c -a =64,∴abc =±8.故答案为:±8.3(2024·全国·八年级竞赛)已知6x 3+2x 2-8x -1x 2-1 x 2-2 =Ax +B x 2-1+Cx +Dx 2-2其中A 、B 、C 、D 为常数,则A ⋅B ⋅C ⋅D =.【答案】-24【分析】此题主要考查了分式的加减运算,先对Ax +B x 2-1+Cx +D x 2-2进行计算,然后根据题意列出关于A 、B 、C 、D 的方程组即可解决问题,解题的关键是熟练掌握分式的运算及法则的应用.【详解】解:6x 3+2x 2-8x -1x 2-1 x 2-2 =A +C x 3+B +D x 2-2A +C x -2B +D x 2-1 x 2-2 Ax +B x 2-1+Cx +Dx 2-2=Ax +B x 2-2 x 2-1 x 2-2 +Cx +D x 2-1 x 2-1 x 2-2=A +C x 3+B +D x 2-2A +C x -2B +Dx 2-1 x 2-2,∵6x 3+2x 2-8x -1x 2-1 x 2-2 =Ax +B x 2-1+Cx +D x 2-2,∴A +C =6,B +D =2,2A +C =8,2B +D =1,解得A =2,B =-1,C =4,D =3,∴A ⋅B ⋅C ⋅D =2×-1 ×4×3=-24,故答案为:-24.4(2024·全国·八年级竞赛)已知实数x ,y 满足条件1x -1y =2x +y ,则代数式y 2x -x2y=.【答案】1【分析】本题主要考查代数式求值,先将1x -1y =2x +y 变形为2xy =y -x y +x ,再把y 2x -x2y变形为y -x y +x2xy,然后代入计算即可.【详解】解:∵1x -1y =2x +y,∴2xy =y -x y +x ,∴y 2x -x 2y=y2-x2 2xy=y-xy+x2xy=y-xy+xy-xy+x=1,故答案为:1.5(2024·全国·七年级竞赛)已知实数a、b、c满足等式a2013=b2014=c2015,且2a+b-c=8050,则a-b+12c+1=.【答案】2014【分析】本题考查了分式的化简求值,代数式求值;解题的关键是令a2013=b2014=c2015=k求出a、b、c的值.令a2013=b2014=c2015=k,求得a=2013k,b=2014k,c=2015k,结合题意求出a、b、c的值,代入即可求解.【详解】解:设a2013=b2014=c2015=k,故a=2013k,b=2014k,c=2015k,则2a+b-c=2×2013k+2014k-2015k,即2×2013k+2014k-2015k=8050,解得:k=2;∴a=4026,b=4028,c=4030,∴a-b+12c+1=4026-4028+12×4030+1=2014.故答案为:2014.6(2024·全国·八年级竞赛)已知实数x、y、z满足下列等式:xyx+y =1b-1,yzy+z=1b,xzx+z=1b+1,那么代数式xyzxy+xz+yz的值为.【答案】1 6【分析】本题考查了分式的混合运算,熟练掌握分数的混合运算法则是解题的关键.根据分式的性质将分式适当变形后进行计算即可.【详解】由题意知xy、yz、xz都不为零,∴x+yxy=b-1 y+zyz=bx+zxz=b+1,即1x+1y=3 1y+1z=4 1x+1z=5,∴1x +1y +1z =6,即xy +yz +xz xyz =6,∴xyz xy +xz +yz =16.故答案为:16.7(2024·全国·八年级竞赛)已知三个数x ,y ,z 满足xy x +y =2015,yz y +z =43,zx z +x =-43,则xyzxy +yz +zx 的值为.【答案】4030【分析】本题考查分式的化简求值,灵活运用分式的运算法则是解答的关键.将所有分式的分子和分母颠倒位置,然后利用分式的混合运算法则化简求解即可.【详解】解:将所有分式的分子和分母颠倒位置,则由xy x +y =2015得x +y xy =1x +1y =120151 ,由yz y +z =43得y +z yz =1y +1z =342 ,由zx z +x =-43得x +z xz =1x +1z =-343 ,三式相加得21x +1y +1z=12015,则1x +1y +1z =xy +yz +zx xyz =12⋅12015=14030,∴xyzxy +yz +zx=4030.8(2024·全国·八年级竞赛)如图,将一张矩形卡片按图1所示的方式分成四块后,恰好能拼成图2所示的矩形,若S ①:S ③=1:5,则a :b =.【答案】2∶3【分析】本题主要考查了整式混合运算的应用,求比值,解题的关键是理解题意,根据S ①:S ③=1:5,得出S 矩形ABFE :S 矩形EFCD =1:5,求出AE ED=15,设AE =x ,则ED =5x ,得出a +b x +5x =b ⋅5x +5x ,求出3a =2b ,即可求出结果.【详解】解:如图所示,∵S ①:S ③=1:5,∴S 矩形ABFE :S 矩形EFCD =1:5,∴a +b ⋅AE a +b ⋅ED=15,∴AE ED=15,设AE =x ,则ED =5x ,∴a +b x +5x =b ⋅5x +5x ,整理得:3a =2b ,∴a :b =2:3.故答案为:2:3.9(2024·全国·八年级竞赛)对于正数x ,规定f x =x x +1,例如f 1 =11+1=12,f 2 =22+1=23,f 12 =1212+1=13,则f 12017 +f 12016 +⋯+f 12 +f 1 +f 2 +⋯+f 2016 +f 2017 =.【答案】40332【分析】本题考查代数式求值,分式的加法以及数字类规律探究,理解新定义函数的意义,掌握数字所呈现的规律是解决问题的关键.利用加法结合律以及探究所得规律得出答案.【详解】解:∵f x =xx +1,∴f x +f 1x =x x +1+1x1x+1=x x +1+1x +1=1,∴f 12017+f 12016 +⋯+f 12 +f 1 +f 2 +⋯+f 2016 +f 2017 =f 12017 +f 2017 +f 12016 +f 2016 +⋯+f 12 +f 2+f 1 =2016+11+1=40332.故答案为:40332.10(2024·全国·八年级竞赛)若x 为正数,且x -1x =3,则x x 2-x +1=.【答案】13+112【分析】先求出x 2+1x 2=11,再求出x +1x =13,最后整体代入x x 2-x +1=1x -1+1x进求解即可,此题考查了分式的运算和二次根式的运算,熟练掌握运算法则和灵活变形是解题的关键.【详解】解:∵x 为正数,且x -1x=3,∴x -1x 2=9,x +1x >0,即x 2+1x 2=11,∴x +1x 2=x 2+1x 2+2=13,∴x +1x =13,∴x x 2-x +1=1x -1+1x =113-1=13+112,故答案为:13+11211(2024·全国·八年级竞赛)已知x =2y +33y -2,则3x -2 3y -2 的值为.【答案】13【分析】本题考查了分式的混合运算,多项式乘以多项式,根据x 的值和题中式子即可求解,根据解题的关键是明确它们各自的计算方法.【详解】解:∵x =2y +33y -2,∴3x -2=6y +93y -2-2=6y +9-6y +43y -2=133y -2,∴3x -2 3y -2 =133y -2×3y -2 =13,故答案为:13.12(2024·全国·八年级竞赛)比较大小:22000+122001+1-22001+122002+10(填“>”、“=”或“<”).【答案】>【分析】本题考查了实数的比较大小,异分母分式的运算.熟练掌握以上知识点并灵活运用是解题的关键.设a =22000,根据22000+122001+1-22001+122002+1=a +12a +1-2a +14a +1=a 8a 2+6a +1>0作答即可.【详解】解:设a =22000,∴22000+122001+1-22001+122002+1=a +12a +1-2a +14a +1=a 8a 2+6a +1>0,故答案为:>.13(2024·全国·八年级竞赛)已知11的小数部分为a .则a 2-6a +9a 2+7a +12÷a -3a +4-aa +3=.【答案】-31111/-31111【分析】本题考查了分式的混合运算,无理数的估算,分母有理化,先根据分式的运算法则把所给代数式化简,再求出a 的值,然后代入化简后的结果计算即可.【详解】解:a 2-6a +9a 2+7a +12÷a -3a +4-aa +3=a -3 2a +3 a +4 ×a +4a -3-a a +3=a -3a +3-a a +3=-3a +3,∵3<11<4,∴11的整数部分3,∴a =11-3.∴-3a +3=-31111.故答案为:-31111.14(2024·全国·八年级竞赛)函数y =x -4-2-x -3x -5的自变量x 的取值范围是.【答案】x ≥3且x ≠4且x ≠5【分析】本题考查确定函数自变量取值范围.熟练掌握负整指数幂有意义的条件,二次根式有意义的条件,分式有意义的条件是解题的关键.根据题意得不等式组x -3≥0x -4≠0,x -5≠0求解即可.【详解】解:根据题意,得x -3≥0x -4≠0,x -5≠0∴x ≥3且x ≠4且x ≠5.故答案为:x ≥3且x ≠4且x ≠5.15(2024·全国·八年级竞赛)如果对于分式3x 2+4x +m,存在两个数使分式没有意义,则m 的取值范围是.【答案】m <4【分析】本题主要考查了分式有意义的条件、一元二次方程根的判别式等知识点,理解分式有意义的条件是解题的关键.由存在两个数使分式没有意义,则对于x 2+4x +m =0的判别式Δ>0,据此列不等式求解即可.【详解】解:∵分式3x 2+4x +m,存在两个数使分式没有意义,∴x 2+4x +m =0有两个解,∴Δ=42-4m >0,解得:m <4,∴当m <4时,存在两个实数使原式没有意义.故答案为m <4.二、单选题16(2024·全国·九年级竞赛)要使式子x +6x有意义,则x 的取值范围是()A.x ≥-6B.x ≠0C.x >6D.x ≥-6且x ≠0【答案】D【分析】本题主要考查了二次根式有意义的条件,分式有意义的条件.熟练掌握概念是解题的关键.分子上的二次根式要有意义,根号里面的式子为非负数,且分母不为零,分别求解满足条件的x 值.【详解】∵式子x +6x有意义,∴x +6≥0,x ≠0,∴x ≥-6且x ≠0.故选:D .17(2024·全国·八年级竞赛)已知1x +1y =2,则2x +3xy +2y 3x -2xy +3y的值为()A.74B.72C.5D.12【答案】A【分析】本题考查分式的化简求值,根据1x +1y =2得x +y =2xy ,再将2x +3xy +2y 3x -2xy +3y的分子分母变形为含xy 的式子,即可解题.【详解】解:由1x +1y=2得x +y =2xy ,则2x +3xy +2y 3x -2xy +3y =2x +y +3xy 3x +y -2xy =7xy 4xy =74.故选:A .18(2024·全国·八年级竞赛)已知实数x ,y 满足x +y =2,xy =-5,则xy +y x 的值为( ).A.65B.-145C.-65D.-45【答案】B【分析】本题考查了分式的化简求值,配方法,熟练掌握完全平方公式是解答本题的关键.先将xy +y x通分,然后将分子配方,并将分式化简成只含x +y ,xy 的代数式,最后将x +y ,xy 的值代入并计算即得答案.【详解】xy +y x =x 2+y 2xy=x 2+2xy +y 2-2xy xy=(x +y )2xy -2,当x +y =2,xy =-5时,原式=22-5-2=-145.故选B.19(2024·全国·八年级竞赛)若分式x-1x -2的值为正数,则x的取值范围是()A.1<x<2或x<-2B.x<-2或x>2C.-2<x<1或x>2D.-2<x<2【答案】C【分析】根据题意列出不等式组,解不等式组则可.此题考查分式的值,解不等式组,解题关键在于根据题意列出不等式组.【详解】解:∵分式x-1x -2的值为正数,∴x -2>0x-1>0或x -2<0x-1<0,解得:-2<x<1或x>2.故选:C.20(2024·全国·七年级竞赛)灰太狼在跑一段山路时,上山速度是80米/分,到达山顶后再下山,下山的速度是上山速度的3倍,如果上、下山的路程相同,那么灰太狼跑这段山路的平均速度是()A.160米/分B.140米/分C.60米/分D.120米/分【答案】D【分析】本题考查了分式乘除的应用,整式加减的应用,正确理解题中的数量关系是解答本题的关键,设上坡的路程为S,则上、下坡的总路程为2S,可逐步求得上下坡的总时间,最后利用平均速度等于上、下坡的总路程除以总时间,计算即得答案.【详解】设上坡的路程为S,则上、下坡的总路程为2S,上坡时间为S80,下坡时间为S80×3=S240,总时间为S80+S240=S60,所以平均速度为2S÷S60=120(米/分).故选D.21(2024·全国·八年级竞赛)若xx2+x+1=15,则x2x4+x2+1=()A.5B.115C.4 D.14【答案】B【分析】本题考查分式的化简求值和完全平方公式,根据xx2+x+1=15得出x+1x=4,再将x2x4+x2+1变形为1x+1x2-1,将x+1x=4整体代入求值即可.【详解】解:∵xx2+x+1=1x+1x+1=15,∴x+1x=4,∴x2x4+x2+1=1x2+1x2+1=1x+1x2-1=142-1=115,故选B.22(2024·全国·八年级竞赛)若x2-3x+1=0,则x2x4+x2+1的值是( ).A.8B.110C.18D.14【答案】C【分析】本题考查了分式的混合运算,完全平方公式变形求值,换元法,由x2-3x+1=0得到x2+1x2=7,设x2x4+x2+1=A,得到1A=x2+1x2+1,代入即可求解,掌握完全平方公式是解题的关键.【详解】解:由x2-3x+1=0知x≠0,∴x+1x=3,∴x2+1x2=7,设x2x4+x2+1=A,则1A=x2+1x2+1=8,∴A=18,即x2x4+x2+1=18,故选:C.三、解答题23(2024·全国·九年级竞赛)若x-3x-2=13+2+1,求1-1x-2÷x-4+1x-2的值.【答案】3+2【分析】本题考查了分式的化简求值,涉及整体代入法;先化简分式,再由x-3x-2=13+2+1,得到x-2 x-3=3+2+1,变形为1+1x-3=3+2+1,即可求得1x-3的值.关键是由已知变形求得1x-3.【详解】解:1-1 x-2÷x-4+1x-2=x-3 x-2÷x2-6x+9x-2=x-3 x-2·x-2 x-3 2=1x-3;∵x-3 x-2=13+2+1,∴x-2x-3=3+2+1,∴1+1x-3=3+2+1,∴1x-3=3+2,即原式=3+2.24(2024·全国·九年级竞赛)已知实数a 满足a 2+2a -2016=0,求a 2-2a +1a 2+5a +4×a +4a 2-1-1a +1的值.【答案】-22017.【分析】此题考查了分式的化简求值,先把要求的式子进行计算,先进行因式分解,再把除法转化成乘法,然后进行约分,得到一个最简分式,最后把a 2+2a -2016=0进行配方,得到a +1 2=2017的值,再把它整体代入即可求出答案,解题的关键是熟练掌握分式化简的步骤.【详解】解:由a 2+2a -2016=0可得(a +1)2=2017,a 2-2a +1a 2+5a +4×a +4a 2-1-1a +1=(a -1)2a +1 a +4 ×a +4a -1 a +1-1a +1,=a -1(a +1)2-1a +1,=-2(a +1)2,=-22017.25(2024·全国·八年级竞赛)先化简,再求值:x 2-1x 2+x÷x +1x -2 ,其中x =2.【答案】1x -1,2+1【分析】本题考查了分式的混合运算以及分母有理化,解答时,先进行分式运算,再代入求值即可.【详解】解:x 2-1x 2+x÷x +1x -2 =x -1 x +1 x x +1 ÷x 2+1-2x x =x +1 x -1x x +1÷x -12x =x +1 x -1 x x +1 ⋅x x -1 2=1x -1,当x =2时,原式=12-1=2+1.26(2024·全国·八年级竞赛)如图1,有一个高为hcm 的瓶子,瓶中水面的高度为acm ,盖好瓶盖后倒置,这时瓶中水面的高度为bcm ,如图2,用代数式表示瓶中水的体积与瓶子容积之比;当a =9,b =15,h =21时,求出这个比值.【答案】a a +h -b ,35【分析】此题考查圆柱体体积的应用,解题的关键是理解掌握“转化”的思想方法在推导过程中的应用.根据“瓶子容积等于正放时水的体积加倒放时空白的体积”,即可列式;瓶子容积等于正放时水的体积加倒放时空白的体积,即底面积×9+底面积×21-15 ,也就是底面积×15;水的体积为底面积×9,即可得到答案.【详解】解:瓶子容积等于正放时水的体积加倒放时空白的体积,设瓶子的底面积为S ,即Sa +S h -b ;水的体积为Sa ,∴瓶中水的体积与瓶子容积之比为Sa Sa +S h -b=aa +h -b ,∵瓶子的容积=底面积×9+底面积×21-15 =底面积×15,水的体积=底面积×9,∴瓶中水的体积:瓶子容积=(底面积×9):(底面积×15)=35,答:这个比值是35.27(2024·全国·八年级竞赛)(1)求证:1+1n 2+1(n +1)2=1+1n 2+n2;(2)计算:1+112+122+1+122+132+⋯+1+120162+120172.【答案】(1)证明见解析(2)201620162017【分析】本题主要考查了分式的化简求值,数字规律的运算;对于(1),先将等式左边通分,再根据完全平方公式整理可得答案;对于(2),先根据(1)整理得1+1n 2+1n +1 2=1+1n n +1 =1+1n -1n +1,再计算加减即可得出答案.【详解】(1)解:1+1n 2+1n +12=n 2n +1 2+n +1 2+n 2n 2n +1 2=n 2n +1 2+2n n +1 +1n 2n +1 2=n n +1 +1n n +12=1+1n 2+n2;(2)由(1)可知1+1n 2+1n +1 2=1+1n n +1=1+1n -1n +1,则原式=1+11-12+1+12-13+1+13-14+⋯+1+12016-12017=1×2016+1-12017=201620162017.28(2024·全国·八年级竞赛)(1)计算24×13-4×18×(2015-2016)0;(2)先化简,再求值:x 2-y 2x 2-2xy +y 2+xy -x÷y 2x 2-xy,其中x 、y 满足x +1+(y -3)2=0.【答案】(1)2(2)化简得:x y ;原式=33【分析】本题考查有理数的运算和分式的化简求值,熟练掌握二次根式的运算和正确化简分式是解题的关键,(1)根据二次根式的运算法则和零指数幂即可得到结果;(2)直接利用括号里面因式分解进行化简,再利用分式乘除运算法则化简,再根据二次根式、绝对值的性质得出x 、y 的值,进行代入求出答案.【详解】解:(1)原式=26×33-4×24×1=22-2=2;(2)原式=x -y x +y x -y2+x y -x ×x x -y y 2=x +y x -y -xx -y×x x -y y 2=yx -y ×x x -y y 2=x y.∵x +1+(y -3)2=0,∴x -1=0,y -3=0,∴x =1,y =3,故原式=x y =13=33.29(2024·全国·七年级竞赛)已知a 、b 、c 均为大于1的正整数,且1a <1b <1c ,1a +1b +1c -1abc为正整数.求a +b +c 的值.【答案】10【分析】本题考查异分母分式的加减,先得出1<1a +1b+1c <3c ,求出c =2,进而得出a =4或5,当a =4,b =3,c =2时,1a +1b +1c -1abc =2524(舍).当a =5,b =3,c =2时,1a +1b +1c -1abc=1,进而可得出答案.【详解】解:因为1a +1b +1c -1abc 为正整数,且a 、b 、c 为大于1的正整数,1a <1b <1c ,所以1<1a +1b+1c <3c ,得1<c <3,所以c =2,∴1a +1b >1-1c =12,得12<1a +1b <2b ,所以c <b <4,∴b =3.∴1a >1-1b -1c =16,得b <a <6,所以a =4或5,当a =4,b =3,c =2时,1a +1b +1c -1abc =2524(舍).当a =5,b =3,c =2时,1a +1b+1c -1abc=1,所以a +b +c =5+3+2=10.30(2024·全国·八年级竞赛)如果a 、b 、c 是不同的实数,且a 3+3a +15=b 3+3b +15=c 3+3c +15=0,求1a +1b+1c 的值.【答案】-15【分析】本题考查分式的求值,根据a 3+3a +15=b 3+3b +15=c 3+3c +15=0,得到a 、b 、c 都是方程x 3+3x +15=0的根,进而得到x 3+3x +15=x -a x -b x -c ,推出abc =-15,ab +bc +ac =3,即可得出1a +1b+1c 的值.解题的关键是得到x 3+3x +15=x -a x -b x -c .【详解】解:1a +1b +1c =ac +bc +acabc,∵a 、b 、c 是不同的实数,且a 3+3a +15=b 3+3b +15=c 3+3c +15=0,∴a 、b 、c 都是方程x 3+3x +15=0的根.∴x 3+3x +15=x -a x -b x -c ,∴abc =-15,ab +bc +ac =3.∴1a +1b+1c =3-15=-15.31(2024·全国·八年级竞赛)求值:12+13+14+15+1⋯+12007+11+11+13+14+15+1⋯+【答案】1【分析】本题考查了繁分式的计算,设1+13+14+1⋯+12007=x ,变形计算即可.【详解】解:设1+13+14+1⋯+12007=x ,则原式=11+x +11+1x=11+x +x x +1=1+x1+x =1.32(2024·全国·八年级竞赛)设a ,b ,c 都是实数,若(a -2b +c )2+(a -2c +b )2+(b -2a +c )2=(a -b)2+(b-c)2+(c-a)2,求分式2ab2+7(2ab+6)2bc2+7(bc+3)的值.【答案】2【分析】本题主要考查了分式化简求值,解题的关键是熟练掌握分式的性质.设a-b=x,b-c=y,c-a =z,得出x2+y2+z2-2xy-2yz-2zx=0①,x+y+z2=x2+y2+z2+2xy+2yz+2zx=0②,由①+②得x2+y2+z2=0,求出x=y=z=0,则a=b=c,代入进行变形求值即可.【详解】解:设a-b=x,b-c=y,c-a=z,由已知得:(x-y)2+(y-z)2+(z-x)2=x2+y2+z2,故x2+y2+z2-2xy-2yz-2zx=0,①又x+y+z=a-b+b-c+c-a=0,故x+y+z2=x2+y2+z2+2xy+2yz+2zx=0,②①+②得x2+y2+z2=0,故x=y=z=0,则a=b=c,∴原式=22a3+7a2+32a3+7a2+3=2.。

初中数学竞赛---代数式竞赛50道综合题练习(含答案解析)


16.(2021·全国·九年级竞赛)分解因式: (c a)2 4(b c)(a b) . 【答案】 (a c 2b)2 【详解】解法一 原式 (c2 2ca a2 ) 4(ab b2 ac bc) (c2 2ca a2 ) (4ab 4bc) 4b2 (a c)2 4b(a c) (2b)2 (a c 2b)2 . 解法二 原式 [(c b) (a b)]2 4(c b)(a b) (c b)2 2(c b)(a b) (a b)2 4(c b)(a b) (c b)2 2(c b)(a b) (a b)2 [(c b) (a b)]2 (a c 2b)2 .
17.(2021·全国·九年级竞赛)分解因式: x2 (x a)2 a2x2 a2 (x a)2 . 【答案】 (x2 ax a2 )2 【详解】解法一 原式 [x2 (x a)2 a2 (x a)2 ] a2x2 (x2 a2 )(x a)2 a2 x2 (x2 a2 )(x2 2ax a2 ) a2 x2 (x2 a2 )2 2ax(x2 a2 ) (ax)2 (x2 a2 ax)2 (x2 ax a2 )2 . 解法二 原式 x2[(x a)2 a2 ] a2 (x a)2 x2 (x2 2ax 2a2 ) a2 (x a)2 (x2 )2 2x2 a(x a) [a(x a)]2 [x2 a(x a)]2 (x2 ax a2 )2 .
4.(2021·全国·九年级竞赛)
1
1
的值为( ).
4 59 30 2 3 66 40 2
A.无理数 【答案】D
B.真分数
C.奇数
D.偶数
【详解】原式
1
1
4 (5 2)2 25 2 3 32 3 (5 2)2 25 2 4 42
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初中数学竞赛试题二、填空题 1、 41-的负倒数与4-的倒数之和等于 . 2、 甲、乙、丙、丁四个数之和等于90-.甲数减4-,乙数加4-,丙数乘4-,丁数除以4-彼此相等.则四个数中的最大的一个数比最小的一个数大 .3、 已知a 1999=,则=-+---+-200133314232323a a a a a a .4、 填数计算:〇中填入的最小的自然数.△中填入最小的非负数.□中填入不小于5-且小于3的整数的个数.将下式的计算结果写在等号右边的横线上.(〇+□)⨯△= .5、 从集合}5,4,1,2,3{---中取出三个不同的数,可能得到的最大乘积填在□中,可能得到的最小乘积填在〇中,并将下式计算的结果写在等号右边的横线上.-(-□)÷〇= .6、 计算:=------------)4151()3141()2131(1)4151()3141()2131(1 . 7、 x 是有理数,则22195221100++-x x 的最小值是 . 8、 如图,C 是线段AB 的中点,D 是线段AC 的中点.已知图中所有线段的长度之和为23,则线段AC 的长度为 .9、 在1000到5000之间同时被24,36,30整除的最小整数是_________,最大整数是__________.10、 一个有理数的倒数的相反数的3倍是31,那么这个有理数是 . 11、 一个有理数的二次幂大于这个有理数,那么这样的有理数的取值范围是 .12、 若8919+=+=+c b a ,则=-+-+-222)()()(a c c b b a .13、 a 1的倒数是51-,那么=a _____. 14、 小丽写出三个有理数,其中每两个有理数的平均值分别是326,217,7,那么这三个有理数的平均值是 .15、 计算:=--+-)36173)(72.0()722(125.11.16、 m ,y 互为相反数,n 和y 互为倒数,则5)(y my n -的值是_____.17、 已知1171=x ,则3)114(3)711)(1(2++--x x x 的值是 . 18、 已知52,32<-<-b a a b .则化简98272-+++-----b a a b a b 所得的结果是 .19、 m ,n 是正整数,mn =120,则m +n 可能取到的最小值是_____.20、 若a=1997,则7122----+a a a a 的值是 .21、 若x = -0.239,则199********-------++-+-x x x x x x 的值等于_____.参考答案二、填空题1、 417- 解:41-的负倒数为411--,4-的倒数为41-, 二者之和为:411--+41-417414-=--=.2、 204解:设等数为a ,则 90)4()4()]4([)]4([-=-⨯+-+--+-+a a a a 即90412-=-a ,∴ a =40, 因此,甲数为36,乙数为44,丙数为-10,丁数为-160,其中,最大数-最小数=44-(-160)=204.3、 4000000 解:当a 1999=时,142314232323-+-=-+-a a a a a a=-+-200133323a a a 200133323-+-a a a ,所以,原式=142323-+-a a a )2001333(23-+--a a a2000200019992000)1(20002+⨯=++=++=a a a a400000020002000=⨯=.4、 0解:〇中填1,△中0,□填8. []⎣⎦⎡⎤00)81(=⨯+.5、 ⎣⎦⎡⎤2160)30(-=÷-- 解:由-3,-2,-1,4,5中任取三个相乘可得10种不同的乘积,它们是:124)1)(3(,205)2)(3(,244)2)(3(,6)1)(2)(3(=⋅--=⋅--=⋅--=---,105)1)(2(,84)1)(2(,6054)3(,155)1)(3(=⋅--=⋅---=⋅⋅-=⋅--,2054)1(,4054)2(-=⋅⋅--=⋅⋅-,最大乘积是30,最小的乘积是-60.∴ ⎣⎦⎡⎤2160)30(-=÷--.6、 137 解:)4151()3141()2131(1)4151()3141()2131(1------------ )4151()3141()2131(1)]4151([)]3141([)]2131([1---------------= )4151()3141()2131(1)4151()3141()2131(1-------+-+-+= 41513141213114151314121311+-+-+--+-+-+= 13710131075121151211==-++-=.7、 1715 解:一般解法是分三种情况讨论:(1)当22195-<x 时 ,,(2)当22110022195≤≤-x 时 ,,(3)当221100>x 时 ,.综合(1),(2),(3)可得,最小值是1715.最简单的解法是:根据绝对值的几何意义,22195221100++-x x 表示数轴上x 对应的点P 到22195-对应的点A 和221100对应的点B 的距离之和,易知当P 在线段AB 上时,P A +PB 最小值为2211001715)22195(=--.8、 1373 解:设线段AC 的长度为x ,则AD =2x ,则AB =2x ,DC =2x ,DB =x 23,CB =x ,所以 232321221=+++++x x x x x x ,即23213=x .∴13731346==x .即AB 长度为1373.9、 4680解:24,30,36三个数的最小公倍数是360,10803360=⨯,∴大于10000且能被24,30,36整除的最小整数是1080,又36010805000⋅+>n ,其中n 为自然数,解得9810<n .∴取10=n ,得4680360101080=⋅+.∴具有这种性质的最大整数是4680. 10、 -9 解:利用还原算法:某数a 的3倍是31,显然91=a ,而91应是一个有理数倒数的相反数,所以这个有理数的倒数为91-,故这个有理数是-9.11、 大于1的有理数和负有理数解:画出数轴如图.大于1的有理数的二次幂大于它自身;1的二次幂等于1;大于0且小于1的有理数的二次幂小于它本身;0的二次幂是0;负有理数的二次幂是正数,大于它自身.综上可知,二次幂大于其自身的有理数的范围,是大于1的有理数和负有理数.12、 222解:由8919+=+=+c b a 得:11,1,10=--=--=-a c c b b a .∴+-+-22)()(c b b a =-2)(a c 222121110011)1()10(222=++=+-+-.13、 51- 解:a 1的倒数是51-,那么a 1=-5,51-=a .14、 1817 解:设小丽写出的三个有理数为x ,y ,z ,则3262,2172,72=+=+=+z y z x y x , 所以15,340,14=+=+=+x z z y y x ,三式相加,3127)(2=++z y x , 则1817181273==++z y x .15、 -14解:因为2179167212518511.125(2)(0.72)(3)73687100367214-+--=-+=-+=-. 所以原分式的值为-14.16、 0解:由m 和y 互为相反数,知m = -y ,由n 和y 互为倒数,知道0,0≠≠y n 且yn 1= ∴0=-=-y y y y y m y n ,故5)(ym y n -=0. ∴17、 38 解:由1171=x ,可知2114,1171=+=-x x ,所以原式= 37772(1117)322113838111111-+=+=.18、 -6解:由32<-a b ,得03272<--<--a b a b .由52<-b a ,得052>+-a b ,得 05282>+->+-a b a b .而853)2()2(=+<-+-=+b a a b a b . 089<-+<-+∴a b b a98272-+++-----b a a b a b9)()82()72(-+-+----=b a a b a b987+--=6-=.19、 22解:由222)(1204)(4)(n m n m mn n m -+⋅=-+=+当2)(n m -愈小时,2)(n m +越小,从而m +n 也愈小,m 、n 为120的约数,且n m -要最小,由53222120⋅⋅⋅⋅==mn所以,当m =12,n =10时,m +n =22为最小值.20、 4000解:当a =1997时,0719971997,011997199722>-->-+7122----+a a a a)7()1(22----+=a a a a7122++--+=a a a a62+=a4000619972=+⋅=.21、 999解:由b a x <≤,可得a b a x b x -=---,则原式)19961997()23()1(---++---+--=x x x x x x)19961997()23()01(-++-+-=个99921998111=÷+++= 999=.。

相关文档
最新文档