高三物理动量、能量计算题专题训练

合集下载

2023版新教材高考物理微专题小练习专题41动量和能量的综合应用

2023版新教材高考物理微专题小练习专题41动量和能量的综合应用

专题41 动量和能量的综合应用1.[2022·九师联盟质量检测]如图所示,质量为M的小车置于光滑的水平面上,车的上表面粗糙,有一质量为m的木块以初速度v0水平地滑至车的上表面,若车足够长,则木块的最终速度大小和系统因摩擦产生的热量分别为( )A.Mv0m+MmMv22(m+M)B.Mv0m+MmMv2m+MC.mv0m+MmMv22(m+M)D.mv0m+MmMv2m+M2.(多选)如图所示,两物体A、B用轻质弹簧相连静止在光滑水平面上,现同时对A、B两物体施加等大反向的水平恒力F1、F2,使A、B同时由静止开始运动.在以后的运动过程中,关于A、B两物体与弹簧组成的系统,下列说法正确的是(整个过程中弹簧不超过其弹性限度)( )A.虽然A、B两物体会有加速运动,但它们的总动量保持不变B.在以后的运动过程中F1、F2一直做正功,系统的机械能一直在增大C.当弹簧弹力的大小与F1、F2的大小相等时,A、B两物体总动能最大D.当弹簧弹力的大小与F1、F2的大小相等时,弹簧弹性势能最大3.[2022·山东省德州市期中]如图所示,光滑水平面上静止着一长为L的平板车,一人站在车尾将一质量为m的物体水平抛出,物体恰好落在车的前端.物体可看做质点,抛出位置位于车尾正上方,距车上表面的竖直高度为h ,不计空气阻力,已知人和车的总质量为M,重力加速度为g ,物体水平抛出时获得的冲量大小为( )A.mLg2hB.MLg2hC.m2LM+mg2hD.MmLM+mg2h4.[2022·八省八校第一次联考](多选)内部长度为L、质量为M的木箱静止在光滑的水平面上,木箱内部正中间放置一可视为质点的质量为m的木块,木块与木箱之间的动摩擦因数为μ.初始时木箱向右的速度为v0,木块无初速度.木箱运动的v­t图像如图所示,所有碰撞均为弹性碰撞且碰撞时间极短,重力加速度为g,则在0~t0时间内,下列说法正确的是( )A.M=2mB.M与m间的相对路程为v2 04μgC.M对地的位移为v2 08μg +32LD.m对地的位移为3v28μg -32L5.[2022·江苏盐城期末]如图所示,光滑水平面上甲、乙两球间粘少许炸药,一起以速度0.5 m/s向右做匀速直线运动.已知甲、乙两球质量分别为0.1 kg和0.2 kg.某时刻炸药突然爆炸,分开后两球仍沿原直线运动,从爆炸开始计时经过3.0 s,两球之间的距离为x=2.7 m,则下列说法正确的是( )A.刚分离时,甲、乙两球的速度方向相同B.刚分离时,甲球的速度大小为0.6 m/sC.刚分离时,乙球的速度大小为0.3 m/sD.爆炸过程中释放的能量为0.027 J6.[2022·湖南省五市十校联考]如图所示,质量为M的小车静止在光滑的水平面上,小车AB段是半径为R的四分之一光滑圆弧轨道,BC段是水平粗糙轨道,两段轨道相切于B 点.一质量为m的滑块(可视为质点)从小车上的A点由静止开始沿轨道滑下,然后滑入BC 轨道,最后恰好停在C点.已知M=3m,滑块与轨道BC间的动摩擦因数为μ,重力加速度为g.则下列说法正确的是( )A.滑块从A滑到C的过程中,滑块和小车组成的系统动量守恒B .滑块滑到B 点时的速度大小为2gRC .滑块从A 滑到C 的过程中,小车的位移大小为13(R +L) D .水平轨道的长度L =R μ7.[2022·湖北十堰高三阶段练习]如图所示,足够长的光滑水平直轨道AB 与光滑圆弧轨道BC 平滑连接,B 为圆弧轨道的最低点.一质量为1 kg 的小球a 从直轨道上的A 点以大小为4 m /s 的初速度向右运动,一段时间后小球a 与静止在B 点的小球b 发生弹性正碰,碰撞后小球b 沿圆弧轨道上升的最大高度为0.2 m (未脱离轨道).取重力加速度大小g =10 m /s 2,两球均视为质点,不计空气阻力.下列说法正确的是( )A .碰撞后瞬间,小球b 的速度大小为1 m /sB .碰撞后瞬间,小球a 的速度大小为3 m /sC .小球b 的质量为3 kgD .两球会发生第二次碰撞8.如图所示,静止在光滑水平面上的小车质量为M =20 kg .从水枪中喷出的水柱的横截面积为S =10 cm 2,速度为v =10 m /s ,水的密度为ρ=1.0×103kg /m 3.若水枪喷出的水从车后沿水平方向冲击小车的前壁,且冲击到小车前壁的水全部沿前壁流进小车中.试求:(1)当有质量为m =5 kg 的水进入小车时,小车的速度大小;(2)若将小车固定在水平面上,且水冲击到小车前壁后速度立即变为零,求水对小车的冲击力大小.专题41 动量和能量的综合应用1.C 木块在小车上表面滑动的过程中动量守恒,有mv 0=(M +m )v ,系统因摩擦产生的热量Q =12mv 20 -12(M +m )v 2,两式联立解得木块的最终速度v =mv 0M +m,摩擦产生的热量Q =mMv 22(M +m ),C 正确.2.AC 由题意,水平恒力F 1、F 2等大反向,则系统受合外力为零,总动量守恒,故A 正确;拉力与物体的运动方向相同,则F 1、F 2一直做正功,系统的机械能一直在增大,当物体减速为零后此时弹簧的弹力大于拉力,物体会反向运动,此时拉力与运动方向相反,都做负功则机械能减少,B 错误;当弹簧弹力的大小与F 1、F 2的大小相等后,弹力大于拉力,则物体减速运动,故弹力的大小与F 1、F 2的大小相等时,A 、B 两物体速度最大,总动能最大,C 正确;当弹簧弹力的大小与F 1、F 2的大小相等后,物体减速运动,但仍然会使弹簧继续伸长,弹性势能继续增大,D 错误.3.D 系统水平方向动量守恒,mv 1=Mv 2,有mx 1=Mx 2,且x 1+x 2=L ,解得x 1=ML M +m,x 2=mL M +m .由平抛运动的规律得h =12gt 2,x 1=v 1t ,由动量定理得I =mv 1,解得I =MmL M +m g 2h.4.BCD 由v ­t 图像可知木块与木箱最终共速,则mv 0=(M +m )v 02,得m =M ,则A 错;由能量守恒可得:12Mv 20 =12(M +m )v 20 4+μmgs ,得到两物体的相对路程为v 20 4μg,B 正确;由图知共碰撞三次,都是弹性碰撞,到共速为止所花总时间为t =v 0-v 02μg=v 02μg,则木箱运动的位移为32L +v 20 8μg ,木块相对地面的位移为3v 20 8μg -32L ,C 、D 正确.5.D 设甲、乙两球的质量分别为m 1、m 2,刚分离时两球速度分别为v 1、v 2,以向右为正方向,则由动量守恒得(m 1+m 2)v 0=m 1v 1+m 2v 2,根据题意有v 2-v 1=xt,代入数据可解得v 2=0.8 m/s ,v 1=-0.1 m/s ,说明刚分离时两球速度方向相反,故A 、B 、C 错误;爆炸过程中释放的能量ΔE =12m 1v 21 +12m 2v 22 -12(m 1+m 2)v 20 ,将v 2=0.8 m/s ,v 1=-0.1 m/s ,代入计算可得ΔE =0.027 J ,故D 正确.6.D 滑块从A 滑到C 的过程中水平方向动量守恒,竖直方向上合力不为零,系统动量不守恒,故A 错误;滑块刚滑到B 点时速度最大,取水平向右为正方向,由水平方向动量守恒定律和机械能守恒定律得0=mv m -Mv M ,mgR =12mv 2m +12Mv 2M ,解得v m =3gR2,v M = gR6,滑块滑到B 点时的速度为3gR2,故B 错误;设全程小车相对地面的位移大小为s ,根据题意可知全程滑块水平方向相对小车的位移为R +L ,则滑块水平方向相对地面的位移为x ′=R +L -s ,滑块与小车组成的系统在水平方向动量守恒,取水平向右为正方向,在水平方向,由动量守恒定律得m (R +L -s )-Ms =0.已知M =3m ,解得s =14(R +L ),x ′=34(R +L ),故C 错误;系统在水平方向动量守恒,以向右为正方向,对整个过程,由动量守恒定律得0=(m +M )v ′,解得v ′=0,由能量守恒定律得mgR =μmgL ,解得L =Rμ,故D 正确.7.C 由机械能守恒m b gh =12mv 2B 可得碰后小球b 在B 点的速度为v B =2 m/s ,故A 错误;由动量守恒定律可得m a v 0=m a v 1+m b v B ,由机械能守恒可得12m a v 20 =12m a v 21 +12m b v 2B ,联立求得m b =3 kg ,v 1=-2 m/s ,碰撞后瞬间,小球a 的速度大小为2 m/s ,故B 错误,C 正确;碰后a 球立刻向左运动,b 球先向右运动到最高点,再向左返回到平面上运动,两球速度大小相等,所以两球不会发生第二次碰撞,故D 错误.8.(1)2 m/s (2)100 N解析:(1)流进小车的水与小车组成的系统动量守恒,当流入质量为m 的水后,小车速度为v 1,则mv =(m +M )v 1代入数据解得v 1=2 m/s.(2)在极短的时间Δt 内,冲击小车的水的质量为Δm =ρSv Δt 根据动量定理-F Δt =0-Δmv 联立解得F =100 N .。

2020年高考物理复习:动量与能量综合 专项练习题(含答案解析)

2020年高考物理复习:动量与能量综合 专项练习题(含答案解析)

2020年高考物理复习:动量与能量综合专项练习题1.如图所示,在平直轨道上P点静止放置一个质量为2m的物体A,P点左侧粗糙,右侧光滑。

现有一颗质量为m 的子弹以v0的水平速度射入物体A并和物体A一起滑上光滑平面,与前方静止物体B发生弹性正碰后返回,在粗糙面滑行距离d停下。

已知物体A与粗糙面之间的动摩擦因数为μ=v2072gd,求:(1)子弹与物体A碰撞过程中损失的机械能;(2)B物体的质量。

2.如图所示,水平光滑地面的右端与一半径R=0.2 m的竖直半圆形光滑轨道相连,某时刻起质量m2=2 kg的小球在水平恒力F的作用下由静止向左运动,经时间t=1 s 撤去力F,接着与质量m1=4 kg以速度v1=5 m/s向右运动的小球碰撞,碰后质量为m1的小球停下来,质量为m2的小球反向运动,然后与停在半圆形轨道底端A点的质量m3=1 kg的小球碰撞,碰后两小球粘在一起沿半圆形轨道运动,离开B点后,落在离A点0.8 m的位置,求恒力F 的大小。

(g取10 m/s2)3.如图所示,半径为R的四分之三光滑圆轨道竖直放置,CB是竖直直径,A点与圆心等高,有小球b静止在轨道底部,小球a自轨道上方某一高度处由静止释放自A点与轨道相切进入竖直圆轨道,a、b小球直径相等、质量之比为3∶1,两小球在轨道底部发生弹性正碰后小球b经过C点水平抛出落在离C点水平距离为22R的地面上,重力加速度为g,小球均可视为质点。

求(1)小球b碰后瞬间的速度;(2)小球a 碰后在轨道中能上升的最大高度。

4.如图所示,一对杂技演员(都视为质点)荡秋千(秋千绳处于水平位置),从A 点由静止出发绕O 点下摆,当摆到最低点B 时,女演员在极短时间内将男演员沿水平方向推出,然后自己刚好能回到高处A .已知男演员质量为2m 和女演员质量为m ,秋千的质量不计,秋千的摆长为R ,C 点比O 点低5R .不计空气阻力,求:(1)摆到最低点B ,女演员未推男演员时秋千绳的拉力;(2)推开过程中,女演员对男演员做的功;(3)男演员落地点C 与O 点的水平距离s .5.如图所示,光滑水平面上放着质量都为m 的物块A 和B ,A 紧靠着固定的竖直挡板,A 、B 间夹一个被压缩的轻弹簧(弹簧与A 、B 均不拴接),用手挡住B 不动,此时弹簧弹性势能为92mv 20,在A 、B 间系一轻质细绳,细绳的长略大于弹簧的自然长度。

安徽庐江二中高三物理二轮复习----动量和能量(2)

安徽庐江二中高三物理二轮复习----动量和能量(2)

专题训练——动量和能量(2)一、单项选择题1.如图所示,图线表示作用在某物体上的合外力随时间变化的关系,若物体开始时是静止的,那么( )A .前3 s 内合外力对物体做的功为零B .前5 s 内物体的动能变化量为零C .在前5 s 内只有第1 s 末物体的动能最大D .在前5 s 内只有第5 s 末物体的速率最大2.质量为g k 1023⨯、发动机的额定功率为80kw 的汽车在平直公路上行驶,若汽车所受阻力大小恒为N 3104⨯,则下列说法错误的是( )A .汽车的最大速度是20m/sB .若汽车保持额定功率启动,则当其速度为5m/s 时,加速度为6m/s 2C .汽车维持加速度2m/s 2匀加速运动的时间最多为10sD .汽车以加速度2m/s 2匀加速启动,启动后第2s 末时发动机的实际功率是32kw3.如图甲所示,斜面AB 与水平面BC 是由同种材料制成的。

质量相等的可视为质点的a 、b 两物块,从斜面上的同一位置A 由静止开始下滑,经B 点在水平面上滑行一段时间后停止。

不计经过B 点时的能量损失,用传感器采集到它们的速度—时间图象如图乙所示,则由上述信息判断下列说法正确的是( )A .在斜面上滑行的加速度物块a 比物块b 的小B .在水平面上滑行的距离物块a 比物块b 的小C .与斜面间的动摩擦因数物块a 比物块b 的小D .在整个运动过程中克服摩擦力做的功物块a 比物块b 多4.如图所示,一条轻绳一端通过定滑轮悬挂一个质量为m 的重物,在另一端施加拉力F ,使重物从地面由静止开始加速向上运动。

当重物上升高度为h 时,轻绳断开,不计一切摩擦,则( )A .重物从开始向上加速到轻绳断开的过程中重力势能的增量为FhB .轻绳断开瞬间重物重力的瞬时功率为-2(F -mg )mg 2hC .重物上升过程中机械能守恒D .重物落地前瞬间的动能为Fh ﹢mgh5.质量分别为2m 和m 的A 、B 两球之间压缩一根轻弹簧,静置于光滑水平桌面上。

高中物理-动量和能量专题训练与解析(一)

高中物理-动量和能量专题训练与解析(一)

动量和能量专题限时训练1建议用时40分钟,实际用时________1.如图,长度x =5m 的粗糙水平面PQ 的左端固定一竖直挡板,右端Q 处与水平传送带平滑连接,传送带以一定速率v 逆时针转动,其上表面QM 间距离为L =4m ,MN 无限长,M 端与传送带平滑连接.物块A 和B 可视为质点,A 的质量m =1.5kg,B 的质量M =5.5kg.开始A 静止在P 处,B 静止在Q 处,现给A 一个向右的初速度v 0=8m/s ,A 运动一段时间后与B 发生弹性碰撞,设A 、B 与传送带和水平面PQ 、MN 间的动摩擦因数均为μ=0.15,A 与挡板的碰撞也无机械能损失.取重力加速度g =10m/s 2,求:(1)A 、B 碰撞后瞬间的速度大小;(2)若传送带的速率为v =4m/s ,试判断A 、B 能否再相遇,若能相遇,求出相遇的位置;若不能相遇,求它们最终相距多远.解析:(1)设A 与B 碰撞前的速度为v A ,由P 到Q 过程,由动能定理得:-μmgx =12mv 2A -12mv 20①A 与B 碰撞前后动量守恒,有mv A =mv A ′+Mv B ′②由能量守恒定律得:12mv 2A =12mv A ′2+12Mv B ′2③联立①②③式得v A ′=-4m/s ,v B ′=3m/s碰后A 、B 的速度大小分别为4m/s 、3m/s(2)设A 碰撞后运动的路程为s A ,由动能定理得:-μmgs A =0-12mv A ′2④s A =163m 所以A 与挡板碰撞后再运动s A ′=s A -x =13m ⑤设B 碰撞后向右运动的距离为s B ,则-μMgs B =0-12Mv B ′2⑥解得s B =3m<L ⑦故物块B 碰后不能滑上MN ,当速度减为0后,B 将在传送带的作用下反向加速运动,B 再次到达Q 处时的速度大小为3m/s.在水平面PQ 上,B 再运动s B ′=s B =3m 停止,s B ′+s A ′<5m ,所以A 、B 不能再次相遇.最终A 、B 的距离s AB =x -s A ′-s B ′=53m.答案:(1)4m/s 3m/s (2)不能相遇53m 2.如图所示,质量为6m 、长为L 的薄木板AB 放在光滑的平台上,木板B 端与台面右边缘齐平.B 端上放有质量为3m 且可视为质点的滑块C ,C 与木板之间的动摩擦因数为μ=13,质量为m 的小球用长为L 的细绳悬挂在平台右边缘正上方的O 点,细绳竖直时小球恰好与C 接触.现将小球向右拉至细绳水平并由静止释放,小球运动到最低点时细绳恰好断裂,小球与C 碰撞后反弹速率为碰前的一半.(1)求细绳能够承受的最大拉力;(2)若要使小球落在释放点的正下方P 点,平台高度应为多大;(3)通过计算判断C 能否从木板上掉下来.解析:(1)设小球运动到最低点的速率为v 0,小球向下摆动过程,由动能定理mgL =12mv 20得,v 0=2gL 小球在圆周最低点时拉力最大,由牛顿第二定律得:F T -mg =m v 20R解得:F T =3mg由牛顿第三定律可知,小球对细绳的拉力:F T ′=F T即细绳能够承受的最大拉力为:F T ′=3mg (2)小球碰撞后做平抛运动:竖直位移h =12gt 2水平分位移:L =v 02t 解得:h =L(3)小球与滑块C C 组成的系统动量守恒,设C 碰后速率为v 1,依题意有mv 0=m -v 023mv 1假设木板足够长,在C 与木板相对滑动直到相对静止过程中,设两者最终共同速率为v 2,由动量守恒得:3mv 1=(3m +6m )v 2由能量守恒得:12·3mv 21=12(3m +6m )v 22+μ·3mgs 联立解得:s =L 2由s <L 知,滑块C 不会从木板上掉下来.答案:(1)3mg (2)h =L (3)不能3.光滑水平面上有一质量m 车=1.0kg 的平板小车,车上静置A 、B 两物块。

高三物理动量、能量计算题专题训练

高三物理动量、能量计算题专题训练

动量、能量计算题专题训练1.(19分)如图所示,光滑水平面上有一质量M=4.0kg 的带有圆弧轨道的平板车,车的上表面是一段长L=1.5m 的粗糙水平轨道,水平轨道左侧连一半径R=0.25m 的41光滑圆弧轨道,圆弧轨道与水平轨道在O ′点相切。

现将一质量m=1.0kg 的小物块(可视为质点)从平板车的右端以水平向左的初速度v 0滑上平板车,小物块与水平轨道间的动摩擦因数μ=0.5。

小物块恰能到达圆弧轨道的最高点A 。

取g=10m/2,求:(1)小物块滑上平板车的初速度v 0的大小。

(2)小物块与车最终相对静止时,它距O ′点的距离。

(3)若要使小物块最终能到达小车的最右端,则v 0要增大到多大?2.(19分)质量m A =3.0kg .长度L =0.70m .电量q =+4.0×10-5C 的导体板A 在足够大的绝缘水平面上,质量m B =1.0kg 可视为质点的绝缘物块B 在导体板A 的左端,开始时A 、B 保持相对静止一起向右滑动,当它们的速度减小到0v =3.0m/s 时,立即施加一个方向水平向左.场强大小E =1.0×105N/C 的匀强电场,此时A 的右端到竖直绝缘挡板的距离为S =2m ,此后A 、B 始终处在匀强电场中,如图所示.假定A 与挡板碰撞时间极短且无机械能损失,A 与B 之间(动摩擦因数1μ=0.25)及A 与地面之间(动摩擦因数2μ=0.10)的最大静摩擦力均可认为等于其滑动摩擦力,g 取10m/s 2(不计空气的阻力)求:(1)刚施加匀强电场时,物块B 的加速度的大小?(2)导体板A 刚离开挡板时,A 的速度大小?(3)B 能否离开A ,若能,求B 刚离开A 时,B 的速度大小;若不能,求B 距A 左端的最大距离。

3.(19分)如图所示,一个质量为M 的绝缘小车,静止在光滑的水平面上,在小车的光滑板面上放一质量为m 、带电荷量为q 的小物块(可以视为质点),小车的质量与物块的质量之比为M :m=7:1,物块距小车右端挡板距离为L ,小车的车长为L 0=1.5L ,现沿平行车身的方向加一电场强度为E 的水平向右的匀强电场,带电小物块由静止开始向右运动,而后与小车右端挡板相碰,若碰碰后小车速度的大小是滑块碰前速度大小的14,设小物块其与小车相碰过程中所带的电荷量不变。

高考物理压轴计算题3动量与能量(学生版)

高考物理压轴计算题3动量与能量(学生版)

1如图所示,静置于水平地面的三辆手推车沿一直线排列,质量均为第一次与第二次碰撞系统动能损失之比.思考:动量什么时候守恒?举几个动量守恒的例子思考:碰撞类型有哪些?此题是哪种碰撞?方法点睛2如图所示,水平地面上发生完全非弹性碰撞,求、碰撞过程中损失的机械能.方法点睛3如图所示,在光滑水平面上有均可视为质点的达最大速度时,和的速度.以最大速度与小球相碰后,弹簧所具有的最大弹性势能.通过计算分析说明,小球能否跟小球发生第二次碰撞.记忆:三类碰撞公式推一波思考:弹簧水平相连的两球,一球主动,另一球随之而动。

分析此过程中,被动的球何时何时速度最大?两球共速的瞬间有何特点?若是竖直相连还一样吗?方法点睛4如图所示,在光滑水平面上放置方法点睛5如图所示,光滑水平面上静止放置着一辆平板车思考:此题第一问可否使用动量定理求时间?方法点睛6如图所示,长度为中点之间的距离.方法点睛7如图所示,在光滑的水平面上有一长为思考:不计所有摩擦,球冲上斜坡,动量是否守恒?机械能是否守恒?方法点睛8如图所示,质量时对轻杆的作用力大小和方向.若解除对滑块的锁定,求小球通过最高点时的速度大小.的条件下,求小球击中滑块右侧轨道位置点与小球起始位置点间的距离.方法点睛9如图所示,倾角的过程中轻绳对环做的功.思考:轻绳连接,轻杆连接,轻弹簧连接,两物体运动有何特点?方法点睛10如图所示,质量为方法点睛11如图甲所示,用固定的电动机水平拉着质量平板与地面间的动摩擦因数为多大.末受到的摩擦力各为多大.为多少.思考:木板停下以后,物块速度怎么变?加速度怎么变?拉力怎么变?最终什么状态?方法点睛12某兴趣小组同学对质量为方法点睛13光电效应和康普顿效应深入地揭示了光的粒子性的一面.前者表明光子具有能量,后者表明光子思考:光子为什么会产生光压?如何计算?推导公式.思考:光子一半被吸收,一半被反射,单位面积面积受到的光子压力多大?方法点睛14一艘帆船在湖面上顺风行驶,在风力的推动下做速度为方法点睛。

高三物理专题练习题 动量和能量

高三物理专题练习题 动量和能量

专题五、动量和能量二、典题例题例题1.某商场安装了一台倾角为30°的自动扶梯;该扶梯在电压为380V的电动机带动下以0.4m/s的恒定速率向斜上方移动;电动机的最大输出功率为4.9kkw。

不载人时测得电动机中的电流为5A;若载人时传颂梯的移动速和不载人时相同;设人的平均质量为60kg;则这台自动扶梯可同时乘载的最多人数为多少?(g=10m/s2)。

例题2.如图所示:摆球的质量为m;从偏离水平方向30°的位置由静释放;设绳子为理想轻绳;求小球运动到最低点A时绳子受到的拉力是多少?例3.如图所示;大小相同质量不一定相等的A、B、C三个小球沿一直线排列在光滑水平面上;未碰前A、B、C三个球的动量分别为8kg·m/s、-13kg·m/s、-5kg·m/s;在三个球沿一直线相互碰撞的过程中;A、B两球受到的冲量分别为-9N·s、1N·s;则C球受到的冲量及C球碰后的动量分别为()A.1N·s;3kg·m/s B.8N·s;3kg·m/sC.-8N·s;5kg·m/s D.10N·s;5kg·m/s 训练题A、B两船的质量均为M;它们都静止在平静的湖面上;当A船上质量为的人以水平速υ从A船跳到B船;再从B船跳回A船.经多次跳跃后;人最终跳到B船上;设水对船的阻力不计;则()A.A、B两船最终的速大小之比为3∶2B.A、B(包括人)最终的动量大小之比为1∶1C.A、B(包括人)最终的动量之和为零D.因跳跃次数未知;故以上答案均无法确定例4.如图所示;三个质量为m的弹性小球用两根长为L的轻绳连成一条直线而静止在光滑水平面上;现给中间的小球B一个水平初速υ0;方向与绳垂直小球相互碰撞时无机械能损失;轻绳不可伸长;求:(1)当小球A、C第一次相碰时;小球B的速.(2)当三个小球再次处在同一直线上时;小球B的速.(3)运动过程中小球A的最大动能E KA和此时两根绳的夹角θ.Array(4)当三个小球处在同一直线上时;绳中的拉力F的大小.训练题(15分)如图所示;质量均为m的A、B两个弹性小球;用长为2l的不可伸长的轻绳连接。

高考物理二轮专题复习:能量守恒定律综合计算题(word版含答案)

高考物理二轮专题复习:能量守恒定律综合计算题(word版含答案)

能量守恒定律综合计算专题复习1.如图,光滑水平面上静止一质量m1=1.0kg、长L=0.3m的木板,木板右端有质量m2=1.0kg的小滑块,在滑块正上方的O点用长r=0.4m的轻质细绳悬挂质量m=0.5kg的小球。

将小球向右上方拉至细绳与竖直方向成θ=60°的位置由静止释放,小球摆到最低点与滑块发生正碰并被反弹,碰撞时间极短,碰撞前后瞬间细绳对小球的拉力减小了4.8N,最终小滑块恰好不会从木板上滑下。

不计空气阻力,滑块、小球均可视为质点,重力加速度g取10m/s2。

求:(1)小球碰前瞬间的速度大小;(2)小球碰后瞬间的速度大小;(3)小滑块与木板之间的动摩擦因数。

2.如图所示,ABCD为固定在竖直平面内的轨道,其中ABC为光滑半圆形轨道,半径为R,CD为水平粗糙轨道,一质量为m的小滑块(可视为质点)从圆轨道中点B由静止释放,滑至D点恰好静止,CD 间距为4R。

已知重力加速度为g。

(1)求小滑块与水平面间的动摩擦因数(2)求小滑块到达C点时,小滑块对圆轨道压力的大小(3)现使小滑块在D点获得一初动能,使它向左运动冲上圆轨道,恰好能通过最高点A,求小滑块在D点获得的初动能3.如图甲,倾角α=37︒的光滑斜面有一轻质弹簧下端固定在O点,上端可自由伸长到A点。

在A点放一个物体,在力F的作用下向下缓慢压缩弹簧到B点(图中未画出),该过程中力F随压缩距离x的变化如图乙所示。

重力加速度g取10m/s2,sin37︒=0.6,cos37︒=0.8,求:(1)物体的质量m;(2)弹簧的最大弹性势能;(3)在B点撤去力F,物体被弹回到A点时的速度。

4.如图所示,长为L的轻质木板放在水平面上,左端用光滑的铰链固定,木板中央放着质量为m的小物块,物块与板间的动摩擦因数为μ.用力将木板右端抬起,直至物块刚好沿木板下滑.最大静摩擦力等于滑动摩擦力,重力加速度为g。

(1)若缓慢抬起木板,则木板与水平面间夹角θ的正切值为多大时物块开始下滑;(2)若将木板由静止开始迅速向上加速转动,短时间内角速度增大至ω后匀速转动,当木板转至与水平面间夹角为45°时,物块开始下滑,则ω应为多大;(3)在(2)的情况下,求木板转至45°的过程中拉力做的功W。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

动量、能量计算题专题训练1.(19分)如图所示,光滑水平面上有一质量M=4.0kg 的带有圆弧轨道的平板车,车的上表面是一段长L=1.5m 的粗糙水平轨道,水平轨道左侧连一半径R=0.25m 的41光滑圆弧轨道,圆弧轨道与水平轨道在O ′点相切。

现将一质量m=1.0kg 的小物块(可视为质点)从平板车的右端以水平向左的初速度v 0滑上平板车,小物块与水平轨道间的动摩擦因数μ=0.5。

小物块恰能到达圆弧轨道的最高点A 。

取g=10m/2,求:(1)小物块滑上平板车的初速度v 0的大小。

(2)小物块与车最终相对静止时,它距O ′点的距离。

(3)若要使小物块最终能到达小车的最右端,则v 0要增大到多大?2.(19分)质量m A =3.0kg .长度L =0.70m .电量q =+4.0×10-5C 的导体板A 在足够大的绝缘水平面上,质量m B =1.0kg 可视为质点的绝缘物块B 在导体板A 的左端,开始时A 、B 保持相对静止一起向右滑动,当它们的速度减小到0v =3.0m/s 时,立即施加一个方向水平向左.场强大小E =1.0×105N/C 的匀强电场,此时A 的右端到竖直绝缘挡板的距离为S =2m ,此后A 、B 始终处在匀强电场中,如图所示.假定A 与挡板碰撞时间极短且无机械能损失,A 与B 之间(动摩擦因数1μ=0.25)及A 与地面之间(动摩擦因数2μ=0.10)的最大静摩擦力均可认为等于其滑动摩擦力,g 取10m/s 2(不计空气的阻力)求:(1)刚施加匀强电场时,物块B 的加速度的大小?(2)导体板A 刚离开挡板时,A 的速度大小?(3)B 能否离开A ,若能,求B 刚离开A 时,B 的速度大小;若不能,求B 距A 左端的最大距离。

3.(19分)如图所示,一个质量为M 的绝缘小车,静止在光滑的水平面上,在小车的光滑板面上放一质量为m 、带电荷量为q 的小物块(可以视为质点),小车的质量与物块的质量之比为M :m=7:1,物块距小车右端挡板距离为L ,小车的车长为L 0=1.5L ,现沿平行车身的方向加一电场强度为E 的水平向右的匀强电场,带电小物块由静止开始向右运动,而后与小车右端挡板相碰,若碰碰后小车速度的大小是滑块碰前速度大小的14,设小物块其与小车相碰过程中所带的电荷量不变。

求:(1)第一次碰撞后物块的速度?(2)求小物块从开始运动至第二次碰撞时小物块电势能的变化?4.(19分)如图所示,水平地面上方被竖直线MN 分隔成两部分,M 点左侧地面粗糙,与B 球间的动摩擦因数为μ=0.5,右侧光滑.MN 右侧空间有一范围足够大的匀强电场。

在O 点用长为R =5m 的轻质绝缘细绳,拴一个质量m A =0.04kg ,带电量为q =+2⨯10-4 C 的小球A ,在竖直平面内以v =10m/s 的速度做顺时针匀速圆周运动,小球A 运动到最低点时与地面刚好不接触。

处于原长的弹簧左端连在墙上,右端与不带电的小球B 接触但不粘连,B 球的质量m B =0.02kg ,此时B 球刚好位于M 点。

现用水平向左的推力将B 球缓慢推至P点(弹簧仍在弹性限度内),MP 之间的距离为L =10cm ,推力所做的功是W =0.27J ,当撤去推力后,B 球沿地面向右滑动恰好能和A 球在最低点处发生正碰,并瞬间成为一个整体C (A 、B 、C 均可视为质点),碰撞前后电荷量保持不变,碰后瞬间立即把匀强电场的场强大小变为E =6⨯103N/C ,电场方向不变。

求:(取g =10m/s 2)(1)在A 、B 两球在碰撞前匀强电场的大小和方向; (2)A 、B 两球在碰撞后瞬间整体C 的速度;(3)整体C 运动到最高点时绳的拉力大小。

5.(19分)如图14所示,两根正对的平行金属直轨道MN 、M ′N ′位于同一水平面上,两轨道之间的距离l =0.50m 。

轨道的MN ′端之间接一阻值R=0.40Ω的定值电阻,NN ′端与两条位于竖直面内的半圆形光滑金属轨道NP 、N ′P ′平滑连接,两半圆轨道的半径均为R 0=0.5m 。

直轨道的右端处于竖直向下、磁感应强度B=0.64T 的匀强磁场中,磁场区域的宽度d=0.80m ,且其右边界与NN ′重合。

现有一质量m=0.20kg 、电阻r=0.10Ω的导体杆ab 静止在距磁场的左边界s=2.0m 处。

在与杆垂直的水平恒力F=2.0N 的作用下ab 杆开始运动,当运动至磁场的左边界时撤去F ,结果导体杆ab 恰好能以最小速度通过半圆形轨道的最高点PP ′。

已知导体杆ab 在运动过程中与轨道接触良好,且始终与轨道垂直,导体杆ab 与直轨道之间的动摩擦因数μ=0.10,轨道的电阻可忽略不计,取g=10m/s 2,求:(1)导体杆刚进入磁场时,通过导体杆上的电流大小和方向;(2)导体杆穿过磁场的过程中通过电阻R 上的电荷量;(3)导体杆穿过磁场的过程中整个电路产生的焦耳热。

6.风洞实验室可产生水平方向的、大小可调节的风力。

在风洞中有一固定的支撑架ABC ,该支撑架的上表面光滑,是一半径为R的1/4圆柱面,如图所示,圆弧面的圆心在O 点,O 离地面高为2R ,地面上的D 处有一竖直的小洞,离O 。

现将质量分别为m 1和m 2的两小球用一不可伸长的轻绳连接按图中所示的方式置于圆弧面上,球m 1放在与O 在同一水平面上的A 点,球m 2竖直下垂。

(1)在无风情况下,若将两球由静止释放(不计一切摩擦),小球m 1沿圆弧面向上滑行,到最高点C 恰与圆弧面脱离,则两球的质量比m 1:m 2是多少?(2)让风洞实验室内产生的风迎面吹来,释放两小球使它们运动,当小球m 1滑至圆弧面的最高点C 时轻绳突然断裂,通过调节水平风力F 的大小,使小球m 1恰能与洞壁无接触地落入小洞D 的底部,此时小球m 1经过C 点时的速度是多少?水平风力F 的大小是多少(小球m 1的质量已知)?7.(19分)如图所示,一轻质弹簧竖直固定在地面上,自然长度l 0=0.50m ,上面连接一个质量m 1=1.0kg 的物体A ,平衡时物体距地面h 1=0.40m ,此时弹簧的弹性势能E P =0.50J 。

在距物体A 正上方高为h =0.45m 处有一个质量m 2=1.0kg 的物体B 自由下落后,与弹簧上面的物体A 碰撞并立即以相同的速度运动,已知两物体不粘连,且可视为质点。

g =10m/s 2。

求:(1)碰撞结束瞬间两物体的速度大小; (2)两物体一起运动第一次具有竖直向上最大速度时弹簧的长度;(3)两物体第一次分离时物体B 的速度大小。

图参考答案及评分标准1.解:(1)平板车和小物块组成的系统水平方向动量守恒,设小物块到达圆弧最高点A 时,二者的共同速度1v ,由动量守恒得:10)(v m M mv += ①由能量守恒得: mgL mgR v m M mv μ+=+-2120)(2121 ② 联立①②并代入数据解得:s m v /50= ③(2)设小物块最终与车相对静止时,二者的共同速度2v ,从小物块滑上平板车,到二者相对静止的过程中,由动量守恒得: 20)(v m M mv += ④设小物块与车最终相对静止时,它距O ′点的距离为x 。

由能量守恒得:)()(21212220x L mg v m M mv +=+-μ ⑤ 联立③④⑤并代入数据解得:m x 5.0= ⑥(3)设小滑块最终能到达小车的最右端,v 0要增大到01v ,小滑块最终能到达小车的最右端时的速度为3v ,与(2)同理得:301)(v m M mv += ⑦ mgL v m M mv μ2)(212123201=+- ⑧ 联立⑦⑧并代入数据解得s m v /26501=⑨评分细则:③3分,其余每式2分,共19分。

2.解:(1)设B 受到的最大静摩擦力为m f 1,则.5.211N g m f B m ==μ ① (1分)设A 受到地面的滑动摩擦力的2f ,则.0.4)(22N g m m f B A =+=μ ② (1分)施加电场后,设A .B 以相同的加速度向右做匀减速运动,加速度大小为a ,由牛顿第二定律a m m f qE B A )(2+=+ ③ (2分)解得:2/0.2s m a = (2分)设B 受到的摩擦力为1f ,由牛顿第二定律得 a m f B =1,④解得:.0.21N f =因为m f f 11<,所以电场作用后,A .B 仍保持相对静止以相同加速度a 向右做匀减速运动,所以刚加上匀强电场时,B 的加速度大小2/0.2s m a = (2分)(2)A 与挡板碰前瞬间,设A .B 向右的共同速度为1v ,as v v 22021-= (2分)解得s m v /11= (1分) A 与挡板碰撞无机械能损失,故A 刚离开挡板时速度大小为s m v /11= (1分)(3)A 与挡板碰后,以A .B 系统为研究对象,2f qE = ⑥故A 、B 系统动量守恒,设A 、B 向左共同速度为ν,规定向左为正方向,得:v m m v m v m B A B A )(11+=- ⑦ (3分)设该过程中,B 相对于A 向右的位移为1s ,由系统功能关系得:22111)(21)(21v m m v m m gs m B A B A B +-+=μ ⑧ (4分) 解得 m s 60.01= (2分) 因L s <1,所以B 不能离开A ,B 与A 的左端的最大距离为m s 60.01= (1分)3.解:第一次碰前对滑块分析由动能定理20102qEL mv =-…………(1)2分 第一次相碰由动量守恒 012mv mv Mv =+………(2)2分代入数据解得:1034v v =-=………(3)2分 从第一次碰后到第二次碰前的过程中对小车分析做匀速运动2A S v t =……(4)2分 对滑块分析由运动学公式推论:132B v v S t +=………(5)2分 由动能定理有:22311122B qES mv mv =-………………(6)3分 滑块与小车第二次碰撞条件:A B S S =(7)2分代入数据解得:A B S S L ==(8)2分由功能关系电势能减少量 qE()2E W L L qEL ∆==+=电……(9)3分4.解:(1)要使小球在竖直平面内做匀速圆周运动,必须满足 F 电=Eq=m A g (2分)所以 qg m E A ==2×103N/C (1分)方向竖直向上(1分) (2)由功能关系得,弹簧具有的最大弹性势能 J gl m W E B P 26.0=-=μ设小球B 运动到M 点时速度为B v ,由功能关系得 221B B B P v m gL m E =-μ s m v B /5= (4分) 碰后结合为C ,设C 的速度为1v ,由动量守恒得 1v m v m v m C B B A =- s m v /51=(2分) (3)电场变化后,因N g m q E C 6.0=-' N R v m c 3.021= ()g m q E Rv m c c -'<21 所以C 不能做圆周运动,而是做类平抛运动,设经过时间t 绳子在Q 处绷紧,由运动学规律得t v x 1= 221at y = CC m g m q E a -'= ()222R y R x =-+ 可得 s t 1= s m at v y /10==y x ==即:绳子绷紧时恰好位于水平位置,水平方向速度变为0,以竖直速度2v =y v 开始做圆周运动(1分)设到最高点时速度为3v 由动能定理得:gR m qR E v m v m C C C -'=-22232121 得 s m v /2103=(2分) 在最高点由牛顿运动定律得:Rv m q E g m T c C 23='-+ (2分) 求得 N T 3=(1分) 5.解:(1)设导体杆在F 的作用下运动至磁场的左边界时的速度为1v ,根据动能定理则有 2121)(mv s mg F =-μ…………(2分) 导体杆刚进入磁场时产生的感应电动势 1Blv E =…………………(1分)此时通过导体杆的电流大小 8.3)/(=+=r R E I A (或3.84A )……(2分) 根据右手定则可知,电流方向为由b 向a ……………………(2分)(2)设导体杆在磁场中运动的时间为t ,产生的感应电动势的平均值为E 平均,则由法拉第电磁感应定律有 t Bld t E //=∆=ϕ平均…………………(2分)通过电阻R 的感应电流的平均值为 )/(r R E I +=平均平均………(1分)通过电阻R 的电荷量 51.0==t I q 平均C (或0.512C )(3)设导体杆离开磁场时的速度大小为2v ,运动到圆轨道最高点的速度为3v ,因导体杆恰好能以最小速度通过半圆形轨道的最高点,根据牛顿第二定律对导体杆的轨道最高点时有023/R mv mg =…………………(1分)对于导体杆从P P N N ''运动至的过程,根据机械能守恒定律有0232222121R mg mv mv +=……(1分)解得 2v =5.0m/s …………(1分) 导体杆穿过磁场的过程中损失的机械能 J mv mv E 1.121212221=-=∆……(3分) 此过程中电路中产生的焦耳热为 J mgd E Q 94.0=-∆=μ…………(2分)6.解:(1)以两小球及轻绳为整体,释放后小球m 1上滑,必有:12m m <…①由于小球m 1在最高点C 与圆弧面分离,则此时两球的速度可以为零,则由机械能守恒有:212m g R m gR π⨯= 求得:122m m π=………② 小球过圆弧面的最高点C 时的速度也可以不为零,设它们的速度均为v ,则211v m g m R=………③ 因不计一切摩擦,由机械能守恒有:22211211222m g R m gR m v m v π⨯-=+………④由③④可得:1213m m π-=………⑤ 综合①②⑤可知:12113m m π-≤<………⑥ (2)设小球过C 点时的速度为v C ,设小球离开C 点后在空中的运动时间为t ,在竖直方向作自由落体运动,则有 21(2)2R R gt +=………⑦ 因存在水平风力,小球离开C 点后在水平方向作匀减速运动,设加速度为a x ,落入小洞D时水平分速度减为零。

相关文档
最新文档