数学建模,我们的论文保留版

合集下载

完整版数学建模论文

完整版数学建模论文

承诺书我们仔细阅读了《全国大学生数学建模竞赛章程》和《全国大学生数学建模竞赛参赛规则》(以下简称为“竞赛章程和参赛规则”,可从全国大学生数学建模竞赛网站下载)。

我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。

我们知道,抄袭别人的成果是违反竞赛章程和参赛规则的,如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。

我们郑重承诺,严格遵守竞赛章程和参赛规则,以保证竞赛的公正、公平性。

如有违反竞赛章程和参赛规则的行为,我们将受到严肃处理。

我们授权全国大学生数学建模竞赛组委会,可将我们的论文以任何形式进行公开展示(包括进行网上公示,在书籍、期刊和其他媒体进行正式或非正式发表等)。

我们参赛选择的题号是(从A/B/C/D中选择一项填写): A我们的参赛报名号为(如果赛区设置报名号的话):所属学校(请填写完整的全名):大连工业大学参赛队员(打印并签名) :1. 王佳锴2. 梁嘉祯3. 杨挺指导教师或指导教师组负责人(打印并签名):(论文纸质版与电子版中的以上信息必须一致,只是电子版中无需签名。

以上内容请仔细核对,提交后将不再允许做任何修改。

如填写错误,论文可能被取消评奖资格。

)日期: 2013 年 9 月16 日赛区评阅编号(由赛区组委会评阅前进行编号):编号专用页赛区评阅编号(由赛区组委会评阅前进行编号):全国统一编号(由赛区组委会送交全国前编号):全国评阅编号(由全国组委会评阅前进行编号):博弈论思想探讨车道被占用对城市道路通行能力的影响摘要本文针对车道被占用对城市道路通行能力影响的问题,首先根据同一路段、同一地点、事故发生在不同车道的比较,进来分析两种情况下事故对城市道路通行能力的影响,最后针对各个问题建立模型并求解。

针对问题一,我们首先根据所提供的视频构建思路,建立数理统计的模型来分析视频中交通事故发生至撤离期间,事故所处横断面实际通行能力的变化过程。

全国大学生数学建模竞赛论文格式规范全国大学生数学建模竞赛论文格式规范

全国大学生数学建模竞赛论文格式规范全国大学生数学建模竞赛论文格式规范

全国大学生数学建模竞赛论文格式规范全国大学生数学建模竞
赛论文格式规范
全国大学生数学建模竞赛论文格式规范-全国大学生数学建模竞赛论文
格式规范
为了保证竞赛的公平、公正性,便于竞赛活动的标准化管理,根据评阅工作的实际需要,竞赛要求参赛队分别提交纸质版和电子版论文,特制定本规范。

一、纸质版论文格式规范
第一条,论文用白色A4纸打印(单面、双面均可);上下左右各留出至少厘米的页边距;从左侧装订。

第二条,论文第一页为承诺书,第二页为编号专用页,具体内容见本规范第3、4页。

第三条,论文第三页为摘要专用页,从此页开始编写页码;页码必须位于每页页脚中部,用阿拉伯数字从“1”开始连续编号。

摘要专用页必须单独一页,且篇幅不能超过一页。

第四条,从第四页开始是论文正文;正文之后是论文附录。

第五条,论文附录至少应包括参赛论文的所有源程序代码,如实际使用的软件名称、命令和编写的全部可运行的源程序;通常还应包括自主查阅使用的数据等资料。

赛题中提供的数据不要放在附录。

如果缺少必要的源程序或程序不能运行,可能会被取消评奖资格。

论文附录必须打印装订在论文纸质版中。

如果确实没有需要以附录形式提供的信息,论文可以没有附录。

全国大学生数学建模竞赛论文格式规范
第六条,论文正文和附录不能有任何可能显示答题人身份和所在学校及赛区的信息。

第七条,引用别人的成果或其他公开的资料(包括网上资料)必须按照科技论文写作的规范格式列出参考文献,并在正文引用处予以标注。

第八条,本规范中未作规定的,如排版格式不做统一要求,可由
赛区自行。

数学建模论文

数学建模论文

数学建模论文数学建模论文模板15篇[集合]无论在学习或是工作中,大家对论文都再熟悉不过了吧,论文是讨论某种问题或研究某种问题的文章。

怎么写论文才能避免踩雷呢?下面是小编帮大家整理的数学建模论文模板,仅供参考,希望能够帮助到大家。

数学建模论文模板1—、前言数学与统计学教学指导委员会在20xx年作的数学学科专业发展战略研宄报告中指出:今后五年和五年以后,以数学和计算机为主要工具的、国民经济各领域所需要的应用型人才的需求数量很大,这一类数学人才的需求估计将占总需求的一半左右,五年以后,将占总需求的一半以上。

可见,培养具有应用数学和计算机来解决实际问题能力的应用型人才,对社会的发展具有重要意义,而毕业论文(设计)是实现应用型人才培养目标的一个重要实贱环节。

本文就如何将数学建模教学法思想贯穿于应用数学建模教学法思想在应用数学毕业论文(设计)教学中的实践试论高等职业院校高等数学课程改革争议试论高等职业院校高等数学课程改革刍议浅析初中数学课程教学如何做到优质教育试论计算机辅助教学在数学课堂中的作用新课程下初中数学作业布置的实践与思考浅谈多种方法在初中数学教学中的应用浅谈初中数学教法与学法的同步改革数学教学中学生参与意识的培养20xx数学毕业论文开题报告(设计)教学中进行了研宄。

二、应用型人才须要有数学建模意识和能力应用型人才指的是在一线工作岗位上,能把理论付诸实贱,能承担转化应用、实际生产和创造实际价值的任务,为社会经济发展服务。

应用型人才的基本素质为综合应用知识、创新应用与开拓创业的精神。

对于应用数学的应用型人才来说,要求具备从现实问题中抽象出数学规律,应用已知的数学规律来解决实际问题的能力。

学生应受到严格的科学思维训练,具有比较扎实的基础理论知识,初步掌握科学研宄的方法,能应用数学知识去解决实际问题。

而数学建模是应用数学知识解决实际问题的重要实贱手段,它要求学生能把实际问题转化成用公式、图表、程序来描述的数学模型,然后利用数学理论、计算机求解建模,并对结果进行解释,达到解决实际问题的目的。

数学建模优秀论文(精选范文10篇) 2021

数学建模优秀论文(精选范文10篇) 2021

根据实际问题来建立数学模型,对数学模型来进行求解,然后根据结果去解决实际问题,这就是数学建模,本篇文章主要是向大家介绍几篇数学建模优秀论文得范文,希望对有这方面参考得学者有所帮助。

数学建模优秀论文精选范文10篇之第一篇:培养低年段学生数学建模意识得微课教学---------------------------------------------------------------------------------------------------------------------感谢使用本套资料,希望本套资料能带给您一些思维上的灵感和帮助,个人建议您可根据实际情况对内容做适当修改和调整,以符合您自己的风格,不太建议完全照抄照搬哦。

---------------------------------------------------------------------------------------------------------------------摘要:本文阐述了录制微课对培养学生建模意识得必要性和可行性,认为在小学数学教学中,鼓励低年段学生录制微课有积极意义,主张提高小学生建模语言表达能力,通过任务驱动和学生自主录制微课,逐步深入学习建模内容,培养并增强学生得建模意识。

关键词:低年段数学; 微课; 建模意识;当今社会,信息技术高速发展使教学资源高度丰富。

广大教师纷纷探讨如何利用信息技术更好地为教学服务,有效地改进教与学得方式,提高学生学习兴趣。

一、录制微课对培养学生建模意识得必要性和可行性“三年级现象”备受关注,很多人认为小学三年级是道坎,有得学生一、二年级数学成绩很好,到了三年级就断崖式下降。

如果真得出现这种现象,那么学生一、二年级数学成绩好只是表象。

一、二年级是学生初步感知数学得重要时期。

低年段数学知识是基础,对于低年段数学教学包括建模教学必须引起广大教育工作者得重视,让学生从小接受正确得教学模式,真正掌握学习数学得思想方法,避免出现短暂成绩好得现象。

数学建模全国优秀论文范文

数学建模全国优秀论文范文

数学建模全国优秀论文范文随着科学技术特别是信息技术的高速发展,数学建模的应用价值越来越得到众人的重视,数学建模全国优秀论文1:《浅谈数学建模教育的作用与开展策略》数学建模本身是一个创造性的思维过程,它是对数学知识的综合应用,具有较强的创新性,以下是一篇关于数学建模教育开展策略探究的论文范文,欢迎阅读参考。

大学数学具有高度抽象性和概括性等特点,知识本身难度大再加上学时少、内容多等教学现状常常造成学生的学习积极性不高、知识掌握不够透彻、遇到实际问题时束手无策,而数学建模思想能激发学生的学习兴趣,培养学生应用数学的意识,提高其解决实际问题的能力。

数学建模活动为学生构建了一个由数学知识通向实际问题的桥梁,是学生的数学知识和应用能力共同提高的最佳结合方式。

因此在大学数学教育中应加强数学建模教育和活动,让学生积极主动学习建模思想,认真体验和感知建模过程,以此启迪创新意识和创新思维,提高其素质和创新能力,实现向素质教育的转化和深入。

一、数学建模的含义及特点数学建模即抓住问题的本质,抽取影响研究对象的主因素,将其转化为数学问题,利用数学思维、数学逻辑进行分析,借助于数学方法及相关工具进行计算,最后将所得的答案回归实际问题,即模型的检验,这就是数学建模的全过程。

一般来说",数学建模"包含五个阶段。

1.准备阶段主要分析问题背景,已知条件,建模目的等问题。

2.假设阶段做出科学合理的假设,既能简化问题,又能抓住问题的本质。

3.建立阶段从众多影响研究对象的因素中适当地取舍,抽取主因素予以考虑,建立能刻画实际问题本质的数学模型。

4.求解阶段对已建立的数学模型,运用数学方法、数学软件及相关的工具进行求解。

5.验证阶段用实际数据检验模型,如果偏差较大,就要分析假设中某些因素的合理性,修改模型,直至吻合或接近现实。

如果建立的模型经得起实践的检验,那么此模型就是符合实际规律的,能解决实际问题或有效预测未来的,这样的建模就是成功的,得到的模型必被推广应用。

数学建模论文(精选4篇)

数学建模论文(精选4篇)

数学建模论文(精选4篇)数学建模论文模板篇一1数学建模竞赛培训过程中存在的问题1.1学生数学、计算机基础薄弱,参赛学生人数少以我校理学院为例,数学专业是本校开设最早的专业,面向全国28个省、市、自治区招生,包括内地较发达地区的学生、贫困地区(包括民族地区)的学生,招收的学生数学基础水平参差不齐.内地较发达地区的学生由于所处地区的经济文化条件较好,教育水平较高,高考数学成绩普遍高于民族地区的学生.民族地区由于所处地区经济文化较落后,中小学师资力量严重不足,使得少数民族学生数学基础薄弱,对数学学习普遍抱有畏难情绪,从每年理学院新生入学申请转系的同学较多可以窥见一斑.虽然学校每年都组织学生参加全国大学生数学建模竞赛,但人数都不算多.从专业来看,参赛学生主要以数学系和计算机系的学生为主,间有化学、生科、医学等理工科学生,文科学生则相对更少.理工科类的学生基本功比较扎实,他们在参赛过程中起到了重要作用.文科学生数学和计算机功底大多薄弱,更多的只是一种参与.从年级来看,参赛学生以大二的学生居多;大一的学生已学的数学和计算机课程有限,基本功还有些欠缺;大三、大四的学生忙着考研和找工作,对数学建模竞赛兴趣不大.从参赛的目的来看,有20%左右的学生是非常希望通过数学建模提高自己的综合能力,他们一般能坚持到最后;还有50%的学生抱着试试看的态度参加培训,想锻炼但又怕学不懂,觉得可以坚持就坚持,不能则中途放弃;剩下的30%的学生则抱着好奇好玩的态度,他们大多早早就出局了.学生的参赛积极性不高,是制约数学建模教学及竞赛有效开展的不利因素.1.2无专职数学建模培训教师,培训教师水平有限,培训方法落后数学建模的培训教师主要由理学院选派数学老师临时组成,没有专职从事数学建模的教师.由于学校扩招,学生人数多,教师人数少,数学教师所承担的专业课和公共课课程多,授课任务重;备课、授课、批改作业占用了教师的大部分工作时间,并且还要完成相应的科研任务.而参加数学建模教学及竞赛培训等工作需要花费很多时间和精力,很多老师都没有时间和精力去认真从事数学建模的教学工作.培训教师队伍整体素质不够强、能力欠缺,指导起学生来也不是那么得心应手,且从事数学建模教学的老师每年都在调整,不利于经验的积累.另外,学校对参与数学建模教学及竞赛培训的教师的鼓励措施还不是十分到位和吸引人,培训教师对数学建模相关的工作热情不够,缺乏奉献精神.在2011年以前,数学建模培训主要采用教师授课的方式进行,但各位老师授课的内容互不联系.比如说上概率论的老师就讲概率论的内容,上常微分方程的老师就讲常微分的内容.学生学习了这些知识,不知道有什么用,怎么用,不能将这些知识联系起来转化为数学建模的能力.这中间缺少了很重要的一个环节,就是没有进行真题实训.结果就是学生既没有运用这些知识构建数学模型的能力,也谈不上数学建模论文写作的技巧.虽然学校年年都组织学生参加全国大学生数学建模竞赛,但结果却不尽如人意,获奖等次不高,获奖数量不多.1.3学校重视程度不够,相关配套措施还有待完善任何一项工作离开了学校的支持,都是不可能开展得好的,数学建模也不例外.在前些年,数学建模并没有引起足够的重视,学校盼望出成绩但是结果并不理想,对老师和学生的信心不足.由于经费紧张,并未专门对数学建模安排实验室,图书资料很少,学生用电脑和查资料不方便,没有学习氛围.每年数学建模竞赛主要由分管教学的副院长兼任组长,没有相应专职的负责人,培训教师去参加数学建模相关交流会议和学习的机会很少.学校和二级学院对参加数学建模教学、培训的老师奖励很少,学生则几乎没有.在课程的开设上也未引起重视,虽然理学院早在1997年就将数学实验和数学建模课列为专业必修课,但非数学专业只是近几年才开始列为公选课开设,且选修率低.2针对存在问题所采取的相应措施2.1扩大宣传,重视数学和计算机公选课开设,举办数学建模学习讨论班最近两年,学院组建了数学建模协会,负责数学建模的宣传和参赛队员的海选,通过各种方式扩大了对数学建模的宣传和影响,安排数学任课教师鼓励数学基础不错的学生参赛.同时邀请重点大学具有丰富培训经验的老师来做数学建模专题讲座,交流经验.学院重视数学专业的基础课程、核心课程的教学,选派经验丰富的老教师、青年骨干教师担任主讲,随时抽查教学质量,教学效果.严抓考风学风,对考试作弊学生绝不姑息;学生上课迟到、早退、旷课一律严肃处理.通过这些举措,学生学习态度明显好转,数学能力慢慢得到提高.学校有意识在大一新生中开设数学实验、数学建模和相关计算机公选课,让对数学有兴趣的学生能多接触这方面的知识,减少距离感.选用的教材内容浅显而有趣味,主要目的是让同学们感受到数学建模并非高不可攀,数学是有用的,增加学生学习数学的热情和参加数学建模竞赛的可能性.为了解决学生学习数学建模过程中的遇到的困难,学院组织老师、学生参加数学建模周末讨论班,老师就学生学习过程中遇到的普遍问题进行讲解,学生分小组相互讨论,尽量不让问题堆积,影响后续学习积极性.通过这些措施,参赛学生的人数比以往有了大的改观,参赛过程中退赛的学生越来越少,参赛过程中的主动性也越来越明显.2.2成立数学建模指导教师组,分批培养培训教师,改进培训方法近年来,学院开始重视对数学建模培训教师的梯队建设,成立了数学建模指导教师组.把培训教师分批送出去进修,参加交流会议,学习其它高校的经验,并安排老教师带新教师,培训教师队伍越来越稳定、壮大.从去年开始,理学院组织学生进行了为期一个月的暑期数学建模真题实训,从8月初到8月底,培训共分为7轮.学生首先进行三天封闭式真题训练———其次答辩———最后交流讨论.效果明显,学生的数学建模能力普遍得到了提高,学习积极性普遍高涨.9月份顺利参加了全国大学生数学建模竞赛.从竞赛结果来看,比以前有了比较大的进步,不管是获奖的等次还是获奖的人数上都取得了历史性突破.有了这些可喜的变化,教师和学生的积极性都得到了提高,对以后的数学建模教学和培训工作将起着极大的促进作用.除了这种集训,今后,数学建模还需要加强平时的教学和培训工作.2.3学校逐渐重视,加大了相关投入,完善了激励措施最近几年,学校加大了对数学建模教学和培训工作的相关投入和鼓励措施.安排了专门的数学建模实验室,配备了学院最先进的电脑、打印机等设备,购买了数学建模相关的书籍.划拨了数学建模教学和培训专项经费.虽然数学建模教学还没有计入教学工作量,但已经考虑计入职称评定的相关工作量中,对参加数学建模教学和培训的老师减少了基本的教学工作量,使他们有更多的时间和精力投入到数学建模的相关工作中去.对参加全国大学生数学建模竞赛获奖的老师和学生的奖励额度也比以前有了很大的提高,老师和学生的积极性得到了极大的提高.3结束语对我们这类院校而言,最重要的数学建模赛事就是一年一度的全国大学生数学建模竞赛了.竞赛结果大体可以衡量老师和学生的付出与收获,但不是绝对的,教育部组织这项赛事的初衷主要是为了促进各个院校数学建模教学的有效开展.如果过分的看重获奖等次和数量,对学校的数学建模教学和组织工作都是一种伤害.参赛的过程对学生而言,肯定是有益的,绝大多数参加过数学建模竞赛的学生都认为这个过程很重要.这个过程可能是四年的大学学习过程中体会最深的,它用枯燥的理论知识解决了活生生的现实中存在的问题,虽然这种解决还有部分的理想化.由于我校地处偏远山区,教育经费相对紧张,投入不可能跟重点院校的水平比,只能按照自身实际来.只要学校、老师、学生三方都重视并积极参与这一赛事,数学建模活动就能开展的更好.数学建模论文模板篇二培养应用型人才是我国高等教育从精英教育向大众教育发展的必然产物,也是知识经济飞速发展和市场对人才多元化需求的必然要求。

数学建模论文(7篇)

数学建模论文(7篇)

数学建模论文(7篇)在学习、工作中,大家总少不了接触论文吧,论文可以推广经验,交流认识。

如何写一篇有思想、有文采的论文呢?为了帮助大家更好的写作数学建模论文模板,山草香整理分享了7篇数学建模论文。

计算数学建模是用数学的思考方式,采用数学的方法和语言,通过简化,抽象的方式来解决实际问题的一种数学手段。

数学建模所解决的问题不止现实的,还包括对未来的一种预见。

数学建模可以说和我们的生活息息相关,尤其是如今科技发达的今天。

数学建模应用领域超乎我们的想象,甚至达到无所不及的程度,随着数学建模在大学教学中的广泛使用,使数学建模不止成为一种学科,更重要的是指导新生代更好的利用现代科学技术,成为高科技人才,把我国人才强国,科教兴国的战略推向一个新的高度。

1.数学建模对教学过程的作用1.1数学建模引进大学数学教学的必要。

教学过程,是教师根据社会发展要求和当代学生身心发展的特点,借助教学条件,指导学生通过认识教学内容从而认识客观世界,并在此基础之上发展自身的过程,即教学活动的展开过程。

以往高工专的数学教学存在着知识单一,内容陈旧,脱离实际等缺陷,已经不能满足时代的发展,如今的数学教学过程不是单纯的传授数学学科知识,而是通过数学教学过程引导学生认识科学,理解科学,从而指导实践,促进学生的德智体美劳全面的进步和发展。

因此数学建模成为一门学科,被各大高等院校广泛引用和推广,其实数学建模不止应用在大学数学教学中,其他一切教学过程多可引进数学建模。

1.2数学建模在大学数学教学中的运用。

大学数学教师通过这个数学建模过程来引导学生解决问题和指导实践的能力。

再次建模结果对现实生活的指导,这是大学数学教学中数学建模所需要达到的效果和要求。

不再停留在理论学习,而是通过理论指导实践,从而为科学的进步和人才综合水平的提高提供可能。

2.数学建模对当代大学生的作用2.2数学建模对学生综合能力的提高数学建模是大学数学教师运用数学科学去分析和解决实际问题,在数学建模学习的过程中,大学生的数学能力得到提高,其分析问题、解决问题的能力得到提高,这对大学生毕业走向社会具有着重大意义。

数学建模优秀论文的范文

数学建模优秀论文的范文

以下是一篇数学建模优秀论文的范文,供您参考:题目:基于支持向量机的分类模型研究引言:分类是数学建模中的一个重要问题,其在很多领域都有着广泛的应用。

支持向量机(SVM)是一种基于统计学习理论的分类算法,具有较好的泛化能力和鲁棒性,被广泛应用于图像分类、文本分类、生物信息学等领域。

本文旨在研究支持向量机在分类问题中的应用,并对其性能进行评估。

问题分析:分类问题的核心在于根据已知标签的数据集,训练出一个能够对未知数据进行分类的模型。

支持向量机是一种基于结构风险最小化原则的分类算法,其基本思想是将输入空间映射到高维特征空间,并在此空间中构建最大间隔分类器。

在支持向量机中,关键参数的选择和核函数的选取对模型的性能有着重要影响。

模型建立:支持向量机是一种基于统计学习理论的分类算法,其基本思想是在高维空间中构建一个超平面,将不同类别的数据分隔开。

该算法的核心在于寻找到一个能够将数据分隔开的最优超平面,使得分类间隔最大化。

在训练过程中,支持向量机会通过求解一个二次规划问题来寻找最优超平面。

模型求解:在模型训练过程中,我们采用了LIBSVM工具包来实现支持向量机。

LIBSVM是一种常用的支持向量机实现工具包,其提供了高效的求解算法和方便的接口。

在实验中,我们采用了交叉验证和网格搜索等方法来选择最优的参数组合,并对其进行评估。

结果分析:在实验中,我们采用了多种数据集来验证支持向量机的性能,包括图像分类、文本分类和生物信息学等领域的数据集。

实验结果表明,支持向量机在多个领域中都取得了较好的分类效果,其准确率、召回率和F1得分等指标均优于其他传统分类算法。

同时,我们还对其进行了误差分析,发现支持向量机具有较好的泛化性能和鲁棒性。

结论与展望:本文研究了支持向量机在分类问题中的应用,并对其性能进行了评估。

实验结果表明,支持向量机在多个领域中都取得了较好的分类效果,其准确率、召回率和F1得分等指标均优于其他传统分类算法。

同时,支持向量机还具有较好的泛化性能和鲁棒性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2010高教社杯全国大学生数学建模竞赛承诺书我们仔细阅读了中国大学生数学建模竞赛的竞赛规则.我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。

我们知道,抄袭别人的成果是违反竞赛规则的, 如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。

我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。

如有违反竞赛规则的行为,我们将受到严肃处理。

我们参赛选择的题号是(从A/B/C/D中选择一项填写): A我们的参赛报名号为(如果赛区设置报名号的话):A甲2427所属学校(请填写完整的全名):山东科技大学济南校区参赛队员(打印并签名) :1. 刘斌2. 柳杨3. 王劲松指导教师或指导教师组负责人(打印并签名):王雪梅鞠圣会日期:2010 年 9 月 13 日赛区评阅编号(由赛区组委会评阅前进行编号):2010高教社杯全国大学生数学建模竞赛编号专用页赛区评阅编号(由赛区组委会评阅前进行编号):全国统一编号(由赛区组委会送交全国前编号):全国评阅编号(由全国组委会评阅前进行编号):储油罐的变位识别与罐容表标定模型摘要储油罐的变位,导致罐容表发生改变,使显示的罐内油位高度和储油量发生偏差,本文针对小椭圆储油罐(两端平头)和正圆储油罐(两端球冠),在发生不同情况的变位时做了深入研究。

当小椭圆储油罐无变位和倾斜角04.1α=的纵向变位时,我们利用画图软件画出储油罐的坐标图,采用积分学中的元素法,结合空间解析几何与向量代数的知识,建立了罐内油位高度和储油量关系的数学模型0V 和V ,并利用MATLAB 软件计算出两者的值,然后对实验所给的数据用Excel 和MATHEMATICA 进行了处理,拟合出储油量改变量V ∆与油位高度该变量h ∆之间的函数关系,然后再利用微分方程求解出罐内油位高度和储油量的关系,进一步验证模型的正确性;合理修正后,得到罐体变位后对罐容表的定量影响,并给出罐体变位后油位高度间隔为1cm 的罐容表标定值。

当正圆储油罐发生纵向倾斜角度α和横向偏转角度β的变位时,我们把实际油罐体分成倾斜罐直圆筒和两个部分球冠体三部分来求解。

对于倾斜罐直圆筒求实际体积时,我们先利用梯形面积等于矩形面积,将倾斜液高变换为垂直罐底的液高后,再将垂直罐底的液高转换为水平状态下液高1H ,得到210cos 'tan ()tan cos 2H L H D L βααα=-+-测然后代入0V 的数学模型,得含有变位参数α和β的数学模型等式关系,针对部分球冠的容积,我们利用近似的处理方法,对两球冠进行了简化求解。

将上述三部分求解整合得到出具体数学模型,然后利用MATLAB 软件结合实验的数据,求出变位的两个参数值04.3α=和05.6β=,最后把参数带入模型,通过对实验数据的分析和处理,验证了该模型是准确的,并给出罐体变位后油位高度间隔为10cm 的罐容表标定值。

最后我们利用差值算法对我们的模型进行了改进,并且客观评价了模型的优缺点,为模型的推广奠定了基础。

关键词:元素法 MATLAB 拟合 面积相等 近似计算 标定一、问题重述在现实情况中,加油站一般都有若干储存燃油的储油罐,要想清楚地知道罐内油位高度和储油量的变化情况,就要有与之配套的“油位计量管理系统”。

其中罐容表是我们使用最多的一个计量工具。

然而,随着时间的推移,受重力、地基变形或其它外部因素的影响,罐体的位置发生了纵向倾斜和横向偏转,导致罐容表计量的数据错误。

为了纠正计量数据较大误差,我们对罐容表进行重新标定,使其能较为准确的反应容量和高度。

具体问题:研究解决储油罐的变位识别与罐容表标定。

(1)为了掌握罐体变位后对罐容表的影响,利用比较理想简单的小椭圆型储油罐(两端平头的椭圆柱体),分别对罐体无变位和倾斜角为α=4.10的纵向变位两种情况做了实验,并得出了附件1中的数据。

现需要建立数学模型研究罐体变位后对罐容表的影响,并给出罐体变位后油位高度间隔为1cm 的罐容表标定值。

(2)对于实际储油罐(下面会给出实际油罐的图形),建立罐体变位后标定罐容表的数学模型,即罐内储油量与油位高度及变位参数(纵向倾斜角度α和横向偏转角度β )之间的一般关系。

利用罐体变位后在进/出油过程中的实际检测数据(附件2),根据所建立的数学模型确定变位参数,并给出罐体变位后油位高度间隔为10cm 的罐容表标定值。

进一步利用附件2中的实际检测数据来分析检验模型的正确性与方法的可靠性。

二、问题分析2.1问题一 只有纵向倾斜的小椭圆油罐在问题一中,考虑到要对罐容表重新标定,就要用到原有的标定值,所以,开始我们建立了没有变位时的高度与油量函数模型,得到高度与油量的关系。

然后利用双重积分和几何关系建立有纵向倾斜时的罐容表高度和容量的函数模型。

在建立好这两个模型后我们利用附件1里的实际数据进行了验证,并且对误差进行了MATLAB 拟合,并给出了合理性的分析。

最后根据第二个模型中高度与实际油量的对应关系函数,利用Excel 求解出了0-120间隔是1的所有高度对应的油量。

2.2 问题二 既有纵向倾斜又有横向偏转的实际油罐在问题二中,对实际的油罐进行了分解,分成了三部分,一部分是倾斜罐直筒,另一部分是一部分椭球体的体积。

这一部分液体的倾斜程度较小,而且球冠的深度相对于油罐是很小的,因此,我们将这一部分的液面近似处理为水平的,进而利用极坐标下的二重积分得出体积。

针对倾斜罐直筒部分,先利用梯形面积等于矩形面积,将倾斜液高变换为垂直罐底的液高后,再将垂直罐底的液高转换为水平状态下液高1H ,然后代入0V 的数学模型,得含有变位参数α和β的数学模型等式关系,最后将三部分体积相加,得到高度和体积之间的函数关系。

其中函数模型中的βα,利用附件二的数据用MTLAB 进行拟合,得到它们的参数,带入到模型中。

之后,对所求解的函数模型仍用附件2的数据进行验证,将求出的数据与真实的数据值进行比较分析,来检验上述模型的正确性与方法的可靠性。

三、模型假设(1)考虑到倾斜的方向对模型建立与求解没有影响,所以假设油倾斜到探针那一端。

(2)假设小椭圆形油罐所给的尺寸是内径,不包含油罐的厚度。

(3)假设罐体的内壁光滑无凹凸,并且是刚性罐体。

(4)在计算体积时,假设油的密度是均匀的。

(5)假设油位探针、油浮子、注油口、出油管对罐内油的体积没有影响。

(6)假设所给数据可以信赖,都是有效数据。

四.符号说明五、模型建立及求解5.1 只有纵向倾斜时的模型建立与求解5.1.1 油罐无变位时(1)设油位高度为1h ,以油罐靠近探针的椭圆中心为坐标原点,以椭圆的长轴为轴x ,以椭圆的短轴为y 轴,建立空间直角坐标系,如图一所示: 其中小椭圆油罐内油在xoy 上的投影如图二所示:图二 当1h a <时,阴影部分区域1D 可表示为:1b h y b x -≤≤⎧⎪⎨≤≤⎪⎩由二重积分的性质可知油罐内油在xoy 上的投影的面积为:11bb h D S d dy dxσ-==⎰⎰⎰⎰其中L 为油罐的长度。

同理,当1h a >时,油罐内油的体积:20'D V V V abL d πσ=-=-⎰⎰总空5.1.2 储油罐纵向倾斜以油位探针一侧向下倾斜 4.1α︒=为例,建立如图3所示坐标系即下图所示:为形象起见可以画出立体图如下:设油罐内油面高度在下沉端为2CH h =,另一端为3'C F h =的,探针的测量高度为DN h =,下面以2h b <为例,求油罐内油的实际体积V ,即椭圆柱体被平面ABMS 所截得到的右半部分的体积。

过直线SM 作xoy 面的垂面,此垂面将所求物体分为两部分,一部分是以3D 为底的平顶柱体,一部分是以4D 为底1V ,以平面ABMS 为顶的斜顶柱体2V .所以油罐内油的实际体积:12V V V =+,以3D 为底的平顶柱体体积:31D V LS =D3的面积表达式:333bD b h D S d dy dxσ-==⎰⎰⎰⎰以平面ABMS 为顶的斜顶柱体体积2V :42(,)D V f x y dxdy=⎰⎰设'OC h =,则直线AB 的方程为0'z y h =⎧⎨=⎩ 由直线AB 和点D 确定平面ABMS 的方程(,,)0f x y z = ,其方向向量10011010i j k S i==-点D 的坐标为(0,'0.4t a n h α+,点C 的坐标为(0,',h 向量DC 2(0,0.4tan ,0.4)S α==故油面所在的平面ABMS 的法向量121000.40.4tan 00.4tan 0.4ij kn s s j k αα=⨯=-=-(0,1,tan )n α=-平面ABMS 的方程为:(')tan 0y h z α--=进而求得'(,)tan y h f x y z α-==;底面区域4D表示为:''tan h y h L x α≤≤+⎧⎪⎨≤≤⎪⎩而 32 2.05tan '0.4tan 'h h h b h h h b αα=-⎧⎪=--⎨⎪+=⎩于是对于给定的 4.1α︒=,对00.4tan h b α∀<<-,由模型二即:334121'tan 2'32(,)0.4tan 2.05tan '0.4tan 'b D b h h L h D V V V V LS L dy V f x y dxdy dy h b h h h b hh h bαααα-+=+⎧⎪⎪==⎪⎪⎪==⎪⎨⎪<-⎪⎪=-⎪=--⎪⎪+=⎩⎰⎰⎰⎰可求得油罐纵向倾斜时的测量值和真实值之间的关系。

同理,当1.20.4tan h b α>≥-时,只需用罐体的总体积V V -总空,即可求得油罐内油的实际体积V ,其中V 空可由模型二计算。

5.1.3罐容表的标定由实际的问题可得,椭圆的长半轴a=0.89(m),短半轴b=0.6(m),L=2.45(m ),α=4.1°,将上述参数带入到模型二中可以得到切合问题一的实际模型,然后将油位高度0-120cm,以1cm 为间隔带入到模型二中,求解出对应的油量结果见附录1,这样就基本上完成了罐容表的标定。

标定完成后我们对附件1中的油量与其对应的油量高度用matlab 做了拟合,得到两者的拟合曲线函数,此函数经过修改和完善,最终结果:V=3.432385h.其拟合图像:对比我们得到的数据稍微偏高,但都在允许的误差范围内。

5.1.4模型的检验我们建立的无变位和倾斜变位的两个模型,对其中的油量的增减量进行二次差值拟合可得到都是抛物线的曲线:这符合客观的变化情况。

相关文档
最新文档