高考数学二轮简易通全套课时检测 函数概念与基本处等函数I 新人教版
高考数学二轮简易通全套课时检测 推理与证明 新人教版

广州大学附中2013年创新设计高考数学二轮简易通全套课时检测:推理与证明本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.满分150分.考试时间120分钟.第Ⅰ卷(选择题 共60分)一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.我们常用以下方法求形如)()(x g x f y =的函数的导数:先两边同取自然对数得:)(ln )(ln x f x g y =,再两边同时求导得到:)(')(1)()(ln )('1'x f x f x g x f x g y y ⋅⋅+=⋅,于是得到:)](')(1)()(ln )('[)(')(x f x f x g x f x g x f y x g ⋅⋅+=,运用此方法求得函数x x y 1=的一个单调递增区间是( )A .(e ,4)B .(3,6) C.(0,e ) D .(2,3) 【答案】C2.反证法证明命题:“三角形的内角中至少有一个不大于60度”时,反设正确的是( )A .假设三内角都不大于60度B .假设三内角都大于60度C .假设三内角至多有一个大于60度D .假设三内角至多有两个大于60度【答案】B3.给出下面四个类比结论:①实数,,b a 若0=ab 则0=a 或0=b ;类比向量,,若0=⋅,则=或=②实数,,b a 有;2)(222b ab a b a ++=+类比向量,,有2222)(+⋅+=+③向量2a =;类比复数z ,有22z z = ④实数b a ,有022=+b a ,则0==b a ;类比复数z ,2z 有02221=+z z ,则021==z z其中类比结论正确的命题个数为( )A .0B .1C .2D .3【答案】B4.将正偶数集合{} ,6,4,2从小到大按第n 组有n 2个偶数进行分组:{}{}{} ,24,22,20,18,16,14,12,10,8,6,4,2则2120位于第( )组A .33B .32C .31D .30【答案】A5.下列不等式不成立的是( )A . a 2+b 2+c 2≥ab+bc+caB .b a b aa b+≥+ (a>0,b>0)C . 321a ---<--a a a (a ≥3) D . 78+<105+【答案】D6.对于三次函数f (x )=ax 3+bx 2+cx +d (a ≠0),定义:设f ″(x )是函数y =f ′(x )的导数,若方程f ″(x )=0有实数解x 0,则称点(x 0,f (x 0))为函数y =f (x )的“拐点”.有同学发现:“任何一个三次函数都有‘拐点’;任何一个三次函数都有对称中心;且‘拐点’就是对称中心.”请你将这一发现为条件,若函数g (x )=13x 3-12x 2+3x -512+1x -12,则12342010()()()()()20112011201120112011g g g g g +++++ 的值是( ) A .2010B .2011C .2012D .2013 【答案】A7.对命题“正三角形的内切圆切于三边的中点”,可类比猜想出:正四面体的内切球切于四面各三角形的什么位置( )A .各正三角形内的点B . 各正三角形的某高线上的点C .各正三角形的中心D .各正三角形外的某点 【答案】C8.用反证法证明命题:“若整数系数一元二次方程)0(02≠=++a c bx ax 有有理根,那么 c b a ,,中至少有一个是偶数”时,应假设( )A .c b a ,,中至多一个是偶数B . c b a ,,中至少一个是奇数C . c b a ,,中全是奇数D . c b a ,,中恰有一个偶数 【答案】C9.用反证法证明命题:“一个三角形中,至少有一个内角不小于60°”时,应假设( )A .三角形中至多有一个内角不小于60°B .三角形中三个内角都小于60°C .三角形中至少有一个内角不大于60°D .三角形中一个内角都大于60°【答案】B 10.观察下列各式:则234749,7343,72401===,…,则20127的末两位数字为( )A .01B .43C .07D . 49 【答案】A11.下列说法正确的是( )A .由合情推理得出的结论一定是正确的B .合情推理必须有前提有结论C .合情推理不能猜想D .合情推理得出的结论无法判定正误【答案】B12.用反证法证明命题:“a ,b ∈N ,ab 可被5整除,那么a ,b 中至少有一个能被5整除”时,假设的内容应为( )A . a ,b 都能被5整除B .a ,b 都不能被5整除C .a ,b 不都能被5整除D .a 不能被5整除 【答案】B第Ⅱ卷(非选择题 共90分)二、填空题(本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上)13.已知数列{}n a 的通项公式为23n a n =-,将数列中各项进行分组如下。
高三二轮专题函数的概念与性质及初等函数的基本概念(习题卷)无答案

第一章 函数的概念与性质第一课A 组考点一 函数的概念及其表示1-b.(2018浙江名校协作体期初,9)函数322+-+=x x x y 的值域为 ( ) A.[)+∞+,21 B.()+∞,2 C.[)+∞,3 D.()+∞,1考点二 分段函数及其应用2-a.(2017浙江“七彩阳光”新高考研究联盟测试,16)已知函数()()⎩⎨⎧≥<+-=1,21,32x x a x a x f x 的值域为R ,则实数a 的取值范围是 .3-a.( 2017浙江宁波期末,3)函数()⎪⎩⎪⎨⎧>-⎪⎭⎫ ⎝⎛≤-=1,112sin 21,22x x x x f x π则()[]=2f f ( ) A.2- B.1- C.2213-- D.04-b.(2017浙江宁波二模(5月),14)定义{}⎩⎨⎧<≥=b a b b a a b a ,,,max ,已知函数(){}b ax x x f +-=2,12max ,其中0<a ,R b ∈.若()b f =0,则实数b 的范围为;若()x f 的最小值为1,则=+b a .5-b.(2016浙江镇海中学测试(六),9)已知函数()⎩⎨⎧>≤-=0,log 0,122x x x x x f 则=⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛21f f ;若()[][]0,1-∈t f f ,则t 的取值范围是 .6-c.(2018浙江“七彩阳光”联盟期中,10)已知函数()⎪⎪⎩⎪⎪⎨⎧⎥⎦⎤⎢⎣⎡∈--⎥⎦⎤ ⎝⎛∈+=21,0,43141,21,142x x x x x f x x 函数()()0326sin >+-=a a x a x g π.若存在[]1,0,21∈x x ,使得()()21x g x f =成立,则实数a 的取值范围是( ) A.⎥⎦⎤⎢⎣⎡2,21 B.⎥⎦⎤ ⎝⎛21,0 C.⎥⎦⎤⎢⎣⎡2,32 D.(]2,0B 组一、选择题1-b.(2017浙江湖州期末调研,1)已知()x f 是R 上的奇函数,当0≥x 时,()()⎪⎩⎪⎨⎧≥--<≤+=1,3110,1log 21x x x x x f 则函数()21+=x f y 的所有零点之和是( ) A.21- B.12- C.25- D.52-2-c.(2017浙江温州模拟(2月),10)已知定义在实数集R 上的函数()x f 满足()()()x f x f x f 2211-+=+,则()()20170f f +的最大值为( )A.221-B.221+ C.21D.23二、填空题3-b.(2018浙江杭州地区重点中学第一学期期中,16)若函数()()()b ax x x x x f +++--=2232的图象关于直线2-=x 对称,则()x f 的值域为 .4-b.(2016浙江宁波一模,12)对于定义在R 上的函数()x f ,若存在实数a ,使得()()1=-⋅+x a f x a f 对任意实数恒成立,则称()x f 为关于a 的“倒函数”.已知定义在R 上的函数()x f 是关于0和1的“倒函数”,且当[]1,0∈x 时,()x f 的取值范围为[]2,1,则当[]2,1∈x 时,()x f 的取值范围为 ,当[]2016,2016-∈x 时,()x f 的取值范围为 .5-c.(2018浙江重点中学12月联考,17)已知R a ∈,函数()⎪⎩⎪⎨⎧<>+=-0,0,1x e x x a x f x 若存在三个互不相等的实数321,,x x x ,使得()()()e x x f x x f x x f -===222211成立,则a 的取值范围是 .6-c.(2017浙江名校(镇海中学)交流卷二,16)已知定义域和值域都为R 的函数()x f 满足()()[]()342-+=+y x f y f x f f ,则当0>x 时,函数()x f 的取值范围是 .C 组方法1 求函数定义域的解题策略1-a.求下列函数的定义域: (11232-+-=x xy ); (2)()()034534ln -++=x x x y .2-a.若函数()x f 2的定义域是[]1,1-,求函数()x f 2log 的定义域.方法2 求函数解析式的解题策略3-a.已知函数()x f 满足:当0≠x 时,都有3311xx x x f -=⎪⎭⎫ ⎝⎛-,求()x f 的解析式.4-b.已知定义在R 上的函数()x f 满足:对于任意的实数y x ,,都有()()()()()()4fxyxffx,求函数()x f的解析式.fyyx-y12221---=--5-c.(2017浙江名校(诸暨中学)交流卷四,16)()x f 是定义在R 上的函数,若()5041=f ,对任意的R x ∈,满足()()()124+≤-+x x f x f )及()()()5612+≥-+x x f x f ,则()()=12017f f .6-c.(2017浙江金华十校调研,20)已知函数()[]()[]⎪⎩⎪⎨⎧∈--∈-=3,1,1551,0,2x x f x x x x f (1)求⎪⎭⎫⎝⎛25f 及[]3,2∈x ]时函数()x f 的解析式; (2)若()xk x f ≤对任意(]3,0∈x 恒成立,求实数k 的最小值.方法3 分段函数的解题策略7-a.(2017浙江模拟训练冲刺卷五,11)设函数()⎩⎨⎧>≤++=0,20,2x x c bx x x f 若()()04f f =-,()22-=-f ,则=+c b ;方程()x x f =的所有实根的和为 .第二课A 组考点一 函数的单调性1-a.(2018浙江高考模拟训练冲刺卷一,12)已知函数()()⎩⎨⎧≥<--=2,log 2,22x x x a x a x f 若()x f 是()+∞∞-,上的增函数,则实数a 的取值范围是 ;若()x f 的值域为()+∞∞-,,则实数a 的取值范围是 .2-a.(2016浙江镇海中学测试卷二,9)设函数()⎩⎨⎧≥<-=2,2,232x x x x x f 则=⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛23f f ,若()()121-≥+a f a f ,则实数a 的取值范围是 .3-b.(2017浙江绍兴教学质量调测(3月),9)记{}⎩⎨⎧<≥=y x x y x y y x ,,,min 设(){}32,min x x x f =,则( ) A.存在0>t ,()()()()t f t f t f t f -+>-+B.存在0>t ,()()()()t f t f t f t f -->--C.存在0>t ,()()()()t f t f t f t f -++>-++1111D.存在0>t ,()()()()t f t f t f t f --+>--+1111考点二 函数的奇偶性与周期性4-a.(2018浙江高考模拟训练冲刺卷一,6)已知()()x x x f x h ++=2是奇函数,且()21=f ,若()()1+=x f x g ,则()=-1g ( )A.3B.4C.-3D.-45-a.(2017浙江镇海中学阶段测试(一),4)设()x f 为定义在R 上的奇函数,当0≥x 时,()()()R a a x x x f ∈+-+=32log 2,则()=-2f ( )A.-1B.-5C.1D.56-a.(2017浙江名校协作体期初,4)下列四个函数,以π为周期,在⎪⎭⎫ ⎝⎛2,0π上单调递减且为偶函数的是( ) A.x y sin = B.x y cos = C.x y tan = D.x y sin ln -=7-a.(2017浙江名校(镇海中学)交流卷二,8)已知函数()()()()()⎩⎨⎧<+≥+=0,sin 0,cos x x x x x f βα是偶函数,则βα,的可能取值是( ) A.2,πβπα== B.3πβα== C.6,3πβπα== D.43,4πβπα==8-a.(2016浙江宁波二模,4)已知函数()⎩⎨⎧<-≥+=0,10,1x x x x x f 则下列命题正确的是( ) A.函数()x f y sin =是奇函数,也是周期函数B.函数()x f y sin =是偶函数,不是周期函数C.函数⎪⎭⎫ ⎝⎛=x f y 1sin 是偶函数,但不是周期函数 D.函数⎪⎭⎫ ⎝⎛=x f y 1sin 是偶函数,也是周期函数9-a.(2018浙江高考模拟卷,12)定义在R 上的函数()x f 满足()()x f x f =+6.当[)3,3-∈x 时()()⎩⎨⎧<≤--<≤-+-=31,13,22x x x x x f ,则()=4f ;()()()()()=+++++20172016...321f f f f f .B 组一、选择题1-b.(2017浙江宁波二模(5月),9)已知函数()x x x f 2cos sin =,则下列关于函数()x f 的结论中,错误的是( )A.最大值为1B.图象关于直线2π-=x 对称C.既是奇函数又是周期函数D.图象关于点⎪⎭⎫ ⎝⎛0,43π中心对称2-b.(2016浙江镇海中学测试,8)已知定义在R 上的函数()x f 满足()()2x x f x f =-+,且对任意的[)+∞∈,0,21x x (其中21x x ≠)均有()()()21212121x x x x x f x f +>--. 若()()02862242>-+---m m m f m f ,则m 的可能取值是( )A.-1B.0C.1D.23-b.(2016浙江名校(诸暨中学)交流卷一,7)德国著名数学家狄利克雷在数学领域成就显著,以其名字命名的函数()⎩⎨⎧∈∈=QC x Q x x f R ,0,1被称为狄利克雷函数,其中R 为实数集,Q 为有理数集,则关于函数()x f 有如下四个命题: ①()[]0=x f f ;②函数()x f 是偶函数;③任取一个不为零的有理数T ,()()x f T x f =+对任意的R x ∈恒成立;④存在三个点()()11,x f x A ,()()22,x f x B ,()()33,x f x C 使得ABC ∆为等边三角形.其中真命题的个数是( )A.1B.2C.3D.44-c.(2017浙江模拟训练冲刺卷五,10)已知定义在R 上的函数()x f 满足()()2-=-+x f x f ,函数()1s i n 3--=x x x g ,若函数()x f y =与()x g y =的图象相交于点()()()()*222111,,...,,,,N n y x P y x P y x P n n n ∈,,则()()()=++++++n n y x y x y x ...2211( )A.22+-nB.n 2-C.1+-nD.n -5-c.(2017浙江金华十校联考(4月),9)若定义在()1,0上的函数()x f 满足()0>x f 且对任意的()1,0∈x ,有()x f x x f 2122=⎪⎭⎫ ⎝⎛+,则( ) A.对任意的正数M ,存在()1,0∈x ,使()M x f ≥B.存在正数M ,对任意的()1,0∈x ,使()M x f ≤C.对任意的()1,0,21∈x x 21x x <,有()()21x f x f <D.对任意的()1,0,21∈x x 且21x x <,有()()21x f x f >)二、填空题6-b.(2018浙江“七彩阳光”联盟期中,16)已知函数()x f 是定义在R 上的奇函数,对任意的R x ∈都有()()x f x f -=+11,且当[]1,0∈x 时,()12-=x x f ,则当[]6,2-∈x 时,方程()21-=x f 所有根之和为 .C 组方法1 函数单调性的解题策略1-a.已知()ax y a -=2log 在[]1,0上是关于x 的减函数,则a 的取值范围是( )A.(0,1)B.(1,2)C.(0,2)D.[2,+∞)2-b.(2017浙江台州质量评估,17)已知函数()()R b a b ax x x x f ∈--+=,1,当⎥⎦⎤⎢⎣⎡∈2,21x 时,设()x f 的最大值为()b a M ,,则()b a M ,的最小值为 .3-b.(2016浙江模拟训练卷(二),20)已知函数()x x x f 42-=.(1)若()x f y =在区间[]1,+a a 上为单调增函数,求实数a 的取值范围;(2)若存在实数t ,当[]m x ,0∈时,有()x t x f 2≤-恒成立,求正实数m 的取值范围.方法2 关于函数奇偶性的解题策略5-b.函数f(x)的定义域为{}R x x x D ∈≠=,0,且满足对于任意D x x ∈21,,有 ()()()2121x f x f x x f +=⋅.(1)求()1f 的值;(2)判断()x f 的奇偶性并证明;(3)如果()14=f ,()()36213≤-++x f x f ,且()x f 在()+∞,0上是增函数,求x 的取值范围.方法3 求函数值域(或最值)的解题策略5-a.求函数x x y sin 2cos 3+=的最大值和最小值.6-a.(2016浙江名校协作体测试,18)已知R a ∈,函数()22a x a x x x f +--=.(1)若2>a ,解关于x 的方程()a a x f 22-=;(2)若[]4,2-∈a ,求函数()x f 在[]3,3-上的最小值.方法4 关于函数周期性的解题策略7-a.已知定义在R 上的函数()x f y =为偶函数,且()1+=x f y 为奇函数,()20=f ,则()()=+54f f .8-a.(2016浙江镇海中学测试(七),9)已知()x f 是以2为周期的周期函数,且当[]1,1-∈x 时,()⎩⎨⎧≤<≤≤-+=10,log 01,x x x a x x f b 其中R b a ∈,.若02321=⎪⎭⎫ ⎝⎛+⎪⎭⎫⎝⎛f f , 则=a ,=⎪⎭⎫ ⎝⎛22017f .第二章基本初等函数第一课A 组考点 二次函数与幂函数1-a.(2018浙江杭州地区重点中学第一学期期中,8)若函数()b ax x x f ++=2有两个零点21,x x ,且5321<<<x x ,那么()()5,3f f ( )A.只有一个小于1B.都小于1C.都大于1D.至少有一个小于12-a.(2018浙江重点中学12月联考,3)已知函数142+-=x x y 的定义域为[]t ,1,在该定义域内函数的最大值与最小值之和为-5,则实数t 的取值范围是( )A.(1,3]B.[2,3]C.(1,2]D.(2,3)3-b.(2017浙江杭州二模(4月),9)设函数()()R b a b ax x x f ∈++=,2的两个零点为21,x x ,若221≤+x x ,则( ) A.1≥a B.1≤b C.22≥+b a D.22≤+b a4-b.(2017浙江名校(衢州二中)交流卷五,9)()c bx ax x f ++=2,当210≤≤x 时,()[]4,2∈x f ,则a 的最大值为( )A.8B.16C.32D.645-b.(2017浙江“七彩阳光”新高考研究联盟测试,8)已知()()⎩⎨⎧≥-<+--=0,10,122x x f x x x x f 则()x x f y -=的零点有( )A.1个B.2个C.3个D.4个6-b.(2016浙江绍兴一模,8)对于函数()x f ,若存在N x ∈0,满足()410≤x f ,则称0x 为函数()x f 的一个“近零点”.已知函数()()02>++=a c bx ax x f 有四个不同的“近零点”,则a 的最大值为 ( )A.2B.1C.21D.417-b.(2016浙江宁波“十校”联考,18)若存在区间[]()n m n m A <=,,使得(){}A A x x f y y =∈=,,则称函数()x f 为“可等域函数”,区间A 为函数f(x)的一个“可等域区间”.已知函数()()R b a b ax x x f ∈+-=,22.(1)若()()x f x g a b ===,1,0是“可等域函数”,求函数()x g 的“可等域区间”;(2)若区间[]1,1+a 为()x f 的“可等域区间”,求b a ,的值.B 组一、选择题1-a.(2018浙江浙东北联盟期中,7)设函数()()R c b a c bx ax x f ∈++=,,2,若函数()x e x f y =(e 为自然对数的底数)在1-=x 处取得极值,则下列图象不可能为()x f y =的图象的是( )2-c.(2017浙江稽阳联谊学校联考,10)设二次函数()b ax x x f ++=2,若对任意的实数a ,都存在实数⎥⎦⎤⎢⎣⎡∈2,21x ,使得不等式()x x f ≥成立,则实数b 的取值范围是( ) A.[)+∞⎪⎭⎫ ⎝⎛-∞-,231, B.⎪⎭⎫⎢⎣⎡+∞⎥⎦⎤ ⎝⎛-∞-,4131, C.⎪⎭⎫⎢⎣⎡+∞⎥⎦⎤ ⎝⎛∞-,4941, D.⎪⎭⎫⎢⎣⎡+∞⎥⎦⎤ ⎝⎛-∞-,4931,3-c.(2017浙江“超级全能生”联考(3月),10)已知函数()122+-=tx x x f 在(]1,∞-上递减,且对任意的[]1,0,21+∈t x x ,总有()()221≤-x f x f ,则实数t 的取值范围为( ) A.[]2,2- B.[]2,1 C.[]3,2 D.[]2,1二、填空题4-c.(2018浙江“七彩阳光”联盟期初联考,17)设关于x 的方程022=--ax x 和012=---a x x 的实根分别为21,x x 和43,x x ,若4231x x x x <<<,则a 的取值范围是 .5-c.(2018浙江高考模拟卷,17)已知关于x 的方程()R c b c bx x ∈=++,022在[]1,1-上有实根,且340≤+≤c b ,则b 的取值范围为 .6-c.(2017浙江绍兴教学质量调测(3月),17)已知R b a ∈,且10≤+≤b a ,函数()b ax x x f ++=2在⎥⎦⎤⎢⎣⎡-0,21上至少存在一个零点,则b a 2-的取值范围为 .7-c.(2017浙江名校(杭州二中)交流卷三,16)记()z y x M ,,为z y x ,,三个数中的最小数,若二次函数()()02≥≥≥++=c b a c bx ax x f 有零点,则⎪⎭⎫ ⎝⎛+++c b a b a c a c b M ,,的最大值为 .三、解答题8-a.(2017浙江温州中学高三3月模拟,19)已知二次函数()()R c b a c bx ax x f ∈++=,,2,对任意实数x ,不等式()()21212+≤≤x x f x 恒成立. (1)求()1-f 的取值范围;(2)对任意[]1,3,21--∈x x ,恒有()()121≤-x f x f ,求实数a 的取值范围.9-b.(2016浙江宁波一模,18)已知函数()12-=x x f .(1)对于任意实数[]2,1∈x ,()()()1442-≤+x f m f x f m 恒成立,求实数m 的取值范围; (2)若对任意实数[]2,11∈x ,存在实数[]2,12∈x ,使得()()2212ax x f x f -=成立,求实数a 的取值范围.C 组方法1 三个“二次”问题的处理方法1-c.(2017浙江杭州质检,17)设函数()bx ax x f 222+=,若存在实数()t x ,00∈,使得对任意不为零的实数b a ,均有()b a x f +=0成立,则t 的取值范围是 .2-c.(2017浙江测试卷,17)已知函数()()R b a b ax x x f ∈++=,2在区间()1,0上有两个零点,则b a +3的取值范围是 .方法2 关于二次函数值域和最值的解题策略3-c.(2017浙江镇海中学模拟练习(二),17)已知函数()a bx ax x f -++=122.若对任意实数[]1,1-∈x ,均有()0≥x f ,则b a -的最大值为( )A.-1B.0C.1D.24-c.(2017浙江镇海中学模拟卷(五),17)已知()11+=x x f ,且()()[]()*11,2N n n x f f x f n n ∈≥=-,若关于X 的函数()()*210320N n n x nf x y n ∈+-+=在区间(]2,-∞-上的最小值为-3,则n 的值为 .方法3 幂函数的解题策略5-a.比较大小:(1)()5352328.1,9.3,8.3--; (2)5.14.15,3.6-b.已知幂函数()()Z m x x f m m ∈=++-322为偶函数且在区间(0,+∞)上是单调增函数. (1)求函数()x f 的解析式;(2)设函数()()182-+-=q x x f x g ,若()0>x g 对任意[]1,1-∈x 恒成立,求实数q 的取值范围.第二课A 组考点 指数与指数函数1-a.(2018浙江浙东北联盟期中,8)已知R y x ∈,,且x y y x --+≤+7575,则( )A.y x sin sin ≤B.22y x ≤C.y x 55≤D.y x 7171log log ≤2-a.(2017浙江镇海中学一轮阶段检测,4)不论a 为何值,函数()221a a y x --=恒过定点,则这个定点的坐标是( ) A.⎪⎭⎫ ⎝⎛-21,1 B.⎪⎭⎫ ⎝⎛21,1 C.⎪⎭⎫ ⎝⎛--21,1 D.⎪⎭⎫ ⎝⎛-21,13-a.(2018浙江杭州地区重点中学第一学期期中,11)已知0>a 且1≠a ,x a =2log ,则=x a ;=+-x x a a 22 .4-a.(2017浙江“七彩阳光”新高考研究联盟测试,11)已知24=a,a x =lg ,则a = ,x = .5-a.(2017浙江高考模拟训练冲刺卷一,4)已知函数()x f 是奇函数,当0>x 时,()()1,0≠>=a a a x f x 且,且34log 21-=⎪⎪⎭⎫ ⎝⎛f ,则a 的值为( ) A.3B.3C.9D.236-b.(2016浙江五校第一次联考,8)已知函数()x f 是定义域为R 的偶函数,当0≥x 时,()⎪⎪⎩⎪⎪⎨⎧>+⎪⎭⎫ ⎝⎛≤≤=2,12120,4sin 45x x x x f x π若关于x 的方程()()()20,f x af x b a b R ⎡⎤++=∈⎣⎦有且仅有6个不同的实数根,则实数a 的取值范围是 ( ) A.⎪⎭⎫ ⎝⎛--1,25 B.⎪⎭⎫ ⎝⎛--49,25 C.⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛--1,4949,25 D.⎪⎭⎫ ⎝⎛--1,49B 组一、选择题1-a.(2018浙江镇海中学模拟,2)若无论m 为何值,函数()331m m y x --=恒过定点,则这个定点的坐标是( ) A.⎪⎭⎫ ⎝⎛-31,1 B.⎪⎭⎫ ⎝⎛31,1 C.⎪⎭⎫ ⎝⎛--31,1 D.⎪⎭⎫ ⎝⎛-31,12-b.(2017浙江镇海中学模拟训练(三),9)已知函数()b x a x f x-+=的零点()()Z n n n x ∈+∈1,0,其中常数b a ,满足20172016=a ,20162017=b ,则n 的值是( )A.-2B.-1C.0D.13-b.(2016浙江嘉兴一模,7)设函数()⎩⎨⎧≥<+=1,31,12x x x x f x 则满足()[]()m f m f f 3=的实数m 的取值范围是( ) A.(]⎭⎬⎫⎩⎨⎧-∞-210, B.[]1,0 C.[)⎭⎬⎫⎩⎨⎧-+∞21,0 D.[)+∞,14-b.(2016浙江金丽衢十二校第一次联考,7)若函数()x f 是R 上的单调函数,且对任意实数x ,都有()31122=⎥⎦⎤⎢⎣⎡++x x f f ,则()=3log 2f ( )A.1B.54C.21D.0二、填空题5-a.(2017浙江镇海中学阶段测试(一),11)设函数()⎪⎩⎪⎨⎧≥--<-⎪⎭⎫ ⎝⎛=0,10,1212x x x x x f x则()[]=0f f = ;若()1<a f ,则实数a 的取值范围是 .6-a.(2016浙江镇海中学测试(三),10)已知定义在R 上的奇函数()x f 满足:当0>x 时,()⎩⎨⎧>+-≤<=1,110,2x x x x f x 则()[]=-2f f ;若方程()a x f =有两解,则a 的取值范围是 .7-c.(2018浙江高考模拟训练冲刺卷一,17)已知函数()⎩⎨⎧≥<<=1,10,x e x e x f x 现有四个命题: ①若0,0>>b a ,则()()()b f a f b a f ≤+;②若0>>b a ,则()()()b f a f b a f ≥-; ③若0,0>>b a ,则()()[]b a f ab f ≥;④若0>>b a ,则()[]b a f b a f 1≤⎪⎭⎫ ⎝⎛. 其中真命题为 .(写出所有真命题的序号)C 组方法1 指数式的运算、估值和大小比较的解题策略 1-b.已知函数()x x f 10=,且实数c b a ,,满足()()()b a f b f a f +=+,()()()()c b a f c f b f a f ++=++,则c 的最大值为 .2-b.化简:11111331333---+++++-x x x x x x x x .方法2 指数函数的图象和性质的综合应用的解题策略3-a.已知实数b a ,满足等式ba ⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛3121,下列五个关系式: ①a b <<0;②0<<b a ;③b a <<0;④0<<a b ;⑤b a =. 其中不可能...成立的关系式有( ) A.1个B.2个C.3个D.4个4-b.(2016浙江镇海中学测试卷一,15)已知函数()⎩⎨⎧>≤+=a x ax x x f x,2,1若存在两个不相等的实数21,x x 使得()()21x f x f =,则实数a 的取值范围为 .第三课A 组考点 对数与对数函数1-a.(2018浙江嵊州高级中学期中,2)已知()[]0log log log 235=x ,那么x =( ) A.5B.3C.8D.12-a.(2017浙江镇海中学模拟卷三,5)设x 是实数,则“0ln >+x x ”是“()0ln ln >+x x ”的( ) A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件3-a.(2016浙江新高考研究卷二(慈溪中学),2)为了得到函数x y 21log =的图象,只需将函数12log 2+=x y 的图象( )A.向右平移1个单位,再向下平移1个单位B.向左平移1个单位,再向下平移1个单位C.向右平移1个单位,再向上平移1个单位D.向左平移1个单位,再向上平移1个单位4-a.(2018浙江9+1高中联盟期中,11)16、17世纪之交,随着天文、航海、工程、贸易以及军事的发展,改进数字计算方法成了当务之急,约翰·纳皮尔正是在研究天文学的过程中,为了简化其中的计算而发明了对数.后来天才数学家欧拉发现了对数与指数的关系,即N b N a a b log =⇔=.现在已知32=a,43=b,则ab = .5-a.(2017浙江名校协作体期初,12)已知4316aba -=,21log a a b+=,则a = ,b = .6-a.(2017浙江柯桥区质量检测(5月),14)若正数b a ,满足()b a b a +=+=+842log log 1log 3,则a = ,b = .7-b.(2017浙江名校协作体,11)已知2lg 8lg 2lg ,0,0=+>>yxy x ,则xy 的最大值是 .8-b.(2016浙江宁波一模,9)已知0,3log ,2log >==a n m a a 且1≠a ,则nm a +2= ;若用n m ,表示6log 4,则6log 4= .B 组一、选择题1-a.(2018浙江“七彩阳光”联盟期中,3)设0,0>>b a ,则“()b a b a +≥+222log log log ”是“4≥ab ”的( ) A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件2-b.(2017浙江名校(绍兴一中)交流卷一,6)已知函数()a x x x f +-=22的定义域与函数()()1ln 2+-=ax x x g 的值域均为R ,则实数a 的取值范围是( )A.[1,2]B.(-∞,-2)C.[-2,1]D.[2,+∞)3-b.(2017浙江名校(杭州二中)交流卷三,7)已知实数0,>y x ,且()161=+y x ,则y x 24log log +的最大值是( ) A.2B.23C.3D.4二、填空题4-a.(2018浙江嵊州高级中学期中,2)已知函数()⎩⎨⎧≤+>=0,20,log 23x x x x x x f 则=⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛31f f ;若()20-=x f ,则0x = .5-a.(2018浙江萧山九中12月月考,11)若函数()x x x f lg lg 1++=,则()x f 的定义域为 ;不等式()1>x f 的解集是 .6-a.(2017浙江杭州质检,11)=+5lg 2lg ;=-313log 822 .7-a.(2017浙江台州质量评估,11)已知函数()⎩⎨⎧≥<=1,log 1,22x x x x f x 则()=0f ,()[]=0f f .8-a.(2017浙江镇海中学模拟卷一,12)已知函数()⎩⎨⎧≥<=1,log 1,22x x x x f x 则()x f 的值域是 ;若方程()0=-a x f 恰有一个实根,则实数a 的取值范围是 .9-b.(2016浙江金丽衢十二校第一次联考,18(改编))已知函数()()t a x f x a +=2log ,其中0>a 且1≠a ,若存在实数()n m n m <,,使得[]n m x ,∈时,函数()x f 的值域也为[]n m ,,则t 的取值范围是 .C 组方法1 关于对数概念及运算的解题策略1-a.(2016浙江模拟训练卷(一),13)已知()x f 是定义在R 上的奇函数,且()()02=++x f x f ,当[]1,0∈x 时,()12-=x x f ,则=⎪⎪⎭⎫⎝⎛125log 81f .2-a.(2017浙江台州4月调研卷(一模),14)已知324,2==b a x,则=b 2log ,满足1log ≤b a 的实数x 的取值范围是 .方法2 对数函数的图象和性质的应用的解题策略3-c.(2017浙江镇海中学模拟卷(六),17)函数()⎩⎨⎧>+-≤<=4,341240,log 22x x x x x x f 若d c b a ,,,互不相同,且()()()()d f c f b f a f ===,则abcd 的取值范围是 .。
2024年高考数学总复习第二章函数的概念与基本初等函数真题分类10函数与方程

由于f1(1)=0,当n≥2时,fn(1)=212+312+…+n12>0,故fn(1)≥0.
第5页
返回层目录 返回目录
真题分类10 函数与方程
又fn23=-1+23+k∑=n 223k2k ≤-13+14k∑=n 223k =-13+14·23211--2323n-1 =-13·23n-1<0, 所以存在唯一的xn∈23,1,满足fn(xn)=0.
第9页
返回层目录 返回目录
真题分类10 函数与方程
高考·数学
答案:C
(1-a)x,x<0, 由题意,b=f(x)-ax=13x3-12(a+1)x2,x≥0.
(1-a)x,x<0, 设 y=b,g(x)=13x3-12(a+1)x2,x≥0.
即以上两个函数的图象恰有 3 个交点,根据选项进行讨论.
高考·数学
第2页
返回目录
真题分类10 函数与方程
高考·数学
Ⅰ.函数零点存在定理法判断函数零点所在区间 Ⅱ.数形结合法Fra bibliotek断函数零点所在区间
01 判断函数在某个区间上是否存在零点的方法
(1)解方程:当函数对应的方程易求解时,可通过解方程判断方程是否有根落在给定区 间上.
(2)利用函数零点存在定理进行判断. (3)画出函数图象,通过观察图象与 x 轴在给定区间上是否有交点来判断.
真题分类10 函数与方程
高考·数学
第二章 函数的概念与基本初等函数
§ 2.6 函数与方程
真题分类10 函数与方程
C1.函数零点所在区间的判断 C2.函数零点个数的判断 C3.函数零点求和的问题 C4.零点与参数的综合问题
高考数学二轮简易通全套课时检测 选考内容 新人教版

广州大学附中2013年创新设计高考数学二轮简易通全套课时检测:选考内容本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.满分150分.考试时间120分钟.第Ⅰ卷(选择题 共60分)一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.若关于x 的不等式2124x x a a +--<-有实数解,则实数a 的取值范围为( )A .(,1)(3,)-∞+∞UB .(1,3)C .(,3)(1,)-∞--+∞UD .(3,1)--【答案】A2.圆)sin (cos 2θθρ+=的圆心坐标是( )A . ⎪⎭⎫ ⎝⎛4,21πB .⎪⎭⎫ ⎝⎛4,1π C .⎪⎭⎫⎝⎛4,2π D .⎪⎭⎫⎝⎛4,2π【答案】B3.设0a >,不等式||ax b c +<的解集是{|21}x x -<<,则::a b c 等于( )A .1:2:3B . 2:1:3C .3:1:2D .3:2:1【答案】B4.不等式243x x -+-<的解集是( ) A .⎥⎦⎤⎢⎣⎡29,23 B .⎪⎭⎫⎝⎛29,23C .(1,5)D .(3,9)【答案】B5.不等式3|1|1<+<x 的解集为( )A .(0,2)B .(-2,0)∪(2,4)C .(-4,0)D .(-4,-2)∪(0,2)【答案】D6.若不等式|2x 一a |>x -2对任意x ∈(0,3)恒成立,则实数a 的取值范围是( )A . (-∞, 2] U [7, +∞)B . (-∞, 2) U (7, +∞)C . (-∞, 4) U [7, +∞)D .(-∞, 2) U (4,+ ∞)【答案】C7.若点P(3,m)在以点F 为焦点的抛物线244x t y t ⎧=,⎨=⎩ (t 为参数)上,则|PF|等于( )A .2B .3C .4D .5【答案】C8.设函数()214f x x x =+--.则不等式()2f x >的解集是( )A .5{7}3x x -<<B .⎭⎬⎫⎩⎨⎧>-<35,7x x x 或C .{7,4}x x x <-≥或D .⎭⎬⎫⎩⎨⎧>-≤35,21x x x 或 【答案】B 9.已知x,y ∈R 且122=+y x ,a,b ∈R 为常数,22222222y a x b y b x a t +++=则( ) A .t 有最大值也有最小值B .t 有最大值无最小值C .t 有最小值无最大值D .t 既无最大值也无最小值【答案】A 10.已知R x ∈,则“4|2||1|>-++x x ”是“2-<x ”的( )A . 充分而不必要条件B . 必要而不充分条件C .充分必要条件D .既不充分也不必要条件 【答案】B11.已知,则使得都成立的取值范围是( )A . (,)B .(,)C .(,)D .(,)【答案】B12.如图5,PA 为⊙O 的切线,A 为切点,PO 交⊙O 于点B ,PA =8,OA =6,则tan ∠APO 的值为( )A .34B .53C .54D .43 【答案】D第Ⅱ卷(非选择题 共90分)二、填空题(本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上)13.直角坐标系xOy 中,以原点为极点,x 轴的正半轴为极轴建立极坐标系,设点A ,B 分别在曲线C 1:=3cos =4sin x y θθ+⎧⎨+⎩(θ为参数)和曲线C 2:ρ=1上,则|AB 的最小值为____________. 【答案】314.已知,,x y z R ∈,且2221,3x y z x y z ++=++=,则xyz 的最大值为 . 【答案】52715.若关于x 的不等式2|1||2|1()x x a a x R ---≥++∈的解集为空集,则实数a 的取值范围是 . 【答案】()()+∞⋃-∞-,01,16.若,,x y z 为正实数,则222xy yz x y z +++的最大值是 .三、解答题(本大题共6个小题,共70分,解答应写出文字说明,证明过程或演算步骤)17.如图所示,过圆O 外一点M 作它的一条切线,切点为A ,过A 点作直线AP 垂直于直线OM ,垂足为P.(1)证明:OM ·OP=OA 2;(2)N 为线段AP 上一点,直线NB 垂直于直线ON ,且交圆O 于B 点.过B 点的切线交直线ON 于K.证明:∠OKM=90°.【答案】 (1)因为MA 是圆O 的切线,所以OA ⊥AM.又因为AP ⊥OM,在Rt △OAM 中,由射影定理知,OA 2=OM ·OP.(2)因为BK 是圆O 的切线,BN ⊥OK ,同(1),有OB 2=ON ·OK ,又OB=OA ,所以OP ·OM=ON ·OK ,即OP ON =OKOM . 又∠NOP=∠MOK ,所以△ONP ∽△OMK ,故∠OKM=∠OPN=90°.18.已知函数f (x )=|2x +1|+|2x -3|+a 。
高考数学二轮复习 专题一 集合、常用逻辑用语、不等式、函数与导数 第二讲 函数的图象与性质教案 理-

第二讲函数的图象与性质年份卷别考查角度及命题位置命题分析2018Ⅱ卷函数图象的识别·T3 1.高考对此部分内容的命题多集中于函数的概念、函数的性质及分段函数等方面,多以选择、填空题形式考查,一般出现在第5~10或第13~15题的位置上,难度一般.主要考查函数的定义域,分段函数求值或分段函数中参数的求解及函数图象的判断.2.此部分内容有时出现在选择、填空题压轴题的位置,多与导数、不等式、创新性问题结合命题,难度较大.函数奇偶性、周期性的应用·T11Ⅲ卷函数图象的识别·T72017Ⅰ卷函数单调性、奇偶性与不等式解法·T5Ⅲ卷分段函数与不等式解法·T152016Ⅰ卷函数的图象判断·T7Ⅱ卷函数图象的对称性·T12函数及其表示授课提示:对应学生用书第5页[悟通——方法结论]求解函数的定义域时要注意三式——分式、根式、对数式,分式中的分母不为零,偶次方根中的被开方数非负,对数的真数大于零.底数大于零且不大于1.解决此类问题的关键在于准确列出不等式(或不等式组),求解即可.确定条件时应先看整体,后看部分,约束条件一个也不能少.[全练——快速解答]1.(2016·高考全国卷Ⅱ)以下函数中,其定义域和值域分别与函数y=10lg x的定义域和值域相同的是( )A.y=x B.y=lg xC .y =2xD .y =1x解析:函数y =10lg x的定义域与值域均为(0,+∞).结合选项知,只有函数y =1x的定义域与值域均为(0,+∞).应选D.答案:D2.(2018·某某名校联考)函数f (x )=⎩⎪⎨⎪⎧f (x -4),x >2,e x,-2≤x ≤2,f (-x ),x <-2,那么f (-2 017)=( )A .1B .eC .1eD .e 2解析:由题意f (-2 017)=f (2 017),当x >2时,4是函数f (x )的周期,所以f (2 017)=f (1+4×504)=f (1)=e.答案:B3.函数f (x )=x -1ln (1-ln x )的定义域为________.解析:由函数解析式可知,x 需满足⎩⎪⎨⎪⎧x -1≥01-ln x >0x >01-ln x ≠1,解得1<xf (x )=x -1ln (1-ln x )的定义域为(1,e).答案:(1,e)4.(2017·高考全国卷Ⅲ)设函数f (x )=⎩⎪⎨⎪⎧x +1,x ≤0,2x,x >0,那么满足f (x )+f ⎝ ⎛⎭⎪⎫x -12>1的x 的取值X 围是__________.解析: 当x ≤0时,原不等式为x +1+x +12>1,解得x >-14,∴-14<x ≤0.当0<x ≤12时,原不等式为2x+x +12>1,显然成立.当x >12时,原不等式为2x+2x -12>1,显然成立.综上可知,x 的取值X 围是⎝ ⎛⎭⎪⎫-14,+∞.答案:⎝ ⎛⎭⎪⎫-14,+∞求函数的定义域,其实质就是以函数解析式所含运算有意义为准那么,列出不等式或不等式组,然后求出解集即可.2.分段函数问题的5种常见类型及解题策略 常见类型 解题策略求函数值弄清自变量所在区间,然后代入对应的解析式,求“层层套〞的函数值,要从最内层逐层往外计算求函数最值 分别求出每个区间上的最值,然后比较大小解不等式根据分段函数中自变量取值X 围的界定,代入相应的解析式求解,但要注意取值X 围的大前提求参数 “分段处理〞,采用代入法列出各区间上的方程利用函数性质求值必须依据条件找到函数满足的性质,利用该性质求解函数图象及应用授课提示:对应学生用书第5页[悟通——方法结论]1.作函数图象有两种基本方法:一是描点法、二是图象变换法,其中图象变换有平移变换、伸缩变换、对称变换等.2.利用函数图象可以判断函数的单调性、奇偶性,作图时要准确画出图象的特点.(1)(2017·高考全国卷Ⅰ)函数y =sin 2x1-cos x的部分图象大致为( )解析:令函数f (x )=sin 2x 1-cos x ,其定义域为{x |x ≠2k π,k ∈Z },又f (-x )=sin (-2x )1-cos (-x )=-sin 2x 1-cos x =-f (x ),所以f (x )=sin 2x1-cos x 为奇函数,其图象关于原点对称,故排除B ;因为f (1)=sin 2 1-cos 1>0,f (π)=sin 2π1-cos π=0,故排除A 、D ,选C.答案:C(2)(2017·高考全国卷Ⅲ)函数y =1+x +sin xx2的部分图象大致为( )解析:法一:易知函数g (x )=x +sin xx2是奇函数,其函数图象关于原点对称,所以函数y =1+x +sin xx2的图象只需把g (x )的图象向上平移一个单位长度,结合选项知选D.法二:当x →+∞时,sin x x 2→0,1+x →+∞,y =1+x +sin xx2→+∞,故排除选项B.当0<x <π2时,y =1+x +sin xx2>0,故排除选项A 、C.选D.答案:D由函数解析式识别函数图象的策略[练通——即学即用]1.(2018·高考全国卷Ⅲ)函数y =-x 4+x 2+2的图象大致为( )解析:法一:ƒ′(x )=-4x 3+2x ,那么ƒ′(x )>0的解集为⎝ ⎛⎭⎪⎫-∞,-22∪⎝ ⎛⎭⎪⎫0,22,ƒ(x )单调递增;ƒ′(x )<0的解集为⎝ ⎛⎭⎪⎫-22,0∪⎝ ⎛⎭⎪⎫22,+∞,ƒ(x )单调递减. 应选D.法二:当x =1时,y =2,所以排除A ,B 选项.当x =0时,y =2,而当x =12时,y =-116+14+2=2316>2,所以排除C 选项.应选D. 答案:D 2.函数f (x )=⎝⎛⎭⎪⎫21+e x -1cos x 的图象的大致形状是( )解析:∵f (x )=⎝⎛⎭⎪⎫21+e x -1cos x ,∴f (-x )=⎝ ⎛⎭⎪⎫21+e -x -1cos(-x )=-⎝ ⎛⎭⎪⎫21+e x -1cosx =-f (x ),∴函数f (x )为奇函数,其图象关于原点对称,可排除选项A ,C ,又当x ∈⎝⎛⎭⎪⎫0,π2时,e x >e 0=1,21+ex -1<0,cos x >0,∴f (x )<0,可排除选项D ,应选B.答案:B3.(2018·某某调研)函数f (x )的图象如下图,那么f (x )的解析式可以是( )A .f (x )=ln|x |xB .f (x )=e xxC .f (x )=1x2-1D .f (x )=x -1x解析:由函数图象可知,函数f (xf (x )=x -1x,那么当x →+∞时,f (x )→+∞,排除D ,应选A.答案:A函数的性质及应用授课提示:对应学生用书第6页[悟通——方法结论]1.判断函数单调性的一般规律对于选择、填空题,假设能画出图象,一般用数形结合法;而对于由基本初等函数通过加、减运算或复合运算而成的函数常转化为基本初等函数单调性的判断问题;对于解析式为分式、指数函数式、对数函数式等较复杂的函数,用导数法;对于抽象函数,一般用定义法.2.函数的奇偶性(1)确定函数的奇偶性,务必先判断函数的定义域是否关于原点对称.(2)奇函数的图象关于原点对称,偶函数的图象关于y轴对称.3.记住几个周期性结论(1)假设函数f(x)满足f(x+a)=-f(x)(a>0),那么f(x)为周期函数,且2a是它的一个周期.(2)假设函数f(x)满足f(x+a)=1f(x)(a>0),那么f(x)为周期函数,且2a是它的一个周期.(1)(2017·高考全国卷Ⅱ)函数f(x)=ln(x2-2x-8)的单调递增区间是( )A.(-∞,-2) B.(-∞,1)C.(1,+∞)D.(4,+∞)解析:由x2-2x-8>0,得x>4或x<-2.因此,函数f(x)=ln(x2-2x-8)的定义域是(-∞,-2)∪(4,+∞).注意到函数y=x2-2x-8在(4,+∞)上单调递增,由复合函数的单调性知,f(x)=ln(x2-2x-8)的单调递增区间是(4,+∞).答案:D(2)(2017·高考全国卷Ⅰ)函数f(x)在(-∞,+∞)单调递减,且为奇函数.假设f(1)=-1,那么满足-1≤f(x-2)≤1的x的取值X围是( )A.[-2,2] B.[-1,1]C.[0,4] D.[1,3]解析:∵f(x)为奇函数,∴f(-x)=-f(x).∵f(1)=-1,∴f(-1)=-f(1)=1.故由-1≤f(x-2)≤1,得f(1)≤f(x-2)≤f(-1).又f(x)在(-∞,+∞)单调递减,∴-1≤x-2≤1,∴1≤x≤3.答案:D(3)(2018·高考全国卷Ⅲ)函数ƒ(x )=ln(1+x 2-x )+1,ƒ(a )=4,那么ƒ(-a )=________.解析:∵ƒ(x )+ƒ(-x )=ln(1+x 2-x )+1+ln(1+x 2+x )+1=ln(1+x 2-x 2)+2=2,∴ƒ(a )+ƒ(-a )=2,∴ƒ(-a )=-2. 答案:-21.掌握判断函数单调性的常用方法数形结合法、结论法(“增+增〞得增、“减+减〞得减及复合函数的“同增异减〞)、定义法和导数法.2.熟知函数奇偶性的3个特点(1)奇函数的图象关于原点对称,偶函数的图象关于y 轴对称. (2)确定函数的奇偶性,务必先判断函数的定义域是否关于原点对称. (3)对于偶函数而言,有f (-x )=f (x )=f (|x |).3.周期性:利用周期性可以转化函数的解析式、图象和性质,把不在区间上的问题,转化到区间上求解.4.注意数形结合思想的应用.[练通——即学即用]1.(2018·某某模拟)以下函数中,既是奇函数又在(0,+∞)上单调递增的是( ) A .y =e x+e -xB .y =ln(|x |+1)C .y =sin x |x |D .y =x -1x解析:选项A 、B 显然是偶函数,排除;选项C 是奇函数,但在(0,+∞)上不是单调递增函数,不符合题意;选项D 中,y =x -1x 是奇函数,且y =x 和y =-1x在(0,+∞)上均为增函数,故y =x -1x在(0,+∞)上为增函数,所以选项D 正确.答案:D2.(2018·某某八中摸底)函数y =f (x )在区间[0,2]上单调递增,且函数f (x +2)是偶函数,那么以下结论成立的是( )A .f (1)<f ⎝ ⎛⎭⎪⎫52<f ⎝ ⎛⎭⎪⎫72B .f ⎝ ⎛⎭⎪⎫72<f (1)<f ⎝ ⎛⎭⎪⎫52C .f ⎝ ⎛⎭⎪⎫72<f ⎝ ⎛⎭⎪⎫52<f (1)D .f ⎝ ⎛⎭⎪⎫52<f (1)<f ⎝ ⎛⎭⎪⎫72 解析:因为函数f (x +2)是偶函数, 所以f (x +2)=f (-x +2), 即函数f (x )的图象关于x =2对称. 又因为函数y =f (x )在[0,2]上单调递增, 所以函数y =f (x )在区间[2,4]上单调递减. 因为f (1)=f (3),72>3>52,所以f ⎝ ⎛⎭⎪⎫72<f (3)<f ⎝ ⎛⎭⎪⎫52, 即f ⎝ ⎛⎭⎪⎫72<f (1)<f ⎝ ⎛⎭⎪⎫52. 答案:B授课提示:对应学生用书第116页一、选择题1.以下四个函数: ①y =3-x ;②y =2x -1(x >0);③y =x 2+2x -10;④y =⎩⎪⎨⎪⎧x (x ≤0),1x(x >0).其中定义域与值域相同的函数的个数为( )A .1B .2C .3D .4解析:①y =3-x 的定义域和值域均为R ,②y =2x -1(x >0)的定义域为(0,+∞),值域为⎝ ⎛⎭⎪⎫12,+∞,③y =x 2+2x -10的定义域为R ,值域为[-11,+∞),④y =⎩⎪⎨⎪⎧x (x ≤0),1x(x >0)的定义域和值域均为R ,所以定义域与值域相同的函数是①④,共有2个,应选B.答案:B2.设定义在R 上的奇函数y =f (x )满足对任意的x ∈R ,都有f (x )=f (1-x ),且当x ∈[0,12]时,f (x )=(x +1),那么f (3)+f (-32)的值为( )A .0B .1C .-1D .2解析:由于函数f (x )是奇函数,所以f (x )=f (1-x )⇒f (x )=-f (x +1)⇒f (x +1)=-f (x )⇒f (x +2)=f (x ),所以f (3)=f (1)=f (1-1)=f (0)=0,f (-32)=f (12)=32f (3)+f (-32)=-1.答案:C3.函数f (x )=1+ln ()x 2+2的图象大致是( )解析:因为f (0)=1+ln 2>0,即函数f (x )的图象过点(0,ln 2),所以排除A 、B 、C ,选D.答案:D4.(2017·高考某某卷)奇函数f (x )在R 上是增函数,g (x )=xf (x ).假设a =g (-log 2 5.1),b =g (2),c =g (3),那么a ,b ,c 的大小关系为( )A .a <b <cB .c <b <aC .b <a <cD .b <c <a解析:奇函数f (x )在R 上是增函数,当x >0时,f (x )>f (0)=0,当x 1>x 2>0时,f (x 1)>f (x 2)>0,∴x 1f (x 1)>x 2f (x 2),∴g (x )在(0,+∞)上单调递增,且g (x )=xf (x )是偶函数,∴a =g (-log 2 5.1)=g (log 2 5.1).易知2<log 2 5.1<3,1<2<2,由g (x )在(0,+∞)上单调递增,得g (2)<g (log 2 5.1)<g (3),∴b <a <c ,应选C.答案:C5.(2018·某某模拟)函数f (x )=e xx 的图象大致为( )解析:由f (x )=e x x ,可得f ′(x )=x e x -e x x 2=(x -1)e x x2, 那么当x ∈(-∞,0)和x ∈(0,1)时,f ′(x )<0,f (x )单调递减;当x ∈(1,+∞)时,f ′(x )>0,f (x )单调递增.又当x <0时,f (x )<0,应选B.答案:B6.定义在R 上的奇函数f (x )满足f (x -4)=-f (x ),且在区间[0,2]上是增函数,那么( )A .f (-25)<f (11)<f (80)B .f (80)<f (11)<f (-25)C .f (11)<f (80)<f (-25)D .f (-25)<f (80)<f (11)解析:因为f (x )满足f (x -4)=-f (x ),所以f (x -8)=f (x ),所以函数f (x )是以8为周期的周期函数,那么f (-25)=f (-1),f (80)=f (0),f (11)=f (3).由f (x )是定义在R 上的奇函数,且满足f (x -4)=-f (x ),得f (11)=f (3)=-f (-1)=f (1).因为f (x )在区间[0,2]上是增函数,f (x )在R 上是奇函数,所以f (x )在区间[-2,2]上是增函数,所以f (-1)<f (0)<f (1),即f (-25)<f (80)<f (11).答案:D7.(2018·某某模拟)函数f (x )=ex -1+4x -4,g (x )=ln x -1x ,假设f (x 1)=g (x 2)=0,那么( )A .0<g (x 1)<f (x 2)B .f (x 2)<g (x 1)<0C .f (x 2)<0<g (x 1)D .g (x 1)<0<f (x 2) 解析:易知f (x )=e x -1+4x -4,g (x )=ln x -1x在各自的定义域内是增函数,而f (0)=e -1+0-4=1e -4<0,f (1)=e 0+4×1-4=1>0,g (1)=ln 1-11=-1<0,g (2)=ln 2-12=ln 2e f (x 1)=g (x 2)=0,所以0<x 1<1,1<x 2<2,所以f (x 2)>f (1)>0,g (x 1)<g (1)<0,故g (x 1)<0<f (x 2).答案:D8.函数f (x )=(x 2-2x )·sin(x -1)+x +1在[-1,3]上的最大值为M ,最小值为m ,那么M +m =( )A .4B .2C .1D .0 解析:f (x )=[(x -1)2-1]sin(x -1)+x -1+2,令t =x -1,g (t)=(t 2-1)sin t +t ,那么y =f (x )=g (t)+2,t ∈[-2,2].显然M =g (t)max +2,m =g (t)min +2.又g (t)为奇函数,那么g (t)max +g (t)min =0,所以M +m =4,应选A.答案:A9.g (x )是定义在R 上的奇函数,且当x <0时,g (x )=-ln(1-x ),函数f (x )=⎩⎪⎨⎪⎧ x 3,x ≤0,g (x ),x >0,假设f (2-x 2)>f (x ),那么x 的取值X 围是( ) A .(-∞,-2)∪(1,+∞)B .(-∞,1)∪(2,+∞)C .(-2,1)D .(1,2)解析:因为g (x )是定义在R 上的奇函数,且当x <0时,g (x )=-ln(1-x ),所以当x >0时,-x <0,g (-x )=-ln(1+x ),即当x >0时,g (x )=ln(1+x ),那么函数f (x )=⎩⎪⎨⎪⎧ x 3,x ≤0,ln (1+x ),x >0,作出函数f (x )的图象,如图:由图象可知f (x )=⎩⎪⎨⎪⎧ x 3,x ≤0,ln (1+x ),x >0在(-∞,+∞)上单调递增. 因为f (2-x 2)>f (x ),所以2-x 2>x ,解得-2<x <1,应选C.答案:C10.(2018·高考全国卷Ⅱ)ƒ(x )是定义域为(-∞,+∞)的奇函数,满足ƒ(1-x )=ƒ(1+x ).假设ƒ(1)=2,那么ƒ(1)+ƒ(2)+ƒ(3)+…+ƒ(50)=( )A .-50B .0C .2D .50解析:∵ƒ(x )是奇函数,∴ƒ(-x )=-ƒ(x ),∴ƒ(1-x )=-ƒ(x -1).由ƒ(1-x )=ƒ(1+x ),∴-ƒ(x -1)=ƒ(x +1),∴ƒ(x +2)=-ƒ(x ),∴ƒ(x +4)=-ƒ(x +2)=-[-ƒ(x )]=ƒ(x ),∴函数ƒ(x )是周期为4的周期函数.由ƒ(x )为奇函数得ƒ(0)=0.又∵ƒ(1-x )=ƒ(1+x ),∴ƒ(x )的图象关于直线x =1对称,∴ƒ(2)=ƒ(0)=0,∴ƒ(-2)=0.又ƒ(1)=2,∴ƒ(-1)=-2,∴ƒ(1)+ƒ(2)+ƒ(3)+ƒ(4)=ƒ(1)+ƒ(2)+ƒ(-1)+ƒ(0)=2+0-2+0=0,∴ƒ(1)+ƒ(2)+ƒ(3)+ƒ(4)+…+ƒ(49)+ƒ(50)=0×12+ƒ(49)+ƒ(50)=ƒ(1)+ƒ(2)=2+0=2.应选C.答案:C11.定义在R 上的函数f (x )对任意0<x 2<x 1都有f (x 1)-f (x 2)x 1-x 2<1,且函数y =f (x )的图象关于原点对称,假设f (2)=2,那么不等式f (x )-x >0的解集是( )A .(-2,0)∪(0,2)B .(-∞,-2)∪(2,+∞)C .(-∞,-2)∪(0,2)D .(-2,0)∪(2,+∞) 解析:由f (x 1)-f (x 2)x 1-x 2<1, 可得[f (x 1)-x 1]-[f (x 2)-x 2]x 1-x 2<0.令F (x )=f (x )-x ,由题意知F (x )在(-∞,0),(0,+∞)上是减函数,又是奇函数,且F (2)=0,F (-2)=0,所以结合图象,令F (x )>0,得x <-2或0<x <2,应选C.答案:C12.(2018·某某三市联考)函数f (x )=e |x |,函数g (x )=⎩⎪⎨⎪⎧ e x ,x ≤4,4e 5-x ,x >4对任意的x ∈[1,m ](m >1),都有f (x -2)≤g (x ),那么m 的取值X 围是( )A .(1,2+ln 2) B.⎝ ⎛⎭⎪⎫2,72+ln 2 C .(ln 2,2] D.⎝ ⎛⎦⎥⎤1,72+ln 2 解析:作出函数y 1=e |x -2|和y =g (x )的图象,如下图,由图可知当x=1时,y 1=g (1),又当x =4时,y 1=e 2<g (4)=4e ,当x >4时,由ex -2≤4e 5-x ,得e 2x -7≤4,即2x -7≤ln 4,解得x ≤72+ln 2,又m >1,∴1<m ≤72+ln 2.答案:D二、填空题13.设f (x )是周期为2的奇函数,当0≤x ≤1时,f (x )=2x (1-x ),那么f ⎝ ⎛⎭⎪⎫-52=________.解析:由题意得f ⎝ ⎛⎭⎪⎫-52=f ⎝ ⎛⎭⎪⎫2-52=f ⎝ ⎛⎭⎪⎫-12=-f ⎝ ⎛⎭⎪⎫12=-12. 答案:-1214.假设函数f (x )=x (x -1)(x +a )为奇函数,那么a =________.解析:法一:因为函数f (x )=x (x -1)(x +a )为奇函数,所以f (-x )=-f (x )对x ∈R 恒成立,所以-x ·(-x -1)(-x +a )=-x (x -1)(x +a )对x ∈R 恒成立,所以x (a -1)=0对x ∈R 恒成立,所以a =1.法二:因为函数f (x )=x (x -1)(x +a )为奇函数,所以f (-1)=-f (1),所以-1×(-1-1)×(-1+a )=-1×(1-1)×(1+a ),解得a =1.答案:115.函数f (x )=⎩⎪⎨⎪⎧ (1-2a )x +3a ,x <1,2x -1,x ≥1的值域为R ,那么实数a 的取值X 围是________.解析: 当x ≥1时,f (x )=2x -1≥1,∵函数f (x )=⎩⎪⎨⎪⎧ (1-2a )x +3a ,x <1,2x -1,x ≥1的值域为R ,∴当x <1时,(1-2a )x +3a 必须取遍(-∞,1)内的所有实数,那么⎩⎪⎨⎪⎧ 1-2a >0,1-2a +3a ≥1,解得0≤a <12. 答案:⎣⎢⎡⎭⎪⎫0,12 16.如图放置的边长为1的正方形PABC 沿x 轴滚动,点B 恰好经过原点,设顶点P (x ,y )的轨迹方程是y =f (x ),那么对函数y =f (x )有以下判断:①函数y =f (x )是偶函数;②对任意的x ∈R ,都有f (x +2)=f (x -2);③函数y =f (x )在区间[2,3]上单调递减;④函数y =f (x )在区间[4,6]上是减函数.其中判断正确的序号是________.解析:如图,从函数y =f (x )的图象可以判断出,图象关于y 轴对称,每4个单位图象重复出现一次,在区间[2,3]上,随x 增大,图象是往上的,在区间[4,6]上图象是往下的,所以①②④正确,③错误.答案:①②④。
(统考版)高考数学二轮专题复习 课时作业16 函数的图象与性质 文(含解析)-人教版高三全册数学试题

课时作业16 函数的图象与性质[A·基础达标]1.已知集合M 是函数y =11-2x的定义域,集合N 是函数y =x 2-4的值域,则M ∩N =( )A .{x |x ≤12}B .{x |-4≤x <12}C .{(x ,y )|x <12且y ≥-4}D .∅2.下列函数中,是偶函数且在区间(0,+∞)上单调递减的函数是( ) A .y =2x B .y =xC .y =|x |D .y =-x 2+13.[2020·某某市第一次模拟考试]已知定义在[m -5,1-2m ]上的奇函数f (x ),满足x >0时,f (x )=2x -1,则f (m )的值为( )A .-15B .-7C .3D .154.[2020·某某市质量检测]函数y =x 2e x 的大致图象为( )5.若函数f (x )=⎩⎪⎨⎪⎧ax +b ,x <-1,ln (x +a ),x ≥-1的图象如图所示,则f (-3)等于( )A .-12B .-54C .-1D .-26.已知函数f (x )满足:f (-x )+f (x )=0,且当x ≥0时,f (x )=2+m2x-1,则f (-1)=( ) A.32 B .-32 C.12 D .-127.将函数f (x )的图象向右平移一个单位长度后,所得图象与曲线y =ln x 关于直线y =x 对称,则f (x )=( )A .ln(x +1)B .ln(x -1)C .e x +1D .e x -18.已知偶函数f (x )在[0,+∞)上单调递减,f (1)=-1,若f (2x -1)≥-1,则x 的取值X 围为( )A .(-∞,-1]B .[1,+∞)C .[0,1]D .(-∞,0]∪[1,+∞)9.如图,把圆周长为1的圆的圆心C 放在y 轴上,顶点A (0,1),一动点M 从点A 开始逆时针绕圆运动一周,记AM =x ,直线AM 与x 轴交于点N (t,0),则函数t =f (x )的图象大致为( )10.[2020·某某西工大附中3月质检]已知符号函数sgn x =⎩⎪⎨⎪⎧1,x >0,0,x =0,-1,x <0,偶函数f (x )满足f (x +2)=f (x ),当x ∈[0,1]时,f (x )=x ,则( )A .sgn f (x )>0B .f (4 0412)=1C .sgn f (2k )=0(k ∈Z )D .sgn f (k )=|sgn k |(k ∈Z ) 11.已知定义在R 上的函数y =f (x )在(-∞,a )上是增函数,且函数y =f (x +a )是偶函数,则当x 1<a ,x 2>a ,且|x 1-a |<|x 2-a |时,有( )A .f (x 1)>f (x 2)B .f (x 1)≥f (x 2)C .f (x 1)<f (x 2)D .f (x 1)≤f (x 2)12.定义在R 上的函数y =f (x )满足以下三个条件: ①对于任意的x ∈R ,都有f (x +1)=f (x -1); ②函数y =f (x +1)的图象关于y 轴对称;③对于任意的x 1,x 2∈[0,1],都有[f (x 1)-f (x 2)]·(x 1-x 2)>0.则f ⎝⎛⎭⎫32,f (2),f (3)的大小关系是( )A .f ⎝⎛⎭⎫32>f (2)>f (3)B .f (3)>f (2)>f ⎝⎛⎭⎫32C .f ⎝⎛⎭⎫32>f (3)>f (2)D .f (3)>f ⎝⎛⎭⎫32>f (2)13.若函数f (x )满足f (1-ln x )=1x,则f (2)=________.14.设函数f (x )=⎩⎪⎨⎪⎧x 2+2(x ≥0),2x +2(x <0),若f (t +1)>f (2t -4),则t 的取值X 围是________.15.[2020·某某某某一中模拟]黎曼函数是一个特殊的函数,由德国著名的数学家黎曼发现并提出,在高等数学中有着广泛的应用,其定义为:定义在区间[0,1]上的函数R (x )=⎩⎪⎨⎪⎧1p ,x =q p (p ,q 都是正整数,q p 是既约真分数),0,x =0,1或无理数.若函数f (x )是定义在R 上的奇函数,且对任意x 都有f (2-x )+f (x )=0,当x ∈[0,1]时,f (x )=R (x ),则f ⎝⎛⎭⎫185+f (lg 30)=________.16.[2020·某某市第一次适应性考试]已知函数f (x )=x e x +x +2e x +1+sin x ,则f (-5)+f (-4)+f (-3)+f (-2)+f (-1)+f (0)+f (1)+f (2)+f (3)+f (4)+f (5)的值是________.[B·素养提升]1.已知函数f (x )=⎩⎪⎨⎪⎧e x ,x ≤e ,ln x ,x >e ,则函数y =f (e -x )的大致图象是( )2.已知f (x )=⎩⎪⎨⎪⎧|x -a |+1,x >1,a x +a ,x ≤1(a >0且a ≠1),若f (x )有最小值,则实数a 的取值X 围是( )A.⎝⎛⎭⎫23,1 B .(1,+∞)C.⎝⎛⎦⎤0,23∪(1,+∞)D.⎝⎛⎭⎫23,1∪(1,+∞) 3.[2020·某某某某新都诊断测试]已知定义在R 上的函数f (x )在(0,+∞)上单调递减,且满足对∀x ∈R ,都有f (x )-f (-x )=0,则符合上述条件的函数是( )A .f (x )=x 2+|x |+1B .f (x )=⎝⎛⎭⎫12|x |C .f (x )=ln|x +1|D .f (x )=cos x4.已知定义在R 上的偶函数y =f (x +2),其图象连续不间断,当x >2时,函数y =f (x )是单调函数,则满足f (x )=f ⎝⎛⎭⎫1-1x +4的所有x 之积为( )A .3B .-3C .-39D .395.已知函数f (x )=xx 2+1,关于函数f (x )的性质,有以下四个推断:①f (x )的定义域是(-∞,+∞);②f (x )的值域是⎣⎡⎦⎤-12,12;③f (x )是奇函数;④f (x )是区间(0,2)上的增函数.其中推断正确的个数是( )A .1B .2C .3D .46.若函数f (x )=ax +b ,x ∈[a -4,a ]的图象关于原点对称,则函数g (x )=bx +ax,x ∈[-4,-1]的值域为________.7.已知定义在R 上的偶函数f (x )满足f (x +4)=f (x )+f (2),且在区间[0,2]上是增函数.给出以下结论:①函数f (x )的一个周期为4;②直线x =-4是函数f (x )图象的一条对称轴;③函数f (x )在[-6,-5)上单调递增,在[-5,-4)上单调递减; ④函数f (x )在[0,100]内有25个零点.其中正确的是________.(把你认为正确结论的序号都填上) 8.如果定义在R 上的函数f (x )满足:对任意的x 1≠x 2,都有x 1f (x 1)+x 2f (x 2)≥x 1f (x 2)+x 2f (x 1),则称f (x )为“H 函数”,给出下列函数:①y =-x 3+x +1;②y =3x -2(sin x -cos x );③y =1-e x ;④f (x )=⎩⎪⎨⎪⎧ln x ,x ≥1,0,x <1;⑤y =x x 2+1. 其中是“H 函数”的是________.(写出所有满足条件的函数的序号)在(0,+∞)上单调递减,可知D 正确.故选D.答案:D3.解析:由题意知,(m -5)+(1-2m )=0,解得m =-4.又当x >0时,f (x )=2x -1,则f (m )=f (-4)=-f (4)=-(24-1)=-15.故选A.答案:A4.解析:y =x 2e x ≥0,排除选项C ;函数y =x 2e x 既不是奇函数也不是偶函数,排除选项D ;当x →+∞时,y →+∞,排除选项B.综上,选A.答案:A5.解析:由题中图象可得a (-1)+b =3. ln(-1+a )=0,∴a =2,b =5,∴f (x )=⎩⎪⎨⎪⎧2x +5,x <-1,ln (x +2),x ≥-1.故f (-3)=2×(-3)+5=-1.答案:C6.解析:∵f (-x )+f (x )=0,∴f (x )为奇函数.又当x ≥0时,f (x )=2+m 2x -1,则f (0)=2+m1-1=0,∴m =-1.∴当x ≥0时,f (x )=12x -1.∴f (-1)=-f (1)=-⎝⎛⎭⎫12-1=12.故选C. 答案:C7.解析:因为y =ln x 关于直线y =x 的对称图形是函数y =e x 的图象,且把y =e x 的图象向左平移一个单位长度后,得到函数y =e x +1的图象,所以f (x )=e x +1.故选C.答案:C8.解析:由题意,得f (x )在(-∞,0]上单调递增,且f (1)=-1,所以f (2x -1)≥f (1),则|2x -1|≤1,解得0≤x ≤1.故选C.答案:C9.解析:当x 由0→12时,t 从-∞→0,且单调递增,当x 由12→1时,t 从0→+∞,且单调递增,所以排除A 、B 、C ,故选D.答案:D10.解析:根据题意得函数f (x )是周期为2的函数,作出函数f (x )的大致图象,如图所示,数形结合易知f (x )∈[0,1],则sgn f (x )=0或sgn f (x )=1,可知A 错误; f ⎝⎛⎭⎫4 0412=f ⎝⎛⎭⎫2 02012=f ⎝⎛⎭⎫12=12,可知B 错误; f (2k )=0(k ∈Z ),则sgn f (2k )=0(k ∈Z ),可知C 正确;当k =2时,sgn(f (2))=sgn(0)=0,|sgn 2|=1,可知D 错误.答案:C11.解析:由函数y =f (x +a )是偶函数,可得其图象关于y 轴对称,因此函数y =f (x )的图象关于直线x =a 对称,又f (x )在(-∞,a )上是增函数,所以函数y =f (x )在(a ,+∞)上是减函数.由于x 1<a ,x 2>a 且|x 1-a |<|x 2-a |,所以x 1到对称轴的距离比x 2到对称轴的距离小,故f (x 1)>f (x 2).答案:A12.解析:对任意的x ∈R ,都有f (x +1)=f (x -1),则f (x +2)=f (x ),所以函数f (x )是周期为2的周期函数;因为函数y =f (x +1)的图象关于y 轴对称,所以函数f (x )的图象关于直线x =1对称;因为对任意的x 1,x 2∈[0,1],都有[f (x 1)-f (x 2)](x 1-x 2)>0,所以该函数在[0,1]上单调递增.因为f (3)=f (1),f ⎝⎛⎭⎫32=f ⎝⎛⎭⎫12,f (2)=f (0),1>12>0,所以f (3)>f ⎝⎛⎭⎫32>f (2),故选D. 答案:D13.解析:方法一 令1-ln x =t ,则x =e 1-t ,于是f (t )=1e 1-t ,即f (x )=1e 1-x ,故f (2)=e.方法二 由1-ln x =2,得x =1e ,这时1x =11e=e ,即f (2)=e.答案:e14.解析:如图,画出函数f (x )=⎩⎪⎨⎪⎧x 2+2(x ≥0),2x +2(x <0)的大致图象,可知函数f (x )是增函数,若f (t +1)>f (2t -4),则只需要t +1>2t -4,解得t <5.答案:(-∞,5)15.解析:由于函数f (x )是定义在R 上的奇函数,且f (x )+f (2-x )=0, 所以f (x )=-f (2-x )=f (x -2),所以2是函数f (x )的周期,则f ⎝⎛⎭⎫185=f ⎝⎛⎭⎫185-4=f ⎝⎛⎭⎫-25=-f ⎝⎛⎭⎫25=-R ⎝⎛⎭⎫25=-15, f (lg 30)=f (lg 3+lg 10)=f (lg 3+1)=f (lg3-1)=-f (1-lg 3)=-R (1-lg 3)=0,所以f ⎝⎛⎭⎫185+f (lg 30)=-15.答案:-1516.解析:f (x )=x e x +x +2e x +1+sin x =x (e x +1)+2e x +1+sin x =2e x+1+x +sin x ,所以f (-x )=2e -x +1-x +sin(-x )=2e x e x +1-x -sin x ,所以f (x )+f (-x )=2e x +1+2e xe x +1=2,所以f (0)+f (0)=2⇒f (0)=1,所以 f (-5)+f (-4)+f (-3)+f (-2)+f (-1)+f (0)+f (1)+f (2)+f (3)+f (4)+f (5)=5×2+1=11. 答案:11[B·素养提升]+b ,其定义域为[-2,2],所以f (0)=0,所以b =0,所以g (x )=2x,易知g (x )在[-4,-1]上单调递减,故值域为[g (-1),g (-4)],即⎣⎡⎦⎤-2,-12. 答案:⎣⎡⎦⎤-2,-12 7.解析:令x =-2,得f (-2+4)=f (-2)+f (2),得f (-2)=0,由于函数f (x )为偶函数,故f (2)=f (-2)=0,所以f (x +4)=f (x ),所以函数f (x )的一个周期为4,故①正确.由于函数f (x )为偶函数,故f (-4+x )=f (4-x )=f (4-8-x )=f (-4-x ),所以直线x =-4是函数f (x )图象的一条对称轴,故②正确.根据前面的分析,结合函数f (x )在区间[0,2]上是增函数,画出函数图象的大致趋势如图所示.由图可知,函数f (x )在[-6,-4)上单调递减,故③错误.根据图象可知,f (2)=f (6)=f (10)=…=f (98)=0,零点的周期为4,所以f (x )在[0,100]内共有25个零点,故④正确.综上所述,正确的序号有①②④.答案:①②④8.解析:因为x 1f (x 1)+x 2f (x 2)≥x 1f (x 2)+x 2f (x 1),所以f (x 1)(x 1-x 2)-f (x 2)(x 1-x 2)≥0,即[f (x 1)-f (x 2)](x 1-x 2)≥0,分析可得,若函数f (x )为“H 函数”,则函数f (x )为增函数或常函数.对于①,y =-x 3+x +1,则y ′=-3x 2+1,所以y =-x 3+x +1既不是R 上的增函数也不是常函数,故其不是“H 函数”;对于②,y =3x -2(sin x -cos x ),则y ′=3-2(cos x +sin x )=3-22sin ⎝⎛⎭⎫x +π4>0,所以y =3x -2(sin x -cos x )是R 上的增函数,故其是“H 函数”;对于③,y =1-e x是R 上的减函数,故其不是“H 函数”;对于④,f (x )=⎩⎪⎨⎪⎧ln x ,x ≥1,0,x <1,当x <1时,是常函数,当x ≥1时,是增函数,故其是“H 函数”;对于⑤,y =x x 2+1,当x ≠0时,y =1x +1x ,不是R 上的增函数也不是常函数,故其不是“H 函数”.所以满足条件的函数的序号是②④.答案:②④。
高考数学二轮简易通全套课时检测 三角函数 新人教版

广州大学附中2013年创新设计高考数学二轮简易通全套课时检测:三角函数本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.满分150分.考试时间120分钟.第Ⅰ卷(选择题 共60分)一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.半径为1cm ,中心角为0150的角所对的弧长为( )A .cm 32B .cm 32πC .cm 65D .cm 65π【答案】D2.要得到函数cos y x =2的图像,只需把函数sin y x =的图像( )A .沿x 轴向左平移π2个单位,再把横坐标伸长为原来的2倍,纵坐标不变 B .沿x 轴向右平移π2个单位,再把横坐标伸长为原来的2倍,纵坐标不变C .横坐标缩短为原来的12,纵坐标不变再沿x 轴向右平移π4个单位D .横坐标缩短为原来的12,纵坐标不变,再沿x 轴向左平移π4个单位【答案】DA .第一象限B .第二象限C .第三象限D .第四象限【答案】B4.如图,矩形ABCD 中,点E 在边AB 上,将矩形ABCD 沿直线DE 折叠,点A 恰好落在边BC 的点F 处.若AE=5,BF=3,则CD 的长是( )A . 7B . 8C . 9D .10【答案】C5.已知sin (200+α)=13,则cos (1100+α)=( )A .-13 B .13C .3D .-3【答案】A6.已知2弧度的圆心角所对的弦长为2,那么,这个圆心角所对的弧长是( )A .2B .sin 2C .2sin 1D .2sin 1 【答案】C 7( ) A .3cos 5π B .3cos5π- C .3cos5π± D .2cos5π 【答案】B 8.cos (-320π)的值是( ) A .21 B .-21 C .23 D .-23 【答案】B9.扇形面积是1平方米,周长为4米,则扇形中心角的弧度数是( )A . 2B . 1C .πD .2π 【答案】A 10.已知3sin(),45x π-=则 sin 2x 的值为( ) A . 1925 B . 1425 C . 1625D .725【答案】D11.若 -1<sin α<0,则角α的终边在( )A .第一、二象限B .第二、三象限C .第二、四象限D .第三、四象限 【答案】D12.△ABC 中,a 、b 、c 分别为∠A 、∠B 、∠C 的对边.如果a 、b 、c 成等差数列,∠B=30°,△ABC 的面积为23,那么b=( ) A .231+ B .31+C .232+ D .32+【答案】A第Ⅱ卷(非选择题 共90分)二、填空题(本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上)13.已知两灯塔A 、B 与观测点C 的距离都等于a km,灯塔A 在观测点C 的北偏东20︒,灯塔B 在观测点C 的南偏东40︒,则灯塔A 与B 的距离为 km.14.若cos 2sin()4απα=-,则sin cos αα+的值为____________。
高中数学--《函数概念与基本初等函数》测试题(含答案)

高中数学--《函数概念与基本初等函数》测试题(含答案)1.已知集合A到B的映射,那么集合A中元素2在B中所对应的元素是()A.2 B.5 C.6 D.8【答案解析】B2.函数的定义域是()A.[-1,+∞)B.[-1,0) C.(-1,+∞) D.(-1,0)【答案解析】C3.设函数是上的减函数,则有()A.B.C.D.【答案解析】D4.下列哪组中的两个函数是同一函数()A. 与B.与C. 与D.与【答案解析】B5.()A. B. C. D.【答案解析】C6.函数y=的定义域是()A.(-∞,2) B.(2,+∞) C.(2,3)∪(3,+∞) D.(2,4)∪(4,+∞)C7.下列函数中为偶函数的是()A.y=|x+1|B.C.y=+xD. y=+【答案解析】D8.已知f(x)= ,则f[f(―1)]=( )A.0B.1C. πD. π+1【答案解析】C9.下列各组函数中表示同一函数的是()A.f(x)=,g(x)=( )2 B.f(x)= ,g(x)=x+1C.f(x)=|x|,g(x)= D.f(x)=,g(x)= 【答案解析】B10.当时A. B. C. D.【答案解析】C11.函数f(x)=的定义域为()A. B . C. D.【答案解析】D12.已知则=()A. B. C. D.C13.下列各组函数表示同一函数的是()A. B.C. D.【答案解析】C14.设,则()A.1 B. C. D.【答案解析】B15.函数恒过定点()A.B.C.D.【答案解析】B16.函数,则的值是()A、1B、C、2D、【答案解析】A17.下列各组函数是同一函数的是()A.与y=1 B.与C.与 D.与y=x+2 【答案解析】C18.已知函数,则等于A.1 B.-1 C. D.2【答案解析】C19.下列函数中,是奇函数且在区间内单调递减的函数是()A. B. C. D.【答案解析】C不是奇函数。
是奇函数且单调递增。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
广州大学附中2013年创新设计高考数学二轮简易通全套课时检测:函数概念与
基本处等函数I
本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.满分150分.考试时间120分钟.
第Ⅰ卷(选择题 共60分)
一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)
1.在同一平面直角坐标系中,函数的图象与
的图象关于直线对称,而函数
的图象与
的图象关于y 轴对称,若
,则
的值为( )
A .-e
B .-
C .e
D .
【答案】B
2.在平面直角坐标系中,横坐标、纵坐标均为整数的点称为整点,如果函数()f x 的图象恰好通过
*(N )n n ∈个整点,则称函数()f x 为n 阶整点函数.有下列函数
①1()f x x x =+
(0)x > ② 3()g x x = ③1
()()3
x h x = ④()ln x x ϕ= 其中是一阶整点函数的是( )
A .①②③④
B .①③④
C .④
D .①④
【答案】D
3.已知函数y =3x -a ,它的反函数是y =bx +2,则( ) A .a =6,b = B .a =-6,b = C .a =2,b =3 D .a =6,b =3
【答案】A
4.设函数)(x f y =是定义在R 上以1为周期的函数,若x x f x g 2)()(-= 在区间]3,2[上的值域为]6,2[-,则函数)(x g 在[12,12]-上的值域为( ) A .]6,2[- B .[20,34]-
C .[22,32]-
D . [24,28]-
【答案】B
5.函数k y x
x x -⎪
⎭
⎫ ⎝⎛=-221的零点有三个,则实数k 的取值范围是( )
A .()2,∞-
B .()2,0
C .⎪⎭
⎫
⎝⎛2,21 D .⎪⎭
⎫
⎝⎛+∞,21 【答案】C
6.若定义在R 上的偶函数f(x)在[0,+∞)上是增函数,若f(a )<f(b),则一定可得( )
A .a <b
B .a >b
C .|a |<|b|
D .0≤a <b 或a >b ≥0
【答案】C
7.已知(31)4,1()log ,1a a x a x f x x x -+<⎧=⎨
≥⎩是(,)-∞+∞上的减函数,那么a 的取值范围是( )
A .(0,1)
B .1
(0,)3 C .11
[,)73 D .1[,1)7
【答案】C
8.下列函数中,既是偶函数,又是在区间(0,+∞)上单调递减的函数是( )
A .1
ln ||
y x = B .3y x = C .||2x y =
D .y =cosx
【答案】A
9.关于函数x
x x f 12
)(+=,下列命题判断错误的是( )
A .图像关于原点成中心对称
B . 值域为[)+∞,4
C .在(]1,-∞-上是减函数
D . 在(]1,0上是减函数
【答案】A
10.已知c a b 2
12
12
1log log log <<,则( )
A . 2b >2a
>2c
B .2a
>2b >2c
C . 2c >2b >2a
D .2c >2a >2b
【答案】A 11.(2
l o g 9
)·(3log 4)=( )
A .
1
4 B .
12
C .2
D .4
【答案】D
12.函数
在处连续,则a 的值为( ) A .5 B .3
C .2
D .1
【答案】A
第Ⅱ卷(非选择题 共90分)
二、填空题(本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上) 13.函数
y =
的定义域是________________.
【答案】()1,2
14.消去未知数“y
”,化2
2
(440,
y k x x y ⎧=-⎪⎨
+-=⎪⎩(k 为已知常数)为只有“x ”的一元二次方程为
____________
【答案】2222(14)1240k x x k +-+-=
15.设曲线1*()n y x n N +=∈在点(1,1)处的切线与x 轴的交点的横坐标为n x ,令lg n n a x =,则
1299a a a +++ 的值为
【答案】2-
16.如果lgm +lgn =2,那么m +n 的最小值是 . 【答案】20
三、解答题(本大题共6个小题,共70分,解答应写出文字说明,证明过程或演算步骤) 17.已知函数()2
2log 1
x f x x -=-的定义域为集合A ,关于x 的不等式22a a x
--<的解集为B ,若A B ⊆,求实数a 的取值范围. 【答案】要使()f x 有意义,则201
x
x ->-,解得12x <<, 即A ={}
12x x <<
由x
a a
--<22,解得a x 2-<, 即}2|{a x x B -<=
A B ⊆
∴a 22-≤解得1-≤a
故实数a 的取值范围是}1|{-≤a a
18.设f(x)是定义在R 上的偶函数,在区间(-∞,0)上单调递增,且满足f(-a 2
+2a -5)<f(2a 2
+a +1),求实数a 的取值范围.
【答案】(1)∵f(x)为R 上的偶函数,
∴f(-a 2+2a -5)=f -(-a 2
+2a -5)
=f(a 2
-2a +5).
∴不等式等价于f(a 2-2a +5)<f(2a 2
+a +1), ∵a 2-2a +5=(a -1)2
+4>0,
而2a 2
+a +1=2(a =14)2+78
>0.
∵f(x)在区间(-∞,0)上单调递增,而偶函数图像关于y 轴对称, ∴f(x)在区间(0,+∞)上单调递减,
∴由f (a 2-2a +5)<f(2a 2
+a +1),
得a 2-2a +5>2a 2+a +1⇒a 2
+3a -4<0 ⇒-4<a<1,
∴实数a 的取值范围是(-4,1).
19.函数x
a
x x f -
=2)(的定义域为(0,1](a 为实数). ⑴当1-=a 时,求函数)(x f y =的值域;
⑵若函数)(x f y =在定义域上是减函数,求a 的取值范围;
【答案】(1)显然函数)(x f y =的值域为),22[∞+; (2)若函数
)(x f y =在定义域上是减函数,则任取∈21,x x ]1.0(且21x x <都有)()(21x f x f > 成
立, 即0)2)((2
121>+-x x a
x x
只要212x x a -<即可, 由∈2
1,x x ]1.0(,故)0,2(221-∈-x x ,所以2-≤a ,
故a 的取值范围是]2,(--∞;
20.设函数
cos cos ()22x x f x αα+-+=-,x R ∈,且3(1)4
f =.
(1)求α的取值的集合; (2若当02
π
θ≤≤
时,
(cos )(1)0f m f m θ+->恒成立,求实数m 的取值范围.
【答案】 (1) 3(1)4
f =
, 1cos 1cos 3224
αα+-+-=
cos 122
α=
cos 1α=-,
α的取值的集合:}{2k k Z |,αα=π+π∈ (2) 由(1)知,
11()22x x f x ---=-,在x R ∈上为增函数,且为奇函数,
(cos )(1)0f m f m +-> θ
f (mcos )f (m 1)∴θ>-, m(cos 1)1θ->-
当0θ=时,cos 1θ=,m R ∈
当02
π
<θ≤时,0cos 1≤θ<。
1m 1cos ∴<
-θ 又111cos ≥-θ, m 1∴< 21.()
()16log log ln 100
1
lg 25.6log 225.2+++e e 【答案】原式=2-2+
4log 2
32+=
27 22.二次函数2()1(0)f x ax bx a =++>,设()f x x =的两个实根为12,x x , (1)如果2b =且212x x -=,求a 的值。
(2)如果1224x x <<<,设函数()f x 的对称轴为0x x =,求证:01x >-
【答案】由条件可知:21,x x 是012
=++x ax 的两个根,44)(212122
12=-+=-x x x x x x
所以2
1
2-=
a 由条件知⎩⎨⎧>-+<-+0
34160424b a b a 且a b x 20-=,利用线性规划知在点⎪⎭⎫
⎝⎛41,81上有220<-x ,得10->x 。