从综合几何到几何代数化的数学思想方法

合集下载

国家开放大学电大《数学思想与方法(本)》网络核心课形考网考作业及答案

国家开放大学电大《数学思想与方法(本)》网络核心课形考网考作业及答案

最新国家开放大学电大《数学思想与方法(本)》网络核心课形考网考作业及答案100%通过考试说明:2018年秋期电大把《数学思想与方法(本)》网络核心课纳入到“国开平台”进行考核,它共有四个形考任务,分为:通关作业、综合作业、案例分析、学习行为。

针对该门课程,本人汇总了该科所有的题,形成一个完整的标准题库,并且以后会不断更新,对考生的复习、作业和考试起着非常重要的作用,会给您节省大量的时间。

做考题时,利用本文档中的查找工具,把考题中的关键字输到查找工具的查找内容框内,就可迅速查找到该题答案。

本文库还有其他网核及教学考一体化答案,敬请查看。

形考作业一、通关作业(共20分)第一关题目1巴比伦人是最早将数学应用于()的。

在现有的泥板中有复利问题及指数方程。

选择一项:……A……. 运输……B……. 农业……C……. 商业……D……. 工程题目2《九章算术》成书于(),它包括了算术、代数、几何的绝大部分初等数学知识。

选择一项:……A……. 汉朝……B……. 商朝……C……. 战国时期……D……. 西汉末年题目3金字塔的四面都地指向东南西北,在没有罗盘的四、五千年的古代,方位能如此精确,无疑是使用了()的方法。

选择一项:……A……. 天文测量……B……. 占卜……C……. 代数计算……D……. 几何测量题目4在丢番图时代(约250)以前的一切代数学都是用()表示的,甚至在十五世纪以前,西欧的代数学几乎都是用()表示。

选择一项:……A……. 文字,文字……B……. 文字,符号……C……. 符号,文字……D……. 符号,符号题目5古埃及数学最辉煌的成就可以说是()的发现。

选择一项:……A……. 圆面积公式……B……. 球体积公式……C……. 进位制的发明……D……. 四棱锥台体积公式题目6《几何原本》中的素材并非是欧几里得所独创,大部分材料来自同他一起学习的()。

选择一项:……A……. 柏拉图学派……B……. 亚历山大学派……C……. 爱奥尼亚学派……D……. 毕达哥拉斯学派题目7古印度人对时间和空间的看法与现代天文学十分相像,他们认为一劫(“劫”指时间长度)的长度就是(),这个数字和现代人们计算的宇宙年龄十分接近。

数学学习的八种思维方法_数学

数学学习的八种思维方法_数学

数学学习的八种思维方法_数学数学学习的八种思维方法1.代数思想这是基本的数学思想之一,小学阶段的设未知数x,初中阶段的一系列的用字母代表数,这都是代数思想,也是代数这门学科最基础的根!2.数形结合是数学中最重要的,也是最基本的思想方法之一,是解决许多数学问题的有效思想。

“数缺形时少直观,形无数时难入微”是我国著名数学家华罗庚教授的名言,是对数形结合的作用进行了高度的概括。

初高中阶段有很多题都涉及到数形结合,比如说解题通过作几何图形标上数据,借助于函数图象等等都是数形给的体现。

3.转化思想在整个初中数学中,转化(化归)思想一直贯穿其中。

转化思想是把一个未知(待解决)的问题化为已解决的或易于解决的问题来解决,如化繁为简、化难为易,化未知为已知,化高次为低次等,它是解决问题的一种最基本的思想,它是数学基本思想方法之一。

4.对应思想方法对应是人们对两个集合因素之间的联系的一种思想方法,小学数学一般是一一对应的直观图表,并以此孕伏函数思想。

如直线上的点(数轴)与表示具体的数是一一对应。

5.假设思想方法假设是先对题目中的已知条件或问题作出某种假设,然后按照题中的已知条件进行推算,根据数量出现的矛盾,加以适当调整,最后找到正确答案的一种思想方法。

假设思想是一种有意义的想象思维,掌握之后可以使要解决的问题更形象、具体,从而丰富解题思路。

6.比较思想方法比较思想是数学中常见的思想方法之一,也是促进学生思维发展的手段。

在教学分数应用题中,教师善于引导学生比较题中已知和未知数量变化前后的情况,可以帮助学生较快地找到解题途径。

7.符号化思想方法用符号化的语言(包括字母、数字、图形和各种特定的符号)来描述数学内容,这就是符号思想。

如数学中各种数量关系,量的变化及量与量之间进行推导和演算,都是用小小的字母表示数,以符号的浓缩形式表达大量的信息。

如定律、公式等。

8.极限思想方法事物是从量变到质变的,极限方法的实质正是通过量变的无限过程达到质变。

数学思想方法介绍

数学思想方法介绍

◆数学方法具有三个基本特征:
(1)高度的抽象性和概括性; (2)精确性,即逻辑的严密性及结论的确定性; (3)应用的普遍性和可操作性。
◆数学方法在科学技术研究中具有举足轻重的地位和作用:
(1)提供简洁精确的形式化语言; (2)提供数量分析及计算的方法; (3)提供逻辑推理的工具。
二. 中学数学中常用的数学方法
一种方法,数学中许多方法都属于RMI方法,例如,分割法、
函数法、坐标法、换元法、复数法、向量法、参数法等。
☆RMI方法不仅是数学中应用广泛的方法,而且可以拓展到人
文社会科学中去。例如,哲学家处理现实问题的思想方法,就 可以看作RMI方法的拓展 (客观物质世界---哲学家的思维---哲
学理论体系---解决客观世界的现实问题)。
3)同态与同构 4)数的概念的扩充 5)多项式理论与整数理论的类比 整数
+、- 、×
带余除法 算术基本定理
多项式
+、- 、× 带余除法 代数基本定理
3. 归纳法(逻辑学中的方法)
与数学归纳法(数学中的一般方法)
☆归纳就是从特殊的、具体的认识推进到一般的认识的 一种思维方法。归纳法是实验科学最基本的方法。 归纳法的特点:1)立足于观察和实验;2)结论具有猜 测的性质;3)结论超越了前提所包含的内容。 归纳法用于猜测和推断。 例子:1) Fermat数(1640年,Fn=22 +1, Fermat素数:3,5, 17,257,65537); 2)Goldbach猜想(1742年)。
《数学思想与数学文化》
数学思想方法介绍
内 容
一.前言
二.中学数学中常用的数学方法
三.几类常用的数学思想方法介绍
1.演绎法或公理化方法 2.类比法 3.归纳法与数学归纳法 4.数学构造法

古希腊数学家欧几里得的著作原本中的几何代数法

古希腊数学家欧几里得的著作原本中的几何代数法

古希腊数学家欧几里得(Euclid)是几何学的奠基人之一,其著作《几何原本》(Elements)成为了后世数学教育的经典教材。

其中,欧几里得提出了许多与几何代数相关的方法和定理,其思想和技巧对后世的数学发展产生了深远的影响。

一、欧几里得的几何代数法概述1. 欧几里得的几何代数法的基本思想欧几里得在《几何原本》中提出了一种几何代数法,即通过使用几何图形和代数式相互表示,来解决几何问题。

这种方法的基本思想是将代数与几何有机地结合起来,将几何问题转化为代数问题,从而应用代数的方法来解决几何问题。

2. 欧几里得的几何代数法的具体应用欧几里得的几何代数法主要包括线段的平方、线段的乘积等几何代数运算。

他通过引入无理数等概念,对几何中的平方、乘积等运算进行了分析和推理,从而奠定了后世代数学的基础。

二、欧几里得的几何代数法对后世的影响1. 对代数学的影响欧几里得的几何代数法在一定程度上开启了代数学的大门,为代数学的进一步发展提供了基础。

他的思想和方法对后世代数学家的研究产生了深远的影响。

2. 对几何学的影响欧几里得的几何代数法在一定程度上改变了传统几何学的研究方法,使得几何问题的解决更加严谨、精确。

同时也为后世的解析几何学的发展奠定了基础。

三、欧几里得的几何代数法在现代数学中的价值1. 对数学教育的价值欧几里得的几何代数法被广泛地应用于数学教育中,成为了学习代数与几何的桥梁,帮助学生更好地理解和应用数学知识。

2. 对数学研究的价值欧几里得的几何代数法提供了一种将几何与代数相结合的思路,对于现代数学研究中的交叉学科研究提供了借鉴和启示。

欧几里得的几何代数法在古代数学中具有重要的地位和价值,其思想方法影响了后世数学家的研究与发展,同时也对现代数学的教育和研究产生了积极的影响。

欧几里得的几何代数法的研究不仅有助于加深我们对古希腊数学发展历程和数学思想的理解,也有助于我们更好地认识古代数学所具有的独特魅力和智慧。

欧几里得的几何代数法在古代就已经展现了其卓越的思想和方法,为数学领域的发展留下了宝贵的财富。

常见的数学思想方法

常见的数学思想方法

常见的数学思想方法在数学的学习过程中,有哪些常见的思想方法呢?下面是店铺网络整理的常见的数学思想方法以供大家学习。

常见的数学思想方法:分类与整合解题时,我们常常遇到这样一种情况,解到某一步之后,不能再以统一方法,统一的式子继续进行了,因为这时被研究的问题包含了多种情况,这就必须在条件所给出的总区域内,正确划分若干个子区域,然后分别在各个子区域内进行解题,当分类解决完这个问题后,还必须把它们总合在一起,因为我们研究的毕竟是这个问题的全体,这就是分类与整合的思想。

有分有合,先分后合,不仅是分类与整合的思想解决问题的主要过程,也是这种思想方法的本质属性。

高考将分类与整合的思想放在比较重要的位置,并以解答题为主进行考查,考查时要求考生理解什么样的问题需要分类研究,为什么要分类,如何分类以及分类后如何研究与最后如何整合。

特别注意引起分类的原因,我们必须相当熟悉,有些概念就是分类定义的,如绝对值的概念、整数分为奇数偶数等,有些运算法则和公式是分类给出的,例如等比数列的求和公式就分为q=1和q≠1两种情况,对数函数的单调性就分为a>1,0高考对分类与整合的思想的考查往往集中在含有参数的解析式,包括函数问题,数列问题和解析几何问题等。

此外,排列组合的问题,概率统计的问题也考查分类与整合的思想。

随着新课程高考在全国的实施,在新增内容中考查分类与整合的思想,窃以为,是今后几年高考命题的重点之一。

常见的数学思想方法:函数与方程著名数学家克莱因说“一般受教育者在数学课上应该学会的重要事情是用变量和函数来思考”。

一个学生仅仅学习了函数的知识,他在解决问题时往往是被动的,而建立了函数思想,才能主动地去思考一些问题。

函数是高中代数内容的主干,函数思想贯穿于高中代数的全部内容,函数思想是对函数内容在更高层次上的抽象、概括与提炼,是从函数各部分内容的内在联系和整体角度来考虑问题,研究问题和解决问题。

所谓方程的思想就是突出研究已知量与未知量之间的等量关系,通过设未知数、列方程或方程组,解方程或方程组等步骤,达到求值目的解题思路和策略,它是解决各类计算问题的基本思想,是运算能力的基础。

数学的转化思想方法

数学的转化思想方法

数学的转化思想方法数学的转化思想方法特殊与一般的数学思想:对于在一般情况下难以求解的问题,可运用特殊化思想,通过取特殊值、特殊图形等,找到解题的规律和方法,进而推广到一般,从而使问题顺利求解。

常见情形为:用字母表示数;特殊值的应用;特殊图形的应用;用特殊化方法探求结论;用一般规律解题等。

整体的数学思想:所谓整体思想,就是当我们遇到问题时,不着眼于问题的各个部分,而是有意识地放大考虑问题的视角,将所需要解决的问题看作一个整体,通过研究问题的整体形式、整体结构、整体与局部的内在联系来解决问题的思想。

用整体思想解题时,是把一些彼此独立,但实质上又相互紧密联系的量作为整体来处理,一定要善于把握求值或求解的问题的内在结构、数与形之间的内在结构,要敏锐地洞察问题的本质,有时也不要放弃直觉的作用,把注意力和着眼点放在问题的整体上。

常见的情形为:整体代入;整式约简;整体求和与求积;整体换元与设元;整体变形与补形;整体改造与合并;整体构造与操作等。

分类讨论的数学思想:也称分情况讨论,当一个数学问题在一定的题设下,其结论并不唯一时,我们就需要对这一问题进行必要的分类。

将一个数学问题根据题设分为有限的若干种情况,在每一种情况中分别求解,最后再将各种情况下得到的答案进行归纳综合。

分类讨论是根据问题的不同情况分类求解,它体现了化整为零和积零为整的思想与归类整理的方法。

运用分类讨论思想解题的关键是如何正确的进行分类,即确定分类的标准。

分类讨论的原则是:(1)完全性原则,就是说分类后各子类别涵盖的范围之和,应当是原被分对象所涵盖的范围,即分类不能遗漏;(2)互斥性原则,就是说分类后各子类别涵盖的范围之间,彼此互相独立,不应重叠或部分重叠,即分类不能重复;(3)统一性原则,就是说在同一次分类中,只能按所确定的一个标准进行分类,即分类标准统一。

分类的方法是:明确讨论的对象,确定对象的全体,确立分类标准,正确进行分类,逐步进行讨论,获取阶段性结果,归纳小结,综合得出结论。

浅析数学课堂教学中的数学思想方法

浅析数学课堂教学中的数学思想方法
三 、 类讨 论 思 想 分 分 类讨 论 思 想 是解 决 问 题 的 一种 逻辑 思想 . 关 分 类 讨 有 论 思想 的数 学 问题 在 数 学学 习过 程 中之 所 以 占有 重 要 位 置 ,
结 合 思想 ;3 分类 讨 论 思 想 ;4 转 化 与化归 思 想 , 等. () () 等
.I F -, .
教 学 方 法
JA) u % ( 薯 I ‘x E 。黪 嚣
浅橇数学课 堂教学巾 数学思 赢 法
◎胡 淑 萍 (江 苏省 常 州 市武 进 区洛 阳 中 学 21 1 4) 30
数 学 是 一 个 有 机 的整 休 , 部 分 之 间互 相 联 系 , 相 渗 各 互
些 都 是 数 形 结 合 的典 型 例 子. 何 存 一 个 数 学 问 题 中 运 用 如
的态 度 . 的一 生 与 数学 有 着 密 切 的 天 系 , 人 因此 , 必 要 捉 高 有 人 们 的 数 学素 养 . 就 要 求 我 川 在 数 学 数 学 [ , 仅 要 重 视 这 f 不 l 知 识 的形 成 过 程 , 要重 视 在 这 个 过 程 巾 所 蕴 含 的数 学 思想 更 方法. 如果 说数 学 知 识 是 数 学 内容 , f 口 以用 文 字 和 符 号 来 记 录 和 描述 , 么 数 学思 想 则 是 数 学 意 识 , 于 思 维 的 范 畴 , 那 属 应 该在 理 解 、 会 的基 础 上对 数 学 问 题进 行 处 理 和解 决 . 领 数学 思 想 方法 是 从 数学 内容 1 象 慨 括 米 的 , 数 学 {抽 足 知识 的精髓 , 是知 识 转 化 为 能 的 桥 梁 . 中数 学 教 学 巾所 初 包含 的数 学 思 想 方 法 主 要 有 : 】 函数 与 方 程 思 想 ; 2 数 形 () ()

数学思想方法

数学思想方法
数学思想方法
2004年中央广播电视大学出版社出版的图书
01 内容简介
03 基础概念 05 演算方法
目录
02 作品目录 04 思维方法
基本信息
《数学思想方法》是2004年6月中央广播电视大学出版社出版的图书,作者是顾泠沅。该书主要介绍数学思 想方法的两个源头、数学思想方法和几次重要转折、数学的真理性以及现代数学的发展趋势,从时间维度和宏观 上用粗线条勾画出数学思想方法发展的概貌。
1.何以如此概括?
首先,从理论上讲,数学本质是数学观的一个重要问题,而数学观与数学方法论是统一的,所以可以通过方 法论来分析数学观。数学认识对象的特殊性决定了数学认识方法的特殊性。这种特殊性表现在,数学研究除了像 自然科学那样仅仅采用观察、实验、归纳的方法外,还必须采用演绎法。因此,可以通过研究数学认识方法来反 映数学认识的本质。
③解含有参数的题目时,必须根据参数的不同取值范围进行讨论。如解不等式ax>2时分a>0、a=0和a<0三种 情况讨论。这称为含参型。
另外,某些不确定的数量、不确定的图形的形状或位置、不确定的结论等,都主要通过分类讨论,保证其完 整性,使之具有确定性。
思维方法
思维方法
数学认识的一般性与特殊性
数学作为对客观事物的一种认识,与其他科学认识一样,其认识的发生和发展过程遵循实践——认识——再 实践的认识路线。但是,数学对象(量)的特殊性和抽象性,又产生与其他科学不同的、特有的认识方法和理论 形式。由此产生数学认识论的特有问题。
函数知识涉及的知识点多、面广,在概念性、应用性、理解性都有一定的要求,所以是高考中考查的重点。
数形结合
中学数学的基本知识分三类:一类是纯粹数的知识,如实数、代数式、方程(组)、不等式(组)、函数等; 一类是关于纯粹形的知识,如平面几何、立体几何等;一类是关于数形结合的知识,主要体现是解析几何。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

从综合几何到几何代数化的数学思想方法从综合几何到几何代数化的数学思想方法一、几何代数化思想的由来数学的发展是以数和形两个基本概念作为主干的,数学思想方法的各种变革也是通过这两个概念进行的。

在数学的萌芽时期,数和形的研究并不是互相割裂的,长度、面积和体积的量度把数和形紧密地联系起来。

可是,在尔后的数学发展中,数和形的联系却长期没能得到进一步的深化。

这突出表现在几何和代数的不协调性发展上。

我们知道,几何学作为一门独立的数学学科,最先是在古希腊学者手中形成的,欧几里得《几何原本》的问世就是重要的标志。

那时,代数尚处于潜科学阶段,尚未形成严谨的逻辑体系,只是以零散、片断的知识形态存在着。

因此,从公元前3世纪到14世纪,几何学在数学中占据着主导地位,而代数则处于从属的地位。

由于几何学有着严谨的推理方法和直观的图形,可以把种种空间性质、图形关系问题的探讨,归结成一系列基本概念和基本命题来推演、论证,所以数学家们大都喜欢运用几何思维方式来处理数学问题,甚至把代数看成是与几何不相干的学科。

这种人为的割裂,不仅延误了代数的发展,也影响了几何学的进步。

随着数学研究范围的扩大,用几何方法来解决数学问题越来越困难,因为许多问题特别是证明问题往往需要高超的技巧才能奏效,而且推演、论证的步骤又显得相当繁难,缺乏一般性方法。

正当几何学难于深入进展时,代数学日趋成熟起来。

尤其是在16世纪代数学得到突破性进展,不仅形成了一整套简明的字母符号,而且成功地解决了二次、三次、四次方程的求根问题。

这就使代数学在数学中的地位逐渐得到上升,于是综合几何思维占统治地位的局面开始被打破。

历史上最先明确认识到代数力量的是16世纪法国数学家韦达。

他尝试用代数方法来解决几何作图问题,并隐约出现了用方程表示曲线的思想。

他指出,几何作图中线段的加减乘除可以通过代数的术语表出,所以它们实质上属于代数的运算。

随着代数方法向几何学的渗透,代数方法的普遍性优点日益表露出来,于是用代数方法来改造传统的综合几何思维,把代数和几何有机结合起来,互相取长补短,便成为十分必要的了。

实现代数与几何有机结合的关键,在于空间几何结构的数量化,即把形与数统一起来。

这一项工作是由法国数学家笛卡儿完成的。

笛卡儿继承和发展了韦达等人的先进数学思想,他充分看到代数思想的灵活性和方法的普遍性,为寻求一种能够把代数全面应用到几何中去的新方法思考了二十多年。

1619年,他悟出建立新方法的关键,在于借助坐标系建立起平面上的点和数对之间的对应关系,由此可用方程来表示曲线。

1637年,他的《几何学》作为《方法论》一书的附录出版,在这个附录中,他明确提出了坐标几何的思想,并用于解决许多几何问题。

此书的问世,标志着解析几何的诞生。

与笛卡儿同一时代、同一国度的另一位数学家费尔马,也几乎同时独立地发现了解析几何的基本原理。

他的思想集中体现在他的《轨迹引论》一书中。

解析几何的出现开创了几何代数化的新时代,它借助坐标实现了空间几何结构的数量化,由此把形与数、几何与代数统一了起来。

而坐标本身就是几何代数化的产物,是点与数的统一体,它既是点的位置的数量关系表现,又是数量关系的几何直观,因此它具有形与数的二重性。

有了坐标概念,就可以把空间形式的研究转化为数量关系的研究了。

例如,求两点间的距离,如果两点的坐标(x1,y1)和(x2,y2)何学上两点之间的测量问题就转化成代数学上求一个代数式的值的问题。

再如,求两条曲线的交点,这是几何学中比较困难的一个问题,如果两条曲线的方程给定,那么通过解联立方程组就可求出交点的位置,因为方程组的解恰是二条曲线交点的坐标。

随着解析几何的发展,几何代数的内容和方法不断得到丰富。

1704年,牛顿运用坐标方法研究了三次曲线,1748年,欧拉在《分析引论》一书中全面而系统地论述了平面解析几何的理论;1788年,拉格朗日又把力、速度和加速度给予了算术化,由此开创了解析几何中的向量理论研究方向。

与此同时,坐标概念本身也在不断地丰富,除直角坐标系外,又相继产生了斜坐标、极坐标、柱坐标和球坐标。

坐标系也从二维扩展到三维以及多维和无穷维,从而又出现了多维解析几何和无穷维解析几何。

由此又导致了代数几何和泛函分析的产生。

二、几何代数化的意义几何代数化对于数学的发展有着重要的意义,这里仅就几个方面加以分析。

1.把几何学推到一个新的阶段几何代数化不仅为几何学提供了新方法,使许多难以解决的几何问题变得简单易解,更重要的是为几何学发展注入了新的活力,增添了崭新的内容。

首先,传统几何学的逻辑基础主要是推理,基本上是定性研究,如直线的平行性、曲线的相交、图形的全等等。

几何代数化的出现,使得图形性质的研究变成方程的讨论和求解,而方程的研究又主要是数量上的分析,这就把几何学从定性研究阶段推到定量分析阶段。

其次,在传统几何学中,空间概念是在人们的社会实践活动中逐渐抽象和确立起来,这种空间概念具有明显的直观性和经验性,如一维的直线、二维的平面和三维的立体。

几何代数化的出现,使得空间的几何结构实现了数量化,而数量化了的空间几何结构已不再局限于一维、二维和三维,它可以是n维以至无穷维的,这就把几何学的空间概念从低维扩张到了高维,即把几何学研究的内容从现实空间图形的性质扩展到抽象空间图形的性质。

第三,传统几何学主要研究固定不变的图形,如各种各样的直线形和曲线形,这些图形虽然可以移动和相互变换,但图形本身的结构却是“死”的,即传统几何学是一种静态几何学。

几何代数化的出现,使得曲线变成了具有某种特定性质的点的轨迹,即可把曲线看作是由“点”通过运动而生成的,这就使人们对形的认识由静态发展到了动态。

2.为代数学研究提供了新的工具几何代数化不仅直接影响和改造了传统的几何学,扩大了几何学的研究对象,丰富和发展了几何学的思想方法,而且也使代数学获得了新的生命力。

首先,几何学的概念和术语进入代数学,使许多代数课题具有了直观性。

我们知道,和几何学相比,代数学具有更高的抽象性,许多抽象的代数式和方程使人难以把握它们的现实意义。

几何代数化的出现,为抽象的代数式和方程提供了形象而直观的模型。

如可把方程的解看作是曲线的交点的坐标,可把二次方程根与系数关系的研究转化为考察和分析圆锥曲线与坐标轴的相对位置。

其次,几何学思想方法向代数学的移植和渗透,开拓了代数学新的研究领域。

如以线性方程(一次方程)为主要对象的线性代数,就是在线性空间概念的基础上构造起来的,这里的“线性”、“空间”等概念并不是代数学本身所固有的,而是从几何学中借用的。

3.为微积分的创立准备了必要条件几何代数化思想形成的标志是解析几何的创立,笛卡儿在创立解析几何过程中,不仅提出了代数与几何相结合的思想,而且把变数引进了数学。

变数的引进,对于数学的发展有着极为重要的意义,特别是为微积分的创立准备了重要工具,加速了微积分形成的历史进程。

从这种意义上看,可把解析几何的产生看作是微积分创立的前奏。

对此,恩格斯曾高度评价:“数学中的转折点是笛卡儿的变数。

有了变数,运动进入了数学,有了变数,辩证法进入了数学,有了变数,微分和积分也就立刻成为必要的了”。

4.为数学的机械化证明提供了重要启示此外,几何代数化的思想还给数学研究从方法论上提供了许多重要启示。

如数学家们把点与数对、曲线与方程相对应的思想加以发展,提出了函数与点、函数集与空间相对应的思想,在此基础上进而创立了泛函分析这一新的理论。

数学思想方法的重大突破从常量数学到变量数学文章摘要:17世纪对于数学发展具有重大意义的事件,除了解析几何开辟了几何代数化这一新的方向外,还有微积分的创立使常量数学过渡到变量数学。

从常量数学到变量数学,是数学思想方法的又一次重大突破。

【编者按】数学的发展并不是一些新概念、新命题、新方法的简单积累,它包含着数学本身许多根本的变化,也即质的飞跃。

历史上发生的数学思想方法的几次重大突破,就充分说明了这一点。

17世纪对于数学发展具有重大意义的事件,除了解析几何开辟了几何代数化这一新的方向外,还有微积分的创立使常量数学过渡到变量数学。

从常量数学到变量数学,是数学思想方法的又一次重大突破。

一、变量数学产生的历史背景变量数学是相对常量数学而言的数学领域。

常量数学的对象主要是固定不变的图形和数量,它包括算术、初等代数、初等几何和三角等分支学科。

常量数学是描述静态事物的有力工具,可是,对于描述事物的运动和变化却是无能为力的。

因此,从常量数学发展到变量数学,就成为历史的必然了。

变量数学之所以产生于17世纪,是有其特定的历史背景的。

从自然科学的发展来看,变量数学是在回答16、17世纪自然科学提出的大量数学问题过程中,酝酿和创立起来的。

我们知道,随着欧洲封建社会的解体和资本主义工厂手工业向机器大生产的过渡,自然科学开始从神学的桎梏下解放出来,大踏步地前进。

这时,社会生产和自然科学向数学提出了一系列与运动变化有关的新问题。

这些新问题,大体可以分为以下五种类型。

第一类问题是描述非匀速运动物体的轨迹。

如行星绕日运动的轨迹、各种抛射物体的运动轨迹。

第二类问题是求变速运动物体的速度、加速度和路程。

如已知变速运动物体在某段时间内经过的路程,求物体在任意时刻的速度和加速度,或反过来由速度求路程。

第三类问题是求曲线在任一点的切线。

如光线在曲面上的反射角问题,运动物体在其轨迹上任一点的运动方向问题。

第四类问题是求变量的极值。

如斜抛物体的最大水平距离问题,行星绕日运动的近日点和远日点问题。

第五类问题是计算曲线长度、曲边形面积、曲面体体积、物体的重心以及大质量物体之间的引力等。

上述各类问题尽管内容和提法不同,但从思想方法上看,它们有一个共同的特征,就是要求研究变量及其相互关系。

这是16、17世纪数学研究的中心课题,正是对这个中心课题的深入研究,最终导致了变量数学的产生。

从数学的发展来看,变量数学的基础理论-微积分,早在微积分诞生之前的二千多年,就已经有了它的思想萌芽。

公元前5世纪,希腊学者德漠克利特为解决不可公度问题,创立起数学的原子论。

它的基本思想是:直线可分为若干小线段,小线段又可再分更小的线段,直至成为点而不可再分,故称点为直线的数学原子即不可分量。

平面图形同样可以如此分下去,使得线段成为平面图形的数学原子。

利用数学原子概念,德漠克利特求得锥体的体积等于等底等高圆柱的1/3.公元前4世纪,希腊学者欧道克斯在前人工作的基础上,创立了求曲边形面积和曲面体体积的一般方法-穷竭法。

运用此法,他成功地证明了“圆面积与直径的平方成正比例”和“球体积与其直径的立方成比例”等命题。

微积分的早期先驱者主要是阿基米德,他继承和发展了穷竭法,并应用这一方法解决了诸如抛物线弓形等许多复杂的曲边形面积。

继阿基米德之后,微积分的思想方法逐渐成熟起来,其中作出重大贡献的有开普勒、伽利略、卡瓦列利、华利斯、笛卡儿、费尔马和巴罗等人。

相关文档
最新文档