2020学年高中数学2.1函数的概念2.1.1函数的概念和图象第2课时函数的图象应用案巩固训练苏教版必修1
高中数学第二章函数概念与基本初等函数I函数的概念函数的概念名师导航学案苏教版

2。
1 函数的概念和图象2.1。
1 函数的概念名师导航知识梳理1.函数的概念设A ,B 是非空的数集,如果按某个确定的对应关系f ,使对于集合A 中的任意一个x ,在集合B 中都有__________的数f (x)和它对应,那么就称f:A →B 为从集合A 到集合B 的函数,记作y=f (x),x ∈A.其中x 叫__________,x 的取值范围A 叫做函数y=f (x )的__________;与x 的值相对应的y 的值叫做函数值,函数值的集合{f(x )|x ∈A }(⊆B )叫做函数y=f(x )的__________。
函数符号y=f (x)表示“y 是x 的函数",有时简记作函数__________。
(1)函数实际上就是集合A 到集合B 的一个特殊对应f:A →B ,这里A ,B 为__________的数集.(2)A:定义域;{f(x )|x ∈A}:值域,其中{f(x )|x ∈A}__________B ;f :对应法则,x ∈A,y ∈B.(3)函数符号:y=f (x )↔y 是x 的函数,简记f(x).2。
已学函数的定义域和值域(1)一次函数f (x )=ax+b(a ≠0):定义域为__________,值域为__________;(2)反比例函数f(x )=xk (k ≠0):定义域为__________,值域为__________; (3)二次函数f (x)=ax 2+bx+c (a ≠0):定义域为__________,值域:当a 〉0时,为__________;当a 〈0时,为__________。
3。
函数的值:关于函数值f(a )例:f (x)=x 2+3x+1,则f(2)= __________.4。
函数的三要素:对应法则f 、定义域A 和值域{f(x )|x ∈A}.只有当这三要素__________时,两个函数才能称为同一函数。
疑难突破有关函数概念的理解剖析:(1)如果一个函数需要几条限制时,那么定义域为各限制所得x 的范围的交集。
高中数学苏教版教材目录(必修+选修)

高中数学苏教版教材目录(必修+选修)苏教版-----------------------------------必修1-----------------------------------第1章集合1.1集合的含义及其表示1.2子集、全集、补集1.3交集、并集第2章函数2.1函数的概念2.1.1函数的概念和图象2.1.2函数的表示方法2.2函数的简单性质2.2.1函数的单调性2.2.2函数的奇偶性2.3映射的概念第3章指数函数、对数函数和幂函数3.1指数函数3.1.1分数指数幂3.1.2指数函数3.2对数函数3.2.1对数3.2.2对数函数3.3幂函数3.4函数的应用3.4.1函数与方程3.4.2函数模型及其应用-----------------------------------必修2-----------------------------------第1章立体几何初步1.1空间几何体1.1.1棱柱、棱锥和棱台1.1.2圆柱、圆锥、圆台和球1.1.3中心投影和平行投影1.1.4直观图画法1.2点、线、面之间的位置关系1.2.1平面的基本性质1.2.2空间两条直线的位置关系1.平行直线2.异面直线1.2.3直线与平面的位置关系1.直线与平面平行2.直线与平面垂直1.2.4平面与平面的位置关系1.两平面平行2.平面垂直1.3空间几何体的表面积和体积1.3.1空间几何体的表面积1.3.2空间几何体的体积第2章平面解析几何初步2.1直线与方程2.1.1直线的斜率2.1.2直线的方程1.点斜式2.两点式3.一般式2.1.3两条直线的平行与垂直2.1.4两条直线的交点2.1.5平面上两点间的距离2.1.6点到直线的距离2.2圆与方程2.2.1圆的方程2.2.2直线与圆的位置关系2.2.3圆与圆的位置关系2.3空间直角坐标系2.3.1空间直角坐标系2.3.2空间两点间的距离-----------------------------------必修3-----------------------------------第1章算法初步1.1算法的意义1.2流程图1.2.1顺序结构1.2.2选择结构1.2.3循环结构1.3基本算法语句1.3.1赋值语句1.3.2输入、输出语句1.3.3条件语句1.3.4循环语句1.4算法案例第2章统计2.1抽样方法2.1.1简单随机抽样1.抽签法2.随机数表法2.1.2系统抽样2.1.3分层抽样2.2总体分布的估计2.2.1频率分布表2.2.2频率分布直方图与折线图2.2.3茎叶图2.3总体特征数的估计2.3.1平均数及其估计2.3.2方差与标准差2.4线性回归方程第3章概率3.1随机事件及其概率3.1.1随机现象3.1.2随机事件的概率3.2古典概型3.3几何概型3.4互斥事件-----------------------------------必修4-----------------------------------第1章三角函数1.1任意角、弧度1.1.1任意角1.1.2弧度制1.2任意角的三角函数1.2.1任意角的三角函数1.2.2同角三角函数关系1.2.3三角函数的诱导公式1.3三角函数的图象和性质1.3.1三角函数的周期性1.3.2三角函数的图象与性质1.3.3函数y=Asin(ωx+ψ)的图象1.3.4三角函数的应用第2章平面向量2.1向量的概念及表示2.2向量的线性运算2.2.1向量的加法2.2.2向量的减法2.2.3向量的数乘2.3向量的坐标表示2.3.1平面向量基本定理2.3.2平面向量的坐标运算2.4向量的数量积2.5向量的应用第3章三角恒等变换3.1两角和与差的三角函数3.1.1两角和与差的余弦3.1.2两角和与差的正弦3.1.3两角和与差的正切 3.2二倍角的三角函数 3.3几个三角恒等式-----------------------------------必修5----------------------------------- 第1章 解三角形 1.1正弦定理 1.2余弦定理1.3正弦定理、余弦定理的应用 第2章 数列 2.1数列2.2等差数列2.2.1等差数列的概念2.2.2等差数列的通项公式2.2.3等差数列的前n 项和2.3等比数列2.3.1等比数列的概念2.3.2等比数列的通项公式2.3.3等比数列的前n 项和 第3章 不等式 3.1不等关系3.2一元二次不等式3.3二元一次不等式组与简单的线性规划问题3.3.1二元一次不等式表示的平面区域3.3.2二元一次不等式组表示的平面区域3.3.3简单的线性规划问题3.4基本不等式2b a ab +≤)0,0(≥≥b a 3.4.1基本不等式的证明3.4.2基本不等式的应用-----------------------------------选修1-1----------------------------------- 第1章 常用逻辑用语1.1命题及其关系1.1.1四种命题1.1.2充分条件和必要条件 1.2简单的逻辑联结词1.3全称量词与存在量词1.3.1量词1.3.2含有一个量词的命题的否定 第2章 圆锥曲线与方程 2.1圆锥曲线2.2椭圆2.2.1椭圆的标准方程2.2.2椭圆的几何性质2.3双曲线2.3.1双曲线的标准方程2.3.2双曲线的几何性质 2.4抛物线2.4.1抛物线的标准方程2.4.2抛物线的几何性质 2.5圆锥曲线的共同性质 第3章 导数及其应用3.1导数的概念3.1.1平均变化率3.1.2瞬时变化率——导数3.2导数的运算3.2.1常见函数的导数3.2.2函数的和、差、积、商的导数 3.3导数在研究函数中的应用3.3.1单调性3.3.2极大值和极小值3.3.3最大值和最小值3.4导数在实际生活中的应用-----------------------------------选修1-2----------------------------------- 第1章 统计案例 1.1独立性检验 1.2回归分析第2章 推理与证明2.1合情推理与演绎推理2.1.1合情推理2.1.2演绎推理2.1.3推理案例欣赏 2.2直接证明与间接证明2.2.1直接证明2.2.2间接证明 第3章 数系的扩充与复数的引入 3.1数系的扩充3.2复数的四则运算 3.3复数的几何意义 第4章 框图 4.1流程图 4.2结构图-----------------------------------选修2-1----------------------------------- 第1章 常用逻辑用语1.1命题及其关系1.1.1四种命题1.1.2充分条件和必要条件 1.2简单的逻辑联结词1.3全称量词与存在量词1.3.1量词1.3.2含有一个量词的命题的否定 第2章 圆锥曲线与方程 2.1圆锥曲线2.2椭圆2.2.1椭圆的标准方程2.2.2椭圆的几何性质2.3双曲线2.3.1双曲线的标准方程2.3.2双曲线的几何性质 2.4抛物线2.4.1抛物线的标准方程2.4.2抛物线的几何性质 2.5圆锥曲线的统一定义2.6曲线与方程2.6.1曲线与方程2.6.2求曲线的方程2.6.3曲线的交点 第3章 空间向量与立体几何3.1空间向量及其运算3.1.1空间向量及其线性运算3.1.2共面向量定理3.1.3空间向量基本定理3.1.4空间向量的坐标表示3.1.5空间向量的数量积3.2空间向量的应用3.2.1直线的方向向量与平面的法向量3.2.2空间线面关系的判定3.2.3空间的角的计算-----------------------------------选修2-2-----------------------------------第一章导数及其应用1.1导数的概念1.1.1平均变化率1.1.2瞬时变化率——导数1.2导数的运算1.2.1常见函数的导数1.2.2函数的和、差、积、商的导数1.2.3简单复合函数的导数1.3导数在研究函数中的应用1.3.1单调性1.3.2极大值和极小值1.3.3最大值和最小值1.4导数在实际生活中的应用1.5定积分1.5.1曲边梯形的面积1.5.2定积分1.5.3微积分基本定理第二章推理与证明2.1合情推理与演绎推理2.1.1合情推理2.1.2演绎推理2.1.3推理案例欣赏2.2直接证明与间接证明2.2.1直接证明2.2.2间接证明2.3数学归纳法第三章数系的扩充与复数的引入3.1数系的扩充3.2复数的四则运算3.3复数的几何意义-----------------------------------选修2-3-----------------------------------第一章计数原理1.1两个基本原理1.2排列1.3组合1.4计数应用题1.5二项式定理1.5.1二项式定理1.5.2二项式系数的性质及用第二章概率2.1随机变量及其概率分布2.2超几何分布2.3独立性2.3.1条件概率2.3.2事件的独立性2.4二项分布2.5随机变量的均值与方差2.5.1离散型随机变量的均值2.5.2离散型随机变量的方差与标准差2.6正态分布第三章统计案例3.1独立性检验3.2回归分析-----------------------------------选修4-1-----------------------------------1.1 相似三角形的进一步认识1.1.1平行线分线段成比例定理1.1.2相似三角形1.2 圆的进一步认识1.2.1圆周角定理1.2.2圆的切线1.2.3圆中比例线段1.2.4圆内接四边形1.3 圆锥截线1.3.1球的性质1.3.2圆柱的截线1.3.3圆锥的截线学习总结报告-----------------------------------选修4-2-----------------------------------2.1 二阶矩阵与平面向量2.1.1矩阵的概念2.1.2二阶矩阵与平面列向量的乘法2.2 几种常见的平面变换2.2.1恒等变换2.2.2伸压变换2.2.3反射变换2.2.4旋转变换2.2.5投影变换2.2.6切变变换2.3 变换的复合与矩阵的乘法2.3.1矩阵乘法的概念2.3.2矩阵乘法的简单性质2.4 逆变换与逆矩阵2.4.1逆矩阵的概念2.4.2二阶矩阵与二元一次方程组2.5 特征值与特征向量2.6 矩阵的简单应用学习总结报告-----------------------------------选修4-4-----------------------------------4.1 直角坐标系4.1.1直角坐标系4.1.2极坐标系4.1.3球坐标系与柱坐标系4.2 曲线的极坐标方程4.2.1曲线的极坐标方程的意义4.2.2常见曲线的极坐标方程4.3 平面坐标系中几种常见变换4.3.1平面直角坐标系中的平移变换4.3.2平面直角坐标系中的伸缩变换4.4 参数方程4.4.1参数方程的意义4.4.2参数方程与普通方程的互化4.4.3参数方程的应用4.4.4平摆线与圆的渐开线学习总结报告-----------------------------------选修4-5-----------------------------------5.1 不等式的基本性质5.2 含有绝对值的不等式5.2.1含有绝对值的不等式的解法5.2.2含有绝对值的不等式的证明5.3 不等式的证明5.3.1比较法5.3.2综合法和分析法5.3.3反证法5.3.4放缩法5.4 几个著名的不等式5.4.1柯西不等式5.4.2排序不等式5.4.3算术-几何平均值不等式5.5 运用不等式求最大(小)值5.5.1运用算术-几何平均值不等式求最大(小)值5.5.2运用柯西不等式求最大(小)值5.6 运用数学归纳法证明不等式学习总结报告感谢您使用本店文档您的满意是我们的永恒的追求!(本句可删)------------------------------------------------------------------------------------------------------------。
高中数学函数概念

高中数学函数概念在高中数学课程中,函数是一个非常重要的概念。
函数是数学中的基础概念之一,也是更高级数学知识的基础。
通过学习函数的相关知识,不仅可以增进对数学的理解,还可以培养逻辑思维和解决问题的能力。
接下来我们就来详细了解高中数学函数的相关概念。
1. 函数的定义在数学中,函数是一种将一个集合中的元素映射到另一个集合的规则。
一个函数通常表示为 f(x),其中 x 是自变量,f(x) 是因变量。
函数f 定义域内的每个元素 x 都对应唯一的函数值 f(x),即不同的自变量对应不同的因变量。
2. 函数的图像函数可以通过绘制图像来描述。
函数的图像通常采用直角坐标系来表示,自变量 x 沿 x 轴,因变量 f(x) 沿 y 轴。
通过观察函数的图像,可以直观地了解函数的性质,如增减性、奇偶性、周期性等。
3. 基本函数在高中数学中,常见的基本函数包括线性函数、二次函数、指数函数、对数函数和三角函数等。
这些函数在数学中有着重要的地位,也是其他函数的基础。
- 线性函数:线性函数的图像是一条直线,通常表示为 y = kx + b,其中 k 和 b 分别为斜率和截距。
- 二次函数:二次函数的图像是抛物线,通常表示为 y = ax^2 + bx + c,其中 a、b、c 是常数。
- 指数函数:指数函数的表示形式为 y = a^x,其中 a 为底数,x 为指数。
- 对数函数:对数函数的表示形式为 y = loga(x),其中 a 为底数,x 为真数。
- 三角函数:三角函数包括正弦函数、余弦函数、正切函数等,是研究三角学中常见的函数。
4. 函数的性质函数具有多种性质,如奇偶性、周期性、单调性等。
了解函数的性质可以帮助我们更好地理解函数的变化规律,进而解决相关问题。
- 奇偶性:函数 f(x) 的奇偶性取决于 f(-x) 与 f(x) 的关系。
如果 f(-x) = f(x),则函数是偶函数;如果 f(-x) = -f(x),则函数是奇函数。
(绝对经典)1.2.1函数的概念

a, b
x a x b 写成开区间
a, b
x a x b 写成左闭右开区间a,b
x a x b 写成左开右闭区间 a,b
另外还有 ,,a,,a,,,b,,b
例 1.已知函数 f x x 1 1
函数值的集合 f x x A 叫做函数的值域,注意,值域是 B 的子集。
指出下列函数的定义域和值域,对应法则
(1) y 2x 1
(2) f x x2 2x 2
(3) g(x) 3 x
(4) h x 1 x 1
区间的概念及其写法介绍
当 a b 得时候
(3)求 f x 1 并指出其中 x 的范围。
例 2.下列函数中,哪些函数与函数 f x x 相同
2
(1) g x x
(2) h x x2
(3) t t2
t
(4) k s 3 s3
1.2.1函数的概念
定义:一般地,设 A, B 是非空数集,如果按照某种确定的对应关系 f ,使对于集合 A 中
的任意一个数 x ,在集合 B 中,都有唯一确定的数 f x 和它对应,那么就称 f : A B
为从集合 A 到集合 B 的一个函数,记作
y f x,xA
其中 x 叫做自变量, x 的取值范围 A 叫定义域,与 x 的值相对应的 y 值叫做函数值,
x 2
(1)求 f x 的定义域;
(2)求
f
3 ,
f
2 3
(3)求 f x 1 并指出其中 x 的范围。
例 1.已知函数 f x x 1 1 x 20
人教版高二数学知识点总结

人教版高二数学知识点总结高二数学知识点总结高二数学是中学阶段重要的学科之一,它的学习内容涉及到多个知识点。
本文将对人教版高二数学课程的各个知识点进行总结和归纳,以帮助同学们更好地理解和掌握这门学科。
1. 函数与极限函数与极限是高中数学的基石,也是解析几何、微积分等后续学科的重要基础。
高二数学主要学习了以下几个知识点:1.1 函数的概念和性质:函数的定义、函数的图像、函数的性质等;1.2 函数的运算与复合:函数的加减乘除、复合函数的概念与性质等;1.3 极限的概念:数列极限、函数极限的定义和性质等;1.4 极限的计算:极限运算法则、洛必达法则等。
2. 三角函数与解三角形三角函数是高中数学的另一个重要知识点,它有广泛的应用于几何、物理、工程等领域。
高二数学主要学习了以下几个知识点:2.1 三角函数的定义与性质:正弦函数、余弦函数、正切函数等;2.2 三角函数的基本关系式:同角三角函数间的关系,三角函数的周期性等;2.3 解三角形的基本方法:正弦定理、余弦定理、解三角形的一般步骤等。
3. 平面向量与立体几何平面向量和立体几何是数学中的两个独立模块,它们分别研究了平面和空间中的点、直线、面等几何对象。
高二数学主要学习了以下几个知识点:3.1 平面向量的概念与运算:平面向量的定义、向量的加减乘除等;3.2 平面向量的坐标表示与共线定理:平面向量的坐标表示、平面向量共线判定等;3.3 立体几何的基本概念与性质:点、线、面的定义与性质,平行与垂直等。
4. 概率与统计概率与统计是高中数学的实用模块,它们广泛应用于日常生活和科学研究中,能够帮助我们进行数据的分析与预测。
高二数学主要学习了以下几个知识点:4.1 随机事件与概率:事件与样本空间,事件的概率计算等;4.2 离散型随机变量:离散型随机变量的定义、概率分布、期望等;4.3 统计与抽样:统计的基本概念、样本调查与推断等。
综上所述,人教版高二数学涵盖了函数与极限、三角函数与解三角形、平面向量与立体几何以及概率与统计等多个知识点。
高一数学函数概念知识点

高一数学函数概念知识点函数是高中数学中的一个重要内容,它在解决实际问题中具有广泛的应用。
函数概念知识点是我们学习函数的基础,下面我将详细介绍一些高一数学函数概念知识点。
1. 函数的定义函数是一种特殊关系,它将一个集合中的每个元素都对应到另一个集合中的唯一元素上。
通常我们用字母表示函数,例如$f(x)$表示函数$f$。
其中$x$称为自变量,$f(x)$称为函数值或因变量。
2. 函数的图像函数的图像是函数在坐标平面上的表示,它可以帮助我们更直观地理解函数的性质和特点。
函数的图像通常由一系列点组成,这些点的坐标满足函数的关系式。
通过绘制图像,我们可以看出函数的增减性、奇偶性、周期性等特征。
3. 定义域和值域函数的定义域是自变量的取值范围,即使函数有意义的自变量的集合。
函数的值域是因变量的取值范围,即函数在定义域内所有可能的函数值组成的集合。
4. 函数的表示方法函数可以用多种方式进行表示,常见的有解析式、图像和数据表。
解析式是用代数表达式表示函数的关系式,例如$f(x) = x^2$;图像是通过绘制函数的点表示函数的关系;数据表是通过一系列自变量和函数值的对应关系表格表示函数。
5. 基本初等函数基本初等函数是指一些常用的、基本的函数形式,包括线性函数、二次函数、指数函数、对数函数、幂函数和三角函数等。
这些函数在数学和实际问题中都有广泛的应用,通过研究它们的性质和变化规律,可以更好地理解和应用函数。
6. 反函数如果两个函数满足对任意的$x$有$f(g(x))=x$和$g(f(x))=x$,那么我们称$g$是函数$f$的反函数,反之亦然。
反函数的存在与函数的一一对应有关,通过研究反函数可以帮助我们求解一些复杂的函数问题。
7. 复合函数复合函数是指将一个函数的输出作为另一个函数的输入的函数。
例如,如果有函数$f(x)$和$g(x)$,那么复合函数$(f \circ g)(x)$表示首先对$x$应用$g$函数,然后再对结果应用$f$函数。
函数概念ppt课件

复合函数的性质
复合函数具有一些重要的性质,如单 调性、奇偶性等,这些性质可以通过 对组成复合函数的各个函数的性质进 行分析得出。
复合函数的运算规则是先计算内层函 数,再计算外层函数,依次类推,直 到所有的函数都计算完毕。
反函数的概念与运算
01
02
03
反函数的概念
反函数是指将一个函数的 输入和输出互换,得到一 个新的函数。
一次函数
形如f(x)=kx+b的函数, 其中k和b为常数且k≠0。
分式函数
形如f(x)=k/x的函数,其 中k为常数且k≠0。
对数函数
形如f(x)=log_a x的函数, 其中a为常数且a>0且a≠1
。
02 函数的性质
有界性
总结词
函数的值域在一定范围内变动,不会 无限增大或减小。
详细描述
函数的输出结果总是在一定的范围内 ,不会超出这个范围。例如,正弦函 数和余弦函数的值域都在-1到1之间。
函数的定义域和值域是函数的重要属性,它们决定了函数的作用范围和 结果范围。
函数的表示方法
解析法
用数学表达式来表示函数,是最 常用的一种表示方法。例如, f(x)=x^2表示一个函数,当x取 任意实数时,都有唯一的y值与 之对应。
表格法
通过表格的形式来表示函数,对 于一些离散的函数可以用此方法 。例如,一个离散函数的值可以
函数概念ppt课件
• 函数的基本概念 • 函数的性质 • 函数的运算 • 函数的应用 • 函数的图像
01 函数的基本概念
函数的定义
函数是数学上的一个概念,它是一种特殊的对应关系,这种对应关系使 得对于数集A中的每一个元素,通过某种法则,都可以唯一地对应到数集 B中的一个元素。
最新高中数学知识点总结(最全版)

高中数学 必修1知识点1 第一章 函数概念2 (1)函数的概念3 ①设A 、B 是两个非空的数集,如果按照某种对应法则f ,对于集合A 中任何一个数x ,在4 集合B 中都有唯一确定的数()f x 和它对应,那么这样的对应(包括集合A ,B 以及A 到B 的对5 应法则f )叫做集合A 到B 的一个函数,记作:f A B →.6 ②函数的三要素:定义域、值域和对应法则.7 ③只有定义域相同,且对应法则也相同的两个函数才是同一函数. 8 (2)区间的概念及表示法9 ①设,a b 是两个实数,且a b <,满足a x b ≤≤的实数x 的集合叫做闭区间,记做[,]a b ;满足10 a x b <<的实数x 的集合叫做开区间,记做(,)a b ;满足a x b ≤<,或a x b <≤的实数x 的集合11 叫做半开半闭区间,分别记做[,)a b ,(,]a b ;满足,,,x a x a x b x b ≥>≤<的实数x 的集合分别记12 做[,),(,),(,],(,)a a b b +∞+∞-∞-∞.13注意:对于集合{|}x a x b <<与区间(,)a b ,前者a 可以大于或等于b ,而后者必须14 a b <,(前者可以不成立,为空集;而后者必须成立). 15 (3)求函数的定义域时,一般遵循以下原则:16 ①()f x 是整式时,定义域是全体实数.17②()f x 是分式函数时,定义域是使分母不为零的一切实数.18 ③()f x 是偶次根式时,定义域是使被开方式为非负值时的实数的集合.19 ④对数函数的真数大于零,当对数或指数函数的底数中含变量时,底数须大于零且不等于1. 20 ⑤tan y x =中,()π⑥零(负)指数幂的底数不能为零.22 ⑦若()f x 是由有限个基本初等函数的四则运算而合成的函数时,则其定义域一般是各基本初23 等函数的定义域的交集.24 ⑧对于求复合函数定义域问题,一般步骤是:若已知()f x 的定义域为[,]a b ,其复合函数25 [()]f g x 的定义域应由不等式()a g x b ≤≤解出.26 ⑨对于含字母参数的函数,求其定义域,根据问题具体情况需对字母参数进行分类讨论. 27 ⑩由实际问题确定的函数,其定义域除使函数有意义外,还要符合问题的实际意义. 28 (4)求函数的值域或最值29 求函数最值的常用方法和求函数值域的方法基本上是相同的.事实上,如果在函数的值域中30 存在一个最小(大)数,这个数就是函数的最小(大)值.因此求函数的最值与值域,其实质31 是相同的,只是提问的角度不同.求函数值域与最值的常用方法:32 ①观察法:对于比较简单的函数,我们可以通过观察直接得到值域或最值.33 ②配方法:将函数解析式化成含有自变量的平方式与常数的和,然后根据变量的取值范围34 确定函数的值域或最值.35 ③判别式法:若函数()y f x =可以化成一个系数含有y 的关于x 的二次方程36 2()()()0a y x b y x c y ++=37则在()0a y ≠时,由于,x y 为实数,故必须有2()4()()0b y a y c y ∆=-⋅≥,从而确定函数的值38 域或最值.39 ④不等式法:利用基本不等式确定函数的值域或最值.40 ⑤换元法:通过变量代换达到化繁为简、化难为易的目的,三角代换可将代数函数的最值问41 题转化为三角函数的最值问题.42 ⑥反函数法:利用函数和它的反函数的定义域与值域的互逆关系确定函数的值域或最值. 43 ⑦数形结合法:利用函数图象或几何方法确定函数的值域或最值. 44 ⑧函数的单调性法.45(5)函数的表示方法4647表示函数的方法,常用的有解析法、列表法、图象法三种.48解析法:就是用数学表达式表示两个变量之间的对应关系.列表法:就是列出表格来表示两49个变量之间的对应关系.图象法:就是用图象表示两个变量之间的对应关系.50(6)映射的概念51①设A、B是两个集合,如果按照某种对应法则f,对于集合A中任何一个元素,在集合B52中都有唯一的元素和它对应,那么这样的对应(包括集合A,B以及A到B的对应法则f)叫53做集合A到B的映射,记作:f A B→.54②给定一个集合A到集合B的映射,且,∈∈.如果元素a和元素b对应,那么我们把a Ab B55元素b叫做元素a的象,元素a叫做元素b的原象.56(6)函数的单调性57①定义及判定方法②在公共定义域内,两个增函数的和是增函数,两个减函数的和是减函数,增函数减去一58 个减函数为增函数,减函数减去一个增函数为减函数.59 ③对于复合函数[()]y f g x =,令()u g x =,若()y f u =为增,()u g x =为增,则[()]y f g x =60 为增;若()y f u =为减,()u g x =为减,则[()]y f g x =为增;若()y f u =为增,()u g x =为减,61则[()]y f g x =为减;若()y f u =为减,()u g x =为增,则[()]y f g x =为减.62 (7)打“√”函数()(0)af xx a x=+>的图象与性质63()f x 分别在(,]a -∞-、[,)a +∞上为增函数,64 分别在[,0)a -、(0,]a 上为减函数. 65 (8)最大(小)值定义66 ①一般地,设函数()y f x =的定义域为I ,如果存67在实数M 满足:(1)对于任意的x I ∈,都有()f x M ≤;68 (2)存在0x I ∈,使得0()f x M =.那么,我们称M 是函数()f x 的最大值,记作max ()f x M =.69②一般地,设函数()y f x =的定义域为I ,如果存在实数m 满足:(1)对于任意的x I ∈,都70 有()f x m ≥;(2)存在0x I ∈,使得0()f x m =.那么,我们称m 是函数()f x 的最小值,记作71 max ()f x m =.72 (9)函数的奇偶性73 ①定义及判定方法74函数的性 质定义图象判定方法函数的奇偶性如果对于函数f(x)定义域内任意一个x ,都有f(..-.x)=...-.f(x)....,那么函数f(x)叫做奇.函数...(1)利用定义(要先判断定义域是否关于原点对称)(2)利用图象(图象关于原点对称)如果对于函数f(x)定义域内任意一个x ,都有f(..-.x)=f(x).......,那么函数f(x)叫做偶函..数.. (1)利用定义(要先判断定义域是否关于原点对称)(2)利用图象(图象关于y 轴对称)②若函数()f x 为奇函数,且在0x =处有定义,则(0)0f =.75 ③奇函数在y 轴两侧相对称的区间增减性相同,偶函数在y 轴两侧相对称的区间增减性相76 反.77 ④在公共定义域内,两个偶函数(或奇函数)的和(或差)仍是偶函数(或奇函数),两个78 偶函数(或奇函数)的积(或商)是偶函数,一个偶函数与一个奇函数的积(或商)是奇函数. 79 第二章 基本初等函数(Ⅰ) 80 〖2.1〗指数函数81 【2.1.1】指数与指数幂的运算 82 (1)根式的概念83 ①如果,,,1n x a a R x R n =∈∈>,且n N +∈,那么x 叫做a 的n 次方根.当n 是奇数时,a 的n 次84 n a n 是偶数时,正数a 的正的n n a 负的n 次方根用符85号0的n 次方根是0;负数a 没有n 次方根.86 n 叫做根指数,a 叫做被开方数.当n 为奇数时,a 为任意实数;87 当n 为偶数时,0a ≥.88 ③根式的性质:n a =;当n 为奇数时,a =;当n 为偶数时,89 (0)|| (0) a a a a a ≥⎧==⎨-<⎩. 90(2)分数指数幂的概念91 ①正数的正分数指数幂的意义是:0,,,m na a m n N +=>∈且1)n >.0的正分数指数幂等于92 0.93②正数的负分数指数幂的意义是: 1()0,,,mm n n aa m n N a -+==>∈且1)n >.0的负分数94 指数幂没有意义. 注意口诀:底数取倒数,指数取相反数. 95 (3)分数指数幂的运算性质96 ①(0,,)r s r s a a a a r s R +⋅=>∈ ②()(0,,)r s rs a a a r s R =>∈ 97③()(0,0,)r r r ab a b a b r R =>>∈ 98 【2.1.2】指数函数及其性质 99 (4)指数函数100101 〖2.2〗对数函数102 【2.2.1】对数与对数运算 103 (1)对数的定义104 ①若(0,1)x a N a a =>≠且,则x 叫做以a 为底N 的对数,记作log a x N =,其中a 叫做底数,N105叫做真数. 106 ②负数和零没有对数.107 ③对数式与指数式的互化:log (0,1,0)x a x N a N a a N =⇔=>≠>. 108 (2)几个重要的对数恒等式109 log 10a =,log 1a a =,log b a a b =.110 (3)常用对数与自然对数111 常用对数:lg N ,即10log N ;自然对数:ln N ,即log e N (其中 2.71828e =…). 112(4)对数的运算性质 如果0,1,0,0a a M N >≠>>,那么113①加法:log log log ()a a a M N MN += ②减法:log log log a a a MM N N-= 114③数乘:log log ()n a a n M M n R =∈ ④log a N a N =115⑤log log (0,)b n a a nM M b n R b =≠∈ ⑥换底公式:log log (0,1)log b a bN N b b a =>≠且 116【2.2.2】对数函数及其性质 117 (5)对数函数118(6)反函数的概念119 设函数()y f x =的定义域为A ,值域为C ,从式子()y f x =中解出x ,得式子()x y ϕ=.如果120 对于y 在C 中的任何一个值,通过式子()x y ϕ=,x 在A 中都有唯一确定的值和它对应,那么式121 子()x y ϕ=表示x 是y 的函数,函数()x y ϕ=叫做函数()y f x =的反函数,记作1()x f y -=,习惯122 上改写成1()y f x -=. 123 (7)反函数的求法124 ①确定反函数的定义域,即原函数的值域;②从原函数式()y f x =中反解出1()x f y -=; 125③将1()x f y -=改写成1()y f x -=,并注明反函数的定义域. 126 (8)反函数的性质127 ①原函数()y f x =与反函数1()y f x -=的图象关于直线y x =对称.128②函数()y f x =的定义域、值域分别是其反函数1()y f x -=的值域、定义域. 129③若(,)P a b 在原函数()y f x =的图象上,则'(,)P b a 在反函数1()y f x -=的图象上. 130 ④一般地,函数()y f x =要有反函数则它必须为单调函数. 131 〖2.3〗幂函数 132 (1)幂函数的定义133一般地,函数y xα134=叫做幂函数,其中x为自变量,α是常数.135136137138139140141142143144145146147148149150151152153154155156(3)幂函数的性质①图象分布:幂函数图象分布在第一、二、三象限,第四象限无图象.幂函数是偶函数时,图象157 分布在第一、二象限(图象关于y 轴对称);是奇函数时,图象分布在第一、三象限(图象关于原点158 对称);是非奇非偶函数时,图象只分布在第一象限.159 ②过定点:所有的幂函数在(0,)+∞都有定义,并且图象都通过点(1,1).160③单调性:如果0α>,则幂函数的图象过原点,并且在[0,)+∞上为增函数.如果0α<,则幂函161 数的图象在(0,)+∞上为减函数,在第一象限内,图象无限接近x 轴与y 轴.162④奇偶性:当α为奇数时,幂函数为奇函数,当α为偶数时,幂函数为偶函数.当qpα=(其中163 ,p q 互质,p 和q Z ∈),若p 为奇数q 为奇数时,则q py x =是奇函数,若p 为奇数q 为偶数时,则164 qpy x =是偶函数,若p 为偶数q 为奇数时,则q py x =是非奇非偶函数.165 ⑤图象特征:幂函数,(0,)y x x α=∈+∞,当1α>时,若01x <<,其图象在直线y x =下方,若1x >,166 其图象在直线y x =上方,当1α<时,若01x <<,其图象在直线y x =上方,若1x >,其图象在直167 线y x =下方.168 〖补充知识〗二次函数 169 (1)二次函数解析式的三种形式170 ①一般式:2()(0)f x ax bx c a =++≠②顶点式:2()()(0)f x a x h k a =-+≠③两根式:171 12()()()(0)f x a x x x x a =--≠(2)求二次函数解析式的方法172 ①已知三个点坐标时,宜用一般式.173 ②已知抛物线的顶点坐标或与对称轴有关或与最大(小)值有关时,常使用顶点式. 174 ③若已知抛物线与x 轴有两个交点,且横线坐标已知时,选用两根式求()f x 更方便. 175 (3)二次函数图象的性质176①二次函数2()(0)f x ax bx c a =++≠的图象是一条抛物线,对称轴方程为,2bx a=-顶点坐标是177 24(,)24b ac b a a--. 178②当0a >时,抛物线开口向上,函数在(,]2b a -∞-上递减,在[,)2b a -+∞上递增,当2bx a=-时,179 2min 4()4ac b f x a -=;当0a <时,抛物线开口向下,函数在(,]2b a -∞-上递增,在[,)2ba -+∞上递减,180当2bx a=-时,2max 4()4ac b f x a -=.181③二次函数2()(0)f x ax bx c a =++≠当240b ac ∆=->时,图象与x 轴有两个交点182 ********(,0),(,0),||||||M x M x M M x x a =-=. 183(4)一元二次方程20(0)ax bx c a ++=≠根的分布184 一元二次方程根的分布是二次函数中的重要内容,这部分知识在初中代数中虽有所涉及,但185 尚不够系统和完整,且解决的方法偏重于二次方程根的判别式和根与系数关系定理(韦达定理)186 的运用,下面结合二次函数图象的性质,系统地来分析一元二次方程实根的分布.187 设一元二次方程20(0)ax bx c a ++=≠的两实根为12,x x ,且12x x ≤.令2()f x ax bx c =++,从188以下四个方面来分析此类问题:①开口方向:a ②对称轴位置:2bx a=- ③判别式:∆ ④端点函189 数值符号. 190 ①k <x 1≤x 2 ⇔191192 ②x 1≤x 2<k ⇔193194 ③x 1<k <x 2 ⇔ af (k )<0195196 ④k 1<x 1≤x 2<k 2 ⇔ 197198199 ⑤有且仅有一个根x 1(或x 2)满足k 1<x 1(或x 2)<k 2 ⇔f (k 1)f (k 2)<0,并同时考虑200 f (k 1)=0或f (k 2)=0这两种情况是否也符合201202203⑥k 1<x 1<k 2≤p 1<x 2<p 2 ⇔ 204 此结论可直接由⑤推出.205 (5)二次函数2()(0)f x ax bx c a =++≠在闭区间[,]p q 上的最值206 设()f x 在区间[,]p q 上的最大值为M ,最小值为m ,令01()2x p q =+.207 (Ⅰ)当0a >时(开口向上) 208 ①若2b p a -<,则()m f p = ②若2b p q a ≤-≤,则()2b m f a=- ③若2b q a ->,则()m f q = 209210 211 212 213 214 215 216 217 ①若02b x a -≤,则()M f q =b ()f p 218 219 220 221 2222230x 0x225226 (Ⅱ)当0a <时(开口向下) 227 ①若2b p a -<,则()M f p = ②若2b p q a ≤-≤,则()2b M f a=- ③若2bq a ->,则()M f q = 228229 230 231 232 233 234235 236 237 ①若02b x a -≤,则()m f q = ②02b xa->,则()m f p =.238 239 240 241 242 243244ff fx246 第三章 函数的应用247 一、方程的根与函数的零点248 1、函数零点的概念:对于函数))((D x x f y ∈=,把使0)(=x f 成立的实数x 叫做函数249 ))((D x x f y ∈=的零点。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第2课时 函数的图象
[
学生用书P89(单独成册)]
[A 基础达标]
1.已知函数f (x )=x -m x
,且此函数图象过点(5,4),则实数m 的值为( ) A .3 B .4 C .5
D .6
解析:选C.将点(5,4)代入f (x )=x -m x
,得m =5.
2.函数y =-x 2
+2x 与函数y =1(x ∈R )的图象的公共点个数是( ) A .0 B .1 C .2
D .3
解析:选B.在同一坐标系里画出两函数的图象(图略)可知有一个交点. 3.函数f (x )=x 2
(x ∈[1,2))的值域为( ) A .[1,2) B .[2,4) C .[1,4)
D .[2,4)
解析:选C.结合函数图象(图略)可知,值域为[1,4). 4.函数y =f (x )的图象如图所示,则
(1)f (-1)=________; (2)f (1)=________; (3)f (2)=________.
解析:由图象过点(-1,0),(1,1),(2,0), 可知f (-1)=0,f (1)=1,f (2)=0. 答案:(1)0 (2)1 (3)0
5.函数y =f (x )的图象与直线x =4的交点个数为________.
解析:根据函数的定义知,记I 为函数y =f (x )的定义域,若4∉I ,则无交点;若4∈I ,则只有一个交点,所以至多有一个交点.
答案:至多有一个交点
6.如图,函数f (x )的图象是折线段ABC ,其中点A ,B ,C 的坐标分别为(0,4),(2,0),(6,4),则f {f [f (2)]}=________.
解析:由题意可知f (2)=0,f (0)=4,f (4)=2. 因此,有f {f [f (2)]}=f [f (0)]=f (4)=2. 答案:2
7.某航空公司规定,乘客所携带行李的重量x (kg)与其运费y (元)由如图所示的一次函数图象确定,那么乘客可免费携带行李的最大重量为________kg.
解析:设一次函数解析式为y =ax +b (a ≠0),代入点(30,330)与点(40,630)得⎩⎪⎨
⎪⎧330=30a +b ,
630=40a +b ,解得⎩
⎪⎨⎪⎧a =30,
b =-570.
即y =30x -570,若要免费,则y ≤0,所以x ≤19. 答案:19
8.作出下列函数的图象. (1)y =1+x (x ≤0);
(2)y =x 2
-2x (x >1或x <-1). 解:如图:
9.画出下列函数的图象,并求值域. (1)y =3x -1,x ∈[1,2]; (2)y =x 2
,x ∈{0,1,2,3}; (3)y =|x -1|.
解:函数图象如图所示,由图象观察易得: (1)值域为[2,5]; (2)值域为{0,1,4,9}; (3)值域为[0,+∞).
[B 能力提升]
1.如图,函数f (x )的图象是曲线OAB ,其中点O ,A ,B 的坐标分别为
(0,0),(1,2),(3,1),则f ⎝
⎛⎭
⎪
⎫1f (3)的值等于________.
解析:由题意,f (3)=1,所以f ⎝ ⎛⎭
⎪⎫1f (3)=f (1)=2.
答案:2
2.下面所给出的四个图象和三个事件:
①我离开家不久,发现自己把作业本忘在家里了,于是立刻返回家里取了作业本再上学; ②我骑着车一路以匀速行驶离开家,只是在途中遇到一次交通堵塞,耽搁了一些时间; ③我从家里出发后,心情轻松,缓缓行进,后来为了赶时间开始加速. 图象与这三个事件发生的顺序相吻合的分别为________.
解析:离家不久发现自己作业本忘在家里,回到家里,这时离家的距离为0,故①与图象d 相吻合;途中有一段时间交通堵塞,则这段时间与家的距离必为一定值,故②与图象a 相吻合;加速赶向学校,图象上升地就越来越快,故③与图象b 相吻合.
答案:①d ,②a ,③b 3.作出下列函数的图象:
(1)y =x 2+x x +1
;(2)y =|x +1|-1.
解:(1)y =x ,定义域为{x |x ≠-1},图象如图(1).
(2)当x ≥-1时y =x ,当x <-1时y =-x -2,图象如图(2).
4.(选做题)画出函数f(x)=-x2+2x+3的图象,并根据图象回答下列问题.
(1)比较f(0)、f(1)、f(3)的大小;
(2)若x1<x2<1,比较f(x1)与f(x2)的大小;
(3)求函数f(x)的值域.
解:(1)函数图象如图(1)所示.
可见f(0)=f(2),f(1)>f(2)>f(3),所以f(1)>f(0)>f(3).
(2)如图(2)所示,当x1<x2<1时,f(x1)<f(x2).
(3)由图象可知二次函数f(x)的最大值为f(1)=4,则函数f(x)的值域为(-∞,4].
图(1) 图(2)。