【解析版】广东广州海珠区2014届高三上学期综合测试(二)(理)试题解析(数学)

合集下载

广东省珠海一中等六校2014届高三上学期第二次联考数学理 Word版含答案

广东省珠海一中等六校2014届高三上学期第二次联考数学理 Word版含答案

2014届高三六校第二次联考数学试题一、选择题.本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.请把答案填在答题卡的相应位置.1.设2{0,2},{|320}A B x x x ==-+=,则A B = ( ) A .{0,2,4}-- B .{0,2,4}- C .{0,2,4} D .{0,1,2} 2.命题“x R ∃∈,2210x x -+<”的否定是 ( ) A .x R ∃∈,2210x x -+≥ B .x R ∃∈,2210x x -+> C .x R ∀∈,2210x x -+≥D .x R ∀∈,2210x x -+<4.一个物体的运动方程为1s t t =-+,其中s 的单位是米,t 的单位是秒, 那么物体在3秒末的瞬时速度是 ( ) A .7米/秒 B .6米/秒 C .5米/秒 D .8米/秒5.函数()ln 26f x x x =+-的零点位于 ( ) A .[1,2] B .[2,3] C .[3,4] D .[4,5]6.“1sin 2α=”是“1cos 22α=”的 ( ) A .充分而不必要条件 B .必要而不充分条件 C .充要条件 D .既不充分也不必要条件 7.函数1()(0,1)xf x a a a a=->≠的图象可能是 ( )A B C D18.如图:正方体1111ABCD A B C D -,棱长为1,黑白二蚁都从点A 出发,沿棱向前爬行,每走一条棱称为“走完一段”.白蚁爬行的路线是111,AA A D →→ 黑蚁爬行的路线是1.AB BB→→ 它们都遵循如下规则:所爬行的第2i +段所在直线与第i 段所在直线必须是异面直线(其中*i N ∈).设黑白二蚁走完第2014段后,各停止在正方体的某个顶点处,这时黑白蚁的距离是 ( )A . D. 0二、填空题.本大题共 6小题,每小题 5分,共 30 分 . 请把答案填在答题卡的相应位置. 9.函数()()lg 43x f x x -=-的定义域为____________.10.若函数()y f x =是函数(0,xy a a =>且1)a ≠的反函数,且函数()y f x =的图像经过点)a , 则()f x = ____________.11.已知函数(2),2()1,22x f x x f x x +<⎧⎪=⎨⎛⎫> ⎪⎪⎝⎭⎩,则(3)f -的值为12.如图是函数()sin(),(0,0,||)2f x A x A πωϕωϕ=+>><的图象,则其解析式是____________.13.由曲线xy e =与直线0x =、直线y e =所围成的图形的面积为____________.14.设函数221()lg ()(0)2f x ax x b b a ⎡⎤=++-+≠⎢⎥⎣⎦,若对任意实数b ,函数()f x 的定义域为R ,则a 的取值范围为____________.三、解答题.本大题共 6 小题,共 80 分 . 解答应写出文字说明,证明过程或演算步骤 . 15.(本小题满分12分)已知函数())12f x x π=-,x R ∈(1)求6f π⎛⎫-⎪⎝⎭的值; (2)若43sin ,,252πθθπ⎛⎫=-∈ ⎪⎝⎭,求(2)3f πθ+.16.(本小题满分12分)设函数3()65f x x x =-+,x R ∈ (1)求函数()f x 的单调区间;(2)求函数()f x 在区间[]2,2-上的最值.17.(本小题满分14分)设函数2()sin cos f x x x x =+,x R ∈(1)求函数()f x 的最小正周期,并求()f x 在区间,46ππ⎡⎤-⎢⎥⎣⎦上的最小值; (2)在ABC ∆中,,,a b c 分别是角,,A B C 的对边,A 为锐角,若()()32f A f A +-=,7b c +=,ABC ∆的面积为求a .18.(本小题满分14分)已知函数2()ln f x x a x =+)(R a ∈(1)若函数)(x f 在1x =处的切线垂直y 轴,求a 的值; (2)若函数)(x f 在区间),1(+∞上为增函数,求a 的取值范围; (3)讨论函数()()(2)g x f x a x =-+的单调性.19.(本小题满分14分) 已知函数(1ln )(),(1)1x x f x x x +=>-(1)设0x 为函数()f x 的极值点,求证: 00()f x x =;(2)若当1x >时,ln (1)0x x k x k +-+>恒成立,求正整数...k 的最大值.20.(本小题满分14分)设函数2*()1,(,)1!2!!nn x x x f x x R n N n =-++++∈∈ (1)证明对每一个*n N ∈,存在唯一的1,12n x ⎡⎤∈⎢⎥⎣⎦,满足()0n n f x =; (2)由(1)中的n x 构成数列{}n x ,判断数列{}n x 的单调性并证明;(3)对任意*p N ∈,,n n p x x +满足(1),试比较n n p x x +-与1n的大小.2014届六校十月联考理科数学参考答案9.{}|43x x x <≠且 10. 12log x 11.18 12.3sin(2)3y x π=+ 13. ____1____ 14. (1,)+∞15.(本小题满分12分)已知函数())12f x x π=-,x R ∈(1)求6f π⎛⎫-⎪⎝⎭的值; (2)若43sin ,,252πθθπ⎛⎫=-∈ ⎪⎝⎭ ,求(2)3f πθ+.解: (1)())12f x x π=-())6612f πππ∴-=-- ……2分)sin()44ππ=-= ……4分1=- ……5分(2)43sin ,,252πθθπ⎛⎫=-∈ ⎪⎝⎭3cos 5θ∴==……7分 24sin 22sin cos 25θθθ∴==- ……8分27cos 22cos 125θθ=-=- ……9分(2))34f ππθθ∴+=+ ……10分2coscos 2sin )44ππθθ=+=24731252525--=- ……12分16.(本小题满分12分)设函数3()65f x x x =-+,x R ∈(1)求函数()f x 的单调区间;(2)求函数()f x 在区间[]2,2-上的最值. 解:(1)3()65f x x x =-+2'()36f x x ∴=- ……2分令'()0,f x = x ∴=……3分'(),()f x f x x 随着的变化情况如下表:……5分由上表可知()f x 的单调递增区间为(,-∞和)+∞,单调递减区间为(. ……6分(2)由(1)可知函数()f x 在2,⎡-⎣ 上单调递增,在⎡⎣ 上单调递减,在2⎤⎦上单调递增, ……7分()f x ∴的极大值(5f ==+……8分()f x 的极小值5f ==-……9分又(2)15(f f =<+= , ……10分(2)95f f -=>-= ……11分∴函数()f x 在区间[]2,2-上的最大值为5+,最小值为5-……12分17.(本小题满分14分)设函数2()sin cos f x x x x =,x R ∈ (1)求函数()f x 的最小正周期,并求()f x 在区间,46ππ⎡⎤-⎢⎥⎣⎦上的最小值; (2)在ABC ∆中,,,a b c 分别是角,,A B C 的对边,A 为锐角,若()()32f A f A +-=,7b c +=,ABC ∆的面积为求a .解:(1)()21cos 2sin cos 22x f x x x x x -=+=+ 1sin 226x π⎛⎫=+- ⎪⎝⎭ ……3分所以函数()f x 的最小正周期为22||2T πππω=== ……4分 因为⎥⎦⎤⎢⎣⎡-∈6,4ππx ,所以⎥⎦⎤⎢⎣⎡-∈-6,3262πππx . 所以当262ππ-=-x 时,函数()f x 在区间⎥⎦⎤⎢⎣⎡-6,4ππ上的最小值为12-. ……7分(2)由()()32f A f A +-=得:2362sin 62sin 1=⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛+-ππA A . 化简得:212cos -=A ,又因为20π<<A ,解得:3π=A . ……10分 由题意知:32sin 21==∆A bc S ABC , 解得8=bc ,又7=+c b , ……12分 由余弦定理:()()22222cos 21cos 25a b c bc A b c bc A =+-=+-+=,5a ∴=. ……14分18. (本小题满分14分)已知函数2()ln f x x a x =+)(R a ∈ (1)若函数)(x f 在1x =处的切线垂直y 轴,求a 的值; (2)若函数)(x f 在),1(+∞为增函数,求a 的取值范围; (3) 讨论函数()()(2)g x f x a x =-+的单调性.解:(1)因为2()ln f x x a x =+,故()2af x x x'=+, ……1分 函数)(x f 在1x =处的切线垂直y 轴,所以(1)202f a a '=+=⇒=- ……3分 (2)函数)(x f 在),1(+∞为增函数,所以当(1,)x ∈+∞时,()20af x x x'=+≥恒成立,分离参数得:22a x ≥-,从而有:2a ≥-. ……7分 (3)2()()(2)(2)ln g x f x a x x a x a x =-+=-++22(2)(1)(2)()2(2)a x a x a x x a g x x a x x x-++--'=-++== ……10分令12()01,2ag x x x '=⇒==,因为函数()g x 的定义域为(0,)+∞,所以 (1)当02a≤,即0a ≤时,函数()g x 在(0,1)上递减,在(1,)+∞上递增; ……11分(2)当012a <<,即02a <<时,函数()g x 在(0,)2a上递增, 在(,1)2a 上递减,在(1,)+∞上递增 ……12分(3)当12a=,即2a =时,函数()g x 在(0,)+∞上递增; ……13分 (4)当12a >,即2a >时,函数()g x 在(0,1)上递增,在(1,)2a上递减,在(,)2a +∞上递增.…14分19.(本小题满分14分)已知函数(1ln )(),(1)1x x f x x x +=>-(1)设0x 为函数()f x 的极值点,求证: 00()f x x =;(2)若当1x >时,ln (1)0x x k x k +-+>恒成立,求正整数k 的最大值. 解:(1)因为(1ln )(),(1)1x x f x x x +=>-,故22ln ()(1)x x f x x --'=-, ……2分 0x 为函数)(x f 的极值点,0()0f x '∴=, ……3分即002ln 0x x --=,于是0011ln x x -=+, 故00000000(1ln )(1)()11x x x x f x x x x +-===-- ……5分(2) ln (1)0x x k x k +-+>恒成立,分离参数得(1ln )()1x x k f x x +<=- ……7分则1>x 时,()f x k >恒成立,只需min ()f x k >,22ln ()(1)x x f x x --'=-,记()2ln g x x x =--,1()10g x x'∴=->, ……9分()g x ∴在),1(+∞上递增,又(3)1ln30,(4)2ln 40g g =-<=->, ()g x ∴在),1(+∞上存在唯一的实根0x , 且满足0(3,4)x ∈, ……11分∴当01x x <<时()0g x <,即()0f x '<;当0x x >时()0g x >,即()0f x '>,min 00()()(3,4)f x f x x ==∈,故正整数k 的最大值为3 ……14分20. (本小题满分14分)解:(1)21()12!(1)!n n x x f x x n -'=++++-显然,当0x >时,()0n f x '>,故()n f x 在(0,)+∞上递增. ……2分 又11(1)1102!!n f n =-++++≥ ,221111()()(1())1111112222()11()()1()01222!!222212n n n n n f n -=-++++<-++++=-+=-<- 故存在唯一的1[,1]2n x ∈,满足()0n n f x = ……4分(2)由(1)知()n f x 在(0,)+∞上递增 因为21111()12!!n n n n n n x x f x x n ++++=-++++所以21111111111()1()02!!(1)!(1)!n n n n n n n n n n n n x x x x f x x f x n n n ++++++++++=-+++++=+=++ ……6分 111()0()(1)!n n n n n n x f x f x n +++=-<=+,由(1)知()n f x 在(0,)+∞上递增故1n n x x +<,即数列{}n x 单调递减. ……9分 (3) 由(2)数列{}n x 单调递减,故0n n px x +-> 而2()102!!nn nn n n x x f x x n =-++++=21()102!!(1)!()!nn n pn pn pn pn pn p n p n p x x x x f x x n n n p +++++++++=-+++++++=++ ……11分两式相减:并结合0n p n x x +-<,以及1[,1]2n x ∈211111!!11!!(1)111111k k kn pnn p nn pn n p k k n k n pn pn p n pk n k n k n n pk n x x x x x k k x k k k k k k n n p n ++++==+++++=+=+=++=+--=+<≤<-⎡⎤=-=-<⎢⎥-+⎣⎦∑∑∑∑∑∑ 所以有1||n n p x x n+-< ……14分。

广东省广州市海珠区2014届高三上学期综合测试二文科数学试卷(解析版)

广东省广州市海珠区2014届高三上学期综合测试二文科数学试卷(解析版)

广东省广州市海珠区2014届高三上学期综合测试二文科数学试卷(解析版)一、选择题1.若复数()()12bi i ++是纯虚数(i 是虚数单位,b 是实数),则b =( ) A.2- B.12- C.12D .2【答案】B 【解析】 试题分析:()()()()12112bi i b b i ++=-++是纯虚数,则有10120b b -≠⎧⎨+=⎩,解得12b =-,故选B.考点:1.复数的乘法运算;2.复数的概念2.设集合{}22A x x x =<,{}2log 0B x x =>,则AB =( )A.{}2x x < B.{}0x x > C.{}02x x << D.{}12x x << 【答案】D 【解析】 试题分析:{}{}2202A xx x x x =<=<<,{}{}2log 01B x x x x =>=>,{}12AB x x ∴=<<,故选D.考点:1.不等式的解法;2.集合的交集运算3.已知a 、b 、c 分别为ABC ∆的三个内角A 、B 、C 所对的边,若1a =,b =2A C B +=,则 ( )A.12 B.12- C.2D.【答案】A 【解析】试题分析:2A C B +=,且33A B C B B ππ++==⇒=,由正弦定理得sin sin a bA B=,可得sin A =sin 11sin 1322a Bb π=⨯=⨯=,故选A. 考点:1.三角形的内角和定理;2.正弦定理4.在各项都为正数的等比数列{}n a 中,13a =,前三项的和为21,则345a a a ++=( )A.33B.72C.84D.189 【答案】C 【解析】试题分析:设等比数列{}n a 的公比为q ,则0q >,由于13a =,212333321a a a q q ++=++=,化简得260q q +-=,解得2q =,23423434533332323284a a a q q q ∴++=++=⨯+⨯+⨯=,故选C.考点:等比数列的性质5.“1a =-”是“直线260a x y -+=与直线()4390x a y --+=互相垂直”的( ) A.充分不必要条件 B.必要不充分条件C.充要条件D.既不充分也不必要条件 【答案】A 【解析】试题分析:若直线260a x y -+=与直线()4390x a y --+=互相垂直,则()()24130a a ⨯+-⨯--=⎡⎤⎣⎦,即2430a a +-=,即()()4310a a -+=,解得1a =-或34a =,故“1a =-”是“直线260a x y -+=与直线()4390x a y --+=互相垂直”的充分不必要条件,故选A.考点:1.两直线的位置关系;2.充分必要条件6.在ABC ∆中,已知D 是AB 边上的一点,若2AD DB =,13CD CA CB λ=+,则λ=( ) A.23 B.13 C.13- D.23-【答案】A 【解析】试题分析:2AD DB =,即()2C D C A C B C D -=-,解得1233CD CA CB =+,23λ∴=,故选A.考点:平面向量的线性表示7.阅读如图程序框图,若输入的100N =,则输出的结果是( )A.50B.1012C.51D.1032【答案】A 【解析】试题分析:1i =,100N =,i N >不成立,执行第一次循环,011S =+=,112i =+=; i N >不成立,执行第二次循环,123S =+=,213i =+=; i N >不成立,执行第三次循环,123S =++,314i =+=;;i N >不成立,执行第一百次循环,1001011231002S ⨯=++++=,1001101i =+=; i N >成立,输出1001011502101S i ⨯=⨯=,故选A. 考点:1.数列求和;2.算法与程序框图8.某校300名高三学生期中考试数学成绩的频率分布直方图如图所示,由图中数据估计此次数学成绩平均分( )A.69B.71C.73D.75【答案】C 【解析】试题分析:由频率分布直方图知()21010.040.030.02100.10.005a a ⨯=-++⨯=⇒=,故此次数学成绩的平均分为()550.005650.04750.03850.02950.0051073x =⨯+⨯+⨯+⨯+⨯⨯=,故选C.考点:1.频率分布直方图;2.平均数9.已知x 、y 满足2y x x y x a ≥⎧⎪+≤⎨⎪≥⎩,且2z x y =+的最大值是最小值的4倍,则a 的值是( )A.34 B.14 C.211 D.4【答案】B 【解析】试题分析:作出不等式组2y xx y x a≥⎧⎪+≤⎨⎪≥⎩所表示的可行域如下图所示,联立x a y x =⎧⎨=⎩得点(),A a a ,联立2y xx y =⎧⎨+=⎩得点()1,1B ,作直线:2l z x y =+,则z 为直线l 在y 轴上的截距,当直线l 经过可行域上的点A 时,此时直线l 在y 轴上的截距最小,此时z 取最小值,即min 23z a a a =⨯+=;当直线l 经过可行域上的点B 时,此时直线l 在y 轴上的截距最大,此时z 取最大值,即max 2113z =⨯+=,由题意知,max min 4z z =,即343a =⨯,解得14a =,故选B. 考点:线性规划10.若a 、b 是方程lg 4x x +=,104xx +=的解,函数()()22,02,0x a b x x f x x ⎧+++≤=⎨>⎩,则关于x 的方程()f x x =的解的个数是( )A.1B.2C.3D.4【答案】C 【解析】试题分析:由题意知,a 、b 是方程lg 4x x =-,104xx =-的实数根,作出函数()lg f x x =,()10x g x =与函数()4h x x =-的图象如下图所示,则函数()lg f x x =与函数()4h x x =-交于点(),lg A a a ,函数()10xg x =与函数()4h x x =-交于点(),10bB b ,由于函数()lg f x x =与函数()10xg x =关于直线y x =对称,且直线y x =与4y x =-垂直,且交于点()2,2C ,故点A 、B 也关于直线y x =对称,且其中点为点()2,2C ,因此4a b +=,当0x ≤时,()242f x x x =++,解方程()f x x =,即2320x x ++=,解得2x =-或1x =-;当0x >时,()2f x =,解方程()2f x x x =⇒=,故关于x 的方程()f x x =的实根个数为3,故选C.考点:1.函数的零点;2.函数的图象;3.分段函数二、填空题11.已知双曲线221x y m-=的离心率是2,则m 的值是 . 【答案】13. 【解析】试题分析:由题意知,双曲线的离心率2e ==,解得13m =.考点:双曲线的离心率12.如图是一个空间几何体的三视图,则该几何体的体积为 .【答案】23. 【解析】试题分析:由三视图可知,该几何体是一个三棱锥,且底面是一个等腰直角三角形,腰长为其面积为2112S =⨯=,三棱锥的高为2,故该三棱锥的体积为121233V =⨯⨯=.考点:1.三视图;2.三棱锥的体积13.给出下列四个命题: ①函数()xx f x ee -=+有最小值是2;②函数()4sin 23f x x π⎛⎫=-⎪⎝⎭的图象关于点,06π⎛⎫⎪⎝⎭对称; ③若“p 且q ”为假命题,则p 、q 为假命题;④已知定义在R 上的可导函数()y f x =满足:对x R ∀∈,都有()()f x f x -=-成立, 若当0x >时,()0f x '>,则当0x <时,()0f x '>. 其中正确命题的序号是 .【答案】①②④. 【解析】试题分析:对于命题①,0x e >,()2xx f x ee -=+≥=,当且仅当21x x x e e e -=⇒=,即当0x =时,上式取等号,即函数()x x f x e e -=+有最小值2,故命题①正确;对于命题②,由于6f π⎛⎫=⎪⎝⎭4sin 2063ππ⎛⎫⨯-= ⎪⎝⎭,故函数()4sin 23f x x π⎛⎫=- ⎪⎝⎭的图象关于点,06π⎛⎫⎪⎝⎭对称,故命题②正确;对于命题③,若“p 且q ”为假命题,则p 、q 中至少有一个是假命题,故命题③错误;对于命题④,由于函数()f x 是奇函数,当0x >时,()0f x '>,即函数()f x 在区间()0,+∞上单调递增,由奇函数的性质知,函数()f x 在(),0-∞上也是单调递增的,即当0x <时,仍有()0f x '>,故命题④正确,综上所述,正确命题的序号是①②④. 考点:1.基本不等式;2.三角函数的对称性;3.复合命题;4.函数的奇偶性与单调性14.在极坐标中,圆4cos ρθ=的圆心C 到直线s i n 24πρθ⎛⎫+= ⎪⎝⎭的距离为 .【解析】试题分析:圆4cos ρθ=的直角坐标方程为224x y x +=,化为标准式得()2224x y -+=,圆心C 坐标为()2,0,直线s i n 4πρθ⎛⎫+= ⎪⎝⎭的直角坐标方程为4x y +=,即40x y +-=,故圆心C 到直线40x y +-=的距离d ==考点:1.极坐标方程与直角坐标方程的互化;2.点到直线的距离15.如图,平行四边形ABCD 中,:1:2AE EB =,AEF ∆的面积为21cm ,则平行四边形ABCD 的面积为 2cm .【答案】24. 【解析】试题分析:由于四边形ABCD 为平行四边形,//AB CD ∴,且12AE EB =,13AE AE AE CD AB AE EB ∴===+,219AEF CDF S AE S CD ∆∆⎛⎫∴== ⎪⎝⎭,299CDF AEF S S cm ∆∆∴==,同理13EF AE DF CD ==,13AEF ADF S EF S DF ∆∆∴==,ADF S ∆∴ 233AEF S cm ∆==,故23912ACD ADF CDF S S S cm ∆∆∆=+=+=,因此四边形ABCD 的面积2ACD S S ∆== 221224cm ⨯=.考点:相似三角形三、解答题16.设向量(6cos ,a x =,()cos ,sin 2b x x =,0,2x π⎡⎤∈⎢⎥⎣⎦.(1)若23a =,求x 的值;(2)设函数()f x a b =⋅,求()f x 的最大、最小值.【答案】(1)3x π=;(2)函数()f x 的最小值为3-,最大值为6.【解析】试题分析:(1)先由平面向量模的计算公式由条件23a =得出cos x 的值,结合角x 的取值范围求出x 的值;(2)先由平面向量数量积的坐标运算求出函数()f x 的解析式,并将函数()f x 的解析式化简为()f x =236x π⎛⎫++ ⎪⎝⎭,先由02x π≤≤得出26x π+的取值范围,再利用余弦曲线确定函数()f x 在区间0,2π⎡⎤⎢⎥⎣⎦上的最大值与最小值.试题解析:(1)23a =,=21cos 4x ∴=,1cos 2x ∴=±, 0,2x π⎡⎤∈⎢⎥⎣⎦,cos 0x ∴>,1cos 2x ∴=,3x π∴=;(2)()21cos 26cos 2622xf x a b x x x +=⋅=-=⨯13cos 2232sin 232326x x x x x π⎫⎛⎫=+=-+=++⎪ ⎪⎪⎝⎭⎭,当0,2x π⎡⎤∈⎢⎥⎣⎦时,72666x πππ≤+≤,1cos 262x π⎛⎫∴-≤+≤ ⎪⎝⎭,即函数()f x 的最小值为3-,最大值为6.考点:1.平面向量模的计算;2.平面向量的数量积;3.二倍角公式;4.辅助角公式;5.三角函数的最值17.在一次联考后,某校对甲、乙两个文科班的数学考试成绩进行分析,规定:大于或等于120分为优秀,120分以下为非优秀,统计成绩后,得到如下的22⨯列联表,且已知在甲、乙两个文科班全部110人中随机抽取人为优秀的概率为3.(2)根据列联表的数据,能否有99%的把握认为成绩与班级有关系? (3)若按下面的方法从甲班优秀的学生中抽取一人:把甲班优秀的10名学生从2到11进行编号,先后两次抛掷一枚均匀的骰子,出现的点数之和为被抽取人的序号,试求抽到9号或10号的概率. 【答案】(1)详见解析;(2)按99%的可靠性要求,能认为“成绩与班级有关系”;(3)抽到9或10号的概率为736. 【解析】 试题分析:(1)先根据题中条件确定乙班优秀的人数,然后根据甲乙两班的总人数将表中其它的数据补充上;(2)先提出假设“成绩与班级无关”,根据表中数据求出2K 的值,然后利用临界值表确定犯错误的概率,进而确定是否有99%的把握认为成绩与班级有关系;(3)先把事件空间中的基本事件全部列出,并计算基本事件的总数,然后将问题中涉及的事件所包含的基本事件找出,利用古典概型的概率公式计算所求事件的概率.(2)假设成绩与班级无关,根据列联表中的数据,得到()22110103020507.487 6.63560503080K ⨯⨯-⨯=≈>⨯⨯⨯,因此按99%的可靠性要求,能认为“成绩与班级有关系”;(3)先后两次抛掷一枚均匀的骰子,出现的点数为(),x y ,所有的基本事件有:()1,1、()1,2、()1,3、()1,4、、()6,6,共36个,设“抽到9或10号”为事件A ,事件A 包含的基本事件有:()3,6、()4,5、()5,4、()6,3、()4,6、()5,5、()6,4,共7个, 所以()736P A =,即抽到9或10号的概率为736. 考点:1.独立性检验;2.古典概型18.如图,已知矩形ABCD 中,10AB =,6BC =,将矩形沿对角线BD 把ABD ∆折起,使A 移到1A 点,且1A 在平面BCD 上的射影O 恰好在CD 上.(1)求证:1BC A D ⊥;(2)求证:平面1A BC ⊥平面1A BD ; (3)求三棱锥1A BCD -的体积.【答案】(1)详见解析;(2)详见解析;(3)三棱锥1A BCD -的体积为48. 【解析】试题分析:(1)利用折叠后点1A 在平面BCD 内的射影点在棱CD 上得到1AO ⊥平面BCD ,从而得到1AO BC ⊥,再结合BC CD ⊥即可证明BC ⊥平面1ACD ,进而证明1BC A D ⊥;(2)由(1)中的结论BC ⊥平面1ACD 并结合平面与平面垂直的判定定理即可证明平面1A BC ⊥平面1A BD ;(3)先利用等面积法求出1AO 的值,利用(1)中的结论1AO ⊥平面BCD ,以及BCD ∆的面积利用锥体的体积公式即可计算出三棱锥1A BCD -的体积;或者(1)中的结论1A D ⊥平面1A BC ,利用等体积法三棱锥1A BCD -的体积转化为三棱锥1D A BC -的体积进行计算.试题解析:(1)1A 在平面BCD 上的射影O 在CD 上,1AO ∴⊥平面BCD , 又BC ⊂平面BCD ,1BC AO ∴⊥, 又BC CO ⊥,1AO CO O =,BC ∴⊥平面1ACD , 又1A D ⊂平面1ACD ,1BC A D ∴⊥; (2)四边形ABCD 是矩形,11A D A B ∴⊥,由(1)知1A D BC ⊥,1A B BC B =,1A D ∴⊥平面1A BC ,又1A D ⊂平面1A BD ,∴平面1A BC ⊥平面1A BD ; (3)1A D ⊥平面1A BC ,11A D AC ∴⊥, 在1Rt A BD ∆中,由16AD =,10CD =,得18AC =,111245A D A C A O CD ⨯∴==,1AO ⊥平面BCD ,且116103022BCD S BC CD ∆=⋅=⨯⨯= , 故三棱锥1A BCD -的体积为1111243048335A BCD BCD V AO S -∆=⋅=⨯⨯=; 另解:1A D ⊥平面1A BC ,11A D AC ∴⊥,16A D =,10CD =,18AC ∴=,11116864832A BCD D A BC V V --⎛⎫∴==⋅⋅⋅⋅= ⎪⎝⎭.考点:1.直线与平面垂直;2.直线与直线垂直;3.平面与平面垂直;4.三棱锥的体积 19.在数列{}n a 中,11a =,23a =,()2130n n n a a ka k ++=-≠对任意n N *∈成立,令1n n n b a a +=-,且{}n b 是等比数列.(1)求实数k 的值;(2)求数列{}n a 的通项公式; (3)求和:12323n n S b b b nb =++++.【答案】(1)2k =;(2)21n n a =-;(3)()1122n n S n +=-⨯+.【解析】试题分析:(1)先利用题中的定义,利用数列{}n b 的前三项成等比数列求出k 的值,然后就k 的值进行检验,即对数列{}n b 是否为等比数列进行检验;(2)根据等比数列{}n b 的通项12n n n n b a a +=-=选择累加法求数列{}n a 的通项公式;(3)根据数列{}n nb 的通项公式2n n nb n =⋅,选择错位相减法求数列{}n nb 的前n 项和n S .试题解析:(1)11a =,23a =,39a k =-,4276a k =-,12b ∴=,26b k =-,3185b k =-,数列{}n b 为等比数列,2213b b b ∴=⋅,即()()262185k k -=⨯-,解得2k =或0k =(舍),当2k =时,2132n n n a a a ++=-,即()2112n n n n a a a a +++-=-,12n nb b +∴=,所以2k =满足条件; (2)12b =,数列{}n b 为等比数列,1222n n n b -∴=⨯=,1212a a ∴-=,2322a a -=,,112n n n a a ---=,()()()2112132122222n n n n n a a a a a a a a --∴-=-+-++-=+++=-,21n n a ∴=-;(3)1231222322n n S n =⨯+⨯+⨯++⨯,()23121222122n n n S n n +∴=⨯+⨯++-⨯+⨯,上式减下式得()12312122222212n n n n n n n S n n n ++++--=++++-⨯=-⨯=-⨯--, ()1122n n S n +∴=-⨯+.考点:1.等比数列的定义;2.累加法求数列的通项公式;3.错位相减法20.已知椭圆()222210x y a b a b +=>>的离心率为e =y x =心、椭圆C 的短半轴长为半径的圆O 相切.(1)求椭圆C 的方程;(2)如图,A 、B 、D 是椭圆C 的顶点,P 是椭圆C 上除顶点外的任意点,直线DP 交x 轴于点N ,直线AD 交BP 于点M ,设BP 的斜率为k ,MN 的斜率为m ,求证:2m k -为定值.【答案】(1)椭圆C 的方程为2214x y +=;(2)详见解析. 【解析】 试题分析:(1)先根据题中条件求出a 、b 、c ,进而可以求出椭圆C 的方程;(2)先由直线BP 的方程()2y k x =-与椭圆的方程联立求出点P 的坐标,然后由D 、P 、N 三点共线,利用平面向量共线进行等价转化,求出点N 的坐标,于是得到直线MN 的斜率m ,最终证明2m k -为定值.试题解析:(1)由直线y x =222x y b +=得1b ==,由c e a ==,得2222234c a b a a -==,所以2a =, 所以椭圆C 的方程为2214x y +=;(2)因为()2,0B ,P 不为椭圆定点,即BP 的方程为()1202y k x k k ⎛⎫=-≠≠± ⎪⎝⎭且,①②将①代入2214x y +=,解得222824,4141k k P k k ⎛⎫-- ⎪++⎝⎭, 又直线AD 的方程为112y x =+, ② 由()0,1D 、222824,4141k k P k k ⎛⎫-- ⎪++⎝⎭、(),0N x 三点共线可得42,021k N k -⎛⎫⎪-⎝⎭, 所以MN 的斜率为214k m +=,则211222k m k k +-=-=(定值). 考点:1.椭圆的方程;2.直线与椭圆的公共点的求解;3.直线的斜率;4.三点共线 21.设a R ∈,函数()ln f x x ax =-.(1)若2a =,求曲线()y f x =在点()1,2P -处的切线方程; (2)求函数()f x 的单调区间;(3)当0a >时,求函数()f x 在[]1,2上的最小值.【答案】(1)切线方程为10x y ++=;(2)详见解析;(3)详见解析. 【解析】试题分析:(1)将2a =代入函数()f x 的解析式,利用导函数的几何意义,结合直线的点斜式求出切线的方程;(2)先求出函数()f x 的导数()f x ',并求出方程()0f x '=的根1x a =,对1x a=是否在定义域内进行分类讨论,从而确定函数()f x 的增区间和减区间;(3)对1x a=是否在区间[]1,2内进行分类讨论,从而确定函数()f x 的最小值,注意112a <<时,函数()f x 最小值的可能值为()1f 或()2f ,这时可对两式的值作差确定大小,从而确定两者的大小,从而确定函数()f x 在[]1,2上的最小值. 试题解析:在区间()0,+∞上,()11ax f x a x x-'=-=, (1)当2a =时,()1121f '=-=-,则切线方程为()21y x -=--,即10x y ++=; (2)①当0a ≤时,()10f x a x'=->,故函数()f x 为增函数,即函数()f x 的单调递增区间为()0,+∞;②当0a >时,令()10f x a x '=-=,可得1x a=, 当10x a <<时,()10ax f x x -'=>;当1x a >,()10axf x x-'=<, 故函数()f x 的单调递增区间为10,a ⎛⎫ ⎪⎝⎭,单调递减区间为1,a ⎛⎫+∞ ⎪⎝⎭; (3)①当11a≤时,即当1a ≥时,函数()f x 在区间[]1,2上是减函数, ()f x ∴的最小值是()2ln22f a =-;②当12a ≥时,即当102a <≤时,函数()f x 在区间[]1,2上是增函数, ()f x ∴的最小值是()1f a =-;③当112a <<时,即当112a <<时,函数()f x 在11,a ⎡⎤⎢⎥⎣⎦上是增函数,在1,2a ⎡⎤⎢⎥⎣⎦上是减函数,所以()f x 的最小值产生于()1f 与()2f 之间,又()()21ln2f f a -=-, 当1ln 22a <<时,最小值为()1f a =-; 当ln 21a ≤<时,最小值为()2ln22f a =-,综上所述,当0ln 2a <<时,函数()f x 的最小值是()min f x a =-, 当ln 2a ≥时,函数()f x 的最小值是()min ln 22f x a =-.考点:1.利用导数求切线方程;2.函数的单调区间;3.函数的最值;4.分类讨论.。

广东省广州市海珠区2014届高三上学期综合测试(二)(数学文)解析版

广东省广州市海珠区2014届高三上学期综合测试(二)(数学文)解析版

文科数学第Ⅰ卷(共50分)一、选择题:本大题共10个小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项 是符合题目要求的.1.若复数()()12bi i ++是纯虚数(是虚数单位,b 是实数),则b = ( )A.2-B.12-C.12D .2 【答案】B2.设集合{}22A x x x =<,{}2log 0B x x =>,则A B = ( ) A.{}2x x < B.{}0x x > C.{}02x x << D.{}12x x << 【答案】D 【解析】试题分析:{}{}2202A x x x x x =<=<< ,{}{}2log 01B x x x x =>=>,{}12A B x x ∴=<< ,故选D.考点:1.不等式的解法;2.集合的交集运算3.已知a 、b 、c 分别为ABC ∆的三个内角A 、B 、C 所对的边,若1a =,b =,2A C B +=,则 ( )A.12 B.12-【答案】A 【解析】4.在各项都为正数的等比数列{}n a 中,13a =,前三项的和为21,则345a a a ++=( )A.33B.72C.84D.189 【答案】C 【解析】试题分析:设等比数列{}n a 的公比为q ,则0q >,由于13a =,212333321a a a q q ++=++=,化简得260q q +-=,解得2q =,23423434533332323284a a a q q q ∴++=++=⨯+⨯+⨯=,故选C.考点:等比数列的性质5.“1a =-”是“直线260a x y -+=与直线()4390x a y --+=互相垂直”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件6.在ABC ∆中,已知D 是AB 边上的一点,若2AD DB = ,13CD CA CB λ=+,则λ=( ) A.23 B.13 C.13- D.23- 【答案】A 【解析】试题分析:2AD DB = ,即()2CD CA CB CD -=- ,解得1233CD CA CB =+ ,23λ∴=,故选A.考点:平面向量的线性表示7.阅读如图程序框图1,若输入的100N =,则输出的结果是( )A.50B.1012 C.51 D.10328.某校300名高三学生期中考试数学成绩的频率分布直方图如图2所示,由图中数据估计此次数学成绩平均分为()A.69B.71C.73D.759.已知x 、y 满足2y x x y x a ≥⎧⎪+≤⎨⎪≥⎩,且2z x y =+的最大值是最小值的4倍,则a 的值是( ) A.34 B.14 C.211D.4 【答案】B 【解析】试题分析:作出不等式组2y xx y x a≥⎧⎪+≤⎨⎪≥⎩所表示的可行域如下图所示,联立x a y x =⎧⎨=⎩得点(),A a a ,B 1,1()A a,a ()z=2x+yO yxx+y=2y=x x=a10.若a 、b 是方程lg 4x x +=,104xx +=的解,函数()()22,02,0x a b x x f x x ⎧+++≤=⎨>⎩,则关于x 的方程()f x x =的解的个数是 ( ) A. B.2 C.3 D.4(),10b B b ,由于函数()lg f x x =与函数()10x g x =关于直线y x =对称,且直线y x =与4y x =-垂直,且交于点()2,2C ,故点A 、B 也关于直线y x =对称,且其中点为点()2,2C ,因此4a b +=,当0x ≤时,()242f x x x =++,解方程()f x x =,即2320x x ++=,Oyxy=xh x ()=4-xg x ()=10x f x ()=lgx CB b,10b ()A a,lga ()解得2x =-或1x =-;当0x >时,()2f x =,解方程()2f x x x =⇒=,故关于x 的方程()f x x =的实根个数为3,故选C.考点:1.函数的零点;2.函数的图象;3.分段函数第Ⅱ卷(共90分)二、填空题:本大题共5小题,考生作答4小题,每小题5分,满分20分. (一)必做题(11~13题)11.已知双曲线221x y m-=的离心率是2,则m 的值是 .【答案】13. 【解析】试题分析:由题意知,双曲线的离心率2e ==,解得13m =.考点:双曲线的离心率12.如图3是一个空间几何体的三视图,则该几何体的体积为 .13.给出下列四个命题: ①函数()xx f x ee -=+有最小值是2;②函数()4sin 23f x x π⎛⎫=-⎪⎝⎭的图象关于点,06π⎛⎫⎪⎝⎭对称; ③若“p 且q ”为假命题,则p 、q 为假命题;④已知定义在R 上的可导函数()y f x =满足:对x R ∀∈,都有()()f x f x -=-成立, 若当0x >时,()0f x '>,则当0x <时,()0f x '>. 其中正确命题的序号是 . 【答案】①②④. 【解析】(二)选做题(14、15题,考生只能从中选做一题)14.(坐标系与参数方程选做题)在极坐标中,圆4cos ρθ=的圆心C 到直线sin 4πρθ⎛⎫+= ⎪⎝⎭的距离为 .15.如图4,平行四边形ABCD 中,:1:2AE EB =,AEF ∆的面积为21cm ,则平行四边形ABCD 的面积为 2cm .三、解答题 (本大题共6小题,共80分.解答应写出文字说明、证明过程或演算步骤.)16.设向量(6cos ,a x = ,()cos ,sin 2b x x = ,0,2x π⎡⎤∈⎢⎥⎣⎦.(1)若a =x 的值;(2)设函数()f x a b =⋅,求()f x 的最大、最小值.【答案】(1)3x π=;(2)函数()f x 的最小值为3-,最大值为6.【解析】试题分析:(1)先由平面向量模的计算公式由条件a = cos x 的值,结合角x 的取17.在一次联考后,某校对甲、乙两个文科班的数学考试成绩进行分析,规定:大于或等于120分为优秀,120分以下为非优秀,统计成绩后,得到如下的22列联表,且已知在甲、乙两个文科班全部110人中随机抽取人为优秀的概率为3 11.(1)请完成上面的列联表;(2)根据列联表的数据,能否有99%的把握认为成绩与班级有关系?(3)若按下面的方法从甲班优秀的学生中抽取一人:把甲班优秀的10名学生从2到11进行编号,先后两次抛掷一枚均匀的骰子,出现的点数之和为被抽取人的序号,试求抽到9号或10号的概率.【答案】(1)详见解析;(2)按99%的可靠性要求,能认为“成绩与班级有关系”;(3)抽到9或10号的概率为7 36.【解析】试题分析:(1)先根据题中条件确定乙班优秀的人数,然后根据甲乙两班的总人数将表中其它的数据补充上;(2)先提出假设“成绩与班级无关”,根据表中数据求出2K 的值,然后利用临界值表确定犯错误的概率,进而确定是否有99%的把握认为成绩与班级有关系;(3)先把事件空间中的基本事件全部列出,并计算基本事件的总数,然后将问题中涉及的事件所包含的基本事件找出来,利用古典概型的概率公式计算所求事件的概率. 试题解析:(1)列联表如下表所示:(2)假设成绩与班级无关,根据列联表中的数据,得到()22110103020507.487 6.63560503080K ⨯⨯-⨯=≈>⨯⨯⨯,因此按99%的可靠性要求,能认为“成绩与班级有关系”;(3)先后两次抛掷一枚均匀的骰子,出现的点数为(),x y ,所有的基本事件有:()1,1、()1,2、()1,3、()1,4、 、()6,6,共36个,设“抽到9或10号”为事件A ,事件A 包含的基本事件有:()3,6、()4,5、()5,4、()6,3、()4,6、()5,5、()6,4,共7个, 所以()736P A =,即抽到9或10号的概率为736. 考点:1.独立性检验;2.古典概型18.如图5,已知矩形ABCD 中,10AB =,6BC =,将矩形沿对角线BD 把ABD ∆折起,使A 移到1A 点,且1A 在平面BCD 上的射影O 恰好在CD 上.图5A 1ODCBA(1)求证:1BC A D ⊥;(2)求证:平面1A BC ⊥平面1A BD ; (3)求三棱锥1A BCD -的体积.19.在数列{}n a 中,11a =,23a =,()2130n n n a a ka k ++=-≠对任意n N *∈成立,令1n n n b a a +=-,且{}n b 是等比数列.(1)求实数k 的值;(2)求数列{}n a 的通项公式;(3)求和:12323n n S b b b nb =++++ .【答案】(1)2k =;(2)21n n a =-;(3)()1122n n S n +=-⨯+.【解析】试题分析:(1)先利用题中的定义,利用数列{}n b 的前三项成等比数列求出k 的值,然后试题解析:(1)11a = ,23a =,39a k =-,4276a k =-,12b ∴=,26b k =-,3185b k =-,数列{}n b 为等比数列,2213b b b ∴=⋅,即()()262185k k -=⨯-,解得2k =或0k =(舍),当2k =时,2132n n n a a a ++=-,即()2112n n n n a a a a +++-=-,12n nb b +∴=,所以2k =满足条件; (2)12b = ,数列{}n b 为等比数列,1222n n n b -∴=⨯=,1212a a ∴-=,2322a a -=, ,112n n n a a ---=,()()()2112132122222n n n n n a a a a a a a a --∴-=-+-++-=+++=- ,21n n a ∴=-;(3)1231222322n n S n =⨯+⨯+⨯++⨯ ,()23121222122n n n S n n +∴=⨯+⨯++-⨯+⨯ ,上式减下式得()123111121222222222212n n n n n n n S n n n ++++--=++++-⨯=-⨯=-⨯-- ,()1122n n S n +∴=-⨯+.考点:1.等比数列的定义;2.累加法求数列的通项公式;3.错位相减法20.已知椭圆()222210x y a b a b +=>>的离心率为e =,直线y x =+与以原点为圆心、椭圆C 的短半轴长为半径的圆O 相切. (1)求椭圆C 的方程;(2)如图6,A 、B 、D 是椭圆C 的顶点,P 是椭圆C 上除顶点外的任意点,直线DP 交x 轴于点N ,直线AD 交BP 于点M ,设BP 的斜率为k ,MN 的斜率为m ,求证:2m k-为定值.将①代入2214x y +=,解得222824,4141k k P k k ⎛⎫-- ⎪++⎝⎭, 又直线AD 的方程为112y x =+, ② 由()0,1D 、222824,4141k k P k k ⎛⎫-- ⎪++⎝⎭、(),0N x 三点共线可得42,021k N k -⎛⎫⎪-⎝⎭, 所以MN 的斜率为214k m +=,则211222k m k k +-=-=(定值). 考点:1.椭圆的方程;2.直线与椭圆的公共点的求解;3.直线的斜率;4.三点共线21.设a R ∈,函数()ln f x x ax =-.(1)若2a =,求曲线()y f x =在点()1,2P -处的切线方程; (2)求函数()f x 的单调区间;(3)当0a >时,求函数()f x 在[]1,2上的最小值.。

2014年高考广东卷数学(理)试题解析(精编版)(解析版)

2014年高考广东卷数学(理)试题解析(精编版)(解析版)

第Ⅰ卷(共40分)一、选择题:本大题共8个小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项 是符合题目要求的.1.已知集合{}1,0,1M =-,{}0,1,2N =,则MN =( )A.{}1,0,1-B.{}1,0,1,2-C.{}1,0,2-D.{}0,12.已知复数z 满足()3425i z +=,则z =( )A.34i -B.34i +C.34i --D.34i -+3.若变量x 、y 满足约束条件11y xx y y ≤⎧⎪+≤⎨⎪≤-⎩,且2z x y =+的最大值和最小值分别为M 和m ,则M m -=( )A.8B.7C.6D.5 【答案】C【解析】作出不等式组11y x x y y ≤⎧⎪+≤⎨⎪≤-⎩所表示的可行域如下图中的阴影部分所表示,4.若实数k 满足09k <<,则曲线221259x y k-=-与曲线221259x y k -=-的( ) A.离心率相等 B.虚半轴长相等 C.实半轴长相等 D.焦距相等【考点定位】本题考查双曲线的方程与基本几何性质,属于中等题. 5.已知向量()1,0,1a =-,则下列向量中与a 成60的是( )A.()1,1,0-B.()1,1,0-C.()0,1,1-D.()1,0,1-6.【题文】已知某地区中小学生人数和近视情况分别如图1和如图2所示,为了了解该地区中小学生的近视形成原因,用分层抽样的方法抽取2%的学生进行调查,则样本容量和抽取的高中生近视人数分别为( )A.200,20B.100,20C.200,10D.100,107.若空间中四条直线两两不同的直线1l 、2l 、3l 、4l ,满足12l l ⊥,23//l l ,34l l ⊥,则下列结论一定正确的是( )A.14l l ⊥B.14//l lC.1l 、4l 既不平行也不垂直D.1l 、4l 的位置关系不确定 【答案】D【解析】如下图所示,在正方体1111ABCD A B C D -中,取1AA 为2l ,1BB 为3l ,取AD 为1l ,BC 为4l ,14//l l ;取AD 为1l ,AB 为4l ,则14l l ⊥;取AD 为1l ,11A B 为4l ,则1l 与4l 异面,因此1l 、4l 的位置关系不确定,故选D.【考点定位】本题考查空间中直线的位置关系的判定,属于中等题. 8.设集合(){}{}12345,,,,1,0,1,1,2,3,4,5iA x x x x x x i =∈-=,那么集合A 中满足条件“1234513x x x x x ≤++++≤”的元素个数为( )A.60B.90C.120D.130第Ⅱ卷(共110分)二、填空题:本大题共7小题,考生作答6小题,每小题5分,满分30分.(一)必做题(9~13题)9.不等式521≥++-x x 的解集为 .10.曲线25+=-xey 在点()0,3处的切线方程为 .11.从0、1、2、3、4、5、6、7、8、9中任取七个不同的数,则这七个数的中位数是6的概率为 .12.在ABC ∆中,角A 、B 、C 所对应的边分别为a 、b 、c ,已知b B c C b 2cos cos =+,则=ba. 【答案】2. 【解析】cos cos 2b C c B b +=,由边角互化得sin cos sin cos 2sin B C C B B +=,即()sin 2sin B C B +=,即sin 2sin A B =,所以22aa b b=⇒=. 【考点定位】本题考查正弦定理中的边角互化思想的应用以及两角和的三角函数,属于中等题.13.若等比数列{}n a 的各项均为正数,且512911102e a a a a =+,则1220ln ln ln a a a +++= .(二)选做题(14~15题,考生从中选做一题)14.(坐标系与参数方程选做题)在极坐标系中,曲线1C 和2C 的方程分别为2sin cos ρθθ=和sin 1ρθ=,以极点为平面直角坐标系的原点,极轴为x 轴正半轴,建立平面直角坐标系,则曲线1C 和2C 交点的直角坐标为_________.15.(几何证明选讲选做题)如图3,在平行四边形ABCD 中,点E 在AB 上且AE EB 2=,AC 与DE 交于点F ,则=∆∆的面积的面积AEF CDF .【答案】9三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤. 16.(本小题满分12分)已知函数()sin 4f x A x π⎛⎫=+ ⎪⎝⎭,x R ∈,且53122f π⎛⎫=⎪⎝⎭. (1)求A 的值; (2)若()()32f f θθ+-=,0,2πθ⎛⎫∈ ⎪⎝⎭,求34f πθ⎛⎫- ⎪⎝⎭.求值问题,属于中等题.17.(本小题满分13分)随机观测生产某种零件的某工厂25名工人的日加工零件数(单位:件),获得数据如下:30、42、41、36、44、40、37、37、25、45、29、43、31、36、49、34、33、43、38、42、32、34、46、39、36,根据上述数据得到样本的频率分布表如下:分组频数频率[]25,30 3 0.12 (]30,35 5 0.20 (]35,40 80.32(]40,45 1n 1f (]45,502n2f(1)确定样本频率分布表中1n 、2n 、1f 和2f 的值; (2)根据上述频率分布表,画出样本频率分布直方图;(3)根据样本频率分布直方图,求在该厂任取4人,至少有1人的日加工零件数落在区间(]30,35的概率.所以4人中,至少有1人的日加工零件数落在区间(]30,50的概率约为0.5904.【考点定位】本题考查频率分学科网布直方图以及独立性重复试验,考查频率分布直方图的绘制与应用,以及解决相关事件概率的计算,属于中等题.18.(本小题满分13分)如图4,四边形ABCD 为正方形,PD ⊥平面ABCD ,30DPC ∠=,AF PC ⊥于点F ,//FE CD ,交PD 于点E . (1)证明:CF ADF ⊥平面; (2)求二面角D AF E --的余弦值.19.(本小题满分14分)设数列{}n a 的前n 项和为n S ,满足21234n n S na n n +=--,n N *∈,且315S =.(1)求1a 、2a 、3a 的值; (2)求数列{}n a 的通项公式.20.(本小题满分14分)已知椭圆()2222:10x y C a b a b+=>>的一个焦点为()5,0,离心率为5. (1)求椭圆C 的标准方程; (2)若动点()00,P x y 为椭圆外一点,且点P 到椭圆C 的两条切线相互垂直,求点P 的轨迹方程.21.(本小题满分14分)设函数()()()2222223f x x x k x x k =+++++-,其中2k <-.(1)求函数()f x 的定义域D (用区间表示);(2)讨论函数()f x 在D 上的单调性;(3)若6k <-,求D 上满足条件()()1f x f >的x 的集合(用区间表示).。

[套卷]广东省海珠区2014届高三上学期综合测试(二)理综试题(word版)

[套卷]广东省海珠区2014届高三上学期综合测试(二)理综试题(word版)

广东省海珠区2014届高三上学期综合测试(二)理综试题(word 版)本试卷分第一部分(选择题)和第二部分(非选择题)两部分;第一部分1-6页,第二部分6-12页,满分300分。

考试时间150分钟。

注意事项:1.答卷前,考生务必用黑色字迹的钢笔或签字笔将自己的学校、班级、姓名、考场试室号、座位号填写在答题卡上;填写准考证号,并用2B 铅笔把对应号码的标号涂黑。

2.选择题每小题选出答案后,用2B 铅笔把答题卡对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案;不能答在试卷上。

3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内的相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液。

不按要求作答的答案无效。

4.考生必须保持答题卡的整洁,考试结束,将答题卡交回。

第一部分 选择题(共118分)一、单项选择题:本大题共16小题,每小题4分,共64分。

在每小题给出的四个选项中,只有一个选项符合题目要求,选对的得4分,选错或不答的得0分。

1.右下图是细胞核的结构模式图。

下列关于各结构及功能的叙述,正确的是 A .①属于生物膜系统,因其上有④,所以能让各种分子进出 B .②是遗传物质的载体,能被酸性染料染色 C .③位于细胞核的中央,是细胞核功能的控制中心 D .在有丝分裂的前期,①②③都会发生变化 2.通过下列育种方法产生的后代,其染色体数一定发生变化的是 A .单倍体育种 B .植物体细胞杂交育种C .杂交育种D .转基因育种3.右图为人类某种单基因遗传病的系谱图,Ⅱ4为患者。

排除基因突变,下列推断不合理... 的是A .该病属于隐性遗传病,但致病基因不一定位于常染色体上B .若Ⅰ2携带致病基因,则Ⅰ1和Ⅰ2再生一个患病男孩的概率为1/8C .若Ⅰ2不携带致病基因,则致病基因位于X 染色体D .若Ⅰ2不携带致病基因,则Ⅱ3不可能是该病携带者4.下列有关动物丰富度的研究方法,正确的是 A .调查土壤动物丰富度:样方法和标志重捕法 B .观察肉眼难识别的小动物:高倍显微镜观察 C .统计土壤动物丰富度:记名计算法和目测估计法 D .调查水中小动物类群丰富度:生态缸进行培养 5.如右图所示,在适宜温度下某农作物CO 2吸收量 随环境CO 2浓度变化的曲线。

广东省广州市海珠区2014届高三入学摸底考试数学理试题 含答案

广东省广州市海珠区2014届高三入学摸底考试数学理试题 含答案

绝密★启用前2013学年高三调研测试(一)数学(理科) 2013.8本试卷共6页,21小题,满分150分。

考试用时120分钟。

注意事项:1.答卷前,考生务必用黑色字迹的钢笔或签字笔将自己的姓名和考生号、试室号、座位号填写在答题卡上。

2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上。

3.非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液。

不按以上要求作答的答案无效。

4.考生必须保持答题卡的整洁。

考试结束后,将答题卡一并交回。

一、选择题:本大题共8小题,每小题5分,满分40分.在每小题给出的四个选项中,只有一项是符合题目要求的。

1.复数z 满足()()21i 2z --=(i 为虚数单位),则z 的共轭复数z 为A.1i -B.1+ iC.3i -D.3+ i2.已知集合,A B 均为全集{}12U =,,3,4的子集,且()C UA B ⋃={}4,{}1B =,2,则 C U A B ⋂=A.{}3B.{}4C.{}34,D.∅3. 已知等差数列{}na 满足244a a +=,3510a a +=,则它的前10项和10S =A.85B.135C.95D.234.对于平面α、β、γ和直线a 、b 、m 、n ,下列命题中真命题是A.若,,,,a m a n m n αα⊥⊥⊂⊂,则a α⊥B.若//,,,a b αβαγβγ==则//a bC.若//,a b b α⊂,则//a αD.若,,//,//a b a b ββαα⊂⊂,则//βα5.某程序框图如图1所示,若该程序运行后输出的值是95,则A .4a =B.5a =C. 6a =D.7a =6.将函数()sin(2)6f x x π=+的图像向右平移6π个单位,那么所得的图像所对应的函数解 析式是.A sin 2y x =.B cos 2y x =.C 2sin(2)3y x π=+.D sin(2)6y x π=-7.给出下列四个结论:ks5u①若命题2000:R,10p xx x ∃∈++<,则2:R,10p x x x ⌝∀∈++≥; ② “()()340x x --=”是“30x -=”的充分而不必要条件; ③命题“若0m >,则方程20xx m +-=有实数根"的逆否命题为:“若方程20xx m +-=没有实数根,则m ≤0”;④若0,0,4a b a b >>+=,则b a 11+的最小值为1. 其中正确结论的个数为A .1B.2C. 3D.48. 已知函数)(x f 是定义在(,)-∞+∞上的奇函数,若对于任意的实数0≥x ,都有)()2(x f x f =+,且当[)2,0∈x 时,)1(log )(2+=x x f ,则)2012()2011(f f +-的值为A .1- B. 2- C. 2D.1二、填空题:本大题共7小题,考生作答6小题,每小题5分,满分30分。

【VIP专享】2014年高考理科数学(广东卷)试题及详细答案

【VIP专享】2014年高考理科数学(广东卷)试题及详细答案
2014 年普通高等学校招生全国统一考试(广东卷)
数 学(理科)
一、选择题:本大题共 8 小题,每小题 5 分,满分 40 分,在每小题给出的四个选项中,只有一项是符合 题目要求的.
1.已知集合 M {1, 0,1}, N {0,1, 2},则 M N
A. {0,1}
2.已知复数 z 满足 (3 4i)z 25 ,则 z
A.焦距相等 B.实半轴长相等 C.虚半轴长相等
5.已知向量 a = (1, 0, 1) ,则下列向量中与 a 成 60 夹角的是
C.7
25 9 k
A. (1,1, 0) B. (1, 1, 0) C. (0, 1,1) D. (1, 0,1)
6.已知某地区中小学生人数和近视情况分别如图 1 和图 2 所示. 为了解该地区中小学生的近视形成原因,
A. 3 4i
B.{1, 0, 2}
B. 3 4i
C.{1, 0,1, 2}
C. 3 4i
y ≤ x 3.若变量 x, y 满足约束条件 x y ≤1,且 z 2x y 的最大值和最小值分别为 m 和 n ,则 m n
y ≥ 1
A.5
B.6
4.若实数 k 满足 0 k 9 ,则曲线 x2 y2 1与曲线 x2 y2 1的
近视率/ %
D.8
25 k 9
D. 3 4i
小学 初中 高中
D.{1, 0,1}
D.离心率相等
图2
D.100,10
年级
D. l1 与 l4 的位置关系不确定
二、填空题:本大题共 7 小题,考生作答 6 小题,每小题 5 分,满分 30 分.
(一)必做题(9 ~ 13 题)
9.不等式 x 1 x 2 ≥ 5 的解集为

2014年广东高考数学(理科)试题及答案

2014年广东高考数学(理科)试题及答案

绝密★启用前试卷类型:A2014年普通高等学校招生全国统一考试(广东卷)数学 (理科)本试卷共4页,21小题,满分150分。

考试用时120分钟。

注意事项:1.答卷前,…。

一、选择题:….1.已知集合M ={− 1,0,1},N ={0,1,2},则M ∪N =( ) A .{− 1,0,1} B .{− 1,0,1,2} C .{− 1,0,2}D .{0,1}【B 】2.已知i 为虚数单位,复数z 满足(3 + 4i )z = 25,则z =( ) A .3 − 4i B .3 + 4i C .− 3 − 4i D .− 3 + 4i【A 】3.若变量x ,y 满足约束条件⎩⎪⎨⎪⎧y ≤x x + y ≤1y ≥− 1且z = 2x + y 的最大值和最小值分别为M 和m ,则M − m =( ) A .8 B .7 C .6 D .5【C 】4.若实数k 满足0<k <9,则曲线x 225 − y 29 − k = 1与曲线x 225 − k − y 29 = 1的( )A .离心率相等B .虚半轴长相等C .实半轴长相等D .焦距相等【D 】5.已知向量a =(1,0,− 1),则下列向量中与a 成60°夹角的是( ) A .(− 1,1,0) B .(1,− 1,0)C .(0,− 1,1)D .(− 1,0,1)【B 】6.已知某地区中小学生人数和近视情况分别如图1和图2所示,为了解该地区中小学生的近视形成原因,用分层抽样的方法抽取2%的学生进行调查,则样本容量和抽取的高中生近视人数分别为( )A .200,20B .100,20C .200,10D .100,10【A 】7.若空间中四条两两不同的直线l 1,l 2,l 3,l 4,满足l 1⊥l 2,l 2⊥l 3,l 3⊥l 4,则下列结论一定正确的是( ) A .l 1⊥l 4B .l 1∥l 4C .l 1,l 4既不垂直也不平行D .l 1,l 4的位置关系不确定【D 】8.设集合A ={(x 1,x 2,x 3,x 4,x 5)|x i ∈{− 1,0,1},i = 1,2,3,4,5},那么集合A 中满足条件“1≤|x 1|+|x 2|+|x 3|+|x 4|+|x 5|≤3”的元素个数为( ) A .60B .90C .120D .130【D 】二、填空题:….(一) 必做题(9~13题)9.已知x ∈R ,则不等式|x − 1|+|x + 2|≥5的解集为____________________. 【(− ∞,− 3]∪[2,+ ∞)(也可以写成{x ∈R |x ≤− 3,或x ≥2})】10.曲线y = e − 5x + 2在点(0,3)处的切线方程为_____________________. 【5x + y − 3 = 0】小学生 3500名高中生 2000名初中生 4500名图1 图2级53111.从0,1,2,3,4,5,6,7,8,9中任取七个不同的数,则这七个数的中位数是6的概率为_____________________.【1 6】12.在△ABC中,角A,B,C所对应的边分别为a,b,c,已知b cos C + c cos B = 2b,则ab= ______________________.【2】13.若等比数列{a n}的各项均为正数,且a10a11 + a9a12 = 2e5,则ln a1 + ln a2 + …+ ln a20 = ______________________.【50】(二) 选做题(14~15题,考生只能从中选做一题)14.(坐标系与参数方程选做题)在极坐标系中,曲线C1和C2的方程分别为ρ sin2θ= cos θ和ρ sin θ = 1.以极点为平面直角坐标系的原点,极轴为x轴的正半轴,建立平面直角坐标系,则曲线C1和C2交点的直角坐标为______________.【(1,1)】15.(几何证明选讲选做题)如图3,在平行四边形ABCD中,点E在AB上且EB =2AE,AC与DE交于点F,则△CDF的面积△AEF的面积= ______________.【9】三、解答题:….A BCDEF图316.(本小题满分12分)已知函数f(x)= A sin(x +π4),x∈R,且f(5π12)=32.(1)求A的值;(2)若f(θ)+ f(−θ)=32,θ∈(0,π2),求f(3π4−θ).【(1)3;(2)30 4.】解:(1)f(5π12)= A sin(5π12+π4)= A sin2π3= A sin(π−π3)= A sinπ3=32A =32,解得A =3.(2)f(θ)+ f(−θ)=3sin(θ +π4)+3sin(−θ +π4)=3sin(θ +π4)+3cos(θ +π4)=6[sin(θ +π4)·22+3cos(θ +π4)·22]=6sin[(θ +π4)+π4]=6sin(θ +π2)=6cos θ =32,解得cos θ =6 4.又θ∈(0,π2),则sin θ = 1 − cos 2 θ=104.故f(3π4−θ)=3sin(π−θ)=3sin θ =304.17.(本小题满分13分)随机观测生产某种零件的某工厂25名工人的日加工零件数(单位:件),获得数据如下:30,42,41,36,44,40,37,37,25,45,29,43,31,36,49,34,33,43,38,42,32,34,46,39,36.根据上述数据得到样本的频率分布表如下:分组频数频率[25,30] 3 0. 12(30,35] 5 0. 20(35,40]8 0. 32(40,45]n1f1(45,50]n2f2(1)确定样本频率分布表中n1,n2,f1和f2的值;(2)根据上述频率分布表,画出样本频率分布直方图;(3)根据样本频率分布直方图,求在该厂(工人人数较多)任取4人,至少有1人的日加工零件数落在区间(30,35]的概率.【(1)n1 = 7,n2 = 2,f1 = 0. 28,f2 = 0. 08;(2)如图所示;(3)0. 5904.】件数解:(1)依题意n1 = 7,n2 = 2,f1 = n1÷25 = 0. 28,f2 = n2÷25 = 0. 08.(2)绘制的频率分布直方图如图所示;(3)设在该厂任取4人中日加工零件数落在区间(30,35]有ξ人.则ξ服从二项分布B,且n = 4,p = 0. 2,即ξ~B(4,0. 2).故所求概率为P(ξ≥1)= 1 −P(ξ = 0)= 1 − C400. 20(1 − 0. 2)4= 1 − 0. 4096 = 0. 5904.18.(本小题满分13分)如图4,四边形ABCD为正方形,PD⊥平面ABCD,∠DPC = 30°,AF⊥PC于点F,FE∥CD,交PD于点E.(1)证明:CF⊥平面ADF;(2)求二面角D−AF−E的余弦值.【(1)…;(2)25719.】 法二:(向量法,坐标系)解证:依题意AD ⊥CD ,又PD ⊥平面ABCD ,则PD ⊥AD ,PD ⊥CD ,则以DP →,DC →,DA →分别为x ,y ,z 轴建立空间直角坐标系,如图所示,设CD = 2.(1)依题意 PC = 4,PD = 23,AD = AB = BC = 2.DA →=(0,0,2),PC → =(0,2,0)−(23,0,0)=(− 23,2,0),则 PC →·DA → = … = 0, 即PC →⊥DA →,故PC ⊥DA .又PC ⊥AF ,故PC ⊥平面ADF . (2)设 PF → = t PC →,则 PF → = t PC →= t [(0,2,0)−(23,0,0)]=(− 23t ,2t ,0),AF → = AP → + PF →=[(23,0,0)−(0,0,2)]+(− 23t ,2t ,0) =(23(1 − t ),2t ,− 2).又AF ⊥PC ,则 AF →·PC →=(23(1 − t ),2t ,− 2)·(− 23,2,0)= … = 0, 即4t − 3 = 0,解得t = 34,AF → =(32,32,− 2).由(1)知 PC →=(− 23,2,0)是平面ADF 的一个法向量. 设m =(a ,b ,c )是平面AEF 的一个法向量,则m ⊥平面AEF , 即m ⊥AF →,m ⊥EF →,又EF ∥DC ,则m ⊥DC →, 故 ⎩⎨⎧m ·AF → = 3a 2 + 3b 2 − 2c = 0m ·DC →= 2b = 0,令c =3 得m =(4,0,3).则cos <m ,PC →> = … = − 83419= − 25719,显然所求二面角为锐角,故cos ∠D − AF − E =|cos <m ,PC →>|= 25719.19.(本小题满分14分)设数列{a n }的前n 项和为S n ,满足S n = 2na n + 1 − 3n 2 − 4n ,n ∈N *,且S 3 = 15. (1)求a 1,a 2,a 3的值; (2)求数列{a n }的通项公式.【(1)a 1 = 3,a 2 = 5,a 3 = 7;(2)a n = 2n + 1.】解:(1)令n = 1,2得a 1 = S 1 = 2a 2 − 3 − 4,a 1 + a 2 = S 2 = 4a 3 − 12 − 8, 又a 1 + a 2 + a 3 = S 3 = 15,联立求解得a 1 = 3,a 2 = 5,a 3 = 7.(2)法一:(数学归纳法)由(1)猜想通项公式a n = 2n + 1,然后用数学归纳法证明.….20.(本小题满分14分)已知椭圆C :x 2a 2 + y 2b 2 = 1(a >b >0)的一个焦点为(5,0),离心率为 53. (1)求椭圆C 的标准方程;(2)若动点P (x 0,y 0)为椭圆C 外一点,且点P 到椭圆C 的两条切线相互垂直,求点P 的轨迹方程.【(1)x 29 + y 24= 1;(2)x 2 + y 2 = 13.】解:(1)依题意 ⎩⎪⎨⎪⎧c = 5e 2 = ⎝ ⎛⎭⎪⎫c a 2= ⎝ ⎛⎭⎪⎫532= 59a 2 = b 2 + c 2,解得 ⎩⎪⎨⎪⎧a 2 = 9b 2 = 4c 2 = 5,故C 方程为x 29 + y 24 = 1.(2)设过点P 且与C 相切的两直线为l 1和l 2. ① 若l 1和l 2中有一条斜率不存在(垂直于x 轴),则依题意另一条斜率为0(平行于x 轴),显然切点分别为椭圆长轴和短轴顶点, 此时点P 坐标为(±3,±2).② 若l 1和l 2的斜率均存在,设l 1和l 2的斜率分别为k 1和k 2,过点P 与C 相切的直线l 斜率为k ,则l :y − y 0 = k (x − x 0),即y = k (x − x 0)+ y 0, 代入C 得4x 2 + 9[k (x − x 0)+ y 0]2 = 36,即(9k 2 + 4)x 2 + 18(y 0 − kx 0)kx + 9[(y 0 − kx 0)2 − 4]= 0,由l 与C 相切知Δ = 182(y 0 − kx 0)2 − 4(9k 2 + 4)9[(y 0 − kx 0)2 − 4]= 0, 对k 整理得(x 02− 9)k 2 − 2x 0y 0k +(y 02− 4)= 0(x 02≠±3)…(❀), 依题意方程(❀)的两根即为k 1和k 2, 由一元二次方程根与系数关系得k 1·k 2 = y 02− 4x 02 − 9,又l 1⊥l 2,则k 1·k 2 = − 1,即 y 02− 4x 02 − 9= − 1,整理得x 02 + y 02 = 13(x 02≠±3).综合①②并检验得所求点P 的轨迹方程为x 2 + y 2 = 13.21.(本小题满分14分)设函数f(x)=1(x2 + 2x + k)2 + 2(x2 + 2x + k)− 3,其中k<− 2.(1)求函数f(x)的定义域D(用区间表示);(2)讨论函数f(x)在D上的单调性;(3)若k<− 6,求D上满足条件f(x)>f(1)的x的集合(用区间表示).【(1)(−∞,− 1 − 2 −k)∪(− 1 −− 2 −k,− 1 +− 2 −k)∪(− 1 + 2 −k,+ ∞);(2)f(x)在(−∞,− 1 − 2 −k)和(− 1,− 1 +− 2 −k)上单调递增,在(− 1 −− 2 −k,− 1)和(− 1 + 2 −k,+ ∞)上单调递减;(3)(− 1 −− 2k− 4,− 1 − 2 −k)∪(− 1 −− 2 −k,− 3)∪(1,− 1 +− 2 −k)∪(− 1 + 2 −k,− 1 +− 2k− 4).】解:(1)依题意得(x2 + 2x + k)2 + 2(x2 + 2x + k)− 3>0,即[(x2 + 2x + k)− 1][(x2 + 2x + k)+ 3]>0,则x2 + 2x + k<− 3,或x2 + 2x + k>1,即(x + 1)2<− 2 −k,或(x + 1)2>2 −k,则|x + 1|<− 2 −k,或|x + 1|> 2 −k,故− 1 −− 2 −k<x<− 1 +− 2 −k,或x<− 1 − 2 −k,或x>− 1 + 2 −k,又2 −k>− 2 −k,则 2 −k>− 2 −k,即− 1 − 2 −k<− 1 −− 2 −k<− 1 +− 2 −k<− 1 + 2 −k,故所求定义域D为(−∞,− 1 − 2 −k)∪(− 1 −− 2 −k,− 1 +− 2 −k)∪(− 1 + 2 −k,+ ∞).(2)法一:(导数法)依题意f'(x)= −2(x2 + 2x + k + 1)(x + 1) [(x2 + 2x + k)2 + 2(x2 + 2x + k)− 3]3令f '(x)>0得(x2 + 2x + k + 1)(x + 1)<0,即[(x + 1)2−(−k)2](x + 1)<0,则(x + 1 +−k)(x + 1 −−k)(x + 1)<0,由数轴穿根法如图得x <− 1 − − k ,或− 1<x <− 1 + − k ,结合定义域得f (x )在(− ∞,− 1 − 2 − k )和(− 1,− 1 + − 2 − k )上单调递增, 在(− 1 − − 2 − k ,− 1)和(− 1 + 2 − k ,+ ∞)上单调递减.法二:(复合函数单调性:同增异减)设v (t )= t 2 + 2t − 3,t (x )= x 2 + 2x + k ,则y (v )= 1v,显然y (v )是减函数. v (t )和t (x )的的对称轴分别为t = − 1和x = − 1,令t >−1得x 2 + 2x + k >− 1,即x 2 + 2x + 1>− k ,则(x + 1)2>− k , 即|x + 1|>− k ,解得x <− 1 − − k ,或x >− 1 + − k ,如图,根据复合函数的单调性复合法则及定义域得f (x )在(− ∞,− 1 − 2 − k )和(− 1,− 1 + − 2 − k )上单调递增, 在(− 1 − − 2 − k ,− 1)和(− 1 + 2 − k ,+ ∞)上单调递减. (3)令f (x ) = f (1)得1(x 2 + 2x + k )2 + 2(x 2 + 2x + k )− 3 =1(3 + k )2+ 2(3 + k )− 3则(x 2 + 2x + k )2 + 2(x 2 + 2x + k )− 3 =(3 + k )2 + 2(3 + k )− 3 整理得[(x + 1)2 −(− 2k − 4)](x + 2x − 3)= 0,即[x + 1 + − 2k − 4][x + 1 − − 2k − 4](x + 3)(x − 1)= 0解得x = − 1 + − 2k − 4,或x = − 1 − − 2k − 4,或x = − 3,或x = 1.tv (t ) ↗ ↘ ↘ ↗ v (x ) ↘ ↗ ↘ ↗ y (v ) ↘ ↘ ↘ ↘ y (x ) ↗↘ ↗ ↘由k<− 6知−k>6,则− 2 −k>2, 2 −k<− 2k− 4,故1∈(− 1,− 1 +− 2 −k),− 3∈(− 1 −− 2 −k,− 1),− 1 −− 2k− 4<− 1 − 2 −k,− 1 +− 2k− 4>− 1 + 2 −k,结合定义域及单调性知f(x)>f(1)的解集为(− 1 −− 2k− 4,− 1 − 2 −k)∪(− 1 −− 2 −k,− 3)∪(1,− 1 +− 2 −k)∪(− 1 + 2 −k,− 1 +− 2k− 4).。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

世纪金榜 圆您梦想 www.jb1000.com

第1页(共19页) 山东世纪金榜科教文化股份有限公司 广州市海珠区2014届高三上学期综合测试二

理科数学 第Ⅰ卷(共40分) 一、选择题:本大题共8个小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项 是符合题目要求的. 1..若复数12bii是纯虚数(是虚数单位,b是实数),则b ( ) A.2 B.12 C.12 D.2

2.在各项都为正数的等比数列na中,13a,前三项的和为21,则345aaa ( ) A.33 B.72 C.84 D.189 【答案】C 【解析】 试题分析:设等比数列na的公比为q,则0q,由于13a,212333321aaaqq,化简得260qq,解得2q,23423434533332323284aaaqqq,故选C. 考点:等比数列的性质

3.阅读如图程序框图1,若输入的100N,则输出的结果是 ( ) A.50 B.1012 C.51 D.1032 世纪金榜 圆您梦想 www.jb1000.com

第2页(共19页) 山东世纪金榜科教文化股份有限公司 4.在ABC中,已知D是AB边上的一点,若2ADDB,13CDCACB,则 ( ) A.23 B.13 C.13 D.23 【答案】A 【解析】 试题分析:2ADDB,即2CDCACBCD,解得1233CDCACB,23,故选A. 考点:平面向量的线性表示

5.“1a”是“直线260axy与直线4390xay互相垂直”的 ( ) A.充分不必要条件 B.必要不充分条件 世纪金榜 圆您梦想 www.jb1000.com

第3页(共19页) 山东世纪金榜科教文化股份有限公司 C.充要条件 D.既不充分也不必要条件

6.某校300名高三学生期中考试数学成绩的频率分布直方图如图2所示,由图中数据估计此次数学成绩平均分为 ( ) A.69 B.71 C.73 D.75

7.已知x、y满足2yxxyxa,且2zxy的最大值是最小值的4倍,则a的值是 ( ) 世纪金榜 圆您梦想 www.jb1000.com

第4页(共19页) 山东世纪金榜科教文化股份有限公司 A.34 B.14 C.211 D.4

【答案】B 【解析】

试题分析:作出不等式组2yxxyxa所表示的可行域如下图所示,联立xayx得点,Aaa,

B1,1()Aa,a()

z=2x+y

Oy

xx+y=2y=x

x=a

8.若a、b是方程lg4xx,104xx的解,函数22,02,0xabxxfxx,则关于x的方程fxx的解的个数是 ( ) A. B.2 C.3 D.4 世纪金榜 圆您梦想 www.jb1000.com

第5页(共19页) 山东世纪金榜科教文化股份有限公司 2320xx,

Oy

xy=x

hx()=4-x

gx()=10x

fx()=lgxCBb,10b

Aa,lga()

解得2x或1x;当0x时,2fx,解方程2fxxx,故关于x的方程fxx的实根个数为3,故选C. 考点:1.函数的零点;2.函数的图象;3.分段函数

第Ⅱ卷(共110分) 二、填空题:本大题共7小题,考生作答6小题,每小题5分,满分30分. (一)必做题(9~13题) 9.如图3是一个空间几何体的三视图,则该几何体的体积为 . 世纪金榜 圆您梦想 www.jb1000.com

第6页(共19页) 山东世纪金榜科教文化股份有限公司 11.在ABC中,已知a、b、c分别为A、B、C所对的边,S为ABC的面积,若向量2224,pabc,1,qS满足//pq,则C .

【答案】45. 世纪金榜 圆您梦想 www.jb1000.com

第7页(共19页) 山东世纪金榜科教文化股份有限公司 12.在市数学竞赛中,A、B、C三间学校分别有名、2名、3名同学获一等,将这六名同学排成一排合影,要求同学校的同学相邻,那么不同的排法共有 种. 【答案】72. 【解析】 试题分析:利用捆绑法,先将各学校的学生捆绑在一起,然后再将各学校的学生的整体进行排序,但是需要考虑各学生之间的顺序,故共有32332372AAA种排法. 考点:1.捆绑法; 2.排列组合

13.给出下列四个命题: ①函数xxfxee有最小值是2;

②函数4sin23fxx的图象关于点,06对称; ③若“p且q”为假命题,则p、q为假命题; ④已知定义在R上的可导函数yfx满足:对xR,都有fxfx成立, 若当0x时,0fx,则当0x时,0fx. 其中正确命题的序号是 . 【答案】①②④. 【解析】 世纪金榜 圆您梦想 www.jb1000.com

第8页(共19页) 山东世纪金榜科教文化股份有限公司 (二)选做题(14、15题,考生只能从中选做一题) 14.(坐标系与参数方程选做题)在极坐标中,圆4cos的圆心C到直线sin224的距离为 .

15.(几何证明选讲选做题)如图4,平行四边形ABCD中,:1:2AEEB,AEF的面积为21cm,则

平行四边形ABCD的面积为 2cm. 世纪金榜 圆您梦想 www.jb1000.com

第9页(共19页) 山东世纪金榜科教文化股份有限公司 三、解答题 (本大题共6小题,共80分.解答应写出文字说明、证明过程或演算步骤.) 16.设向量6cos,3ax,cos,sin2bxx,0,2x. (1)若23a,求x的值; (2)设函数fxab,求fx的最大、最小值. 世纪金榜 圆您梦想 www.jb1000.com

第10页(共19页) 山东世纪金榜科教文化股份有限公司 17.在一次联考后,某校对甲、乙两个文科班的数学考试成绩进行分析,规定:大于或等于120分为优秀,120分以下为非优秀,统计成绩后,得到如下的22列联表,且已知在甲、乙两个文科班全部110人中随

机抽取人为优秀的概率为311. 优秀 非优秀 合计 甲班 10 乙班 30 合计 110 世纪金榜 圆您梦想 www.jb1000.com

第11页(共19页) 山东世纪金榜科教文化股份有限公司 (1)请完成上面的列联表;

(2)根据列联表的数据,能否有99%的把握认为成绩与班级有关系? (3)在甲、乙两个理科班优秀的学生中随机抽取两名学生,用表示抽得甲班的学生人数,求的分布列. 【答案】(1)详见解析;(2)按99%的可靠性要求,能认为“成绩与班级有关系”; (3)抽到9或10号的概率为736. 【解析】

的概率,并列出相应的分布列. 试题解析:(1)列联表如下表所示: 优秀 非优秀 合计 甲班 10 50 60 乙班 20 30 50 合计 30 80 110 (2)假设成绩与班级无关,根据列联表中的数据,得到 22110103020507.4876.63560503080K

,

因此按99%的可靠性要求,能认为“成绩与班级有关系”; (3)由(1)知,甲、乙两个理科班优秀的学生人数分别为10、20, 依题意得,的可能取值为0、、2,

22023038087CPC,11201023040187CCPC,210230

9287CPC,

所以的分布列为:  0 2

P 3887 4087 987 世纪金榜 圆您梦想 www.jb1000.com

第12页(共19页) 山东世纪金榜科教文化股份有限公司 考点:1.独立性检验;2.古典概型;3.离散型随机变量的分布列

18.如图5,已知矩形ABCD中,10AB,6BC,将矩形沿对角线BD把ABD折起,使A移到1A点,且1A在平面BCD上的射影O恰好在CD上.

图5A1

ODC

BA (1)求证:1BCAD; (2)求证:平面1ABC平面1ABD; (3)求二面角1ABDC的余弦值.

又BC平面BCD,1BCAO,

又BCCO,1AOCOO,BC平面1ACD,

相关文档
最新文档