电涡流传感器(位移)
电涡流传感器位移实验报告总结

电涡流传感器位移实验报告总结
电涡流传感器是一种非接触式测量仪器,可以用于测量金属表面的位移、振动和形状等参数。
本次实验旨在通过使用电涡流传感器来测量铝合金试样不同位置处的位移,并分析其测量结果。
实验步骤如下:首先将铝合金试样放置在试验台上,然后将电涡流传感器放置在试样表面,通过旋钮调节传感器与试样之间的距离,并选择合适的频率进行测量。
在测量过程中,需要将试样固定在试验台上,避免试样在测量过程中移动。
经过多次实验,我们得到了不同位置处的位移数据,并进行了分析。
实验结果表明,铝合金试样的位移与传感器与试样的距离、频率以及试样表面的形状等因素密切相关。
当传感器与试样的距离较小时,测量结果较为准确;而当频率较高时,测量结果的精度也会得到提高。
此外,试样表面的形状和光洁度也会对测量结果产生影响,因此在测量过程中需要注意保持试样表面的平整和清洁。
通过本次实验,我们不仅掌握了电涡流传感器的测量原理和使用方法,还深入了解了电涡流传感器在位移测量方面的应用。
同时,我们也发现了实验中存在的一些问题,例如在调节传感器与试样之间的距离时需要非常仔细,否则会影响测量结果的准确性。
因此,在使用电涡流传感器进行位移测量时,需要认真对待每一个细节,以确保测量结果的准确性和可靠性。
本次实验为我们提供了一次宝贵的机会,让我们更深入地了解了电涡流传感器的应用和工作原理,同时也让我们体验到了科学实验的乐趣和挑战。
我们相信,在今后的学习和工作中,这一经验将对我们产生重要的启示和帮助。
电涡流位移传感器检定规程

电涡流位移传感器检定规程
电涡流位移传感器的检定规程通常由国家或地区的质量技术监督部门制
定和发布,用于规范电涡流位移传感器的检定流程和方法。
例如,中国国家质量监督检验检疫总局发布的《电子式涡流位移计》(JJG 752-2005)就规定了电子式涡流位移计的检定项目、检定方法和检定结果的处理等内容。
一般来说,电涡流位移传感器的检定规程主要包括以下几个方面:
1. 检定环境:包括温度、湿度、电压、电源等环境条件的要求。
2. 检定设备:包括标准器、校准设备、测量设备等的要求。
3. 检定方法:包括测量范围、分辨力、零点稳定性、线性、重复性、稳定性等检定项目的方法。
4. 检定结果的处理:包括数据处理、误差校正、数据记录、数据报告等内容。
5. 检定周期:包括电涡流位移传感器的首次检定、后续检定和周期检定的时间要求。
以上就是电涡流位移传感器检定规程的一些基本内容,具体的规程可能会根据传感器类型、测量范围、精度等级等因素有所不同。
电涡流传感器位移特性实验报告

电涡流传感器位移特性实验报告
一、实验目的
通过实验研究电涡流传感器的位移特性,了解电涡流传感器的工作原理和应用范围。
二、实验原理
三、实验器材
1.电涡流传感器
2.信号发生器
3.示波器
4.金属样品
四、实验步骤
1.将电涡流传感器固定在实验台上,将金属样品放在传感器的检测区域内。
2.连接信号发生器和示波器,设置合适的频率和电压。
3.逐渐增加金属样品的位移,观察信号发生器输出的频率和示波器显示的波形变化。
4.记录金属样品位移和传感器输出信号的对应关系。
五、实验结果
在实验中,我们逐渐增加金属样品的位移,观察信号发生器输出的频
率和示波器显示的波形变化。
根据实验结果,可以得到金属样品的位移和
传感器输出信号的对应关系。
六、实验讨论
通过实验,我们发现位移增加时,传感器输出信号的频率也相应增加。
这是因为金属样品位移增加时,电涡流的密度和分布发生变化,导致传感
器测量到的电磁感应信号频率发生变化。
七、实验结论
通过本次实验,我们了解了电涡流传感器的位移特性,得到了金属样
品位移和传感器输出信号的对应关系。
电涡流传感器可以通过测量金属物
体表面电涡流的变化来检测金属物体位移,具有广泛的应用前景。
八、实验感想。
米朗科技电涡流位移传感器说明书

电涡流传感器系统的工作原理是电涡流效应,属于一种电感式测量原理。
电涡流效应源自振荡电路的能量。
而电涡流需要在可导电的材料内才可以形成。
给传感器探头内线圈导入一个交变电流以在探头线圈周围形成一个磁场。
如果将一个导体放入这个磁场,根据法拉第电磁感应定律激发出电涡流。
根据楞兹定律,电涡流的磁场方向与线圈磁场正好相反,而这将改变探头内线圈的阻抗性能参数测量量程1mm 2mm 4mm 5mm 12.5mm 20mm 25mm 50mm探头直径Φ6mm Φ8mm Φ11mm Φ17mm Φ30mm Φ40mm Φ50mm Φ60mm线性误差≤±0.25 ≤±0.25 ≤±0.5 ≤±0.5 ≤±1 ≤±1 ≤±1 ≤±2 (%FS)分辨率0.05um 0.1um 0.2um 0.25um 0.625um 1.0um 1.25um 2.5um重复性0.1um 0.2um 0.4um 0.5um 1.25um 2.0um 2.5um 5um频率响应0~10KHz 0~8KHz 0~2KHz 0~1KHz (-3dB)输出信号0~5V,0~10V,4~20mA,RS485电压型+9~18VDC,+18~36VDC或±15V~±18VDC可选供电电压电流型+22~30VDC,RS485型+12VDC电压型<45mA工作电流电流型<25mARS485型<40mA纹波≤20mV系统温漂≤0.05%/℃静态灵敏度根据输出信号和对应量程而定电压输出:负载能力<10KΩ输出负载电流输出:负载能力<500Ω标定时(20±5)℃环境温度探头-30℃~+150℃使用温度前置器-30℃~+85℃探头 IP67防护等级前置器 IP65探头电缆默认2m,可定制电源电缆默认2m,可定制接线定义电流型电压型RS485 棕线电源正 +24VDC 电源正 +12VDC或+24VDC 电源正 +12VDC黑线空电源负 0V 电源负 0V蓝线电流输出 OUT 输出正 OUT+ RS485 A+白线空输出负 OUT- RS485 B-屏蔽线接大地 GND 接大地 GND 接大地 GND探头典型结构图示在制作过程中,探头头部体一般采用耐高温ABS+PC工程塑料,通过“二次注塑”成型将线圈密封其中。
电涡流传感器位移实验

电涡流传感器位移实验一、实验目的:了解电涡流传感器测量位移的工作原理和特性。
二、基本原理:电涡流式传感器是一种建立在涡流效应原理上的传感器。
电涡流式传感器由传感器线圈和被测物体(导电体—金属涡流片)组成,如图22.1.1所示。
根据电磁感应原理,当传感器线圈(一个扁平线圈)通以交变电流(频率较高,一般为1MHz~2MHz)I1时,线圈周围空间会产生交变磁场H1,当线圈平面靠近某一导体面时,由于线圈磁通链穿过导体,使导体的表面层感应出呈旋涡状自行闭合的电流I2,而I2所形成的磁通链又穿过传感器线圈,这样线圈与涡流“线圈”形成了有一定耦合的互感,最终原线圈反馈一等效电感,从而导致传感器线圈的阻抗Z发生变化。
我们可以把被测导体上形成的电涡等效成一个短路环,这样就可得到如图22.1.2的等效电路。
图中R1、L1为传感器线图22.1.1 电涡流传感器原理图图22.1.2 电涡流传感器等效电路图圈的电阻和电感。
短路环可以认为是一匝短路线圈,其电阻为R2、电感为L2。
线圈与导体间存在一个互感M,它随线圈与导体间距的减小而增大。
根据等效电路可列出电路方程组:通过解方程组,可得I1、I2。
因此传感器线圈的复阻抗为:线圈的等效电感为:线圈的等效Q值为:Q=Q0{[1-(L2ω2M2)/(L1Z22)]/[1+(R2ω2M2)/(R1Z22)]}式中:Q0 —无涡流影响下线圈的Q值,Q0=ωL1/R1;Z22—金属导体中产生电涡流部分的阻抗,Z22=R22+ω2L22。
由式Z、L和式Q可以看出,线圈与金属导体系统的阻抗Z、电感L和品质因数Q值都是该系统互感系数平方的函数,而从麦克斯韦互感系数的基本公式出发,可得互感系数是线圈与金属导体间距离x(H)的非线性函数。
因此Z、L、Q均是x的非线性函数。
虽然它整个函数是一非线性的,其函数特征为"S"型曲线,但可以选取它近似为线性的一段。
其实Z、L、Q的变化与导体的电导率、磁导率、几何形状、线圈的几何参数、激励电流频率以及线圈到被测导体间的距离有关。
电涡流传感器位移实验报告

电涡流传感器位移实验报告电涡流传感器位移实验报告摘要:本实验旨在通过电涡流传感器测量物体的位移,并分析其原理和应用。
通过实验发现,电涡流传感器具有高灵敏度、快速响应和非接触式等特点,适用于工业自动化、机械加工和材料测试等领域。
本实验结果可为电涡流传感器的实际应用提供参考。
引言:电涡流传感器是一种利用电磁感应原理测量物体位移的传感器。
其工作原理是通过感应线圈产生的交变磁场诱发物体表面的涡流,进而测量物体位移。
电涡流传感器具有高灵敏度、快速响应和非接触式等特点,广泛应用于工业自动化、机械加工和材料测试等领域。
实验方法:本实验使用一台电涡流传感器和一块金属板进行位移测量。
首先,将金属板固定在实验台上,使其与传感器平行。
然后,将传感器的感应线圈靠近金属板表面,并连接到示波器上。
最后,通过调节传感器与金属板的距离,观察示波器上的波形变化。
实验结果:实验中,我们发现当传感器与金属板的距离逐渐减小时,示波器上的波形幅度逐渐增大。
当传感器与金属板的距离为零时,波形幅度达到最大值。
这说明传感器能够感应到金属板表面的涡流,并随着距离的减小而增强。
讨论:根据实验结果,我们可以得出结论:电涡流传感器的灵敏度与物体与传感器的距离成反比。
当物体与传感器的距离越近,感应到的涡流越强,波形幅度也越大。
这是因为当物体靠近传感器时,感应线圈产生的磁场能够更好地诱发物体表面的涡流。
电涡流传感器的应用十分广泛。
在工业自动化领域,它可以用于测量机械零件的位移和变形,以及监测设备的运行状态。
在机械加工领域,电涡流传感器可以用于检测工件的尺寸和表面质量,提高加工精度。
在材料测试领域,电涡流传感器可以用于评估材料的导电性和磁导率等特性。
然而,电涡流传感器也存在一些限制。
首先,它只适用于导电性材料的位移测量,对于非导电性材料无法工作。
其次,传感器与物体之间的距离需要保持一定范围,过大或过小都会影响测量结果。
此外,传感器的价格相对较高,对于一些应用场景来说可能不太经济实用。
电涡流位移传感器介绍

④ 如果验收不合格,请尽快与本公司联系。
2、 贮存 如果长期不使用,传感器系统应存放在温度介于-30℃~70℃、相
对湿度不大于 90%的整洁室内,且室内空气中不得含有腐蚀性气体。 存放期达一年以上的,使用前应重新校准。 3、试件材料
ZA21 系列前置器只有一种外形结构。 外型尺寸: 78×70×30(mm) 安装尺寸: DIN35 导轨安装 供电电源 UT: 1、 -20V DC~-26V DC,输出电压极限:-0.7V~(UT+1)V,线性
量程内输出电压范围:-2V~-18V。 2、 亦可使用供电电源+20V~+26V 输出电压极限: 0.7V~(UT-1)
探头壳体用于连接和固定探头头部,并作为探头安装时的装夹结
构。壳体一般采用不锈钢制成(对于高温、高压、强酸、强碱等特殊
环境的应用、本公司可以为用户提供一体化全陶瓷探头头部和壳体的
探头),一般上面刻有标准螺纹,并备有锁紧螺母。为了能适应不同的
应用和安装场合,探头壳体具有不同的形式和不同的螺纹及尺寸规格
(见附录 A)。
一套完整的传感器系统主要包括探头、延伸电缆(用户可以根据 需要选择)、前置器和附件。系统组成见图 1-1。
图 1-1 一套完整的传感器系统的组成
★ 与同类产品的兼容性 ZA21 系列电涡流位移传感器的各项性能指标相当或接近美国本
特利(BN)公司的 3300 系列产品水平,优于国内任何一家公司的同 类产品。
① 将系统各部分从包装箱取出。检查是否存在由于运输不当造 成的损坏。如果有,应立即与承运单位交涉提出索赔,并将情况反映 给本公司。
电涡流传感器位移特性实验

电涡流传感器位移特性实验
实验目的:
研究电涡流传感器的位移特性。
实验原理:
电涡流传感器是利用电涡流现象进行测量的传感器。
当导体中存在变化的磁场时,就会形成涡流,导致导体表面电流密度分布不均匀,这种现象称为电涡流现象。
电涡流传感器是利用这种现象进行测量的。
电涡流传感器由一个固定的线圈和一个可动的导体组成,当可动导体相对于线圈发生位移时,会产生涡流,从而改变线圈的电阻值,进而得到位移信息。
实验器材:
电涡流传感器、信号放大器、信号采集器、示波器、位移台、自行设计的位移系统等。
实验步骤:
1. 将电涡流传感器固定在一定的位置上,接上信号放大器并连接示波器。
2. 在示波器上观察电涡流传感器输出信号的波形和大小。
3. 将电涡流传感器放置在位移台上,在不同的位移位置上对预期的位移系统进行移动操作。
4. 在每个位移位置上读取电涡流传感器输出信号的波形和大小。
5. 将实验数据进行处理和分析,得到电涡流传感器的位移特性曲线。
实验注意事项:
1. 实验过程中要注意调整信号放大器的增益和滤波器的带宽,以保证信号的质量。
2. 移动位移系统时要注意操作轻柔,避免对电涡流传感器和位移系统造成损坏。
3. 实验结束后要注意恢复实验现场和接线状态,并注意设备的安全。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Your company slogan
1 电涡流式传感器原理
电涡流探头结构
1—电涡流线圈 2—探头壳体 3—壳体上的位置调节螺纹 4—印制线路 板 5—夹持螺母 6—电源指示灯 7—阈值指示灯 8—输出屏蔽电缆线 9—电缆插头
Your company slogan
2 电涡流传感器测量电路
电桥测量电路 在进行测量时,由于传感器线圈的阻抗发生变化,使电桥 失去平衡,将电桥不平衡造成的输出信号进行放大并检波, 就可得到与被测量成正比的输出。 谐振法 谐振法主要有调幅式电路和调频式电路两种基本形式。调 幅式由于采用了石英晶体振荡器,因此稳定性较高,而调 频式结构简单,便于遥测和数字显示。
Your company slogan
Your company slogan
1 电涡流式传感器原理
高频反射电涡流传感器等效电路
R
M
R
1
U
·
1
I
·
1
I
L
1
·
2
L
2
Z1=R+jωL1 RI1+jωL1I1-jωMI2=U1 -jωMI1+R1I2+jωL2I2=0
Your company slogan
1 电涡流式传感器原理
传感器线圈的等效阻抗
Your company slogan
1 电涡流式传感器原理
电涡流传感器分类 涡流传感器在金属体上产生的电涡流, 涡流传感器在金属体上产生的电涡流,其渗透深度从传感器线圈自身 原因来讲主要与励磁电流的频率有关, 原因来讲主要与励磁电流的频率有关,所以涡流传感器主要可分高频 反射的低频投射两类。 反射的低频投射两类。
电涡 传感 (
)
Contents
1
电涡流传感器的原理
2
测量电路电路
3
应
4
问题、 问题、 决
Your company slogan
1 电涡流式传感器原理
电涡流效应 根据法拉第电磁感应原理,块状金属导体置于变化的磁场 中或在磁场中作切割磁力线运动时,导体内将产生呈涡旋 状的感应电流,此电流叫电涡流,以上现象称为电涡流效 应。而根据电涡流效应制成的传感器称为电涡流式传感器。 线圈的阻抗变化与导体的 电导率、磁导率、几何形状, 线圈的几何参数,激励电流 频率以及线圈到被测导体间 的距离等因素有关。
Your company slogan
3 电涡流传感器的应用
电涡流探头线圈的阻抗受诸多因素影响,例如金 属材料的厚度、尺寸、形状、电导率、磁导率、 表面因素、距离等。只要固定其他因素就可以用 电涡流传感器来测量剩下的一个因素。因此电涡 流传感器的应用领域十分广泛。但也同时带来许 多不确定因素,一个或几个因素的微小变化就足 以影响测量结果。所以电涡流传感器多用于定性 测量。 即使要用作 定 量 测量,也必须采用逐点 标定、计算机线性纠正、温度补补偿等措施。
利用电涡流效应将被测量转换为传感器线圈阻抗 的变化这一原理就可以制成相应的电涡流传感器
Your company slogan
1 电涡流式传感器原理
测位移原理 线圈等效阻抗与金属导体的导电率 、磁导率 、几何形状、线圈的 几何参数 r 、激磁电流频率f 以及线圈到金属导体的距离x等参数有关。 假定金属导体是均质的,其性质是线性和各向同性,线圈的阻抗可用 如下函数表示:
Your company slogan
3 电涡流传感器的应用
转速测量 若转轴上开z 个槽(或齿),频率计的读数为f(单位为Hz),则 转轴的转速n(单位为r/min)的计算公式为
涡流探伤 利用电涡流式传感器可以检查金属表面裂纹,热处理裂纹,以及焊接 的缺陷等。在探伤时,传感器应与被测导体保持距离不变。检测时, 由于裂陷出现,将引起导体电导率,磁导率的变化,从而引起输出电 压的突变。
Your company slogan
3 电涡流传感器的应用
位移测量 电涡流传感器可以测量各种形状金属零件的动态位移,测量范围可以 为0~15µm,分辨率为0.05µm;或是0~500mm,分辨率可达0.1%。这种 传感器可用于测量汽轮机主轴的轴向窜动、金属件的热膨胀系数、钢 水液位、纱线张力、流体压力等。 振幅测量
Your company slogan
4 问题及优化
3、被测体表面磁效应对传感器的影响 、 电涡流效应主要集中在被测体表面,如果由于加工过程中形成残磁效 应,以及淬火不均匀、硬度不均匀、金相组织不均匀、结晶结构不均 匀等都会影响传感器特性。在进行振动测量时,如果被测体表面残磁 效应过大,会出现测量波形发生畸变。 4、被测体表面尺寸对传感器的影响 、 当被测体表面为平面时,以正对探头中心线的点为中心,被测面直径 应大于探头头部直径的1.5倍以上;当被测体为圆轴且探头中心线与轴 心线正交时,一般要求被测轴直径为探头头部直径的3倍以上,否则传 感器的灵敏度会下降,被测体表面越小,灵敏度下降越多。
(a)汽轮机和空气压缩机常用的监控主轴的径向振动的示意图 (b)测量发动机涡轮叶片的振幅的示意图 (c) 通常使用数个传感器探头并排地安置在轴附近
Your company slogan
3 电涡流传感器的应用
厚度测量
为克服金属板移动过程中上下波动及带材不够平整的影响,常在板材 上下两侧对称放置两个特性相同的传感器2。由图可知,板厚d=D- (x1+x2)。工作时,两个传感器分别测得x1和x2。板厚不变时,(x1+x2) 为常值;板厚改变时,代表板厚偏差的(x1+x2)所反映的输出电压发生 变化。测量不同厚度的板材时,可通过调节距离D来改变板厚设定值, 并使偏差指示为零。这时,被测板厚即板厚设定值与偏差指示值的代 数和。
YD9800系列 系列 电涡流位移传感器 (上海测振自动化 仪器有限公司) 仪器有限公司)
Your company slogan
5 总结及发展
1.目前国内关于磁性被测体下的线圈阻抗的理论求解方法研究较少。 线圈阻抗是涡流检测中的重要物理量,被测量的变化主要通过线圈阻 抗的变化来体现,因此对线圈阻抗计算方法的研究对解决涡流检测问 题至关重要。但目前关于线圈阻抗的研究主要集中在对非磁性被测体 下的线圈阻抗进行研究,没有学者或科研院所对磁性被测体下线圈阻 抗的数学模型和求解方法进行深入研究。 2.采用数值计算方法对线圈阻抗进行求解的研究甚少。目前采用数值 计算方法(有限元法、无网格法和有限元—边界元混合法等)对涡流检 测问题的研究主要局限在建立数值计算模型、获得电涡流传感器的磁 场分布,而通过数值计算方法获得线圈阻抗的研究较少。 3.对如何消除涡流检测中被测体电磁特性影响研究很少。涡流检测中 被测体的电磁特性对传感器输出产生很大影响,而且随着涡流检测技 术在工程应用中的日益广泛,这一问题也日益突出。很多著作和论文 都提出了这一问题,但鲜有学着能够提出有效的设计思路和方法。
Your company slogan
4 注意事项
1、被测体材料对传感器的影响 、 当被测体为导磁材料(如普通钢、结构钢等)时,由于涡 流效应和磁效应同时存在,磁效应反作用于涡流效应,使 得涡流效应减弱,即传感器的灵敏度降低。而当被测体为 弱导磁材料(如铜,铝,合金钢等)时,由于磁效应弱, 相对来说涡流效应要强,因此传感器感应灵敏度要高。 2、被测体表面平整度对传感器的影响 、 不规则的被测体表面,会给实际的测量带来附加误差,因 此对被测体表面应该平整光滑,不应存在凸起、洞眼、刻 痕、凹槽等缺陷。一般要求,对于振动测量的被测表面粗 糙度要求在0.4um~0.8um之间;对于位移测量被测表面 粗糙度要求在0.4um~1.6um之间。
Your 调频式测量转换电路如下图所示,图中将电涡流探头的电感量Lx与微 调电容C0构成LxC0振荡器,以振荡器的频率f作为输出量。
当电涡流线圈与被测体的距离x 改变时,电涡流线圈的电感量L 也随 之改变,引起LC 振荡器的输出频率变化,此频率可直接用计算机测量。 如果要用模拟仪表进行显示或记录时,必须使用鉴频器,将∆f转换为 电压∆Uo 。
Your company slogan
2 电涡流传感器测量电路
调幅式电路
图中Lx为传感器线圈电感,与一个微调电容组C0成并联谐振回路,晶 体振荡器提供高频激励信号。在电涡流探头远离被测导体时,调节C0, 使LxC0并联谐振回路调谐频率等于晶体振荡器频率f0。这时谐振回路 阻抗最大,LxC0并联谐振回路的压降U0也最大 。 当传感器接近被测导体时,损耗功率增大,回路失谐,输出电压 U0相 应变小。这样,在一定范围内,输出电压幅值与位移成近似线性关系。 由于输出电压的频率 f0始终恒定,因此称定频调幅式。
Your company slogan
1 电涡流式传感器原理
电涡流的应用
Your company slogan
1 电涡流式传感器原理
电涡流效应测量原理 若一金属板置于一只线圈的附近,它们之间相互的间距为δ,当线圈输 一 入一交变电流i 时,便产生交变磁通量Φ,金属板在此交变磁场中会产 生感应电流i1,这种电流在金属体内是闭合的,即电涡流。涡流的大 小与金属板的电阻率ρ、磁导率μ、厚度h、金属板与线圈的距离δ、激 励电流角频率ω等参数有关。若固定某些参数,就可根据涡流的变化 测量另一个参数。 根据上边的原理,则可以制成各种电涡流式的传感器,如对汽轮机、 水轮机、鼓风机、压缩机、空分机、齿轮箱、大型冷却泵等大型旋转 机械轴的径向振动、轴向位移、轴转速、胀差、偏心、以及转子动力 学研究和零件尺寸检验等进行在线测量和保护。
如果控制上式中的 、 、 、 恒定不变,只改变其中的一个参 数x ,这样阻抗Z就成为间距x的单值函数。被测导体与电涡流线圈的 距离发生变化,线圈的等效阻抗也会发生变化,这就是采用电涡流传 感器进行位移非接触测量的基本原理。
Your company slogan
1 电涡流式传感器原理