位移电涡流传感器测量电路设计-)

合集下载

电涡流传感器位移实验报告

电涡流传感器位移实验报告

电涡流传感器位移实验报告电涡流传感器位移实验报告摘要:本实验旨在通过电涡流传感器测量物体的位移,并分析其原理和应用。

通过实验发现,电涡流传感器具有高灵敏度、快速响应和非接触式等特点,适用于工业自动化、机械加工和材料测试等领域。

本实验结果可为电涡流传感器的实际应用提供参考。

引言:电涡流传感器是一种利用电磁感应原理测量物体位移的传感器。

其工作原理是通过感应线圈产生的交变磁场诱发物体表面的涡流,进而测量物体位移。

电涡流传感器具有高灵敏度、快速响应和非接触式等特点,广泛应用于工业自动化、机械加工和材料测试等领域。

实验方法:本实验使用一台电涡流传感器和一块金属板进行位移测量。

首先,将金属板固定在实验台上,使其与传感器平行。

然后,将传感器的感应线圈靠近金属板表面,并连接到示波器上。

最后,通过调节传感器与金属板的距离,观察示波器上的波形变化。

实验结果:实验中,我们发现当传感器与金属板的距离逐渐减小时,示波器上的波形幅度逐渐增大。

当传感器与金属板的距离为零时,波形幅度达到最大值。

这说明传感器能够感应到金属板表面的涡流,并随着距离的减小而增强。

讨论:根据实验结果,我们可以得出结论:电涡流传感器的灵敏度与物体与传感器的距离成反比。

当物体与传感器的距离越近,感应到的涡流越强,波形幅度也越大。

这是因为当物体靠近传感器时,感应线圈产生的磁场能够更好地诱发物体表面的涡流。

电涡流传感器的应用十分广泛。

在工业自动化领域,它可以用于测量机械零件的位移和变形,以及监测设备的运行状态。

在机械加工领域,电涡流传感器可以用于检测工件的尺寸和表面质量,提高加工精度。

在材料测试领域,电涡流传感器可以用于评估材料的导电性和磁导率等特性。

然而,电涡流传感器也存在一些限制。

首先,它只适用于导电性材料的位移测量,对于非导电性材料无法工作。

其次,传感器与物体之间的距离需要保持一定范围,过大或过小都会影响测量结果。

此外,传感器的价格相对较高,对于一些应用场景来说可能不太经济实用。

电涡流传感器的仿真与设计

电涡流传感器的仿真与设计

电涡流传感器的仿真与设计电涡流传感器是一种基于电磁感应原理的传感器,具有非接触、高精度、高灵敏度等优点,因此在工业、科研、医疗等领域得到广泛应用。

本文将介绍电涡流传感器的仿真与设计,包括其原理、应用和未来发展。

电涡流传感器的工作原理是利用电磁感应原理,当一个导体置于变化的磁场中时,导体内部会产生感应电流,这种电流被称为电涡流。

电涡流的大小和方向取决于磁场的变化,因此,通过测量磁场的变化,可以推导出被测物体的位置、速度、尺寸等参数。

在进行电涡流传感器的设计和应用之前,通常需要进行仿真和验证。

本文将介绍如何使用仿真工具进行电涡流传感器的设计和验证。

需要搭建一个包含激励源、传感器和数据采集器的电路。

激励源用于产生磁场,传感器用于感测磁场的变化,数据采集器用于采集传感器的输出信号。

激励电源的配置应根据传感器的工作频率、功率和电压等参数进行选择。

通常,激励电源的频率与传感器的谐振频率一致,以获得最佳的测量效果。

将传感器与数据采集器连接,使得传感器能够感测到磁场的变化并将输出信号传输给数据采集器。

数据采集器应选择具有较高灵敏度和分辨率的型号,以保证测量结果的准确性。

运行仿真程序并分析仿真结果,以验证设计的可行性和有效性。

可以通过调整激励电源的参数、传感器的位置和方向等来优化仿真结果,并分析各种情况下传感器的响应特性和测量误差。

在完成仿真后,可以开始进行电涡流传感器的硬件和软件设计。

电路设计应考虑传感器的供电、信号的放大和滤波、抗干扰措施等因素。

可以根据仿真结果来选择合适的元件和电路拓扑结构,以满足传感器在不同情况下的性能要求。

根据应用场景的不同,选择合适的传感器类型和材料。

例如,对于高温环境,应选择能够在高温下正常工作的传感器;对于需要测量非金属材料的场景,可以选择使用高频激励源来减小对非金属材料的感测误差。

根据电路设计和传感器选择的结果,编写数据采集器的程序。

程序中应包括信号的读取、处理、存储和传输等功能,以便将传感器的输出信号转换为有用的测量结果。

电涡流传感器位移实验报告

电涡流传感器位移实验报告

电涡流传感器位移实验报告背景电涡流传感器是一种非接触式位移传感器,广泛应用于工业领域中的位移测量。

它基于涡流效应,通过感应涡流的变化来测量目标物体的位移。

在实验中,我们使用了一种常见的电涡流传感器,将其应用于位移测量,并对其性能进行了评估和分析。

实验目的本实验旨在通过测量电涡流传感器对不同位移的响应,评估其性能指标(如灵敏度、线性度等),并提出相应的改进建议,以提高位移测量的精确性和稳定性。

实验装置与方法实验装置•电涡流传感器:型号ABC-123,频率范围0-10kHz•信号发生器:频率范围0-10kHz,可调幅度•示波器:带宽100MHz,采样率1GS/s•电压表:精度0.1mV实验步骤1.准备实验装置,保证电涡流传感器与信号发生器、示波器的连接正确。

2.设置信号发生器的频率为2kHz,并将幅度调至适当水平。

3.将电涡流传感器固定在实验台上,使其与目标物体相对静止并平行。

4.使用示波器测量电涡流传感器输出的电压信号,并记录数据。

5.调整信号发生器的频率和幅度,重复步骤4,以获得不同位移下的电压信号。

数据分析与结果实验数据我们通过实验获得了电涡流传感器在不同位移下的电压信号数据,如下所示:位移 (mm) 电压 (mV)0 1.21 1.52 1.83 2.14 2.45 2.7曲线拟合与性能评估我们将实验数据进行曲线拟合,以评估电涡流传感器的性能指标。

首先,我们使用最小二乘法对数据进行线性拟合。

得到的拟合直线的方程为:V = 0.3d + 1.2其中V表示电压(mV),d表示位移(mm)。

通过拟合直线,我们可以计算出电涡流传感器的灵敏度为0.3 mV/mm,表示单位位移引起的电压变化量。

其次,我们计算了电涡流传感器的线性度。

线性度是衡量传感器输出与输入之间线性关系程度的指标,通常以百分比表示。

通过计算每个数据点与拟合直线之间的残差,并将其转化为线性度,我们得到了电涡流传感器的线性度为95%。

结果分析与建议通过对实验数据的分析和性能评估,我们得到了以下结论:1.电涡流传感器表现出良好的线性关系,其灵敏度为0.3 mV/mm。

电涡流传感器特性与位移测量实验

电涡流传感器特性与位移测量实验

(操作性实验)班级:学号:学生姓名:实验题目:电涡流传感器特性与位移测量实验一、实验目的1、掌握电涡流传感器的特性和工作原理。

2、掌握电涡流传感器静态特性的标定方法。

二、实验仪器及器件电涡流线圈、金属涡流片、电涡流变换器、测微仪、示波器、电压表。

三、实验内容及原理3.1实验原理电涡流式传感器由平面线圈和金属涡流片组成,当线圈中通以高频交变电流后,与其平行的金属片上产生电涡流,电涡流的大小影响线圈的阻抗Z,而涡流的大小与金属涡流片的电阻率、导磁率、厚度、温度以及与线圈的距离X有关。

当平面线圈、被测体(涡流片)、激励源已确定,并保持环境温度不变,阻抗Z只与X距离有关。

将阻抗变化经涡流变换器变换成电压V输出,则输出电压是距离X的单值函数。

3.2实验内容1、利用所需部件,连接一个利用电涡流位移传感器测量位移的测试系统。

2、掌握实验原理,列出实验步骤。

3、根据实验步骤进行测量。

4、记录测量数据,最少测5组数据。

5、根据数据描出实验曲线。

6、计算实验数据,得出电涡流位移传感器静态特性。

三、实验步骤1.安装好电涡流线圈和金属涡流片,注意两者必须保持平行。

安装好测微头,将电涡流线圈接入涡流变换器输入端。

涡流变换器输出端接电压表20V档。

2.开启仪器电源,用测微仪将电涡流线圈与涡流片分开一定距离,此时输出端有一电压值输出。

用示波器接涡流变换器输入端观察电涡流传感器的高频波形,信号频率约为1MHz。

3.用测微仪带动振动平台使平面线圈完全贴紧金属涡流片,此时涡流变换器输出电压为零。

涡流变换器中的振荡电路停振。

4.旋动测微仪使平面线圈离开金属涡流片,从电压表开始有读数起每位移0.25mm 记录一个读数,并用示波器观察变换器的高频振荡波形。

将V、X数据填入下表四、实验测试数据表格记录表1五、实验数据分析及处理1、非线性度:图一线性方程为y = -1.9757x - 1.5198表2非线性度%88.426.6277.0max 1==∆=FS y e 2、灵敏度-1.975S =∆3、重复性图二%63.026.604.0max ==∆=FS R y e4、迟滞%76.126.611.0e max ==∆=FS t y1正-2正 0 0.01 0.04 0.01 0.02 0.01 0.02 0.02 0.01 -0.01 1正-3正 -0.04 0 0.03 0.01 0.01 0 0.010.010 0 2正-3正-0.04-0.01-0.01-0.01-0.01-0.01 -0.01-0.010.011正-1反 0.09 0.06 0.06 0.08 0.1 0.07 0.07 0.07 0.07 0 2正-2反 0 0.04 0.01 0.07 0.07 0.06 0.05 0.04 0.05 0 3正-3反0.110.050.030.060.090.350.050.040.03六、实验结论与感悟 1、实验结论1实验结论 非线性度%88.426.63055.0max 1==∆=FS y e 灵敏度-1.9757S =∆ 重复性%63.026.604.0max ==∆=FS R y e迟滞%76.126.611.0e max ==∆=FS t y2实验心得在本次实验中,我了解了电涡流传感器的特性及工作原理,掌握了振荡频率与输出电压的关系,掌握了电涡流式传感器的静态标定方法。

电涡流传感器电路设计

电涡流传感器电路设计

电涡流传感器电路设计作者:汪晓凌杜嘉文来源:《硅谷》2013年第01期摘要:在无损测量当中,电涡流传感器测量因为能够实现工件在线非接触测量,测量精度高、无污染、制作价格低廉等优点,一直被作为一种重要的检测设备,在涡流技术高速发展的今天,电涡流的优势越来越明显应用也越来越广泛。

电涡流传感器是电涡流测量淬火层厚度的核心部分,传感器的测量精度直接影响整个测厚设备的精度,传统的电涡流传感器包括测量探头、整流滤波电路的设计、放大器的设计等,电涡流传感器的精确测量也离不开位移测厚标定器,这里主要研究电涡流测厚核心电路的设计。

关键词:无损测量;电涡流;测厚;电路0 引言电涡流无损检测具有很悠久的历史,从Michael Faradays总结出电磁感应定律,即变化的磁场能产生电场以来,电磁感应相关技术取得了巨大的发展。

后来Foster提出的通过分析系统的阻抗变化来分析涡流检测仪的干扰因素,为涡流检测提供了很好的理论依据,大大推动了电涡流无损检测技术的发展。

通过对阻抗分析法的有效运用,电涡流测量技术已经渗透到我们工业测量的方方面面,包括了航空航天、核工业、机械、冶金、石油、化工、机械、汽车等部门,电涡流无损技术的快速发展,相关研究和运用也越来越广泛,其中传感器的电路设计和测量精度的控制都是研究的焦点。

1 涡流检测原理图涡流检测是无损检测的一个分支,是运用电磁感应原理,将一半径为r的线圈通过正弦波电流后,线圈周围就会产生一交变磁场H1;若在距线圈x处有一电导率为a,磁导率为u厚度为d的金属板,线圈周围的交变磁场会在金属表面产生感应电流,也称作涡流。

金属表面也产生一个与原磁场方向相反的相同的相同频率的磁场H2,反射到探头线圈,导致载流线圈的阻抗和电感的变化,改变了线圈的电流大小及相位,原理图如图1所示。

图1 电涡流测厚原理图2 测厚探头的设计图2 电涡流测量电路整体设计图电涡流测量电路的整体测量电路设计图如图2所示,涡流探头测量物体厚度后引起阻抗的变化,通过电桥电路转化成电流信号输出,也由于信号很微弱,需要经过放大器进行功率放大输出,经过整波电路,把交流信号转化为直流信号,然后把那些高频的还有低频的号过滤掉,得到干扰较小的电流信号,经过放大器尽心比例放大后接入ARM7的A/D转换接口,把模拟信号转化为数字信号,对信号进行控制然后接入数字示波器,观察波形输出,把结果通过PC 机显示出来[1]。

基于电涡流传感器的小位移测量系统设计

基于电涡流传感器的小位移测量系统设计

基于电涡流传感器的小位移测量系统设计于明军;孙福玉;韩铮;张迪【摘要】针对物理实验中对小位移的测量读数困难的问题,提出了一种基于电涡流传感器测量小位移的方法.根据谐振原理设计了涡流传感器检测和调理电路,利用位移量影响谐振电路Q值的特性,实现了小位移量到电压量的转换,使用单片机采集信号并用软件方法对测量结果校准.实验结果表明,系统可以准确测量小位移,同时可消除使用物理测量工具时产生的读数误差.【期刊名称】《实验技术与管理》【年(卷),期】2015(032)005【总页数】4页(P111-114)【关键词】位移测量;电涡流传感器;数据采集;微控制器【作者】于明军;孙福玉;韩铮;张迪【作者单位】赤峰学院物理与电子信息工程学院,内蒙古赤峰024400;赤峰学院物理与电子信息工程学院,内蒙古赤峰024400;赤峰学院物理与电子信息工程学院,内蒙古赤峰024400;赤峰学院物理与电子信息工程学院,内蒙古赤峰024400【正文语种】中文【中图分类】TP212.1电涡流传感器是一种非接触式的传感器件,它具有高线性度、高分辨力,可用于位移、振动和转速等静态和动态的相对位移变化测量[1]。

学生实验中对小位移的测量通常使用游标卡尺或千分尺,数据不能直观显示且存在读数误差。

本文利用电涡流传感器设计了一种小位移测量系统,能够自动显示测量结果,使用方便且测量精度高。

利用单片机采集、处理信号,电路简单,成本低廉[2]。

电涡流传感器的测量原理如图1所示,根据法拉第电磁感应定律,当传感器探头线圈通以正弦交变电流i1时,线圈周围空间产生正弦交变磁场H1,它使置于此磁场中的被测金属导体表面产生感应电流,即电涡流i2,电涡流又产生新的交变磁场H2, H2与H1方向相反,并力图削弱H1,从而导致探头线圈的等效电阻相应地发生变化[3-4]。

将被测金属导体上形成的电涡流等效成一个短路环中的电流,这样就可以得到如图2所示的等效电路。

电路中除了自感L1和L2,外,探头线圈和导体之间存在一个互感M,它随线圈与导体间距离的减小而增大。

《传感器原理及应用》电涡流传感器的位移特性实验

《传感器原理及应用》电涡流传感器的位移特性实验

《传感器原理及应用》电涡流传感器的位移特性实验报告1.实验功能要求了解电涡流传感器测量位移的工作原理和特性;了解不同的被测材料对电涡流传感器性能的影响:了解电涡流传感器在实际应用中其位移与被测体的形状和尺寸有关。

2.实验所用传感器原理基本原理:电涡流式传感器是一种建立在涡流效应源理上的传感器。

电涡流式传感器由传感器线圈和被测物体(导电体一金属涡流片)组成,根据电磁感应原理,当传感器线圈(一个扁平线圈)通以交变电流(频率较高,一般为1MHz~2MHz)I₁时,线圈周围空间会产生交变磁场H₁,当线圈平面靠近某一导体面时,由于线圈磁通链穿过导体,使导体的表面层感应出呈旋涡状自行闭合的电流J₂,而I₂所形成的磁通链又穿过传感器线圈,这样线圈与涡流“线圈”形成了有一定耦合的互感,最终原线圈反馈一等效电感,从而导致传感器线圈的阻抗Z发生变化。

我们可以把被测导体上形成的电涡等效成一个短路环。

图中R₁、L₁为传感器线圈的电阻和电感。

短路环钉以认为是一匝短路线圈,其电阻为R₂、电感为L₂。

线圈与导体间存在一个互感M,它随线圈与导体间距的减小而增大。

电涡流变换器原理图3.实验电路图2 电涡流传感器安装示意图图3 电涡流传感器接线图3.实验过程1、接线:按图3-1-5示意接线,将测微头钉始位置调到0mm或者1mm,作为位移起点(也可以选择15mm左右作为位移起点,从0mm逆时针测到15mm,与从15mm顺时针测到0mm,效果相似),调整电涡流传感器高度与电涡流检测片(大圆振动台上的小圆片)相贴时拧紧轴套紧固螺钉。

2、计数:将电压表(F/V表)量程切换开关切换到20V档,检查接线无误后扛开主、副电源(在涡流变换器输入端可接示波器观测振荡波形),记下电压表读数,然后从0mm逆时针(此时电涡流线圈与其检测片间距为零,互感为零,M=0)调节测微头微分筒每隔0.2mm读一个数,直到输出Vo变化很小为止并记入表1.3、根据表1数据作出V-X实验曲线。

新型电涡流传感器测量电路设计分析

新型电涡流传感器测量电路设计分析

新型电涡流传感器测量电路设计分析摘要:在新型电涡流传感器测量电路设计上,应该分析多点技术内容,例如基于传统接触式测量技术在实际应用中的缺陷,即可建立一种全新的测量电路实验平台,分析其设计技术方法,并对电路设计实验结果进行了阐述。

关键词:新型电涡流传感器;测量电路设计;实验平台;设计方法;实验结果工程检验施工中需要对多种物理量检测数据进行分析,最终归结转化获得机械位移量,如此对监控提高检测仪器性能是很有帮助的。

例如针对新型电涡流传感器的测量电路设计分析需要提高测量灵敏度与准确度,优化测量电路设计动态范围,要结合传感器测量电路的稳定运行性能与运行恶劣环境进行分析。

1.新型电涡流传感器的工作原理分析新型电涡流传感器的基本构成包括了延伸电缆、探头线圈、信号处理模块以及被测体四大部分。

在设备运行过程中,需要分析交变磁场变化,对其有效运行范围进行分析,了解被测体靠近过程中磁场能量的损失变化。

此时被测体中会产生电涡流产生交变磁场,其中磁场反作用可确保线圈电流大小与相位变化,分析线圈阻抗变化情况,并对新型电涡流传感器的涡流场反作用问题进行分析,如图1[1]。

图1新型电涡流传感器的基本构成结构示意图如图1,在线圈阻抗变化过程中,需要分析被测体电导率、线圈几何参数、线圈被测体之间的相互控制距离进行分析,深入了解被测体的电阻率、磁导率以及厚度变化情况。

如此可建立高频放射式测距涡流传感器,并对低频透射测厚涡流传感器内容进行分析,提出相关技术解决方案。

简言之,它所建立的是围绕被测体、输入电流、线圈、磁场能量耦合、电涡流所共同构建的新型电涡流传感器系统技术体系[2]。

1.新型电涡流传感器测量电路的设计流程与设计方法1.设计流程1建立布线图在新型电涡流传感器测量电路设计流程中,需要首先采用印制板并设计电源线与地线,它可为电路正常工作提供不竭电源动力,同时配置导线内容,建立影响电路板电磁兼容的导线部分。

在设计过程中,需要对地线组合所形成的电容部分进行分析,建立地线电路基准,确保多个电路都能提供0V参考电压,分析朱电磁干扰情况,结合底线对PCB到点面积分布均匀性进行分析,建立新型电涡流传感器测量电路机制,避免出现串扰问题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

位移电涡流传感器测量电路设计-)
————————————————————————————————作者:————————————————————————————————日期:
成绩评定:
传感器技术
课程设计
题目位移电涡流传感器测量电路设计
摘要
电涡流传感器由于具有对介质不敏感、非接触的特点,广泛应用于对金属的位移检测中。

为扩大电涡流传感器的测量范围,采用恒频调幅式测量电路,引用指数运算电路作为非线性补偿环节。

利用Matlab计算软件辅助设计了直径为60mm电涡流传感器探头,并结合测量电路进行实验。

实验结果表明最大测量范围接近90mm,验证了该系统工作的稳定性,证明设计达到了预期效果。

关键词:电涡流传感器;测量电路;大位移;线性化
目录
一、设计目的------------------------- 1
二、设计任务与要求--------------------- 1
2.1设计任务 ----------------------- 1
2.2设计要求 ----------------------- 1
三、设计步骤及原理分析 ----------------- 1
3.1设计方法 ----------------------- 1
3.2设计步骤 ----------------------- 2
3.3设计原理分析 -------------------- 6
四、课程设计小结与体会 ----------------- 6
五、参考文献-------------------------- 6
一、设计目的
1.了解电涡流传感器测量位移的工作原理和特性。

2.了解电涡流传感器的前景及用途
二、设计任务与要求
2.1设计任务
扩大电涡流传感器的测量范围,采用恒频调幅式测量电路,引用指数运算电
路作为非线性补偿环节。

验证了该系统工作的稳定性,证明设计达到了预期效果。

2.2设计要求
1. 工作在常温、常压、稳态、环境良好;
2. 设计传感器应用电路并画出电路图;
3. 应用范围:测量物体的位移。

三、设计步骤及原理分析
3.1设计方法
电涡流传感器具有体积小、非接触、对介质不敏感的特点,被广泛应用于对金属位移等的测量中。

尽管用电涡流传感器非接触测量位移已经得到广泛的应用,但是测量位移的线性范围受到传感器线圈直径的限制,位移测量范围为线圈直径的1/3~1/5,大直径的传感器,其测量范围最大可以接近到直径的1/2。

在许多领域希望能进一步扩大传感器的测量范围,以满足大位移的非接触测量。

文中采用指数运算电路作为非线性补偿环节来改善传感器原有的传输特性,扩大传感器测量范围。

由电磁感应定律可知:闭合金属导体中的磁通发生变化时,就会在导体中产生闭合的感应电涡流,阻碍磁通量的变化。

如图1所示,传感线圈由交流信号激励,在产生焦耳热的同时,又要产生磁滞损耗,它们造成交变磁场能量的损失,进而使传感器的等效阻抗Z发生变化。

影响阻抗Z的因素有被测导体的电导率、磁导率、线圈的激励频率f及传感器与被测导体间的位移x等,只要保证这些影响因素只有位移x变化,其他都保持
不变,则传感器的等效阻抗Z将变成位移x的一元函数Z(x),经过线性化处理后用Z的变化就能很好地反映出x的变化,实现测量位移x的目的。

3.2设计步骤
3.2.1测量电路的设计
电涡流传感器的测量电路可以归纳为调幅式和调频式2种。

调幅式电路又可细分成恒定频率的调幅式与频率变化的调幅式2种,文中采用恒定频率调幅式电路,其特点是输出可以被调理为直流电压,优势在于调节为直流电压后,采用指数运算电路对传感器的非线性段进行线性化补偿,可最大限度地扩大传感器测量范围。

测量电路由电涡流传感器、信号源电路、前级放大电路、检波滤波电路、指数补偿电路等5部分构成。

3.2.2传感器参数的确定
传感器的主要元件是一支固定于框架上的扁平线圈与一个电容并联所构成的并联谐振回路。

线圈尺寸和形状关系到传感器的灵敏度和测量范围,采用计算机Matlab计算软件得到传感器线圈的最优结构参数:外径为60mm,内径为57mm,轴向厚度为3mm,匝数为80,线径为0.25mm.
3.2.3信号源电路
信号频率及其稳定性对检测效果的影响非常大,一般来说,若振荡频率变化1%,
输出变化大约在10%以上。

DDS具有相位连续、转换速度快、信号稳定度高等优点。

采用AD9850与单片机产生正弦信号,经滤波、功率放大等处理后送给传感器。

AD9850与单片机组成的信号源电路,在参考时钟为125MHz下,输出频率分辨率可达0.029Hz。

3.2.4前级放大电路
电涡流位移传感器是将位移量转化为电信号,由于信号为变化缓慢的非周期信号,而且比较微弱,只有通过放大才能驱动负载。

同时,要求放大电路要有高的输入阻抗,以减小测量电路的负载,提高LC并联谐振回路的品质因数。

采用低噪声、精密集成运算放大器OP37搭建同相输入前级放大电路,同时得到1M以上的高输入阻抗和较低的输出阻抗。

3.2.5检波滤波电路
采用二倍压检波电路与有源二阶低通滤波电路,如图2所示,得到与交流电压信号幅值变化相对应的直流电压信号。

电路还具有电压的调节作用,即调节反馈电阻RW1获取传感器线圈与被测位移为0处所对应的输出电压,为后面的指数非线性补偿等处理做准备。

图2检波与滤波电路
3.2.6指数补偿电路
当位移x在50mm以外变化时,电涡流传感器输出电压仍有变化,只是变化十分缓慢。

为增大测量范围,需要一个补偿环节,其传输特性如图3第三象限中曲线2所示,它与第一象限中传感器输出特性(曲线1)一起,实现最终第四象限的线性结果。

在第三象限较远处,当输入(横轴方向)逐渐增大变化时,输出(纵轴方向)的变化率不断增大,这种曲线类似指数运算。

故利用2支双极型晶体管与精密、低噪声运放AD704设计一个指数运算电路,可以达到上述要求。

图3 非线性化补偿图解
如图4所示,在进行指数补偿之前,通过运算放大器A3的减法运算得到位移x 的对应变化电压V2,运算放大器A4和A5的作用是选择指数补偿的起点电压。

5V 电压基准Vref1、Vref2及后面Vref3均由低噪声、低漂移、精密电压基准MAX6250提供;开关二极管D3保证输出电压的单一方向,即V3>0,对指数补偿电路起保护作用。

图4 非线性补偿起点获取电路
指数补偿电路如图5所示,放大器A6、A7与三极管Q1、Q2组成指数补偿电路,放大器A8与A9组成豪兰德(Howland)电流源电路,为指数运算电路提供如图所示的恒定电流:
图5 指数补偿电路
由于指数运算电路只对较远处起作用,对较近的距离反而具有衰减的负面效应,为解决此问题,将指数运算电路输出V4与图5中通过A3减法运算得到位移x 的对应变化电压V2相加得到最终的输出电压Vout。

3.2.7实验结果
把电涡流位移传感器固定在一方,在另一方放置一块厚度为2cm,面积为(200*200)mm2的钢板作为被测导体,当钢板移动时,用游标卡尺读出位移x,在数字电压表上读出补偿前后电压值Vout1和Vout2,并转化成对应的相对电压Vob1和Vob2(输出电压值Vout与最大输出电压Vomax的比值),如表1所示。

把这2组数据画成位移-电压曲线如图6所示。

图6 位移-电压曲线
3.3设计原理分析
实验结果表明:采用指数运算电路作为电涡流位移传感器的非线性补偿环节,能够有效地改善传感器原有的传输特性,线性测量范围由原来不足直径的1/2最大可扩展到直径的1倍以上,基本能够满足大位移测量需要。

四、课程设计小结与体会
在这几天的课程设计中我学到了许多,既有有因无从下手和失败而迷茫和沮丧,也有获得成功后的沾沾自喜。

而且发现自己的知识储备实在太少。

在课程设计中每天不断的查资料分析电路,要找出试验电路和经典电路之间的共性。

课程设计真的不容易。

对我的提高确实很大。

五、参考文献
[1]邵东向,郭华.电感式位移传感器线性补偿技术.传感器技术,1999
[2]邵爱霞,赵辉,刘伟文.定频调幅式电涡流传感器电路及其在防水数显卡尺中的应用.计算机测量与控制,2005
[3]邰健杨,朱惠忠.大量程电涡流位移传感器线性化电路研究.仪表技术与传感器,1998。

相关文档
最新文档