埋藏史-热演化史恢复_1.ppt [兼容模式]
鄂尔多斯盆地渭北隆起奥陶系构造_热演化史恢复

第8 8卷 第1 1期2 0 1 4年1 1月 地 质 学 报 ACTA GEOLOGICA SINICA Vol.88 No.11Nov. 2 0 1 4注:本文为国家自然科学基金项目(编号41372128)、西北大学大陆动力学国家重点实验室(编号BJ08133-1)、国家重大专项(编号2011ZX05005-004-007HZ)和中国地质调查局科研项目(编号12120113040300-01)资助的成果。
收稿日期:2014-07-29;改回日期:2014-09-25;责任编辑:周健。
作者简介:任战利,男,1961年生。
博士后,西北大学教授、博士生导师,主要从事盆地热史与油气成藏及油气评价研究工作。
通讯地址:710069,陕西省西安市太白北路229号,西北大学地质学系;Email:renzhanl@nwu.edu.cn。
鄂尔多斯盆地渭北隆起奥陶系构造-热演化史恢复任战利1,2),崔军平1,2),李进步3),王继平3),郭科2),王维2),田涛2),李浩2),曹展鹏2),杨鹏2)1)西北大学大陆动力学国家重点实验室,西安,710069;2)西北大学地质学系,西安,710069; 3)苏里格气田研究中心,西安,710018内容提要:鄂尔多斯盆地渭北隆起区构造位置独特,演化历史复杂。
该区下古生界奥陶系碳酸盐岩有机质丰度较高,是寻找天然气的有利地区。
奥陶系碳酸盐岩由于缺乏有效的古温标,热演化程度的确定及热演化历史的恢复一直是研究的难题。
本文利用渭北隆起奥陶系碳酸盐岩大量的沥青反射率测试资料,结合上覆晚古生代、中生代地层的镜质组反射率资料及磷灰石和锆石裂变径迹等古温标,恢复了渭北隆起的构造热-演化史。
研究结果表明古生界奥陶系热演化程度具有北高南低的特点。
奥陶系等效镜质组反射率普遍大于2.00%,处于过成熟干气阶段。
磷灰石裂变径迹资料表明渭北隆起抬升冷却具有南早北晚的特点。
南部奥陶系—下二叠统抬升早,约为102~107Ma,北部自65Ma以来抬升,主要抬升时期为40Ma以来。
埋藏史图的制作

回剥法绘制埋藏史图(2014-03-05 15:39:18)转载▼标签:骨架实质程序埋藏孔隙度回剥法绘制埋藏史图,是根据沉积压实原理,从已知的单井分层参数出发,按照地质年代由新到老的顺序逐层剥去,剥蚀恢复过程中考虑了沉积压实、沉积间断、地层剥蚀等地质要素,直至全部地层剥完为止。
如图1模型所示:图1剥蚀厚度恢复模型回剥技术采用地层骨架厚度不变压实模型:即在地层的沉积压缩过程中,压实只是导致孔隙度减小,而骨架体积不变。
使用该模型恢复地层的沉降史,实质上是恢复地层中的孔隙度演化过程,因此可以借助孔-深关系来恢复古厚度。
即随着埋藏深度的增加,地层的上覆盖层也增加,导致孔隙度变小,体积减小。
可以假定地层的横向位置在沉降过程中不变,而仅是纵向位置变化。
因此,地层体积变小就归结为地层厚度变小。
在正常压实情况下,孔隙度和深度关系服从指数分布:(1.1)其中,Φ是深度为z时的孔隙度,Φ0为地表孔隙度,c为压实系数。
根据已知条件:地表孔隙度48%;3000米深度孔隙度14%。
将其带入到式(1.1),两个未知数列方程,可计算出压实常数:c=4.107×10-4沉积层孔隙度在受压实过程中,沉积物骨架部分的体积不变,只有孔隙部分发生变化。
如果某层深度Z1至Z2时(Z2>Z1),层内孔隙所占体积V m为:(1.2)设地层总体积为,岩石颗粒体积为,则(1.3)纯岩石颗粒的高度H s(1.4)由公式(1.4)可以导出(1.5)首先,现今各地层的厚度(单位m)如下:450,640,970,761,1612,988,1222;并由公式(1.4)计算出各地层的骨架厚度(单位m)如下:253,415,725,626,1434,925,1172。
然后按照地质年代由新到老地逐层回剥,每剥一层把所有的地层重新计算。
当剥掉地层7时,地层6的顶界为0,其底界等于当Z1为零和H S=415m时由公式(1.5)计算得到的Z2等于711m;地层6的底界等于711m加上当Z1等于711m和H S=725m时由公式(1.5)迭代得到的Z2等于1736 m;……以此类推,成果见下表:表1 剥蚀厚度恢复数据统计表依据以上数据,可以绘出如下埋藏史图(图2)。
埋藏史热演化史恢复

目的: 分析古构造的发展与演化 评价烃源岩有机质在地质时期中的热演化程度 分析地层在地质时期中经历的温度和压力条件
技术方法:
•Mckenzie的纯剪切法 •Airy地壳均衡法 •挠曲均衡法 •平衡剖面技术 •超压技术 •回剥技术
对盆 地或 剖面
单井
考虑因素:
•构造与负荷沉降 •断裂事件 •地层压实作用 •剥蚀事件、沉积间断 •海平面与古水深
每一层在不同埋深下的厚度Hi(Dj)。
现今地层
上 伏 地 层 厚 度 (Dj)
第i层厚度
H i(Dj)
上 伏 地 层 厚 度 (h)
第i层厚度
H i(h)
第j层沉积
Tm
Fn
回 剥 法 示 意 图
F4
F3 F2 F1 现今地层
深度 (m)
时间 (Ma)
T4
T3
T2
T1
F4
F3
F2
F1
F3
F2
F1 沉积初期
古地温比未经校正者提高10~15℃,厚度可增加300~450m。
因此,在恢复埋藏史时,不能只凭现今地层剖面上各层厚度 进行逐层相减来求得,而必须考虑到压实作用的影响。
同一地层在不同埋藏深度下地层厚度
埋藏深度 (m)
平均孔隙度 (%)
地层厚度 (m)
50 50 1000
500 20 700
2500 10 600
紧密压实阶段
松辽盆地的泥岩压实曲线(据王行信,1980)
压实作用
正常压实
异常压实(欠压实)
正
孔隙流体处于开放状态,随上覆沉积物的增加的流体
常 不断排出,孔隙度随上覆沉积物的增加而相应减少。因此
埋藏史图的制作

回剥法绘制埋藏史图(2014-03-05 15:39:18)转载▼标签:骨架实质程序埋藏孔隙度回剥法绘制埋藏史图,是根据沉积压实原理,从已知的单井分层参数出发,按照地质年代由新到老的顺序逐层剥去,剥蚀恢复过程中考虑了沉积压实、沉积间断、地层剥蚀等地质要素,直至全部地层剥完为止。
如图1模型所示:图1剥蚀厚度恢复模型回剥技术采用地层骨架厚度不变压实模型:即在地层的沉积压缩过程中,压实只是导致孔隙度减小,而骨架体积不变。
使用该模型恢复地层的沉降史,实质上是恢复地层中的孔隙度演化过程,因此可以借助孔-深关系来恢复古厚度。
即随着埋藏深度的增加,地层的上覆盖层也增加,导致孔隙度变小,体积减小。
可以假定地层的横向位置在沉降过程中不变,而仅是纵向位置变化。
因此,地层体积变小就归结为地层厚度变小。
在正常压实情况下,孔隙度和深度关系服从指数分布:(1.1)其中,Φ是深度为z时的孔隙度,Φ0为地表孔隙度,c为压实系数。
根据已知条件:地表孔隙度48%;3000米深度孔隙度14%。
将其带入到式(1.1),两个未知数列方程,可计算出压实常数:c=4.107×10-4沉积层孔隙度在受压实过程中,沉积物骨架部分的体积不变,只有孔隙部分发生变化。
如果某层深度Z1至Z2时(Z2>Z1),层内孔隙所占体积V m为:(1.2)设地层总体积为,岩石颗粒体积为,则(1.3)纯岩石颗粒的高度H s(1.4)由公式(1.4)可以导出(1.5)首先,现今各地层的厚度(单位m)如下:450,640,970,761,1612,988,1222;并由公式(1.4)计算出各地层的骨架厚度(单位m)如下:253,415,725,626,1434,925,1172。
然后按照地质年代由新到老地逐层回剥,每剥一层把所有的地层重新计算。
当剥掉地层7时,地层6的顶界为0,其底界等于当Z1为零和H S=415m时由公式(1.5)计算得到的Z2等于711m;地层6的底界等于711m加上当Z1等于711m和H S=725m时由公式(1.5)迭代得到的Z2等于1736 m;……以此类推,成果见下表:表1 剥蚀厚度恢复数据统计表依据以上数据,可以绘出如下埋藏史图(图2)。
浅述流体包裹体研究及应用

Science and Technology & Innovation ┃科技与创新·7·文章编号:2095-6835(2015)03-0007-02浅述流体包裹体研究及应用钟传欣(贵州省有色金属和核工业地质勘查局核资源地质调查院,贵州 贵阳 550005)摘 要:通过流体包裹体研究,可恢复盆地埋藏史、热演化史、成岩史,确定其成岩和成藏作用时间与温度,推断油气生成、运移、聚集、构造运动及古热流历史,追踪盆地流体的组成、性质、成因、活动期次及推测流体的古温度、压力条件等。
着重论述了流体包裹体在金矿、石油地质、盆地流体方面的应用,希望为今后开展相关地质研究和应用提供一定的帮助。
关键词:流体包裹体;金矿;石油地质;盆地流体中图分类号:P618.41 文献标识码:A DOI :10.15913/ki.kjycx.2015.03.007随着各研究领域研究的不断深入和技术水平的不断提高,流体包裹体的应用更加广泛,例如通过矿物流体包裹体研究恢复盆地埋藏史,恢复盆地的热演化史、成岩史;在石油地质中,通过包裹体的研究,确定其成岩和成藏作用时间与温度,推断油气生成、运移、聚集、构造运动及古热流历史等;通过包裹体群δD 、δ18O 、δ13C 同位素分析系统的建立,追踪盆地流体的组成、性质、成因、活动期次,并推测流体的古温度、压力条件等。
1 在金矿及其他矿床研究中的应用成矿流体活动记录在热液矿物及其流体包裹体中,从而使得流体包裹体成为研究流体成矿作用、矿床类型、成因、温度计压力的“指示剂”。
根据前人的研究可知,造山型金矿的流体包裹体主要具有三种类型,分别是富CO 2包裹体、含CO 2水溶液包裹体和水溶液包裹体。
陈衍景等对这三种包裹体进行研究分析,认为造山型金矿体系的成矿流体为低盐度的碳质流体,其盐度通常低于10wt %NaCl.eq 。
资料显示,在其成矿过程中,从早期到晚期,流体包裹体的捕获温度和压力降低,由超静岩压力体系变为静水压力体系,但其成矿流体的温度却低于500 ℃,成分流体由成矿初期的富CO 2演变为水溶液,其气液比在其中间阶段发生突降,这说明期间发生了逸失,通过注入与混合其浅缘低温热液,成矿流体从原来的变质热液演变为大气降水热液。
盆地分析(3)沉降史分析

总结 :盆地沉降史分析,就是从分析盆地地层层序特征和埋
藏状态人手,通过编绘反映盆地沉降特征的地层埋藏史曲线、盆 地基底沉降曲线以及盆地构造沉降曲线等途径来表述(图9-l)。
二、 盆地沉降量的求解
从现今地层柱回推求盆地沉降量和沉降-埋藏史 曲线--回剥法、回剥技术。 需要对现今地层厚度进行三种校正: (1)去压实作用; (2)古水深校正;
沉降作用与沉积作用
沉积盆地中的沉降速率与沉积速率可以随盆地的演化而发 生变化。 当沉降速率大于沉积速率时,盆地的水体深度加大,表现为 海侵或湖侵,形成上超的沉积层序,这时的沉积盆地也称为“ 欠补偿盆地”。 当沉降速率与沉积速率处于均衡状态时,盆地水体的深度基 本保持不变,盆地中的沉降-沉积中心相对稳定,成为“补偿 盆地”。 如果沉积盆地的沉降和沉积较长期处于补偿状态,地层剖 面上看到的同一相带的沉积岩层的厚度相对较厚。 当沉降速率小于沉积速率时,盆地水体逐渐变浅以致完全 被沉积物充填,表现为海退或湖退,成为“过补偿盆地”。
“地层骨架厚度不变”压实模型
一般情况下,地层骨架厚度不变压实模型适用于所有岩层, 但是对于某些易流动的岩层,由于差异压实可能导致地层在压实 过程中出现流动变形,地层骨架厚度不变压实模型显然不合适。 使用地层骨架厚度不变压实模型复原地层的埋藏史,实质上 是恢复地层中的孔隙度的演化过程。因此,可以借助于孔隙度- 深度的关系来恢复同一地层在不同地质时期的古厚度。
二、 盆地沉降量的求解
2.岩层孔隙度的变化
孔隙度是单位体积岩层中的孔隙所占的体积大小,常用百分
数或小数表示。 假设深埋地下的砂岩就是地表附近松散的沙层经过压实和成
岩作用形成的。
一般认为岩层在压实过程中孔隙度主要是随着上覆岩层的厚 度的增加而减小的,而受上覆地层的负荷时间的影响较小。 因此,可以根据不同深度上的同种岩石的孔隙度编制一条孔
02_埋藏史模拟

(一)超压层
第三章 埋藏史模拟
第三节 埋藏史恢复
三、超压技术
(一)超压层
第三章 埋藏史模拟
第三节 埋藏史恢复
三、超压技术
(二)古超压方程
第三章 埋藏史模拟
第三节 埋藏史恢复
三、超压技术
(二)古超压方程
第三章 埋藏史模拟
第三节 埋藏史恢复
三、超压技术
(二)古超压方程
经过一系列的推导……
第三章 埋藏史模拟
1.压力系数
第三章 埋藏史模拟
第二节 地层压力
二、异常地层压力
2.压力梯度
(一)压力系数、压力梯度及异常压力分类
3.异常压力分类
第三章 埋藏史模拟
第二节 地层压力
二、异常地层压力
3.异常压力分类
(一)压力系数、压力梯度及异常压力分类
第三章 埋藏史模拟
第二节 地层压力
二、异常地层压力
(二)异常压力的形成机制
第一节 压实作用与孔隙变化规律
一、压实作用
(二)压实阶段划分
国 外
第三章 埋藏史模拟
第一节 压实作用与孔隙变化规律
一、压实作用
(二)压实阶段划分
国 内
第三章 埋藏史模拟
第一节 压实作用与孔隙变化规律
一、压实作用
(二)压实阶段划分
本书
第三章 埋藏史模拟
第一节 压实作用与孔隙变化规律
二、孔隙度变化规律
在压实过程中,地层骨架体积始终保持不变,地层体积变小由地层孔 隙体积变小引起; 在压实过程中,地层横向宽度保持不变,仅纵向厚度随地层体积的变 小而变小; 地层压实程度由埋深所决定,且具不可逆性,即在埋深不超过最大古 埋深时,地层压实程度保持不变。
烃源岩评价PPT学习教案

氯仿 沥青 "A"
饱和烃,% 芳香烃,% 饱和烃/芳烃 非烃+沥青质,% (非烃+沥青质)/总烃 峰型特征
40~60 15~25
>3 20~40 0.3~1 前高单峰型
20~40 5~15 1~3 40~50 1~3 前高双峰型
20~30 5~15 1~1.6 50~60 1~3 后高双峰型
5~17 10~22 0.5~0.8 60~80 3~4.5 后高单峰型
下 限标准 的确定 直接关 系到我 国油气 资源量 预测。
第7页/共32页
一、烃源岩有机质丰度
我国碳酸盐岩油气源岩有机碳含量下限标准
成烃演化阶段
镜质体反射率Ro (%)
有机碳(%)
气源岩
油源岩
未成熟-低成熟
<0.75
0.2
0.3
成熟-生油后期 0.75~1.3
0.15
0.2
湿气阶段
1.3~1.8
0.1
(l)烃源岩的地球化学特征评价,如有机质的丰度、类型和成 熟度;
(2)烃源岩的生烃能力定量评价,如生烃强度、生烃量、排烃 强度,等。
定性评价与定量评 价
第2页/共32页
烃源岩评价概述 定性评价
有机质的 丰度
烃源岩的地 球化学特征 评价
Note:从原理上讲,烃源岩的体积也 是决定 其生烃 量的重 要因素 ,但烃 源岩的 体积受 控于其 发育厚 度和分 布面积 ,主要 是一个 地质问 题而不 是地球 化学问 题。但 作为实 际应用 ,则必 需回答 烃源岩 的发育 厚度与 分布面 积等烃 源岩的 体积数 量问题 。
Io
0.0 0.0
390 410 430 450 470 490
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1000
1000
2000
Ng
2000 2000
Ed 3000 Es 4000
K2-E
5000 3000 深 度 (m) 4000 深 度 (m) 3000
N
4000
N K2-E K1
K1
5000
黄骅坳陷港深28井声波时差、流体压力、孔隙度随深度变化关系
(据陈发景、田世澄等1989)
Athy 和 Hedberg(1936) 首先研究 了 泥 质沉积 物 的孔隙度 随 深度 变化的压实曲线, 认为在正常压实情况下孔隙度与深 度之间一般显示出指数关系,即:
11/16/2013
埋藏史恢复
目的: 分析古构造的发展与演化 评价烃源岩有机质在地质时期中的热演化程度
技术方法:
•Mckenzie的纯剪切法 •Airy地壳均衡法 •挠曲均衡法 •平衡剖面技术 •超压技术 •回剥技术
对盆 地或 剖面
考虑因素:
•构造与负荷沉降 •断裂事件 •地层压实作用 •剥蚀事件、沉积间断 •海平面与古水深
成 岩 环境
成 岩作用
砂屑、鲕粒、生屑沉积物
纤状、刃状文石、高镁方解石 胶结作用、大气淡水溶蚀作用 淡水方解石 胶结作用
孔隙 度(%)
0 20 40
主 要 成 岩 作 用 类 型
沉积期
压实、压溶作用 胶结作用 泥晶化作用 白云化作用 硅化作用 新生变形作用 溶蚀作用 破裂作用与充填作 用
第 一期海底胶结(纤状或 刃状方解石、马牙状方解 石)。 第 二期近地表淡水方解石 胶结(粉晶、细晶方解石、 共轴生长方解石)。 第 三期埋藏方解石胶结 (中、粗和巨晶方解石) 包裹体均一温度较高,一 般在100℃~180℃。
在欠压实阶段由于孔隙流体受到阻碍不能及时排出,孔 隙度与深度的变化关系偏离了正常压实的轨迹。 M.R.Giles 等(1998)针对欠压实的特征建立了欠压实 阶段孔隙度变化计算公式:
1 K δ max − eff −δ eff K'
∆t = φ∆t 0 + (1 − φ )∆t ma
φ=
式中
∆t − ∆t ma ∆t 0 − ∆t ma
压实作用 “回剥法” 恢复埋藏史 “超压法”恢复埋藏史 “平衡剖面法”
一、回剥法原理
现今 厚度 再剥 去 2层 剥去 3层
3层沉 积末期
3
1 2 3
2
1
2
1
回剥法恢复埋藏史示意图
1
沉积时间
沉 积 表 面 B A B C
地层 代号
岩性剖面 沉积时间
沉积岩层在沉积形
C B
A
10 (My)
成过程中,自下而上形 成了由老到新的一系列
孔 隙 压 力
压实作用与孔隙度变化规律
泥岩压实阶段及其特征
压实作用 脱水阶段 粘土矿物 排水量% 孔隙度% 地层压力 早期快速 孔隙水 纯蒙脱石 64.7 13.5 21.1 0.7 70~35 35~25 25~10 10~5 正常 正常 异常高压 正常
深 度
砂 页 岩 互 层
海 相 页 岩
欠 压 实 超 压 力 相
C沉 积 末 期
D F
沉积压实埋藏史示意图
2
11/16/2013
0
5
10
15
20
现今25
(My) A
“ 回 剥 法” 恢 复 埋 藏 史 示 意 图
5 (My) 地层 代号
B 5 (My) C 5 (My) D 5 (My) E 5 (My)
岩性剖面 沉积时间
A
10 (My)
地层剥蚀: 地层沉积与 抬升的时间 相同。
不同盆地砂岩的孔隙度随深度变化的关系
(据M.R.Giles等(1998 )
6
11/16/2013
井深
(m)
声波时差
(
s/f )
1000
3
4
5
6
7 8 9100
2
层 位
四、碳酸盐岩的压实作用
重二 段
1200
重一 段
1400
砂岩
泥岩 凉高 山组 大安 寨组
雨水
流 淡 水 渗 淡 水潜 流
Mg /Ca <1
压实作用与孔隙度变化规律
声波时差
深 度0
(m)
(us/m) 100 300
流体压力
126 Q Nm
1
200
(对数)
(kg/cm 2)
孔隙度(% )
(对数)
阿 参 1井 砂 岩 压 实 曲 线
100 1000 us/ m 0 100 0
阿 参 1井 泥 岩 压 实 曲 线
1000 us/ m
1000 Nm 2
近 地 表 浅 埋 藏 构造 抬升 剥蚀 中 深 埋 藏 构造抬升 褶皱 期
1
泥晶化作用
压实作用、重结晶作用 棘屑次生加大作用 溶蚀作用、 构造破裂 压溶作用、石 英交 代 深 部 溶蚀、 中粗 粒 方解石胶结作用 构造裂缝 、方解石 充填
残 余 晶 间 孔 、溶 蚀 孔 、 缝 颗 粒 灰 岩 ,孔隙 度 =2-6%
孔隙度=40%
地 层 厚 度 100m
孔 隙 流 体
40m
岩 石 骨 架
60m
沉积岩层厚度与岩石骨架、孔隙流体关系示意图
天然样品 A
HA
φ
HB
B
Z2A
孔隙水
HA
Z1A
hsA== hsB
Z2B HB Z1B
A
B
埋 深
粘土压实作用示意图
(据Terzaghi,1948)
等效样品
1
11/16/2013
VanHint(1978) 首次强调定量的压实校正的重要性。汪缉安、 熊亮萍等(1984)恢复华北地区的埋藏史时,把现今1500m厚度 的沙河街组分别按不同岩性压实校正与未经压实校正进行对 比,计算结果表明在东营组末和馆陶组末,经过压实校正的 古地温比未经校正者提高10~15℃,厚度可增加300~450m。 因此,在恢复埋藏史时,不能只凭现今地层剖面上各层厚度 进行逐层相减来求得,而必须考虑到压实作用的影响。 同一地层在不同埋藏深度下地层厚度 埋藏深度 (m) 平均孔隙度 (%) 地层厚度 (m) 50 50 1000 500 20 700 2500 10 600 5000 5 550
φ = φ 0 e δ max −eff e
式中
Байду номын сангаас
δ eff —有效应力;
K —随着围压增加而孔隙度减少的压缩系数;
∆t —声波时差(μs/m);
∆t 0—孔隙水声波时差(μs/m);
K ' —围压减小而引起弹性回弹的压缩系数;
δ max − eff —最大有效应力。
∆t ma—岩石骨架声波时差(μs/m);
单井
分析地层在地质时期中经历的温度和压力条件
埋藏史恢复的技术方法
一、泥质沉积物(岩)压实作用原理
压实作用是指在上覆沉积负荷作用下沉积物 受到的挤压作用,它是使疏松的沉积物固结成 岩的主要作用之一。 压实作用的压力主要来自上覆沉积物重力和 水体的静水压力。因此,压实作用在地质时期 中长期持续的一种成岩作用。 它从沉积物埋藏开始一直可以继续到沉积 物埋深达9000米以上。在压实作用下沉积物的 孔隙流体不断排出、孔隙度不断减少,体积密 度不断增加。
第i层厚度
H i(h)
H i(Dj)
3
11/16/2013
时间 (Ma)
Tm Fn T4 T3 T2 T1
F4
F3
F2
F1
埋藏史恢复
一、地层压实校正 二、关键性参数 三、计算步骤
深度
回 剥 法 示 意 图
F3
F2
F1
沉积初期
F2
(m)
F1
F1
F4 F3 F2 F1
现今地层
孔 隙 度 ( 对 数 ) 正 常 压 实 — 静 水 压 力 相 混 合 压 实 — 混 合 压 力 相
地层 代号
岩性剖面 沉积时间
A
10 (My)
地质时间
0 5 10 15 20 B C D E B A A 25
B
8(My)
地层剥蚀
B
8(My)
被剥蚀 地层
C
12(My) 5 (My) 4 (My)
C
12(My) 5 (My) 4 (My)
D
D F
C D E
埋 藏 深 度
F
剥蚀地层
0 5 10 15 20 25 30
现今
(My) A
二、压实校正数学模型
同一地层在不同埋藏深度下地层厚度 埋藏深度 (m) 平均孔隙度 (%) 地层厚度 (m)
埋 藏 深 度
“ 回 剥 法” 恢 复 埋 藏 史 示 意 图
5 (My)
B 5 (My) C 5 (My) D 5 (My)
0 50 1000
500 20 700
2500 10 600
深 度 (km)
φ = φ 0 ⋅ e − c⋅ z
式中
孔隙度(%)
φ —孔隙度(%);
φ0 —沉积初始孔隙度(%);
不同盆地泥岩的孔隙度随深度变化的关系
(据M.R.Giles等(1998)
c
—压实系数(1/m);
z —埋藏深度(m)。
5
11/16/2013
在正常压实阶段的压实曲线的编制方法,有直接测 量和间接测量两种。目前大多利用声波时差测井资料间 接求取孔隙度。根据Wyllie等人(1956,1958)大量试验 的结果,推断在具有均匀分布的小孔隙的固结地层中, 孔隙度与声波时差值之间具有线性关系: