高中化学 氨气的性质用途有哪些注意事项
高中化学教案氨气

高中化学教案氨气
目标:学生能够掌握氨气的性质和制备方法。
一、导入:
向学生展示氨气气味的特点,并让学生描述氨气的气味。
引导学生思考氨气的性质以及在生活中的应用。
二、讲授:
1. 氨气的性质
氨气是一种无色有刺激性气味的气体,遇湿润的红色石蕊试纸会变蓝,属于碱性气体。
2NH3(g) + H2O(l) → NH4OH(aq)
氨气遇火燃烧,产生氮气和水蒸汽。
4NH3(g) + 3O2(g) → 2N2(g) + 6H2O(g)
2. 氨气的制备方法
工业上主要的制备方法是哈伯-玻希过程,通过氮气和氢气在高温高压下进行催化反应。
N2(g) + 3H2(g) ⇌ 2NH3(g)
实验室中可以通过铵盐和氢氧化钠的反应制备氨气。
NH4Cl(s) + NaOH(aq) → NH3(g) + NaCl(aq) + H2O(l)
三、实验操作:
1. 准备实验器材:氨气生成装置、试管、氨水、蓝色石蕊试纸。
2. 操作步骤:
a. 在试管中放入氨水。
b. 向试管中加入氢氧化钠溶液,观察试管内的变化。
c. 拿出一张红色石蕊试纸,将其放入试管中,观察试纸颜色变化。
3. 结果分析:试管中产生了氨气,红色石蕊试纸变成了蓝色。
四、讨论与总结:
请学生谈谈氨气的制备方法及其应用,并总结氨气的性质。
引导学生思考氨气在农业和化工生产中的重要性。
五、作业:
请学生写一篇关于氨气的实验报告,包括实验操作、实验结果及结论,并写一段小结。
同时,请学生查阅资料,探究氨气在生产和生活中的应用。
高一氨的知识点

高一氨的知识点氨(NH3)是一种无色气体,具有强烈的刺激性气味。
在高一化学学习中,了解氨的性质和用途是很重要的。
本文将介绍高一氨的有关知识点。
一、氨的物理性质1. 外观:氨是无色气体,具有刺激性气味。
2. 密度:氨气的密度比空气小,约为0.59 g/L。
3. 沸点和凝固点:氨气的沸点为-33.34℃,凝固点为-77.73℃。
4. 溶解性:氨易溶于水,形成氨水溶液。
二、氨的化学性质1. 与酸反应:氨是一种碱性物质,能与酸反应生成相应的盐。
例如,氨和盐酸反应生成氯化铵:NH3 + HCl → NH4Cl2. 与酸性氧化物反应:氨能与酸性氧化物反应生成相应的盐和水。
例如,氨和二氧化硫反应生成亚硫酸铵:2NH3 + SO2 → (NH4)2SO33. 与稀氧化剂反应:氨可以作为还原剂与稀氧化剂反应。
例如,氨与氧气反应生成水和氮气:4NH3 + 5O2 → 4NO + 6H2O三、氨的应用1. 氨的主要用途是制取化肥。
氨是合成氨肥的重要原料,可以与二氧化碳反应生成尿素,从而制造氨基酸肥料和复合肥料。
2. 氨可以用于生产清洁剂和溶剂。
其碱性特性使其成为清洁剂的重要成分,例如玻璃清洗液和洗涤剂。
3. 氨被用于医药领域。
氨可以作为药物制剂的成分,具有促进慢性伤口愈合等作用。
4. 氨被广泛应用于制冷和空调行业。
氨是一种高效制冷剂,被用于制造冷冻设备并提供制冷效果。
四、氨的危害与安全注意事项氨具有刺激性气味且有毒,高浓度的氨气会对人体呼吸系统和眼睛造成损害。
因此,在使用氨的过程中,需要注意以下安全事项:1. 避免长时间暴露在高浓度的氨气环境中。
2. 在处理氨气时,必须佩戴防护眼镜、手套和呼吸防护设备。
3. 氨气泄漏时,应立即撤离该区域并通知相关专业人员进行处理。
总结:通过本文的介绍,我们了解到高一氨的物理性质、化学性质、应用以及安全注意事项。
氨在农业、医药和化工等领域有广泛的应用,但在使用时需注意防护和安全。
希望这些知识点可以帮助高一学生更好地理解氨的特性和用途。
高三化学氨气的知识点

高三化学氨气的知识点【高三化学氨气的知识点】氨气是一种无色、具有刺激性气味的气体,在化学中有着重要的应用和研究价值。
本文将深入探讨高三化学中与氨气相关的知识点,包括氨气的性质、制备方法、用途以及安全注意事项。
一、氨气的性质氨气(NH3)是一种具有碱性的化合物,其分子由1个氮原子和3个氢原子组成。
以下是氨气的主要性质:1. 氨气是无色气体,在常温下存在于空气中。
2. 氨气具有强烈刺激性气味,能使呼吸道黏膜发生灼痛感。
3. 氨气可溶于水,形成氨水(氨的水溶液)。
氨水呈碱性,可以和酸发生中和反应。
二、氨气的制备方法氨气可以通过以下几种方法进行制备:1. 氨气的工业制备主要采用哈伦-伯-伯修法。
该方法通过在高温下将天然气(甲烷)和氮气反应,产生氢气和氮气的混合气体,然后在催化剂的作用下进行氧化还原反应,生成氨气。
2. 氨气还可以通过铵盐的热分解或碱金属与氮气反应等方法制备。
三、氨气的用途氨气在工业生产和实验室中有着广泛的用途,包括以下几个方面:1. 氨气被广泛用作化肥的生产原料。
通过制备氨水,可以制成多种氮肥,如尿素、硫酸铵等。
2. 氨气也用于制备合成纤维素纤维(如人造丝)和染料。
3. 氨气可以用作冷剂和制冷剂,如制冷剂R717。
4. 氨气在实验室中用于合成化合物或进行化学分析。
5. 氨气还有其他应用,如用作清洁剂、金属表面处理剂等。
四、氨气的安全注意事项使用氨气时,应注意以下安全事项:1. 氨气具有刺激性气味,接触时应避免吸入气体,以免对呼吸道造成伤害。
操作氨气时应戴好防护面具和手套,并确保通风良好。
2. 氨气属于易燃气体,接触明火或其他火源可能引发爆炸。
应将氨气存储在密封的容器中,远离火源和高温环境。
3. 氨气具有腐蚀性,避免与皮肤接触。
如果发生溅入眼睛或皮肤,应立即用大量清水冲洗,并寻求医疗帮助。
4. 当氨气泄漏时,应迅速撤离现场,并即刻报警。
在处理泄漏情况时,应佩戴适当的防护装备,并采取专业的处置方法。
高中氨气知识点总结

高中氨气知识点总结一、氨气的性质氨气是一种无色有刺激性气味的气体,在常温常压下呈无色透明气体。
它极易溶于水,在水中能够形成氨水,这种氨水有着碱性的特性。
氨气有着较强的还原性,能够和氧气或氯气等发生化学反应。
氨气也是一种较为活泼的非金属活性气体,能够和氢气发生化学反应。
二、氨气的制备1. 直接合成法N2(g) + 3H2(g) → 2NH3(g)氮气和氢气通过铁催化剂在高温、高压条件下反应制备氨气。
这是工业上常用的氨气制备方法。
2. 间接合成法C + 2NH3 → HCN + 3H2HCN + 3H2 → NH3通过一系列的反应,从一些化合物中得到氨气的方法。
三、氨气的用途1. 化肥制造氨气是化肥的原料,被用来制造硝酸铵、尿素、硝酸钙等肥料。
2. 合成其他化学品氨气是工业生产中的重要原料,用于合成硝酸、硫酸等化学品。
3. 清洁剂氨气可用来制备清洁剂,常用于清洁玻璃等表面。
四、氨气的化学性质1. 与酸反应NH3(g) + HCl(g) → NH4Cl(s)氨气可以和酸反应生成盐。
氨气的碱性使其与酸反应会产生中和反应,生成盐和水。
2. 与氧气反应4NH3(g) + 5O2(g) → 4NO(g) + 6H2O(g)氨气与氧气在高温下可以发生反应,生成一氧化氮和水。
3. 与硫酸铜反应CuSO4(aq) + 4NH3(g) → [Cu(NH3)4]SO4(aq)氨气与硫酸铜反应,生成配合物。
五、氨气的危害1. 毒性氨气是一种有毒气体,吸入过量氨气会对人体造成伤害,引起头晕、恶心、呕吐等不适症状。
2. 腐蚀性浓度较高的氨气具有一定的腐蚀性,会对皮肤和眼睛造成伤害。
3. 爆炸性氨气在一定条件下能够和空气发生爆炸,造成严重的安全隐患。
六、环境问题1. 空气污染氨气对环境产生一定的空气污染。
2. 水污染氨气溶解在水中形成氨水,对水体产生一定的污染作用。
七、氨气的使用和安全1. 使用氨气时需注意通风良好,避免其浓度过高造成危害。
氨气知识点归纳

氨气知识点归纳氨气的定义和性质氨气是一种无色、具有强烈刺激性气味的气体,化学式为NH3。
它具有强烈的碱性,能与酸发生中和反应。
氨气是一种重要的化工原料,广泛应用于农业、医药、化工等领域。
氨气的制备方法1.氨气的工业制备主要有合成氨法和氨水蒸发法。
–合成氨法:通过氮气与氢气在高温高压条件下经过催化剂催化反应生成氨气。
–氨水蒸发法:将氨水加热蒸发,然后再将氨气与水分离。
2.实验室中可以通过氨水和氯化铵反应制备氨气。
–反应方程式:NH4Cl + NaOH → NH3 + H2O + NaCl氨气的用途1.农业中的应用:–氨气是合成氨肥料的重要原料。
合成氨能够与二氧化碳反应生成尿素,作为植物的氮源,促进植物生长。
–氨气还可以用于农作物的保鲜,延缓农产品的腐烂速度。
2.化工领域的应用:–氨气是生产硝酸、硫酸、尿素等化学品的重要原料。
–氨气可以用于制造合成纤维、塑料、炸药等。
3.医药行业中的应用:–氨气可以用作制药工业中的中间体,用于合成多种药物。
–氨气还可以用于医疗设备的消毒和清洁。
氨气的危害和安全注意事项1.氨气具有强烈的刺激性气味,对呼吸道和眼睛有刺激作用。
长时间暴露在高浓度的氨气环境中会对人体健康造成损害。
2.在使用氨气时应注意以下安全事项:–在通气良好的地方使用氨气,避免在密闭空间中使用。
–使用氨气时应佩戴防护眼镜、手套和呼吸防护装置。
–避免氨气与可燃物接触,以防发生火灾或爆炸。
3.对于发生氨气泄漏的情况,应立即采取以下应急措施:–立即撤离泄漏区域,远离险情。
–避免直接接触泄漏的氨气,尽量避免吸入。
–封堵泄漏源,并通知相关部门进行处理。
氨气的环境影响1.氨气的排放对环境造成污染。
氨气在大气中与酸性物质反应生成氨盐,并降低大气的酸性。
2.氨气的大量排放会导致酸雨的形成。
酸雨会对土壤和水源造成污染,影响生态系统的平衡。
总结:氨气是一种重要的化工原料,广泛应用于农业、医药、化工等领域。
在使用氨气时,需要注意其强刺激性和安全事项,以及避免对环境造成污染。
高三化学复习-氨的结构、制法、性质和用途

喷泉的原理来分析,图1是减小 上部
烧瓶内气体压强;图2是 增大下部
锥形瓶内气体压强(填增大或减小)
图2
归纳反思
喷泉实验
1.关键: 形成压强差
2.途径: ① 减少 “上瓶”的压强 ② 增加“下瓶”的压强
例1.(2009年上海高考化学题)下 面是实验室制取氨气的装置和选用
思考1:将试管中的红色溶液加热,颜色<将发生怎 样的变化?为什么?另有一种无色溶液,加热后会 变红色,这是什么溶液?
(2010年全国高考题)某学生
课外活动小组利用右图所示装置分别
做如下实验:
⑴ 在试管中注入某红色溶液,加热试
管,溶液颜色逐渐变浅,冷却后恢复
红色,则原溶液可能是 稀氨水和酚酞
溶液;加热时溶液由红色逐渐变浅的
瓶已装满干燥氨气,
引发水上喷的操作
是
。
该实验的原理
是
。
连线高考
(2) (09全国)如果只提供
如左图的装置,请说明
引发喷泉的法
。
提示:气体的体积受外界 因素(压强、温度)影响
(3)在右图装置中,烧瓶中充满干燥气体a, 打开弹簧夹f,然后将滴管b中的液体挤入烧 瓶内,烧杯中的液体b呈喷泉状喷出,最终 几乎充满烧瓶。则a和b分别可能是(BD )
a 干燥气体
b液体
a
A
O2
水溶液
b
B CO2 NaOH溶液
f
C
Cl2
饱和NaCl水溶液
D HCl
水溶液
b
(4)某学生积极思考产生喷泉的其他
办法,并设计了图2所示装置,在锥形
瓶中分别加入足量的下列物质,反应后
高一 化学 必修一 第一课时 氨气的性质及用途
Ca(OH)2+2NH4Cl = CaCl2+2NH3↑+2H2O
(NH4)2SO4 + 2NaOH
实质:NH4+ + OH-
2NH3 ↑+ Na2SO4 + 2H2O NH3 ↑ + H2O
➢一切铵盐的共同性质,实验室可利用这个性质来检验NH4+的
存在。
如何用实验方法证 明某白色固体是铵
盐?
铵盐(NH4+) 的检验
二、氨气的物理性质
色、味、态 密度
溶解性 沸点
无色、刺激性气味的气体 比空气小 极易溶于水(1:700) -33.5℃,易液化(液氨可做制冷剂)
三、氨气的化学性质
1. NH3与水的反应
NH3 + H2O
NH3·H2O
一水合氨
NH4+ + OH-
思考:如何检验氨气? 湿润的红色石蕊试纸,若红色石蕊试纸变蓝,则为氨气。
硝酸铵受热分解温度不同,分解产物也不同: 在110℃时:NH4NO3=NH3+HNO3 在185~200℃时:NH4NO3=N2O+2H2O 在230℃以上时,同时有弱光:2NH4NO3=2N2+O2+4H2O 在400℃以上时,剧烈分解发生爆炸:4NH4NO3=3N2+2NO2+8H2O
3. 铵盐与碱反应(溶液中或固体加热均能反应) 演示实验:氯化铵与熟石灰混合
一、工业合成氨气
高温 高压
N2+3H2 催化剂 2NH3
氮的固定:将游离态的氮转变为氮的化合物
自然固氮
氮的固定
人工固氮
高能固氮 生物固氮
高温
N2+O2 放电 2NO
高一化学氨气知识点
高一化学氨气知识点氨气(NH3)是一种常见的气体,它具有特殊的性质和广泛的应用领域。
在高一化学学习中,掌握氨气的知识点对于理解化学原理和解决实际问题非常重要。
本文将介绍氨气的性质、制备方法和用途等相关知识点。
一、氨气的性质氨气是一种无色、刺激性气味的气体,可溶于水而形成氨水。
以下是几个氨气的主要性质:1. 氨气的密度较大,为0.73 g/L。
在常温常压下,氨气是气态存在的。
2. 氨气是碱性气体,具有碱的性质。
它能与酸反应生成盐和水,这种反应称为中和反应。
例如:NH3 + HCl → NH4Cl3. 氨气具有高度的可燃性,能与氧气形成可燃混合气。
当氧气浓度达到5%~25%时,氨气会发生爆炸。
4. 氨气具有强烈的刺激性气味,即使在低浓度下也能被人类感知到。
高浓度的氨气对人体呼吸道和眼睛有害。
二、氨气的制备方法氨气的制备方法种类繁多,常见的制备方法有以下几种:1. 氨的工业制备方法氨的工业制备方法主要是通过哈伯-博丁过程,即氮气与氢气在高温高压条件下催化反应生成氨气。
N2 + 3H2 ⇌ 2NH3该反应常用铁-铝催化剂催化,反应温度通常在350℃~550℃,反应压力在100~350 atm之间。
2. 氨的实验室制备方法在实验室中,可以通过将氨盐与碱溶液反应制备氨气。
例如:NH4Cl + NaOH → NH3↑ + NaCl + H2O通过上述反应,可以得到氨气的产物。
三、氨气的用途氨气在日常生活和工业生产中有多种应用。
以下是氨气的几个主要应用领域:1. 化肥生产氨气是制造农业化肥的原料,可以用于制备各种氮肥,如尿素、硝酸铵等。
氨气的应用促进了农作物的生长和产量的提高。
2. 清洁剂和消毒剂由于氨气具有碱性和强益智刺激性,可以用于制备清洁剂和消毒剂,如氨水。
3. 制冷剂氨气的沸点较低,因此被广泛应用于制冷系统中。
它是一种环境友好的制冷剂,对臭氧层的破坏较小。
4. 金属表面处理氨气可以作为金属表面处理的精炼剂,用于去除金属表面的氧化物和杂质,提高金属的纯度。
氨气和胺气
氨气和胺气氨气和胺气是在日常生活中常见的气体,它们在不同的环境和应用中起着重要的作用。
本文将从定义、性质、来源、用途以及安全注意事项五个方面来详细介绍氨气和胺气。
首先,氨气是一种无色、有刺激性气味的气体,化学式为NH3。
胺气是一类化合物,它们由一个或多个氨基通过碳链相连而形成。
根据碳链上是否有其他基团,胺分为一级胺、二级胺和三级胺。
氨气和胺气的分子结构使它们具有一定的溶解性和反应性。
氨气和胺气可以从多个来源获取。
氨气主要来自于自然界中的氮循环过程,如植物蛋白质的分解和动物排泄物的分解。
工业上,氨气可以通过氨合成法或者从天然气中提取而得到。
胺气则可以通过化学合成或者从天然气中提取得到。
这些气体在农业、医药、化工等领域有广泛的应用。
氨气在农业中被广泛应用于作为肥料的氨水,可以提供植物所需的氮元素。
此外,氨气还被用于燃料添加剂和冷却剂的制备。
胺气则被广泛应用于医药领域,用于合成药物、制造染料等。
胺还可以用作表面活性剂和增塑剂,用于制造塑料和涂料。
然而,使用氨气和胺气需要注意安全事项。
首先,这些气体具有刺激性气味和腐蚀性,应避免直接接触皮肤和眼睛。
其次,氨气有一定的毒性,长时间暴露可导致中毒。
在使用过程中应充分通风,避免密闭空间中的氨气蓄积。
另外,胺气对环境具有一定的污染性,应注意遵守环保法规。
综上所述,氨气和胺气是重要的气体物质,在许多领域具有广泛应用。
了解这些气体的性质、来源、用途和安全事项,对于正确使用它们具有重要的指导意义。
在各类应用中,我们应当充分认识到氨气和胺气的特点和安全性,以确保我们的生产和生活环境的安全和稳定。
氨气化学知识点总结
氨气化学知识点总结一、氨气的化学性质1.氨气的物理性质氨气是一种无色、有刺激性气味的气体,比空气轻,密度约为0.589g/L。
它在常温下是一种弱碱性气体,可以与水反应生成氢氧化铵(NH4OH),而且溶解度很大(1mol/L NH3)2.氨气的化学性质氨气是一种具有还原性和碱性的化合物,它可以与许多化合物发生反应,如与酸、酮、酯、酰氯烷基醚、对二醇、水蒸气、氰化物、羧酸、羧酸酯、醛、乙二醇酯等一系列有机物均发生反应。
氨气还能和酸根形成易溶的氨盐,在与银盐溶于氨水时鉴银。
与氧和氯气在较高温度条件下反应,生成一氧化氮N2O和氮氧化氮NO。
与氟在高温可以反应,生成NF3。
另外由于氮原子的价电子结构较稳定,所以,氨气与点火时的灯芯和气体电电话开关电弧可以进行顺热氧化反应,生成一定量的氮氧化物。
另外由于其具有碱性也可以与各种硫酸、盐酸等强酸都能缓和。
3.氨气的还原性氨气是一种强还原剂,它能够与一些金属和非金属氧化物反应,发生还原反应,如与二氧化铜反应生成氨合成铜,还原CuO为Cu2O。
对于部分氧化物,氨能够表现出复杂的还原性,如与氧氮化物反应可以燃烧成N2和H2O等。
4.氨气的碱性氨气是一种碱性气体,它能够与酸性物质反应生成盐和水,如与盐酸反应生成氯化铵和水,与硫酸反应生成硫酸铵和水,与硝酸反应生成硝酸铵和水。
氨气还能够与一些酸性离子生成相应的氨盐,如与氨基甲酸反应生成氨基甲酸铵。
此外,氨气可以将其自由电子提供给其他化合物,从而表现出一定的还原性。
二、氨气的制备方法1.哈柴氨法哈柴氨法是一种通过焦炭和氮气在高温高压条件下反应合成氨气的方法。
该方法是由德国化学家哈柴于1903年首先提出,后经过不断改进,成为了目前最重要的工业制氨方法之一。
哈柴氨法的反应条件为400-500℃、200-1000atm,使用的催化剂一般为Fe3O4,K2O和Ca3(PO4)2等。
2.王水法王水法是一种利用王水(HNO3+HCl)氧化还原反应合成氨气的方法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
氨气的性质用途
定义:
氨气,无机化合物,常温下为气体,无色有刺激性恶臭的气味,易溶于水,氨溶于水时,氨分子跟水分子通过氢键结合成一水合氨(NH3·H2O),一水合氨能小部分电离成铵离子和氢氧根离子,所以氨水显弱碱性,能使酚酞溶液变红色。
氨与酸作用得可到铵盐,氨气主要用作致冷剂及制取铵盐和氮肥。
氨气的化学性质:
(1)跟水反应
氨在水中的反应可表示为:NH3+H2O=NH3·H2O
氨水中存在三分子、三离子
分子:NH3.NH3·H2O、H2O;
离子:NH4+、OH-、H+;
(2)跟酸反应
NH3+HNO3==NH4NO3
2NH3+H2SO4===(NH4)2SO4
NH3+HCl===NH4Cl
3NH3+H3PO4===(NH4)3PO4
NH3+CO2+H2O===NH4HCO3
(3)在纯氧中燃烧
4NH3+3O2==点燃==2N2+6H2O
4NH3+5O2=催化剂加热=4NO+6H2O(氨气的催化氧化)
(4)与碳的反应
NH3+C=加热=HCN+H2↑(剧毒氰化氢)
(5)与水、二氧化碳
NH3+H2O+CO2==NH4HCO3
该反应是侯氏制碱法的第一步,生成的碳酸氢铵与饱和氯化钠溶液反应生成碳酸氢钠沉淀,加热碳酸氢钠制得纯碱。
此反应可逆,碳酸氢铵受热会分解
NH4HCO3=(加热)=NH3+CO2+H2O
(6)与氧化物反应
3CuO+2NH3==加热==3Cu+3H2O+N2 这是一个氧化还原反应,也是实验室常用的临时制取氮气的方法,采用氨气与氧化铜供热,体现了氨气的还原性。
氨气的物理性质:
相对分子质量17.031
氨气在标准状况下的密度为0.771g/L
氨气极易溶于水,溶解度1:700
熔点-77.7℃;沸点-33.5℃
固氮:
(1)人工固氮
工业上通常用H2和N2在催化剂、高温、高压下合成氨
最近,两位希腊化学家,位于Thessaloniki的阿里斯多德大学的GeorgeMarnellos和MichaelStoukides发明了一种合成氨的新方
法(Science,2Oct.1998,P98)。
在常压下,令氢与用氦稀释的氮分别通入一加热到570℃的以锶-铈-钇-钙钛矿多孔陶瓷(SCY)为固体电解质的电解池中,用覆盖在固体电解质内外表面的多孔钯多晶薄膜的催化,转化为氨,转化率达到78%;对比:几近一个世纪的哈伯法合成氨工艺通常转化率为10至15%!他们用在线气相色谱检测进出电解池的气体,用HCl吸收氨引起的pH变化估算氨的产率,证实提高氮的分压对提高转化率无效;升高电流和温度虽提高质子在SCY中的传递速度却因SCY导电率受温度限制,升温反而加速氨的分解。
(2)天然固氮
①大气固氮
闪电能使空气里的氮气转化为一氧化氮,一次闪电能生成80~1500kg的一氧化氮。
这也是一种自然固氮。
自然固氮远远满足不了农业生产的需求。
②生物固氮
豆科植物中寄生有根瘤菌,它含有氮酶,能使空气里的氮气转化为氨,再进一步转化为氮的化合物。
固氮酶的作用可以简述如下:
除豆科植物的根瘤菌外,还有牧草和其他禾科作物根部的固氮螺旋杆菌、一些原核低等植物——固氮蓝藻、自生固氮菌体内都含有固氮酶,这些酶有固氮作用。
这一类属自然固氮的生物固氮。
注意事项:
氨对接触的皮肤组织都有腐蚀和刺激作用,可以吸收皮肤组织中的水分,使组织蛋白变性,并使组织脂肪皂化,破坏细胞膜结构。
氨的溶解度极高,所以主要对动物或人体的上呼吸道有刺激和腐蚀作用,常被吸附在皮肤粘膜和眼结膜上,从而产生刺激和炎症。
可麻痹呼吸道纤毛和损害粘膜上皮组织,使病原微生物易于侵入,减弱人体对疾病的抵抗力。
氨通常以气体形式吸入人体,氨被吸入肺后容易通过肺泡进入血液,与血红蛋白结合,破坏运氧功能。
进入肺泡内的氨,少部分为二氧化碳所中和,余下被吸收至血液,少量的氨可随汗液、尿液或呼吸排出体外。
氨气泄露氨气泄露短期内吸入大量氨气后可出现流泪、咽痛、声音嘶哑、咳嗽、痰带血丝、胸闷、呼吸困难,可伴有头晕、头痛、恶心、呕吐、乏力等,严重者可发生肺水肿、成人呼吸窘迫综合症,同时可能发生呼吸道刺激症状。
若吸入的氨气过多,导致血液中氨浓度过高,就会通过三叉神经末梢的反射作用而引起心脏的停搏和呼吸停止,危及生命。
长期接触氨气,部分人可能会出现皮肤色素沉积或手指溃疡等症状。
室内空气中氨气主要来自建筑施工中使用的混泥土添加剂。
添加剂中含有大量氨内物质,在墙体中随着温度、湿度等环境因素的变化而还原成氨气释放出来。
铵盐的化学性质:
(1)受热分解
所有的铵盐加热后都能分解,其分解产物与对应的酸以及加热的温度有关。
分解产物一般为氨和相应的酸。
如果酸具有氧化性,则在加热条件下,氧化性酸和产物氨将进一步反应,使NH3氧化为N2或其氧化物:
碳酸氢铵最易分解,分解温度为30℃:
氯化铵受热分解成氨气和氯化氢。
这两种气体在冷处相遇又可化合成氯化铵。
这不是氯化铵的升华,而是它在不同条件下的两种化学反应:
硝酸铵受热分解的产物随温度的不同而不同。
加热温度较低时,分解生成硝酸和氨气:温度再高时,产物又有不同;在更高的温度或撞击时还会因分解产物都呈气体而爆炸。
硫酸铵要在较高的温度才分解成NH3和相应的硫酸。
强热时,还伴随有氨被硫酸氧化的副反应,所以产物就比较复杂。
(2)跟碱反应放出氨气
实验室里就是利用此反应来制取氨,同时也利用这个性质来检验铵离子的存在。
铵盐在工农业生产上有重要用途,大量的铵盐用作氮肥,如NH4HCO3.(NH4)2SO4.NH4NO3等。
NH4NO3还是某些炸药的成分,NH4Cl用于制备干电池和染料工业,它也用于金属的焊接上,以除去金属表面的氧化物薄层。
1. 喷泉实验
在常温,常压下,一体积的水中能溶解700体积的氨。
在干燥的圆底烧瓶里充满氨气,用带有玻璃管和滴管(滴管里预先吸入水)
的塞子塞紧瓶口。
立即倒置烧瓶,使玻璃管插入盛水的烧杯里(水里事先加入少量的酚酞试液),把实验装置装好后。
打开橡皮管的夹子,挤压滴管的胶头,使少量的水进入烧瓶。
观察现象。
实验的基本原理是使烧瓶内外在短时间内产生较大的压强差,利用大气压将烧瓶下面烧杯中的液体压入烧瓶内,在尖嘴导管口形成喷泉。
2. 氨气检验
方法一:用湿润的红色石蕊试纸检验,试纸变蓝证明有氨气。
方法二:用玻璃棒蘸浓盐酸或者浓硝酸靠近,产生白烟,证明有氨气。