人教版九年级数学上册《圆周角》题组训练(含答案解析)

合集下载

2018-2019学年度人教版数学九年级上册圆周角同步练习含答案

2018-2019学年度人教版数学九年级上册圆周角同步练习含答案

2018-2019学年度人教版数学九年级上册圆周角同步练习含答案一.选择题(共12小题)1.如图,A,B,C是⊙O上的三点,∠ABO=25°,∠ACO=30°,则∠BOC的度数为()A.100°B.110°C.125°D.130°2.如图,一块三角尺ABC的斜边AB与量角器的直径恰好重合,点D对应的刻度是46°,则∠ACD的度数为()A.46°B.23°C.44°D.67°3.如图,AB是圆O的弦,AB=20,点C是圆O上的一个动点,且∠ACB=45°,若点M、N分别是AB、BC的中点,则MN的最大值是()A.10B.5C.10D.204.如图,在⊙O中,弧AB=弧AC,∠A=36°,则∠C的度数为()A.44°B.54°C.62°D.72°5.如图,AB为⊙O的直径,C、D是⊙O上的两点,∠BAC=30°,弧BC等于弧CD,则∠DAC的度数是()A.30°B.35°C.45°D.70°6.如图,⊙O中,若∠BOD=140°,∠CDA=30°,则∠AEC的度数是()A.80°B.100°C.110°D.125°7.如图,AB,BC是⊙O的弦,∠B=60°,点O在∠B内,点D为上的动点,点M,N,P分别是AD,DC,CB的中点.若⊙O的半径为2,则PN+MN 的长度的最大值是()A.B.C.D.8.如图,AB是⊙O直径,若∠AOC=130°,则∠D的度数是()A.20°B.25°C.40°D.50°9.如图,在△ABC中,∠ACB=90°,过B,C两点的⊙O交AC于点D,交AB于点E,连接EO并延长交⊙O于点F,连接BF,CF,若∠EDC=135°,CF=2,则AE2+BE2的值为()A.8B.12C.16D.2010.如图,AB是⊙O的直径,C是⊙O上一点(A、B除外),∠AOD=130°,则∠C的度数是()A.50°B.60°C.25°D.30°11.如图,AB经过圆心O,四边形ABCD内接于⊙O,∠B=3∠BAC,则∠ADC 的度数为()A.100°B.112.5°C.120°D.135°12.如图,四边形ABCD内接于⊙O,∠DAB=140°,连接OC,点P是半径OC 上一点,则∠BPD不可能为()A.40°B.60°C.80°D.90°二.填空题(共6小题)13.如图,AB是⊙O的直径,点C、D在⊙O上,若∠ACD=25°,则∠BOD的度数为.14.如图,点B,C,D在⊙O上,若∠BCD=130°,则∠BOD的度数是.15.如图,AB是⊙O的直径,弦CD⊥AB于点E,(1)若CD=16,BE=4,则⊙O的半径为;(2)点M在⊙O上,MD恰好经过圆心O,连接MB,若∠M=∠D,则∠D的度数为.16.如图,A、B、C、D均在⊙O上,E为BC延长线上的一点,若∠A=102°,则∠DCE= .17.如图,四边形ABCD内接于⊙O,AB是直径,OD∥BC,∠ABC=40°,则∠BCD的度数为18.利用圆周角定理,我们可以得到圆内接四边形的一个性质,请规范写出我们所学的这个性质的内容,并利用这个性质完成下题:如图,四边形ABCD内接于⊙O,若∠A=60°,则∠DCE的度数是.三.解答题(共6小题)19.如图,在圆的内接四边形ABCD中,AB=AD,BA、CD的延长线相交于点E,且AB=AE,求证:BC是该圆的直径.20.如图,AB为⊙O直径,弦CD⊥AB于E,△COD为等边三角形.(1)求∠CDB的大小.(2)若OE=3,直接写出BE的长.21.如图,在⊙O中,=,∠ACB=60°.(Ⅰ)求证:△ABC是等边三角形;(Ⅱ)求∠AOC的大小.22.已知四边形ABCD是圆内接四边形,∠1=112°,求∠CDE.23.如图,在⊙O的内接四边形ABCD中,∠BCD=120°,CA平分∠BCD.(1)求证:△ABD是等边三角形;(2)若BD=3,求⊙O的半径.24.如图,在Rt△ABC中,∠ABC=90°,点M是AC的中点,以AB为直径作⊙O分别交AC,BM于点D,E.连结DE,使四边形DEBA为⊙O的内接四边形.(1)求证:∠A=∠ABM=∠MDE;(2)若AB=6,当AD=2DM时,求DE的长度;(3)连接OD,OE,当∠A的度数为60°时,求证:四边形ODME是菱形.参考答案与试题解析一.选择题(共12小题)1.【解答】解:过A作⊙O的直径,交⊙O于D.在△OAB中,OA=OB,则∠BOD=∠ABO+∠OAB=2×25°=50°,同理可得:∠COD=∠ACO+∠OAC=2×30°=60°,故∠BOC=∠BOD+∠COD=110°.故选:B.2.【解答】解:连接OD,∵直角三角板ABC的斜边AB与量角器的直径恰好重合,∴点A,B,C,D共圆,∵点D对应的刻度是46°,∴∠BCD=∠BOD=23°,∴∠ACD=90°﹣∠BCD=67°.故选:D.3.【解答】解:连接OA、OB,如图,∴∠AOB=2∠ACB=2×45°=90°,∴△OAB为等腰直角三角形,∴OA=AB=×20=20,∵点M、N分别是AB、BC的中点,∴MN=AC,当AC为直径时,AC的值最大,∴MN的最大值为20.故选:D.4.【解答】解:∵⊙O中,,∠A=36°,∴∠B=∠C=72°,故选:D.5.【解答】解:∵∠BAC=30°∴弧BC的度数是30°,∵弧BC等于弧CD故选:A.6.【解答】解:由圆周角定理得,∠C=∠BOD=70°,∴∠AEC=∠C+∠CDA=100°,故选:B.7.【解答】解:连接OC、OA、BD,作OH⊥AC于H.∵∠AOC=2∠ABC=120°,∵OA=OC,OH⊥AC,∴∠COH=∠AOH=60°,CH=AH,∴CH=AH=OC•sin60°=,∴AC=2,∵CN=DN,DM=AM,∴MN=AC=,∵CP=PB,AN=DN,∴PN=BD,当BD是直径时,PN的值最大,最大值为2,∴PM+MN的最大值为2+.故选:D.8.【解答】解:连接AD,∵AB是⊙O直径,∠AOC=130°,∴∠BDA=90°,∠CDA=65°,∴∠BDC=25°,故选:B.9.【解答】解:∵四边形BCDE内接于⊙O,且∠EDC=135°,∴∠EFC=∠ABC=180°﹣∠EDC=45°,∵∠ACB=90°,∴△ABC是等腰三角形,∴AC=BC,又∵EF是⊙O的直径,∴∠EBF=∠ECF=∠ACB=90°,∴∠BCF=∠ACE,∵四边形BECF是⊙O的内接四边形,∴∠AEC=∠BFC,∴△ACE≌△BFC(ASA),∴AE=BF,∵Rt△ECF中,CF=2、∠EFC=45°,∴EF2=16,则AE2+BE2=BF2+BE2=EF2=16,故选:C.10.【解答】解:∵∠AOD=130°,∴∠C=90°﹣,故选:C.11.【解答】解:∵AB经过圆心O,∴∠ACB=90°,∵∠B=3∠BAC,∴∠B=67.5°,∵四边形ABCD内接于⊙O,∴∠ADC=180°﹣∠B=112.5°,故选:B.12.【解答】解:连接OD、OB,∵四边形ABCD内接于⊙O,∴∠DCB=180°﹣∠DAB=40°,由圆周角定理得,∠BOD=2∠DCB=80°,∴40°≤∠BPD≤80°,∴∠BPD不可能为90°,故选:D.二.填空题(共6小题)13.【解答】解:由圆周角定理得,∠AOD=2∠ACD=50°,∴∠BOD=180°﹣50°=130°,故答案为:130°.14.【解答】解:在优弧BD上取一点A,连接AB,AD,∵点A、B,C,D在⊙O上,∠BCD=130°,∴∠BAD=50°,∴∠BOD=100°,故答案为100°.15.【解答】解:(1)设⊙O的半径为r,则OE=r﹣4,∵AB是⊙O的直径,弦CD⊥AB,∴DE=EC=CD=8,在Rt△OED中,OD2=OE2+DE2,即r2=(r﹣4)2+82,解得,r=10,故答案为:10;(2)由圆周角定理得,∠DOE=2∠M,∵∠M=∠D,∴∠DOE=2∠D,∴∠D=30°,故答案为:30°.16.【解答】解:连接OB,OD,∵∠DOB与∠A都对,∠DOB(大于平角的角)与∠BCD都对,∴∠DOB=2∠A,∠DOB(大于平角的角)=2∠BCD,∵∠DOB+∠DOB(大于平角的角)=360°,∴∠A+∠BCD=180°,∵∠DCE+∠BCD=180°,∴∠DCE=∠A=102°,故答案为:102°17.【解答】解:∵OD∥BC,∴∠AOD=∠ABC=40°,∵OA=OD,∴∠OAD=∠ODA=70°,∵四边形ABCD内接于⊙O,∴∠BCD=180°﹣∠OAD=110°,故答案为:110°.18.【解答】解:∵圆内接四边形的对角互补,∴∠A+∠BCD=180°,∵∠A=60°,∴∠BCD=120°,∴∠DCE=180°﹣∠BCD=60°,故答案为;圆内接四边形的对角互补,60°.三.解答题(共6小题)19.【解答】解:连接BD.∵AE=AD=AB,∴∠E=∠ADE,∠ADB=∠ABD,∵∠E+∠EDB+∠ABD=180°,∴2∠EDA+2∠ADB=180°,∴∠EDA+∠ADB=90°,∴∠BDC=∠EDB=90°,∴BC是该圆的直径.20.【解答】解:(1)∵△OCD是等边三角形∴OC=OD=CD,∠OCD=∠ODC=∠COD=60°∵OB⊥CD∴∠COB=30°∵∠COB=2∠CDB∴∠CDB=15°(2)∵sin∠OCD==∴∴OC=2∴BE=OB﹣BE=2﹣3故答案为2﹣3.21.【解答】(Ⅰ)证明:∵=,∴AB=BC,又∠ACB=60°,∴△ABC是等边三角形;(Ⅱ)∵△ABC是等边三角形,∴∠ABC=60°,∴∠AOC=2∠ABC=120°.22.【解答】解:由圆周角定理得,∠A=∠1=56°,∵四边形ABCD是圆内接四边形,∴∠CDE=∠A=56°.23.【解答】解:(1)∵∠BCD=120°,CA平分∠BCD,∴∠ACD=∠ACB=60°,由圆周角定理得,∠ADB=∠ACB=60°,∠ABD=∠ACD=60°,∴△ABD是等边三角形;(2)连接OB、OD,作OH⊥BD于H,则DH=BD=,∠BOD=2∠BAD=120°,∴∠DOH=60°,在Rt△ODH中,OD==,∴⊙O的半径为.24.【解答】解:(1)证明:∵∠ABC=90°,点M是AC的中点,∴AM=CM=BM.∴∠A=∠ABM.∵四边形DEBA为⊙O的内接四边形,∴∠ADE+∠ABM=180°,又∵∠ADE+∠MDE=180°,∴∠ABM=∠MDE∴∠A=∠ABM=∠MDE.(2)解:由(1)知∠A=∠ABM=∠MDE,∴DE∥AB∴△MDE∽△MAB∴=∵AD=2DM,∴AM=3DM∴=∴DE=2.(3)证明:由(1)知∠A=∠ABM=∠MDE,∵∠A=60°,∴∠A=∠ABM=∠MDE=60°∴∠AMB=60°又∵OA=OD=OE=OB∴△AOD、△OBE都是等边三角形∴∠ADO=∠AMB=∠OEB=60°,∴OD∥BM,AM∥OE∴四边形ODME是平行四边形,又∵OD=OE∴四边形ODME是菱形。

人教版九年级数学上册24.1.4圆周角同步测试及答案【精选】

人教版九年级数学上册24.1.4圆周角同步测试及答案【精选】

圆周角1.如图21-1-41,在⊙O 中,∠ABC =50°,则∠AOC 等于( D )图21-1-41A .50°B .80°C .90°D .100°2.如图21-1-42,点A ,B ,C 在⊙O 上,∠BOC =100 °,则∠A 的度数为( B )图21-1-42A .40°B .50°C .80°D .100°3.如图24-1-43,四边形ABCD 为⊙O 的内接四边形,E 是BC 延长线上的一点,已知∠BOD =100°,则∠DCE 的度数为( C )A .40°B .60°C .50°D .80°【解析】 根据圆周角定理,可求得∠A 的度数;由于四边形ABCD 是⊙O 的内接四边形,根据圆DCE =∠A =50°.4.如图21-4-44,在⊙O 中,已知∠OAB =22.5°,则∠C 的度数为( D )图21-4-44A .135° B. 122.5° C. 115.5° D .112.5°【解析】 ∵OA =OB ,∴∠OAB =∠OBC =22.5°,∴∠AOB =180°-22.5°-22.5°=135°.∴∠C =12(360°-135°)=112.5°. 5.[2013·苏州]如图21-4-45,AB 是半圆的直径,点D 是弧AC 的中点,∠ABC =50°,则∠DAB 等于( C )图21-4-45 第5题答图A .55°B .60°C .65°D .70°【解析】 连接BD ,如图,∵点D 是弧AC 的中点,即弧CD =弧AD ,∴∠ABD =∠CBD ,而∠ABC =50°,∴∠ABD =12×50°=25°, ∵AB 是半圆的直径,∴∠ADB =90°,∴∠DAB =90°-25°=65°.6.[2012·湘潭]如图24-1-46,在⊙O 中,弦AB ∥CD ,若∠ABC =40°,则∠BOD =( D )图24-1-46A .20°B .40°C .50°D .80°【解析】 ∵弦AB ∥CD ,∴∠ABC =∠BCD ,∴∠BOD =2∠BCD =2∠ABC =2×40°=80°.7.如图24-1-47,弦AB ,CD 相交于点O ,连接AD ,BC ,在不添加辅助线的情况下,请在图中找出一对相等的角,它们是__答案不唯一,如∠A =∠C 等__.图24-1-478.[2013·张家界]如图24-1-48,⊙O 的直径AB 与弦CD 垂直,且∠BAC =40°,则∠BOD =__80°__. 24-1-489.如图24-1-49,若AB 是⊙O 的直径,AB =10 cm ,∠CAB =30°,则BC =__5__cm.图24-1-4910.如图24-1-50,△ABC是⊙O的内接三角形,AB是⊙O的直径,点D为⊙O上的一点,若∠CAB=55°,则∠ADC的大小为__35__度.【解析】∵AB为⊙O的直径,∴∠ACB=90°.∵∠CAB=55°,∴∠B=90°-∠CAB=35°,∴∠ADC=∠B=35°.图24-1-5011.如图24-1-51,在等边△ABC中,以AB为直径的⊙O与BC相交于点D,连接AD,则∠DAC 的度数为__30°__.【解析】因为AB为⊙O的直径,所以∠ADB=90°.又因为△ABC是等边三角形,所以AD是∠BAC 的平分线,所以∠DAC=30°.图24-1-5112.如图24-1-52,在⊙O中,直径AB⊥CD于点E,连接CO并延长交AD于点F,且CF⊥AD.求∠D的度数.解:如图,连接BD.∵AB是⊙O的直径,∴BD⊥AD.又∵CF⊥AD,∴BD∥CF,∴∠BDC=∠C.又∵∠BDC=12∠BOC,∴∠C=12∠BOC.∵AB⊥CD,即∠OEC=90°,∴∠C+∠BOC=90°,∴∠C=30°,∴∠ADC=90°-∠C=60°.图24-1-52第12题答图13.如图24-1-53,CD⊥AB于E,若∠B=70°,则∠A=__20°__.图24-1-53【解析】 因为CD ⊥AB ,∠B =70°,所以∠C =20°,所以∠A =20°.14.如图24-1-54,点O 为优弧ACB 所在圆的圆心,∠AOC =108°,点D 在AB 的延长线上,BD =BC ,则∠D =__27°__. 【解析】 ∠ABC =12∠AOC =12×108°=54°.因为BD =BC ,所以∠D =12∠ABC =12×54°=27°.15.如图24-1-55,已知AB ,CD 是⊙O 的直径,DF ∥AB 交⊙O 于点F ,BE ∥DC 交⊙O 于点E .(1)求证:BE =DF ;(2)写出图中4组不同的且相等的劣弧(不要求证明).【解析】 (1)首先由平行线性质得到∠EBA =∠COA =∠CDF ,然后根据相等的圆周角所对的弧相等即可证明ECA ︵=CAF ︵,进一步得到BE ︵=DF ︵,再根据等弧对等弦即可得到BE =DF ;(2)根据等弦对等弧和相等的圆周角所对的弧相等即可得到4组不同的且相等的劣弧.解:(1)证明:∵DF ∥AB ,BE ∥DC ,∴∠EBA =∠COA =∠CDF ,∴ECA ︵=CAF ︵,∴BE ︵=DF ︵,∴BE =DF .(2)图中相等的劣弧有:DF ︵=BE ︵,EC ︵=F A ︵,AC ︵=BD ︵,DA ︵=BC ︵,BF ︵=DE ︵等.图24-1-5616.已知:如图24-1-56,△ABC 内接于⊙O ,AB 为直径,∠CBA 的平分线交AC 于点F ,交⊙O 于点D ,DE ⊥AB 于点E ,且交AC 于点P ,连接AD .(1)求证:∠DAC =∠DBA ;(2)求证:P 是线段AF 的中点.证明:(1)∵BD 平分∠CBA ,∴∠CBD =∠DBA .∵∠DAC 与∠CBD 都是弧CD 所对的圆周角,∴∠DAC =∠CBD ,∴∠DAC =∠DBA .(2)∵AB 为⊙O 的直径,∴∠ADB =90°.又∵DE ⊥AB ,∴∠DEB =90°,∴∠ADE +∠EDB =∠ABD +∠EDB =90°,∴∠ADE =∠ABD =∠DAP ,∴PD =P A .又∵∠DF A +∠DAC =∠ADE +∠PD F =90°,∠ADE =∠DAC ,∴∠PDF =∠PFD , ∴PD =PF ,∴P A =PF ,即P 是线段AF 的中点.17.已知:如图24-1-57(1),在⊙O 中,弦AB =2,CD =1,AD ⊥BD .直线AD ,BC 相交于点E .(1)求∠E 的度数;(2)如果点C ,D 在⊙O 上运动,且保持弦CD 的长度不变,那么,直线AD ,BC 相交所成锐角的大小是否改变?试就以下两种情况进行探究,并说明理由(图形未画完整,请你根据需要补全). ①如图(2),弦AB 与弦CD 交于点F ;②如图(3),弦AB 与弦CD 不相交.图1-57【解析】 (1)连接OC ,OD , 则∠COD =60°,且∠DBE =12∠DOC =30°. 解:(1)如图(1),连接OC ,OD .∵AD ⊥BD ,∴AB 是⊙O 的直径,∴OC =OD =CD =1,∴△DOC是等边三角形,∴∠COD =60°,∴∠DBE =12∠COD =30°,∴∠E =90°-∠DBE =60°.(2)(2),,=CO =CD =1,∴△DOC 为等边三角形,∴∠DOC =60°,∴∠DAC =12∠DOC =30°,∴∠EBD =∠DAC =30°.∵∠ADB =90°,∴∠E =90°-∠EBD =60°.②如图(3),连接OD ,OC ,同理可得出∠CBD =30°,∠BED =90°-∠CBD =60°.。

人教版九年级数学上册《24.1.4圆周角》同步测试题带答案

人教版九年级数学上册《24.1.4圆周角》同步测试题带答案

人教版九年级数学上册《24.1.4圆周角》同步测试题带答案一、单选题1.如图,四边形ABCD 内接于O ,若70A ∠=︒,则C ∠的度数是( )A .70︒B .90︒C .110︒D .140︒2.以原点O 为圆心的圆交x 轴于A 、B 两点,交y 轴的正半轴于点C ,D 为第一象限内⊙O 上的一点,若⊙DAB =25°,则⊙OCD =( ).A .50°B .40°C .70°D .30°3.已知有一个长为8,宽为6的矩形,能够把这个矩形完全盖住的最小圆形纸片的半径是( ) A .3B .4C .5D .64.如图,⊙O 的半径为4,点A 、B 、C 在⊙O 上,且⊙ACB =45°,则弦AB 的长是( )A .43B .4C .43D .35.如图,AB 是O 的直径,BC 是O 的弦,先将BC 沿BC 翻折交AB 于点D .再将BD 沿AB 翻折交BC 于点E .若BE DE =,设ABC α∠=,则α所在的范围是( )A .21.922.3α︒<<︒B .22.322.7α︒<<︒C .22.723.1α︒<<︒D .23.123.5α︒<<︒6.如图,AB 是O 的直径,CD 是O 的弦,连结AC 、AD 、BD ,若35CAB ∠=,则ADC ∠的度数为( )A .35B .55C .65D .70二、填空题7.如图,在O 中,点D 为弧BC 的中点 40COD ∠=︒,则BAD ∠= .8.如图,⊙ABC 是⊙O 的内接三角形,AB 为⊙O 的直径,点D 为⊙O 上一点,若⊙CAB=55°,则⊙ADC 的大小为 (度).9.如图,AB 为⊙O 直径,CD 为⊙O 的弦,⊙ACD=25°,⊙BAD 的度数为 .10.如图,CD 是O 的弦,O 是圆心,把O 的劣弧沿着CD 对折,A 是对折后劣弧上的一点,若100CAD ∠=︒,那么BCA BDA ∠+∠= .11.如图,等边ABC 中,AB=4,P 为AB 上一动点 ,PD BC PE AC ⊥⊥,则线段DE 的最小值为 .12.如图,点A 的坐标为(-2,0),点B 的坐标为(8,0),以AB 为直径作⊙O′,交y 轴的负半轴于点C ,则点C 的坐标为 ,若二次函数2y ax bx c =++的图像经过点A ,C ,B .已知点P 是该抛物线上的动点,当⊙APB 是锐角时,点P 的横坐标x 的取值范围是 .三、解答题13.如图所示,AB是O的一条弦OD AB⊥,垂足为C,交O于点D,点E在O上.(1)若64∠=︒,求DEBAOD∠的度数;OC=,OA=10,求AB的长.(2)若6⊥,OD与AC交于14.如图,AB是半圆O的直径,C、D是半圆O上的两点,且OD AC点E.(1)若20∠的度数;CAB∠=︒,求CADAB=,AC=6,求DE的长.(2)若815.如图,ABC内接于O,60∠=︒点D是BC的中点.BC,AB边上的高AE,CFBAC相交于点H.试证明:∠=∠;(1)FAH CAO(2)四边形AHDO是菱形.16.如图,ABD △内接于半圆,O AB 是直径,点C 是BD 的中点,连接OC ,AC ,分别交BD 于点,F E .(1)求证:OC AD ∥;(2)若10,8AB AC ==,求AD 的长.17.如图,在ABCD 中,过点C 的O 与AB ,AD 分别相切于点E ,F ,交BC ,CD 交于点G ,H .连接FH ,FH=FD .(1)求证:四边形ABGF 是平行四边形; (2)若4AE =,BE=6,求O 的半径.18.已知:如图,⊙ABC 内接于⊙O ,AB 为直径,⊙CBA 的平分线交AC 于点F ,交⊙O 于点D ,DE⊙AB 于点E ,且交AC 于点P ,连结AD . (1)求证:⊙DAC=⊙DBA ;(2)连接CD ,若CD ﹦3,BD ﹦4,求⊙O 的半径和DE 的长.题号 1 2 3 4 5 6 答案 C C C C B B7.20︒8.359.65°10.20°11.312.(0,-4)0<x<613.(1)32︒(2)1614.(1)35︒(2)4716.(2)2.817.415318.(2)⊙O的半径为2.5;DE=2.4.。

人教版九年级数学上册同步练习 24.1.4 圆周角(包含答案)

人教版九年级数学上册同步练习  24.1.4 圆周角(包含答案)

九年级上册同步练习24.1.4 圆周角一.选择题(共12小题)1.如图,A,B,C是⊙O上的三点,∠ABO=25°,∠ACO=30°,则∠BOC的度数为()A.100°B.110°C.125°D.130°2.如图,一块三角尺ABC的斜边AB与量角器的直径恰好重合,点D对应的刻度是46°,则∠ACD的度数为()A.46°B.23°C.44°D.67°3.如图,AB是圆O的弦,AB=20,点C是圆O上的一个动点,且∠ACB=45°,若点M、N分别是AB、BC的中点,则MN的最大值是()A.10B.5C.10D.204.如图,在⊙O中,弧AB=弧AC,∠A=36°,则∠C的度数为()A.44°B.54°C.62°D.72°5.如图,AB为⊙O的直径,C、D是⊙O上的两点,∠BAC=30°,弧BC等于弧CD,则∠DAC的度数是()A.30°B.35°C.45°D.70°6.如图,⊙O中,若∠BOD=140°,∠CDA=30°,则∠AEC的度数是()A.80°B.100°C.110°D.125°7.如图,AB,BC是⊙O的弦,∠B=60°,点O在∠B内,点D为上的动点,点M,N,P分别是AD,DC,CB的中点.若⊙O的半径为2,则PN+MN的长度的最大值是()A.B.C.D.8.如图,AB是⊙O直径,若∠AOC=130°,则∠D的度数是()A.20°B.25°C.40°D.50°9.如图,在△ABC中,∠ACB=90°,过B,C两点的⊙O交AC于点D,交AB于点E,连接EO并延长交⊙O于点F,连接BF,CF,若∠EDC=135°,CF=2,则AE2+BE2的值为()A.8B.12C.16D.2010.如图,AB是⊙O的直径,C是⊙O上一点(A、B除外),∠AOD=130°,则∠C的度数是()A.50°B.60°C.25°D.30°11.如图,AB经过圆心O,四边形ABCD内接于⊙O,∠B=3∠BAC,则∠ADC的度数为()A.100°B.112.5°C.120°D.135°12.如图,四边形ABCD内接于⊙O,∠DAB=140°,连接OC,点P是半径OC上一点,则∠BPD不可能为()A.40°B.60°C.80°D.90°二.填空题(共6小题)13.如图,AB是⊙O的直径,点C、D在⊙O上,若∠ACD=25°,则∠BOD的度数为.14.如图,点B,C,D在⊙O上,若∠BCD=130°,则∠BOD的度数是.15.如图,AB是⊙O的直径,弦CD⊥AB于点E,(1)若CD=16,BE=4,则⊙O 的半径为;(2)点M在⊙O上,MD恰好经过圆心O,连接MB,若∠M=∠D,则∠D的度数为.16.如图,A、B、C、D均在⊙O上,E为BC延长线上的一点,若∠A=102°,则∠DCE=.17.如图,四边形ABCD内接于⊙O,AB是直径,OD∥BC,∠ABC=40°,则∠BCD的度数为18.利用圆周角定理,我们可以得到圆内接四边形的一个性质,请规范写出我们所学的这个性质的内容,并利用这个性质完成下题:如图,四边形ABCD内接于⊙O,若∠A=60°,则∠DCE的度数是.三.解答题(共6小题)19.如图,在圆的内接四边形ABCD中,AB=AD,BA、CD的延长线相交于点E,且AB=AE,求证:BC是该圆的直径.20.如图,AB为⊙O直径,弦CD⊥AB于E,△COD为等边三角形.(1)求∠CDB的大小.(2)若OE=3,直接写出BE的长.21.如图,在⊙O中,=,∠ACB=60°.(Ⅰ)求证:△ABC是等边三角形;(Ⅱ)求∠AOC的大小.22.已知四边形ABCD是圆内接四边形,∠1=112°,求∠CDE.23.如图,在⊙O的内接四边形ABCD中,∠BCD=120°,CA平分∠BCD.(1)求证:△ABD是等边三角形;(2)若BD=3,求⊙O的半径.24.如图,在Rt△ABC中,∠ABC=90°,点M是AC的中点,以AB为直径作⊙O 分别交AC,BM于点D,E.连结DE,使四边形DEBA为⊙O的内接四边形.(1)求证:∠A=∠ABM=∠MDE;(2)若AB=6,当AD=2DM时,求DE的长度;(3)连接OD,OE,当∠A的度数为60°时,求证:四边形ODME是菱形.参考答案与试题解析一.选择题(共12小题)1.【解答】解:过A作⊙O的直径,交⊙O于D.在△OAB中,OA=OB,则∠BOD=∠ABO+∠OAB=2×25°=50°,同理可得:∠COD=∠ACO+∠OAC=2×30°=60°,故∠BOC=∠BOD+∠COD=110°.故选:B.2.【解答】解:连接OD,∵直角三角板ABC的斜边AB与量角器的直径恰好重合,∴点A,B,C,D共圆,∵点D对应的刻度是46°,∴∠BOD=46°,∴∠BCD=∠BOD=23°,∴∠ACD=90°﹣∠BCD=67°.故选:D.3.【解答】解:连接OA、OB,如图,∴∠AOB=2∠ACB=2×45°=90°,∴△OAB为等腰直角三角形,∴OA=AB=×20=20,∵点M、N分别是AB、BC的中点,∴MN=AC,当AC为直径时,AC的值最大,∴MN的最大值为20.故选:D.4.【解答】解:∵⊙O中,,∠A=36°,∴∠B=∠C=72°,故选:D.5.【解答】解:∵∠BAC=30°∴弧BC的度数是30°,∵弧BC等于弧CD∴∠DAC=30°.故选:A.6.【解答】解:由圆周角定理得,∠C=∠BOD=70°,∴∠AEC=∠C+∠CDA=100°,故选:B.7.【解答】解:连接OC、OA、BD,作OH⊥AC于H.∵∠AOC=2∠ABC=120°,∵OA=OC,OH⊥AC,∴∠COH=∠AOH=60°,CH=AH,∴CH=AH=OC•sin60°=,∴AC=2,∵CN=DN,DM=AM,∴MN=AC=,∵CP=PB,AN=DN,∴PN=BD,当BD是直径时,PN的值最大,最大值为2,∴PM+MN的最大值为2+.故选:D.8.【解答】解:连接AD,∵AB是⊙O直径,∠AOC=130°,∴∠BDA=90°,∠CDA=65°,∴∠BDC=25°,故选:B.9.【解答】解:∵四边形BCDE内接于⊙O,且∠EDC=135°,∴∠EFC=∠ABC=180°﹣∠EDC=45°,∵∠ACB=90°,∴△ABC是等腰三角形,∴AC=BC,又∵EF是⊙O的直径,∴∠EBF=∠ECF=∠ACB=90°,∴∠BCF=∠ACE,∵四边形BECF是⊙O的内接四边形,∴∠AEC=∠BFC,∴△ACE≌△BFC(ASA),∴AE=BF,∵Rt△ECF中,CF=2、∠EFC=45°,∴EF2=16,则AE2+BE2=BF2+BE2=EF2=16,故选:C.10.【解答】解:∵∠AOD=130°,∴∠C=90°﹣,故选:C.11.【解答】解:∵AB经过圆心O,∴∠ACB=90°,∵∠B=3∠BAC,∴∠B=67.5°,∵四边形ABCD内接于⊙O,∴∠ADC=180°﹣∠B=112.5°,故选:B.12.【解答】解:连接OD、OB,∵四边形ABCD内接于⊙O,∴∠DCB=180°﹣∠DAB=40°,由圆周角定理得,∠BOD=2∠DCB=80°,∴40°≤∠BPD≤80°,∴∠BPD不可能为90°,故选:D.二.填空题(共6小题)13.【解答】解:由圆周角定理得,∠AOD=2∠ACD=50°,∴∠BOD=180°﹣50°=130°,故答案为:130°.14.【解答】解:在优弧BD上取一点A,连接AB,AD,∵点A、B,C,D在⊙O上,∠BCD=130°,∴∠BAD=50°,∴∠BOD=100°,故答案为100°.15.【解答】解:(1)设⊙O的半径为r,则OE=r﹣4,∵AB是⊙O的直径,弦CD⊥AB,∴DE=EC=CD=8,在Rt△OED中,OD2=OE2+DE2,即r2=(r﹣4)2+82,解得,r=10,故答案为:10;(2)由圆周角定理得,∠DOE=2∠M,∵∠M=∠D,∴∠DOE=2∠D,∴∠D=30°,故答案为:30°.16.【解答】解:连接OB,OD,∵∠DOB与∠A都对,∠DOB(大于平角的角)与∠BCD都对,∴∠DOB=2∠A,∠DOB(大于平角的角)=2∠BCD,∵∠DOB+∠DOB(大于平角的角)=360°,∴∠A+∠BCD=180°,∵∠DCE+∠BCD=180°,∴∠DCE=∠A=102°,故答案为:102°17.【解答】解:∵OD∥BC,∴∠AOD=∠ABC=40°,∵OA=OD,∴∠OAD=∠ODA=70°,∵四边形ABCD内接于⊙O,∴∠BCD=180°﹣∠OAD=110°,故答案为:110°.18.【解答】解:∵圆内接四边形的对角互补,∴∠A+∠BCD=180°,∵∠A=60°,∴∠BCD=120°,∴∠DCE=180°﹣∠BCD=60°,故答案为;圆内接四边形的对角互补,60°.三.解答题(共6小题)19.【解答】解:连接BD.∵AE=AD=AB,∴∠E=∠ADE,∠ADB=∠ABD,∵∠E+∠EDB+∠ABD=180°,∴2∠EDA+2∠ADB=180°,∴∠EDA+∠ADB=90°,∴∠BDC=∠EDB=90°,∴BC是该圆的直径.20.【解答】解:(1)∵△OCD是等边三角形∴OC=OD=CD,∠OCD=∠ODC=∠COD=60°∵OB⊥CD∴∠COB=30°∵∠COB=2∠CDB∴∠CDB=15°(2)∵sin∠OCD==∴∴OC=2∴BE=OB﹣BE=2﹣3故答案为2﹣3.21.【解答】(Ⅰ)证明:∵=,∴AB=BC,又∠ACB=60°,∴△ABC是等边三角形;(Ⅱ)∵△ABC是等边三角形,∴∠ABC=60°,∴∠AOC=2∠ABC=120°.22.【解答】解:由圆周角定理得,∠A=∠1=56°,∵四边形ABCD是圆内接四边形,∴∠CDE=∠A=56°.23.【解答】解:(1)∵∠BCD=120°,CA平分∠BCD,∴∠ACD=∠ACB=60°,由圆周角定理得,∠ADB=∠ACB=60°,∠ABD=∠ACD=60°,∴△ABD是等边三角形;(2)连接OB、OD,作OH⊥BD于H,则DH=BD=,∠BOD=2∠BAD=120°,∴∠DOH=60°,在Rt△ODH中,OD==,∴⊙O的半径为.24.【解答】解:(1)证明:∵∠ABC=90°,点M是AC的中点,∴AM=CM=BM.∴∠A=∠ABM.∵四边形DEBA为⊙O的内接四边形,∴∠ADE+∠ABM=180°,又∵∠ADE+∠MDE=180°,∴∠ABM=∠MDE∴∠A=∠ABM=∠MDE.(2)解:由(1)知∠A=∠ABM=∠MDE,∴DE∥AB∴△MDE∽△MAB∴=∵AD=2DM,∴AM=3DM∴=∴DE=2.(3)证明:由(1)知∠A=∠ABM=∠MDE,∵∠A=60°,∴∠A=∠ABM=∠MDE=60°∴∠AMB=60°又∵OA=OD=OE=OB∴△AOD、△OBE都是等边三角形∴∠ADO=∠AMB=∠OEB=60°,∴OD∥BM,AM∥OE∴四边形ODME是平行四边形,又∵OD=OE∴四边形ODME是菱形。

新人教版数学九年级上册24.1.4圆周角课时练习(解析版)

新人教版数学九年级上册24.1.4圆周角课时练习(解析版)

新人教版数学九年级上册24.1.4圆周角课时练习一、选择题1、在⊙O中,同弦所对的圆周角()A、相等B、互补C、相等或互补D、都不对2、如图,在⊙O中,弦AD=弦DC ,则图中相等的圆周角的对数是()A、5对B、6对C、7对D、8对3、下列说法正确的是()A、顶点在圆上的角是圆周角B、两边都和圆相交的角是圆周角C、圆心角是圆周角的2倍D、圆周角度数等于它所对圆心角度数的一半4、下列说法错误的是()A、等弧所对圆周角相等B、同弧所对圆周角相等C、同圆中,相等的圆周角所对弧也相等D、同圆中,等弦所对的圆周角相等5、如图,AB和CD都是⊙O的直径,∠AOC=50°,则∠C的度数是()A、20°B、25°C、30°D、50°6、如图,已知CD为⊙O的直径,过点D的弦DE平行于半径OA ,若∠D的度数是50°,则∠C的度数是()A、25°B、40°C、30°D、50°7、在⊙O中,同弦所对的圆周角( )A、相等B、互补C、相等或互补D、都不对8、下列说法正确的是( )A、顶点在圆上的角是圆周角B、两边都和圆相交的角是圆周角C、圆心角是圆周角的2倍D、圆周角度数等于它所对圆心角度数的一半9、如图,把一个量角器放在∠BAC的上面,请你根据量角器的读数判断∠BAC的度数是( )A、30°B、60°C、15°D、20°10、如图,A、B、C是⊙O上的三点,∠ACB=30°,则∠AOB等于( )A、75°B、60°C、45°D、30°11、用直角钢尺检查某一工件是否恰好是半圆环形,根据图所表示的情形,四个工件哪一个肯定是半圆环形?( )A、B、C、D、12、已知A、C、B是⊙O上三点,若∠AOC=40°,则∠ABC的度数是( )A、10°B、20°C、40°D、80°13、如图24-1-4-17所示,AB为⊙O的直径,P、Q、R、S为圆上相异四点,下列叙述正确的是( )A、为锐角B、为直角C、为钝角D、二、填空题14、如图,已知A、B、C、D、E均在⊙O上,且AC为⊙O的直径,则∠A+∠B+∠C=________度.15、如图24-1-4-5,OB、OC是⊙O的半径,A是⊙O上一点,若已知∠B=20°,∠C=30°,则∠A=________.16、在半径为1的⊙O中,弦AB、AC分别是和,则∠BAC的度数是________.17、如图24-1-4-16所示,AB是⊙O的直径,C、D、E都是⊙O上的点,则∠1+∠2=________.18、如图,在⊙O中,△ABC是等边三角形,AD是直径,则∠ADB=________°,∠ABD=________°19、如图,OE、OF分别为⊙O的弦AB、CD的弦心距,如果OE=OF ,那么________(只需写一个正确的结论).20、圆周角是24度,那么它所对的弧是________度.三、解答题21、如图,已知⊙O中,AB为直径,AB=10 cm,弦AC=6 cm,∠ACB的平分线交⊙O于D ,求BC、AD 和BD的长.22、如图(1),已知△ABC是等边三角形,以BC为直径的⊙O交AB、AC于D、E.求证:(1)△DOE是等边三角形.(2)如图(2),若∠A=60°,AB≠AC ,则(1)中结论是否成立?如果成立,请给出证明;如果不成立,请说明理由.23、四边形ABCD中,AB∥DC ,BC=b,AB=AC=AD=a,如图24-1-4-11,求BD的长.图24-1-4-1124、在足球比赛中,甲、乙两名队员互相配合向对方球门MN进攻,当甲带球冲到A点时,乙已跟随冲到B点,如图24-1-4-12.此时,甲自己直接射门好,还是迅速将球传给乙,让乙射门好?25、如图所示,已知AB为⊙O的直径,AC为弦,OD∥BC ,交AC于D ,BC=4 cm.(1)求证:AC⊥OD;(2)求OD的长;答案解析部分一、选择题1、【答案】C【考点】圆周角定理【解析】【解答】同弦所对的圆周角有两个不同的度数,它们互补.因此同弦所对的圆周角相等或互补. 【分析】此题考查了圆周角定理,要考虑全面.2、【答案】D【考点】圆周角定理【解析】【解答】先找同弧所对的圆周角:弧AD所对的∠1=∠3;弧DC所对的∠2= ∠4;弧BC所对的∠5=∠6;弧AB所对的∠7=∠8.找等弧所对的圆周角,因为弧AC=弧DC ,所以∠1=∠4,∠1=∠2,∠4=∠3,∠2=∠3.由上可知,相等的圆周角有8对.【分析】在同圆或等圆中,判断两个圆周角是否相等,即看它们所对的弧是否相等,因等角对等弧,等弧对等角.3、【答案】D【考点】圆周角定理【解析】【解答】本题考查圆周角和圆心角的联系,解决本题的关键为在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对圆心角的一半.【分析】此题考查了圆周角定理.4、【答案】D【考点】圆周角定理【解析】【解答】同圆或是等圆中才存在等弦所对的圆周角相等或互补.【分析】此题考查了原周角定义,本题为常考题,容易弄错的是在同圆中等弦所对的圆周角相等,而忽略还有互补.5、【答案】B【考点】圆周角定理【解析】【解答】同弧所对的圆心角等于所对圆周角的二倍,∠AOC的对顶角∠BOD也为50度,弧BD所对的圆周角为∠C,所对的圆心角为∠BOD,∠BOD为∠C的二倍,故选B选项.【分析】此题考查了圆周角和圆心角的相互联系.6、【答案】A【考点】平行线的性质,圆周角定理【解析】【解答】根据两直线平行内错角相等和同弧所对的圆心角等于所对圆周角的二倍,可以得到∠C 的度数是25度.【分析】此题考查了圆周角定义.7、【答案】C【考点】圆周角定理【解析】【解答】同圆或是等圆中等弦所对的圆周角相等或互补.【分析】此题考查了圆周角定义,要考虑全面.8、【答案】D【考点】圆周角定理【解析】【解答】根据圆周角的定义做题,考察圆周角和圆心角的联系,记住圆周角的度数等于它所对圆心角的一半.【分析】此题考查了圆周角定义,审题一定要仔细,结合基础知识做题.9、【答案】C【考点】圆周角定理【解析】【解答】根据圆周角和圆心角的关系解决问题,根据量角器我们可以读出∠BOC的度数为30度,∠BOC为圆心角,∠BAC为圆周角,他们是二倍的关系,故选择C选项.【分析】此题考查了圆周角定义,利用圆心角去推出圆周角的度数.10、【答案】B【考点】圆周角定理【解析】【解答】根据圆周角和圆心角的关系解决问题,弧AB所对的圆心角和圆周角分别为∠AOB和∠ACB,圆心角为圆周角的二倍,故本题选择B选项.【分析】此题考查了圆周角和圆心角的联系,做题时要注意利用所给的条件结合图像去发现所求问题和所给条件之间的相互联系.11、【答案】B【考点】圆周角定理【解析】【解答】A和C中的直角显然不是圆周角,因此不正确,D中的直角只满足圆周角的一个特征,也不是圆周角,因而不能判断是否为半圆形.选B.【分析】本题考查圆周角定理的推论及圆周角定义在实际生产中的应用.认真观察图形,可得只有B符合定理的推论.实际问题应读懂题意,看懂图形.12、【答案】B【考点】圆周角定理【解析】【解答】根据圆周角和圆心角的关系解决问题,由“一条弧所对的圆周角等于它所对的圆心角的一半”解答.【分析】此题考查了原周角和圆心角的联系.13、【答案】B【考点】圆周角定理【解析】【解答】AB为直径,根据直径所对的圆周角是直角,所以∠APB、∠AQB、∠ARB、∠ASB都是直角,由于四个角都是直角,所以∠ASB=∠ARB=90°.【分析】直径所对的圆周角等于90度.二、填空题14、【答案】90【考点】圆周角定理【解析】【解答】所求的弧等于半圆周的一半,即90度,∠A随对的弧加上∠B所对的弧加上∠C所对的弧等于弧AC ,弧AC所对的圆心角为180度,所以所对的圆周角为90度.【分析】根据圆周角的定义做题,注意圆心角和圆周角之间的相互联系.15、【答案】50°【考点】圆周角定理【解析】【解答】连结AO ,则AO=OB ,OA=OC ,所以∠A=∠B+∠C=20°+30°=50°.【分析】根据圆周角的定义做题,注意作好辅助线,利用半径相等构造等腰三角形,然后转化角度. 16、【答案】15°或75°【考点】勾股定理,圆周角定理【解析】【解答】图(1)和图(2),分两种情况,作直径AD ,连结BD ,易知∠BAD=30°,∠CAO=45°,∴∠BAC=15°或75°.图1 图2【分析】根据圆周角的定义做题,要考虑全面.17、【答案】90°【考点】等边三角形的性质,圆周角定理【解析】【解答】∠1所对的弧是弧AE,∠2所对的弧是弧BE ,而弧AE+弧BE=弧AB是半圆,因此连结AD ,∠ADB的度数是90°,所以∠ADB=∠1+∠2.本题也可以连结EO ,得到圆心角∠EOA和∠EOB,而∠EOA+∠EOB=180°,所以∠1+∠2=90°.【分析】根据圆周角的定义做题.18、【答案】60;90【考点】圆周角定理【解析】【解答】同弧所对的圆周角相等,所以∠ADB=60度,直径所对的圆周角等于90度.【分析】根据圆周角的定义做题,要注意所给条件中等边三角形个内角的度数,及圆周角所对半圆弧的度数.19、【答案】AB=CD【考点】圆心角、弧、弦的关系【解析】【解答】在同圆或是等圆中,等弦的弦心距相等.【分析】根据弦心距做题,在同圆或是等圆中,等弦的弦心距相等.20、【答案】48【考点】圆周角定理【解析】【解答】弧的度数等于它所对的圆心角的度数,圆心角与圆周角为2倍的关系.【分析】根据圆周角和圆心角的联系做题.三、解答题21、【答案】解:∵AB是直径,∴∠ACB=∠ADB=90°.在Rt△ACB中,BC= = =8.∵CD平分∠ACB ,∴弧AD=弧BD.∴AD=BD.在Rt△ADB中,AD=BD= AB=5 (cm).【考点】勾股定理,圆周角定理【解析】【解答】∵AB是直径,∴∠ACB=∠ADB=90°.在Rt△ACB中,BC= = =8.∵CD平分∠ACB,∴弧AD=弧BD.∴AD=BD.在Rt△ADB中,AD=BD= AB=5 (cm).【分析】已知条件中若有直径,则利用圆周角定理的推论得到直角三角形,然后利用直角三角形的性质解题.22、【答案】(1)证明:∵△ABC为等边三角形,∴∠B=∠C=60°.∵OB=OC=OE=OD ,∴△OBD和△OEC都为等边三角形.∴∠BOD=∠EOC=60°.∴∠DOE=60°.∴△DOE为等边三角形.(2)解:当∠A=60°,AB≠AC时,(1)中的结论仍然成立.证明:连结CD.∵BC为⊙O的直径,∴∠BDC=90°.∴∠ADC=90°.∵∠A=60°,∴∠ACD=30°.∴∠DOE=2∠ACD=60°.∵OD=OE ,∴△DOE为等边三角形.【考点】等边三角形的性质,圆周角定理【解析】【解答】(1)证明:∵△ABC为等边三角形,∴∠B=∠C=60°.∵OB=OC=OE=OD,∴△OBD和△OEC都为等边三角形.∴∠BOD=∠EOC=60°.∴∠DOE=60°.∴△DOE为等边三角形.(2)当∠A=60°,AB≠AC时,(1)中的结论仍然成立.证明:连结CD.∵BC为⊙O的直径,∴∠BDC=90°.∴∠ADC=90°.∵∠A=60°,∴∠ACD=30°.∴∠DOE=2∠ACD=60°.∵OD=OE,∴△DOE为等边三角形.【分析】△ABC是等边三角形,所以∠B、∠C均为60°,利用60°的圆周角定理,可知△DOB、△EOC均为等边三角形.第二种情形类似.23、【答案】解:∵AB=AC=AD=a,∴点B、C、D到A点距离相等.故以A为圆心,以a为半径作⊙A ,并延长BA交⊙A于E ,连结DE.∵AB∥CD ,∴弧BC=弧DE.∴BC=DE=b.∵BE为⊙A的直径,∴∠EDB=90°.在Rt△EDB中,BD= = ,∴BD的长为.【考点】勾股定理,圆周角定理【解析】【解答】∵AB=AC=AD=a,∴点B、C、D到A点距离相等.故以A为圆心,以a为半径作⊙A,并延长BA交⊙A于E,连结DE.∵AB∥CD,∴弧 BC=弧DE.∴BC=DE=b.∵BE为⊙A的直径,∴∠EDB=90°.在Rt△EDB中,BD= = ,∴BD的长为 .【分析】由AB=AC=AD=a可以得到点B、C、D在以A为圆心,以a为半径的圆上,因而可以作出该圆,利用圆的知识解决该题.本题考查圆的定义和圆周角定理及其推论.24、【答案】考虑过M、N及A、B中任一点作圆,这里不妨过M、N、B作圆,则A点在圆外,设MA交⊙O于C,则∠MAN<∠MCN,而∠MCN=∠MBN,所以∠MAN<∠MBN.因此在B点射门为好.【考点】圆周角定理【解析】【解答】考虑过M、N及A、B中任一点作圆,这里不妨过M、N、B作圆,则A点在圆外,设MA交⊙O于C ,则∠MAN<∠MCN ,而∠MCN=∠MBN ,所以∠MAN<∠MBN.因此在B点射门为好..【分析】在真正的足球比赛中情况比较复杂,这里仅用数学方法从两点的静止状态来考虑,如果两个点到球门的距离相差不大,要确定较好的射门位置,关键是看这两点各自对球门MN的张角大小,当张角较小时,则容易被对方守门员拦截.25、【答案】(1)证明:∵AB是⊙O的直径,∴∠C=90°.∵OD∥BC ,∴∠ADO=∠C=90°.∴AC⊥OD.(2)解:∵OD∥BC ,又∵O是AB的中点,∴OD是△ABC的中位线.∴OD= BC= ×4=2(cm).【考点】三角形中位线定理,圆周角定理【解析】【解答】(1)证明:∵AB是⊙O的直径,∴∠C=90°.∵OD∥BC,∴∠ADO=∠C=90°.∴AC⊥OD.(2)∵OD∥BC,又∵O是AB的中点,∴OD是△ABC的中位线.∴OD= BC= ×4=2(cm).【分析】根据圆周角定理的推论以及三角形中位线定理计算.。

人教版九年级数学上册《圆周角》题组训练(含答案解析)

人教版九年级数学上册《圆周角》题组训练(含答案解析)

提技能·题组训练圆周角定理及其推论1.( 滨州中考 ) 如图 , 在☉ O中, 圆心角∠ BOC=78°, 则圆周角∠ BAC的大小为 ()A.156°B.78 °C.39°【解析】选C.∠BOC是所对的圆心角D.12°, ∠ BAC是所对的圆周角,∴∠ BAC=∠ BOC=39°.2.( 海南中考 ) 如图 , 在☉ O中 , 弦 BC=1,点 A 是圆上一点 , 且∠ BAC=30°, 则☉ O的半径是 ()A.1B.2C.D.【解析】选A. 方法一 : 连接OB,OC.∵∠ BAC=30°, ∴∠ BOC=2∠ BAC=60° ,∵OB=OC,∴△ OBC是等边三角形 ,∴OB=OC=BC =1.方法二 : 作直径 CD,连接 BD.则∠ CBD=90°, ∵∠ BDC=∠ BAC=30°, ∴CD=2BC=2,∴OC=CD=1.3.( 长春中考 ) 如图 , △ABC内接于☉ O,∠ABC=71° , ∠ CAB=53° , 点 D 在上,则∠ ADB的大小为()A.45°B.53 °C.56 °D.71 °【解析】选 C.在△ ABC中, ∵∠ ABC=71° , ∠ CAB=53°,∴∠ C=180°-71 °-53 °=56° , ∴∠ ADB=∠C=56°.D,则∠ BOD=. 4.( 佛山中考 ) 图中圆心角∠ AOB=30° , 弦 CA∥ OB,延长CO与圆交于点【解析】因为圆心角∠ AOB=30°, 弦 CA∥OB,所以∠ AOB=∠CAO=30°,又 OA=OC,所以∠ CAO=∠ ACO=30° , 所以∠ AOD=∠ CAO+∠ ACO=60° =∠ AOB+∠ BOD,所以∠BOD=30°.答案 : 30°5.( 贵阳中考 ) 如图 ,AD,AC 分别为☉ O的直径和弦 , ∠CAD=30°,B 是 AC上一点 ,BO⊥AD,垂足为【解析】在Rt△AOB中 , ∠A=30° ,BO=5cm,∴AO=5cm,∵AD是直径 ,∴AD=10cm,∠C=90°, 在 Rt△ ADC中,∠A=30°,AD=10cm,∴CD=5cm.答案: 56. 如图 , 正方形ABCD的顶点都在☉O上 ,P是弧DC上的一点 , 则∠ BPC=.【解析】连接 BD,则 BD是直径 ,∴△ BCD是等腰直角三角形 ,∴∠ BDC=45°, ∴∠ BPC=∠ BDC=45°.答案 : 45°【知识归纳】圆周角与直径1.当题目中出现了直径时 , 常作辅助线 , 利用直径所对的圆周角是直角解决问题 .2.当出现 90°的圆周角时 , 常连接该圆周角所对的弦 , 则该弦为直径 .7. 如图 , 在☉ O中, 直径 AB与弦 CD相交于点 P, ∠CAB=40°, ∠APD=65° .(1)求∠B 的大小 .(2)已知 AD=6,求圆心 O到 BD的距离 .【解析】 (1) ∵∠ APD=∠C+∠CAB,∴∠ C=65°-40 °=25° .∴∠ B=∠C=25° .(2) 过点 O作 OE⊥ BD于 E, 则 DE=BE.又∵ AO=BO,∴OE= AD= ×6=3.∴圆心 O到 BD的距离为 3.圆内接四边形1. 如图 , 四边形 ABCD内接于☉ O,如果∠ BOD=130°, 则∠ BCD的度数是 ()A.115°B.130°C.65°D.50°【解析】选 A. ∵∠ BOD=130°, ∴∠ A= ∠BOD=65°, ∵∠2.( 莱芜中考 ) 如图 , 在☉ O中 , 已知∠ OAB=22.5°, 则∠C 的度数为 ()A. 135 °B.122.5 °C.115.5°D.112.5 °【解析】选 D.如图, 作所对的圆周角 .∵OA=OB,∴∠ OBA=∠ OAB=22.5° . ∴∠ AOB=180 ° - ∠ OAB-∠ OBA =180° -22.5 ° -22.5 °=135° .∴∠ D= ∠ AOB=×135°=67.5 °.∵四边形 ACBD是圆内接四边形 ,∴∠ C+∠D=180° .∴∠ C=112.5 °.【方法技巧】1. 在圆中 , 求角的度数时 , 常利用圆周角定理和圆内接四边形的对角互补来完成.2.有时需要自己作出与已知角互补的圆周角 , 才能运用圆内接四边形的性质 .3. 四边形 ABCD内接于☉ O,AD∥BC,∠ B=75° , 则∠ C=.【解析】∵AD∥ BC,∴∠ A+∠B=180° ,∴∠ A=180°-75 °=105°,答案 : 75°【变式训练】已知 , 四边形 ABCD内接于☉ O, 且∠ A∶∠ C=1∶2, 则∠ BOD= ° .【解析】∵四边形 ABCD内接于☉ O,∴∠ A+∠C=180°.又∠ A∶∠ C=1∶ 2, 得∠ A=60° .∴∠ BOD=2∠A=120°.答案 : 1204.如图 , △ ABC内接于☉ O,AD为△ ABC的外角平分线 , 交☉ O 于点 D, 连接 BD,CD,判断△DBC的形状 , 并说明理由 .【解析】△DBC为等腰三角形 . 理由如下 :∵四边形 ABCD为☉ O的内接四边形 ,∴∠ DCB+∠DAB=180°,又∠ EAD+∠DAB=180°,∴∠ EAD=∠DCB.又∠ DAC=∠DBC,∠EAD=∠DAC,∴∠ DBC=∠DCB,∴DB=DC,即△ DBC为等腰三角形 .【错在哪?】作业错例课堂实拍A,B 为☉ O上的两点 , ∠ AOB=100° , 若点 C 也在☉ O上, 且点 C不与 A,B 重合 , 求∠ACB的度数 .(1)错因 :____________________________________.(2)纠错 :____________________________________________________________ _________________________________.答案: (1) 点 C也可能在劣弧AB上,需要分情况讨论(2)当 C在优弧AB上时,∠ ACB=1∠AOB=50°,当 C 在劣弧AB上时,∠ ACB=2 180°-50 °=130°。

部编版人教初中数学九年级上册《24.1.4圆周角 测试题(含答案)》最新精品优秀

前言:
该测试题由多位一线国家特级教师针对当前最新的热点、考点、重点、难点、知识点,精心编辑而成。以高质量的测试题助力考生查漏补缺,在原有基础上更进一步。
(最新精品测试题)
24.1.4 圆周角
1.如图24 1 41,在⊙O中,弦AC∥半径OB,∠BOC=50°,则∠OAB的度数为( )
图24 1 41
(1)求证:DE=DB;
(2)若∠BAC=90°,BD=4,求△ABC的外接圆半径.
图24 1 46
7.如图24 1 47所示,△ABC内接于⊙O,AB为⊙O的直径,∠CBA的平分线交AC于点F,交⊙O于点D,DE⊥AB于点E,且交AC于点P,连接AD.
求证:(1)∠DAC=∠DBA;
(2)点P是线段AF的中点.
A.25°B.50°
C.60°D.30°
2.如图24 1 42所示,一块含45°角的直角三角形,它的一个锐角顶点A在⊙O上,边AB,AC分别与⊙O交于点D,E,则∠EOD的度数为____.
图24 1 42
3.如图24 1 43,四边形ABCD内接于⊙O,点E在BC的延长线上.若∠BOD=120°,则∠DCE=____.
图24 1 43
4.如图24 1 44所示,在△ABC中,AB=AC.以AB为直径作半圆O,交BC于点D.若∠BAC=40°,则 的度数是____度.
图24 1 44
5.如图24 1 45所示,BC为⊙O的直径,弦AD⊥BC于E,∠C=60°.求证:△ABD为等边三角形.
图24 1 45
如图24 1 46所示,∠BAC的平分线交△ABC的外接圆于点D,∠ABC的平分线交AD于点E.
图24 1 47
参考答案
【分层作业】
1.A 2.90°3.60°4.140 5.略 6.(1)略 (2)半径为2 .7.略

【精选】人教版九年级数学上册专题九圆周角定理的综合运用同步测试及答案

圆周角定理的综合运用一巧作辅助线求角度(教材P89习题24.1第7题)求证:圆内接平行四边形是矩形.已知:如图1,已知平行四边形ABCD是⊙O的内接四边形.求证:平行四边形ABCD是矩形.图1证明:∠A+∠C=180 °(圆内接四边形对角互补)又∠A=∠C(平行四边形对角相等)∴∠A=∠C=90 °所以圆内接平行四边形是矩形.如图2,△ABC内接于⊙O,OD⊥BC于D,∠A=50°,则∠OCD的度数是(A) 45°C.50°D.60°变形1【解析】如图,连接OB,∵∠A=50°,∴∠BOC=2∠A=100°.∵OB=OC,∴∠OCD=∠OBC=180°-∠BOC2=40°.如图3,点A,B,C,D在⊙O上,O点在∠D的内部,四边形OABC为平行四边形,则∠OAD+∠OCD=__60°__.变形2【解析】如图,连接DO并延长,∵四边形OABC为平行四边形,∴∠B=∠AOC.∵∠AOC=2∠ADC,∴∠B=2∠ADC.∵四边形ABCD是⊙O的内接四边形,∴∠B+∠ADC=180°,∴3∠ADC=180°,∴∠ADC=60°,∴∠B=∠AOC=120°.∵∠1=∠OAD+∠ADO,∠2=∠OCD +∠CDO,∴∠OAD+∠OCD=(∠1+∠2)-(∠ADO+∠CDO)=∠AOC-∠ADC=120°-60°=60°.[2012·青岛]如图4,点A ,B ,C 在⊙O 上,∠AOC =60°,则∠ABC 的度数是__150°__.【解析】 在优弧ADC ︵上取点D ,连接AD ,CD ,∵∠AOC =60°,∴∠ADC =12∠AOC =30 °. ADC =180°,∴∠ABC =180°-∠ADC =180°-30°=150°.故答案为150°.如图5,若AB 是⊙O 的直径,CD 是⊙O 的弦,∠ABD =55°,则∠BCD 的度数为( A )B .45°C .55°D .75°如图6,A ,P ,B ,C 是半径为8的⊙O 上的四点,且满足∠BAC =∠APC =60°.(1)求证:△ABC 是等边三角形;(2)求圆心O 到BC 的距离OD .解:(1)在△ABC 中,∵∠BAC =∠APC =60°,又∵∠APC =∠ABC ,∴∠ABC =60°,∴∠ACB =180°-∠BAC -∠ABC =180°-60°-60°=60°,∴△ABC 是等边三角形;(2)如图,连接OB ,OC ,则∠BOC =2∠BAC =120°.∵OB =OC ,OD ⊥BC ,∴∠OBC =∠OCB =12(180°-∠BOC )=30°.在Rt △BOD 中,∠ODB =90°,∠OBC =30°,∴OD =12OB =12×8=4.二 圆周角定理与垂径定理的综合教材P89习题24.1第5题)如图7,OA ⊥BC ,∠AOB =50°,试确定∠ADC 的大小.图7 解:∵OA ⊥BC ,∴AC ︵=AB ︵,∴∠ADC =12∠AOB =25°. 【思想方法】 垂径定理与圆周角定理的综合运用一般是通过圆周角定理进行角度、弧度转换,利用垂径定理求解.如图8,⊙O 的弦AB 垂直半径OC 于点D ,∠CBA =30°,OC =3 3 cm ,则弦AB 的长为( A )图8A .9 cmB .3 3 cmC.92 cmD.332cm 解:∵∠CBA =30°,∴∠AOC =2∠CBA =60°,∵AB ⊥OC ,∴∠ADO =90°,∴∠OAD =30°,∴OD =12OA =12×33=323(cm), 由勾股定理得:AD =OA 2-OD 2=4.5 cm ,∵AB ⊥OC ,OC 过O ,∴AB =2AD =9(cm),故选A.如图9,⊙O 的半径OD ⊥弦AB 于点C ,连接AO 并延长交⊙O 于点E ,连接EC .若AB =8,CD =2,则EC 的长为( D )图9 变形2答图A .215B .8C .210D .213【解析】 ∵⊙O 的半径OD ⊥弦AB 于点C ,AB =8,∴AC =BC =4,设⊙O 的半径为r ,则OC =r -2,在Rt △AOC 中,∵AC =4,OC =r -2,∴OA 2=AC 2+OC 2,即r 2=42+(r -2)2,解得r =5,∴AE =2r =10,连接BE ,∵AE 是⊙O 的直径,∴∠ABE =90°,在Rt △ABE 中,∵AE =10,AB =8, ∴BE =AE 2-AB 2=102-82=6,在Rt △BCE 中,∵BE =6,BC =4,∴CE =BE 2+BC 2=62+42=213.故选D.如图10,半圆O 的直径AB =10,弦AC =6 cm ,AD 平分∠BAC ,则AD 的长为( A )图10 变形3答图A .4 5 cmB .3 5 cmC .5 5 cmD .4 cm【解析】 连接OD ,OC ,作DE ⊥AB 于E ,OF ⊥AC 于F ,∵∠CAD =∠BAD (角平分线的性质),∴CD ︵=BD ︵,∴∠DOB =∠OAC =2∠BAD ,∴△AOF ≌△OED ,∴OE =AF =12AC =3 cm , 在Rt △DOE 中,,DE =OD 2-OE 2=4 cm ,在Rt △ADE 中,AD =DE 2+AE 2=4 5 cm ,故选A.如图11,AB 是⊙O 的一条弦,点C 是⊙O 上一动点,且∠ACB =30°,点E ,F 分别是AC ,BC 的中点,直线EF 与⊙O 交于G ,H 两点,若⊙O 的半径为7,则GE +FH 的最大值为__10.5__.图11 变形4答图【解析】 如图,当GH 为⊙O 的直径时,GE +FH 有最大值.∵⊙O 的半径为7,∴GH =14.连接OA ,OB .∵∠ACB =30°,∴∠AOB =2∠ACB =60°,∵OA =OB ,∴△AOB 为等边三角形,∴AB =OA =OB =7,∵点E ,F 分别是AC ,BC 的中点,∴EF =12AB =3.5, ∴GE +FH =GH -EF =14-3.5=10.5.故答案为10.5.如图12,在⊙O 中,直径AB 与弦CD 相交于点P ,∠CAB =40°,∠APD =65°.(1)求∠B 的大小; O 到BD 的距离.图12变形5答图解:(1)∵∠APD =∠C +∠CAB ,∴∠C =∠APD -∠CAB =65°-40°=25°.∴∠B =∠C =25°.(2)如图,过点O 作OE ⊥BD 于点E ,则DE =BE .又∵AO =BO ,∴OE =12AD =12×6=3.∴圆心O 到BD 的距离为3.如图13所示,AB 是⊙O 的一条弦,E 在⊙O 上,设⊙O 的半径为4 cm ,AB =4 3 cm ,(1)求圆心O 到弦AB 的距离OD ;(2)求∠AEB 的度数.解:(1)连接OA ,OB .∵OD ⊥AB ,∴AD =12AB =2 3 cm. 在Rt △ODA 中,OA =4 cm ,∴OD =OA 2-AD 2=16-12=2 (cm);(2)Rt △ODA 中,OA =4 cm ,OD =2 cm ,∴∠OAD =30°,∴∠AOD =60°.∵OA =OB ,OD ⊥AB ,∴∠AOB =2∠AEB =120°,∴∠AEB =1∠AOB =60°.图14如图14,已知在⊙O 中,AB =43,AC 是⊙O 的直径,AC ⊥BD 于F ,∠A =30°,求BD 及OF 的长.解:∵AB =43,AC ⊥BD 于F ,∠A =30°,∴BF =12AB =43×12=23,AF =AB 2-BF 2=(43)2-(23)2=6. ∵AC 是⊙O 的直径,∴BD =2BF =2×23=4 3.设OF =x ,则OB =AF -OF =6-x ,在Rt △OBF 中,OB 2=BF 2+OF 2,即(6-x )2=(23)2+x 2,解得x =2,即OF =2.答:BD 的长是43,OF 的长是2.如图15,AB 是⊙O 的直径,AC 是⊙O 的弦,以OA 为直径的⊙D 与AC 相交于点E .(1)若AC =16,求AE 的长.(2)若C 点在⊙O 上运动(不包括A ,B 两点),则在运动的过程中AC 与AE 有何特殊的数量关系?请把你探究得到的结论填写在横线上.解:(1)如图,连接OE ,∵AO 是⊙D 的直径,∴∠OEA =90°,∴OE ⊥AC .∵OE 过⊙O 的圆心O ,∴AE =CE =12AC =12×16=8. (2)若C 点在⊙O 上运动(不包括A ,B 两点),则在运动的过程中AE =12AC .。

人教版九年级数学上册《24.1.4圆周角》同步测试题附答案

人教版九年级数学上册《24.1.4圆周角》同步测试题附答案一、单选题1.如图,点A,B,C在⊙O上∠BAC=52°,连结OB,OC,则∠BOC的度数为()A.26°B.70°C.104°D.128°2.用直角钢尺检查某一工件是否恰好是半圆环形,在下面四种情形中,可判断工件是半圆环形的()A.B.C.D.3.如图,⊙O的直径AB为10,弦AC=6,⊙ACB的平分线交⊙O于D点,交AB于E点,则DE的长为()A.7√2B.247√2C.257√2D.2454.如图,⊙O中,弦AB,CD相交于点P,∠A=40°,∠APD=77°,则∠B的大小是().A.33°B.37°C.43°D.47°5.如图,⊙O的半径为1,AB是⊙O的一条弦,且AB=√3,则弦AB所对圆周角的度数为()A.30°B.60°C.30°或150°D.60°或120°6.如图,已知点A、B、C、D都在⊙O上,且⊙BOD=110°,则⊙BCD为()A.110°B.115°C.120°D.125°7.如图,在半圆O中,若⊙ABC=70°,则⊙ADC的度数为()A.70°B.140°C.110°D.130°8.如图,⊙O中OC⊥AB,∠BOC=50°,则∠ADC的度数是()A.20°B.24°C.25°D.30°9.如图,△ABC是等边三角形AB=2,点P是△ABC内一点,且∠BAP−∠CBP=30°,连接CP,则CP的最小值为()A.12B.√32C.2−√3D.√3−1二、填空题10.如图,点A、B、C、D、E均在⊙O上,连接AB、BC、CD、AE,且∠A+∠C=155°,则弧DE所对圆心角的度数为.11.如图,△ABC内接于⊙O,连接OB,已知∠OBA=20°,则∠ACB=.12.如图,四边形ABCD内接于⊙O,点E在AD的延长线上∠ABC=135°,AC=4.(1)∠CDE的度数为;(2)⊙O的半径为.13.如图,点C、D在以AB为直径的半圆上∠BCD=120°,若AB=2,则弦BD的长为 .14.如图,⊙O 的半径OD ⊥弦AB 于点C ,连接AO 并延长交⊙O 于点E ,连接EC .若AB =8,OC =3则EC 的长为 .15.如图,△ABC 内接于⊙O .若⊙O 的半径为3,∠C =45°则弦AB 的长为 .16.如图,已知AB 是⊙O 的直径,C ,D 是BE ⏜上的三等分点∠AOE =60°,则∠COE 的度数是 .17.如图,四边形ABCD 的对角线AC 是⊙O 的直径AB =AD ,∠AOD =110°,则∠BCD = °.三、解答题18.如图,在⊙O中,弦AB、CD交于点E,且AB=CD.求证:DE=BE.19.如图,AB是⊙O的直径,CD是⊙O的弦∠ACD=36°,求∠BOD的度数.20.如图所示,BC是⊙O的直径AD⊥BC,垂足为D,AB=AF,BF和AD相交于E,求证:BE=AE.21.如图,A,P,B,C是⊙O上的四个点,⊙APB=⊙CPB=60°.(1)判断⊙ABC的形状,并证明你的结论.(2)证明:P A+PC=PB.22.(1)【问题情境】A是⊙O外一点,P是⊙O上一动点.若⊙O的半径为2,且OA=5,则点P到点A的最短距离为.(2)【直接运用】如图1,在Rt△ABC中∠ACB=90°,AC=BC=2,以BC为直径的半圆交AB于点D,P是弧CD上的一个动点,连接AP,则AP的最小值是.(3)【构造运用】如图2,已知正方形ABCD的边长为6,点M,N分别从点B,C同时出发,以相同的速度沿边BC,CD向终点C,D运动,连接AM和BN交于点P,求点P到点C的距离最小值.(4)【灵活运用】如图3,⊙O的半径为4,弦AB=4,C为优弧AB上一动点,AM⊥AC交直线CB于点M,则△ABM面积的最大值是.参考答案:1.C2.B3.C4.B5.D6.D7.C8.C9.D10.50°11.70°12.135°2√213.√3.14.2√1315.3√216.80°17.11018.证明:⊙AB=CD⌢=CD⌢⊙AB⌢−BD⌢=CD⌢−BD⌢⊙AB⌢=CB⌢⊙AD⊙AD=BC又⊙∠A=∠C,∠D=∠B⊙△ADE≌△CBE⊙DE=BE.19.⊙AB是⊙O的直径,CD是⊙O的弦,∠ACD=36°⊙∠AOD=2∠ACD=72°⊙∠BOD=180°−∠AOD=108°.20.证明:延长AD交⊙O于H,如图∵AB=AF∴AB⌢=AF⌢∵AD⊥BC∴AB⌢=BH⌢∴BH⌢=AF⌢∴∠BAH=∠ABF ∴AE=BE.21.(1)解:△ABC是等边三角形,理由如下:由圆周角定理得,⊙BCA=⊙APB=60°,⊙BAC=⊙CPB=60°⊙⊙ABC=60°⊙⊙ABC=⊙ACB=⊙BAC=60°⊙⊙ABC是等边三角形;(2)证明:在PB上截取PH=P A⊙⊙APB=60°⊙⊙APH为等边三角形⊙AP=AH,⊙P AH=60°⊙⊙BAH+⊙CAH=⊙P AC+⊙CAH即⊙BAH=⊙P AC在△AHB和△APC中{AB=AC∠BAH=∠PACAH=AP⊙⊙AHB⊙⊙APC(AAS),⊙BH=PC⊙PB=PH+BH=P A+PC.22.解:(1)当点P是OA与⊙O的交点时,PA为最短AP=AO−OP=5−2=3(2)如图,连接AO,当A、P、O在同一直线上时,点P到点A的最短∵AC=BC=2∴r=12BC=1∴AO=√22+12=√5∴AP的最小值为AO−r=√5−1故答案为:√5−1;(3)∵AB=BC,∠ABM=∠BCN∴△ABM≌△BCN∴∠BAM=∠CBN∴∠CBN+∠ABP=90°∴∠BAM+∠ABP=90°∴AM⊥BN故点P点在以AB为直径的圆上运动,连接OC,与⊙O的交点,此交点P即为PC最小时的位置;∵AB=6∴OC=√32+62=3√5∴PC的最小值为3√5−3;(4)连接OA,OB∵OA=OB=4=AB∴△AOB是等边三角形∴∠AOB=60°∴∠ACB=1∠AOB=30°2∵AM⊥AC∴∠M=60°∵AB=4,要使△ABM面积最大,则点M到AB的距离最大如图,∵∠M=60°∴点M在以∠ADB=120°的⊙D上当AM=BM时,点M到AB的距离最大∴△ABM是等边三角形∴△ABM的最大面积为12AB×√32AB=√34AB2=√34×16=4√3.第11页共11页。

九年级数学上册《圆周角》练习题含答案

九年级数学上册《圆周角》练习题复习巩固1.如图,O是△ABC的外接圆,连接OB,OC,若OB=BC,则∠BAC等于()A.60°B.45°C.30°D.20°2.如图,已知CD是O的直径,过点D的弦DE平行于半径OA,若∠D=50°,则∠C=()A.50°B.40°C.30°D.25°3.如图,四边形ABCD内接于O,若∠C=36°,则∠A的度数为()A.36°B.56°C.72°D.144°4.如图,小华同学设计了一个圆的直径的测量器,标有刻度的尺子OA,OB在O点钉在一起,并使它们保持垂直,当测直径时,把O点靠在圆周上,读得刻度OE=8个单位,OF=6个单位,则圆的直径为()A.12个单位B.10个单位C.4个单位D.15个单位5.如图,已知点E是圆O上的点,B,C分别是劣弧AD的三等分点,∠BOC=46°,则∠AED的度数为__________.6.如图,量角器外沿上有A,B两点,它们的读数分别是70°,40°,则∠1的度数为__________.7.如图,点C在O上,将圆心角∠AOB绕点O按逆时针方向旋转到∠A′OB′,旋转角为α(0°<α<180°).若∠AOB=30°,∠BCA′=40°,则∠α=_________°8.如图,O是△ABC的外接圆,已知∠B=60°,则∠CAO的度数是__________.9.如图,已知AB为O的直径,AB=AC,BC交O于点D,AC交O于点E,∠BAC=45°.(1)求∠EBC的度数;(2)求证:BD=CD.能力提升10.如图,以原点O为圆心的圆交x轴于A,B两点,交y轴的正半轴于点C,D为第一象限内O上的一点,若∠DA B=20°,则∠OCD=__________.11.如图,正方形ABCD内接于O,P是劣弧AD上任意一点,则∠ABP+∠DCP=__________.12.如图,点A,D,B,C都在O上,OC⊥AB,∠ADC=30°(1)求∠BOC的度数;(2)求证:四边形AOBC是菱形.13.如图,在△ABC中,∠ACB=90°,D是AB的中点,以DC为直径的O交△ABC的边于G,F,E点.求证:(1)F是BC的中点;(2)∠A=∠GEF.参考答案复习巩固1.C 2.D 3.D4.B连接EF,∵∠EOF=90°,∴EF是圆的直径.由勾股定理,得EF=2222OE OF+=+=10.故选B.865.69°∵B,C分别是劣弧AD的三等分点,∠BOC=46°,∴∠AOD=3×46°=138°.∠AOD=69°.∴∠AED=126.15°由题意知,∠AOB=70°-40°=30°.∠AOB=15°.因此∠1=127.110°∵∠BCA′=40°,∴∠BOA′=2∠BCA′=80°.∴∠α=∠AOB+∠BOA′=30°+80°=110°.8.30°如图,延长AO交O于点D,连接CD,则∠D=∠B=60°.∵AD是O的直径,∴∠ACD=90°.∴∠CAO=90°-∠D=30°.9.(1)解:如图,连接AD.∵AB为O的直径,∴∠ADB=90°.∴AD⊥BC.∵AB=AC,∴∠BAD =∠CAD =22.5°. ∴∠EBC =∠CAD =22.5°. (2)证明:∵AB =AC ,AD ⊥BC , ∴BD =CD .能力提升10.65° 设O 交y 轴的负半轴于点E ,连接AE ,则∠OCD=∠DAE =∠DAB +∠BAE .∵∠EOB =90°, ∴∠BAE =12∠EOB =12×90°=45°. ∴∠OCD =20°+45°=65°.11.45° 连接AO ,DO ,则∠AOD =90°,所以AD 的度数为90°, 即AP 与DP 的度数之和为90°. 故∠ABP +∠DCP =45°.12.(1)解:∵点A ,D ,B ,C 都在O 上,OC ⊥AB ,∴AC BC =. ∵∠ADC =30°,∴∠BOC =∠AOC =2∠ADC =60°. (2)证明:由(1)得AC BC =, ∴AC =BC .又∵CO =BO ,∠BOC =60°,∴△BOC 为等边三角形.∴BC =BO =CO .∴AO =BO =AC =BC . ∴四边形AOBC 是菱形.13.证法一:(1)如图①,连接DF .图①∵∠ACB =90°,D 是AB 的中点, ∴BD =DC =12AB . ∵DC 是O 的直径,∴DF ⊥BC .∴BF =FC ,即F 是BC 的中点. (2)∵D ,F 分别是AB ,BC 的中点, ∴DF ∥AC ,∠A =∠BDF . ∵∠BDF =∠GEF , ∴∠A =∠GEF .图②证法二:(1)如图②,连接DF ,DE . ∵DC 是O 的直径,∴∠DEC =∠DFC =90°. ∵∠ECF =90°,∴四边形DECF 是矩形.∴EF =C D ,DF =EC .∵D是AB的中点,∠ACB=90°,∴EF=CD=BD=12 AB.∴Rt△DBF≌Rt△EFC(HL).故BF=FC,即F是BC的中点.(2)∵△DBF≌△EFC,∴∠BDF=∠FEC,∠B=∠EFC.∵∠ACB=90°,(也可证AB∥EF,得∠A=∠FEC)∴∠A=∠FEC.∵∠FEG=∠BDF,由(1)可知DF∥AC,∴∠A=∠BDF.∴∠A=∠GEF.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

提技能·题组训练
圆周角定理及其推论
1.(滨州中考)如图,在☉O中,圆心角∠BOC=78°,则圆周角∠BAC的大小为( )
A.156°
B.78°
C.39°
D.12°
【解析】选C.∠BOC是所对的圆心角,∠BAC是所对的圆周角,∴∠BAC=∠BOC=39°.
2.(海南中考)如图,在☉O中,弦BC=1,点A是圆上一点,且∠BAC=30°,则☉O的半径是( )
A.1
B.2
C.
D.
【解析】选A.方法一:连接OB,OC.
∵∠BAC=30°,∴∠BOC=2∠BAC=60°,
∵OB=OC,∴△OBC是等边三角形,
∴OB=OC=BC =1.
方法二:作直径CD,连接BD.
则∠CBD=90°,∵∠BDC=∠B AC
=30°,∴CD=2BC=2,
∴OC=CD=1.
3.(长春中考)如图,△ABC内接于☉O,∠ABC=71°,∠CAB=53°,点D在上,则∠ADB的大小为( )
A.45°
B.53°
C.56°
D.71°
【解析】选C.在△ABC中,∵∠ABC=71°,∠CAB=53°,
∴∠C=180°-71°-53°=56°,∴∠ADB=∠C=56°.
4.(佛山中考)图中圆心角∠AOB=30°,弦CA∥OB,延长CO与圆交于点D,则∠BOD= .
【解析】因为圆心角∠AOB=30°,弦CA∥OB,所以∠AOB=∠CAO=30°,
又OA=OC,所以∠CAO=∠ACO=30°,所以∠AOD=∠CAO+∠ACO=60°=∠AOB+∠BOD,所以∠BOD=30°.
答案:30°
5.(贵阳中考)如图,AD,AC分别为☉O的直径和弦,∠CAD=30°,B是AC上一点,BO⊥AD,垂足为O,BO=5cm,则CD等于cm.
【解析】在Rt△AOB中,∠A=30°,BO=5cm,∴AO=5cm,
∵AD是直径,∴AD=10cm,∠C=90°,在Rt△ADC中,
∠A=30°,AD=10cm,∴CD=5cm.
答案:5
6.如图,正方形ABCD的顶点都在☉O上,P是弧DC上的一点,则∠BPC= .
【解析】连接BD,则BD是直径,
∴△BCD是等腰直角三角形,
∴∠BDC=45°,∴∠BPC=∠BDC=45°.
答案:45°
【知识归纳】圆周角与直径
1.当题目中出现了直径时,常作辅助线,利用直径所对的圆周角是直角解决问题.
2.当出现90°的圆周角时,常连接该圆周角所对的弦,则该弦为直径.
7.如图,在☉O中,直径AB与弦CD相交于点P,∠CAB=40°,∠APD=65°.
(1)求∠B的大小.
(2)已知AD=6,求圆心O到BD的距离.
【解析】(1)∵∠APD=∠C+∠CAB,
∴∠C=65°-40°=25°.
∴∠B=∠C=25°.
(2)过点O作OE⊥BD于E,则DE=BE.
又∵AO=BO,
∴OE=AD=×6=3.
∴圆心O到BD的距离为3.
圆内接四边形
1.如图,四边形ABCD内接于☉O,如果∠BOD=130°,则∠BCD的度数是( )
A.115°
B.130°
C.65°
D.50°
【解析】选A.∵∠BOD=130°,∴∠A=∠BOD=65°,∵∠BCD+∠A=180°,
∴∠BCD=115°.
2.(莱芜中考)如图,在☉O中,已知∠OAB=22.5°,则∠C的度数为( )
A. 135°
B.122.5°
C.115.5°
D.112.5°
【解析】选D.如图,作所对的圆周角.
∵OA=OB,∴∠OBA=∠OAB=22.5°.∴∠AOB=180°-∠OAB-∠OBA =180°-22.5°-22.5°=135°.
∴∠D=∠AOB=×135°=67.5°.
∵四边形ACBD是圆内接四边形,
∴∠C+∠D=180°.
∴∠C=112.5°.
【方法技巧】1.在圆中,求角的度数时,常利用圆周角定理和圆内接四边形的对角互补来完成.
2.有时需要自己作出与已知角互补的圆周角,才能运用圆内接四边形的性质.
3.四边形ABCD内接于☉O,AD∥BC,∠B=75°,则∠C= .
【解析】∵AD∥BC,∴∠A+∠B=180°,
∴∠A=180°-75°=105°,
又∵∠A+∠C=180°,∴∠C=75°.
答案:75°
【变式训练】已知,四边形ABCD内接于☉O,且∠A∶∠C=1∶2,则∠BOD= °.
【解析】∵四边形ABCD内接于☉O,
∴∠A+∠C=180°.
又∠A∶∠C=1∶2,得∠A=60°.
∴∠BOD=2∠A=120°.
答案:120
4.如图,△ABC内接于☉O,AD为△ABC的外角平分线,交☉O于点D,连接BD,CD,判断△DBC的形状,并说明理由.
【解析】△DBC为等腰三角形.理由如下:
∵四边形ABCD为☉O的内接四边形,
∴∠DCB+∠DAB=180°,
又∠EAD+∠DAB=180°,
∴∠EAD=∠DCB.
又∠DAC=∠DBC,∠EAD=∠DAC,
∴∠DBC=∠DCB,
∴DB=DC,即△DBC为等腰三角形.
【错在哪?】作业错例课堂实拍
A,B为☉O上的两点,∠AOB=100°,若点C也在☉O上,且点C不与A,B重合,求
∠ACB的度数.
(1)错因:____________________________________.
(2)纠错:____________________________________________________________ _________________________________.
答案:(1)点C也可能在劣弧»AB上,需要分情况讨论
(2)当C在优弧»AB上时,∠ACB=1
2
∠AOB=50°,当C在劣弧»AB上时,∠ACB=
180°-50°=130°。

相关文档
最新文档